1
|
Khayal EES, Elhadidy MG, Alnasser SM, Morsy MM, Farag AI, El-Nagdy SA. Podocyte-related biomarkers' role in evaluating renal toxic effects of silver nanoparticles with the possible ameliorative role of resveratrol in adult male albino rats. Toxicol Rep 2025; 14:101882. [PMID: 39850515 PMCID: PMC11755029 DOI: 10.1016/j.toxrep.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects. Thirty adult albino rats were split into 5 groups; control, vehicle, resveratrol (30 mg/kg), Ag NPs (300 mg/kg), and resveratrol + Ag NPs groups. The treatments were given orally for 4 weeks. Ag NPs group displayed a reduction in kidney weight ( absolute and relative), excess in urinary levels of kidney injury molecule, neutrophil gelatinase-associated lipocalin, cystatin, and blood kidney biomarkers (creatinine, urea, and potassium), increases in oxidative stress markers with the reduction in antioxidant markers, and decreases in serum sirtuin 1(SIRT1) level. Upregulation of interleukin 1 beta, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 gene expressions with downregulation of nephrin and podocin gene expressions in renal tissues were also observed. These changes were associated with histological alterations of the glomeruli and tubules, and increased area percentage of collagen fiber. A significant increase in the optical density of transforming growth factor-beta 1 and claudin-1 immunostaining was detected in the Ag NPs group when compared to other groups. All these changes were alleviated by the usage of resveratrol through its anti-oxidant, anti-inflammatory, and activation of SIRT1 recommending its use as a renoprotective agent.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| | - Mona G. Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology,College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Manal Mohammad Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Azza I. Farag
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Samah A. El-Nagdy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Pouyiourou I, Fromm A, Piontek J, Rosenthal R, Furuse M, Günzel D. Ion permeability profiles of renal paracellular channel-forming claudins. Acta Physiol (Oxf) 2025; 241:e14264. [PMID: 39821681 PMCID: PMC11740656 DOI: 10.1111/apha.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
AIM Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins. METHODS MDCK II cells, in which the five major claudins had been knocked out (claudin quintupleKO), were stably transfected with individual mouse Cldn2, -4, -8, -10a, -10b, or -15, or with dog Cldn16 or -19, or with a combination of mouse Cldn4 and Cldn8, or dog Cldn16 and Cldn19. Permeation properties were investigated in the Ussing chamber and claudin interactions by FRET assays. RESULTS Claudin-4 and -19 formed barriers against solute permeation. However, at low pH values and in the absence of HCO3 -, claudin-4 conveyed a weak chloride and nitrate permeability. Claudin-8 needed claudin-4 for assembly into TJ strands and abolished this anion preference. Claudin-2, -10a, -10b, -15, -16+19 formed highly permeable channels with distinctive permeation profiles for different monovalent and divalent anions or cations, but barriers against the permeation of ions of opposite charge and of the paracellular tracer fluorescein. CONCLUSION Paracellular ion permeabilities along the nephron are strictly determined by claudin expression patterns. Paracellular channel-forming claudins are specific for certain ions and thus lower transepithelial resistance, yet form barriers against the transport of other solutes.
Collapse
Affiliation(s)
- Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mikio Furuse
- Division of Cell StructureNational Institute for Physiological SciencesOkazakiJapan
- Physiological Sciences ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
- Nagoya University Graduate School of MedicineNagoyaJapan
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Yu AS, Curry JN. Paracellular Transport and Renal Tubule Calcium Handling: Emerging Roles in Kidney Stone Disease. J Am Soc Nephrol 2024; 35:1758-1767. [PMID: 39207856 PMCID: PMC11617488 DOI: 10.1681/asn.0000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The kidney plays a major role in maintenance of serum calcium concentration, which must be kept within a narrow range to avoid disruption of numerous physiologic processes that depend critically on the level of extracellular calcium, including cell signaling, bone structure, and muscle and nerve function. This defense of systemic calcium homeostasis comes, however, at the expense of the dumping of calcium into the kidney tissue and urine. Because of the large size and multivalency of the calcium ion, its salts are the least soluble among all the major cations in the body. The potential pathologic consequences of this are nephrocalcinosis and kidney stone disease. In this review, we discuss recent advances that have highlighted critical roles for the proximal tubule and thick ascending limb in renal calcium reabsorption, elucidated the molecular mechanisms for paracellular transport in these segments, and implicated disturbances in these processes in human disease.
Collapse
Affiliation(s)
- Alan S.L. Yu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Joshua N. Curry
- Division of Nephrology, Oregon Health Sciences University, Portland, Oregon
| |
Collapse
|
5
|
Yamamoto K, Oda T, Uchida T, Takechi H, Oshima N, Kumagai H. Evaluating the State of Glomerular Disease by Analyzing Urinary Sediments: mRNA Levels and Immunofluorescence Staining for Various Markers. Int J Mol Sci 2024; 25:744. [PMID: 38255818 PMCID: PMC10815027 DOI: 10.3390/ijms25020744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Renal biopsy is the gold standard for making the final diagnosis and for predicting the progression of renal disease, but monitoring disease status by performing biopsies repeatedly is impossible because it is an invasive procedure. Urine tests are non-invasive and may reflect the general condition of the whole kidney better than renal biopsy results. We therefore investigated the diagnostic value of extensive urinary sediment analysis by immunofluorescence staining for markers expressed on kidney-derived cells (cytokeratin: marker for tubular epithelial cells, synaptopodin: marker for podocytes, claudin1: marker for parietal epithelial cells, CD68: marker for macrophages (MΦ), neutrophil elastase: marker for neutrophils). We further examined the expression levels of the mRNAs for these markers by real-time reverse transcription polymerase chain reaction. We also examined the levels of mRNAs associated with the M1 (iNOS, IL-6) and M2 (CD163, CD204, CD206, IL-10) MΦ phenotypes. Evaluated markers were compared with clinical and histological findings for the assessment of renal diseases. Claudin1- and CD68-positive cell counts in urinary sediments were higher in patients with glomerular crescents (especially cellular crescents) than in patients without crescents. The relative levels of mRNA for CD68 and the M2 MΦ markers (CD163, CD204, CD206, and IL-10) in urinary sediments were also higher in patients with glomerular crescents. These data suggest that immunofluorescence staining for claudin1 and CD68 in urinary sediments and the relative levels of mRNA for CD68 and M2 MΦ markers in urinary sediments are useful for evaluating the state of glomerular diseases.
Collapse
Affiliation(s)
- Kojiro Yamamoto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Takashi Oda
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Takahiro Uchida
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Japan;
| | - Hanako Takechi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa 359-8513, Japan; (K.Y.); (H.T.); (N.O.); (H.K.)
- Department of Nephrology, Sayama General Clinic, Sayama 350-1305, Japan
| |
Collapse
|
6
|
Lopes-Gonçalves G, Costa-Pessoa JM, Pimenta R, Tostes AF, da Silva EM, Ledesma FL, Malheiros DMAC, Zatz R, Thieme K, Câmara NOS, Oliveira-Souza M. Evaluation of glomerular sirtuin-1 and claudin-1 in the pathophysiology of nondiabetic focal segmental glomerulosclerosis. Sci Rep 2023; 13:22685. [PMID: 38114708 PMCID: PMC10730508 DOI: 10.1038/s41598-023-49861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.
Collapse
Affiliation(s)
- Guilherme Lopes-Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM 55), Urology Department, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Flavia Tostes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Martins da Silva
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Thieme
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
8
|
Negri AL, Del Valle EE. Role of claudins in idiopathic hypercalciuria and renal lithiasis. Int Urol Nephrol 2022; 54:2197-2204. [PMID: 35084652 DOI: 10.1007/s11255-022-03119-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Paracellular transport in the kidney is mediated by a family of proteins located in the tight junctions called claudins which confers its ionic selectivity. Claudin-2 is highly expressed in the proximal tubule and descending limb of Henle and mediate paracellular reabsorption of sodium and calcium cations. In the thick ascending limb of Henle (TALH) calcium is reabsorbed by a paracellular channel formed by Claudin-16 and-19. Claudin-16 mediates cationic permeability while Claudin-19 increases the cationic selectivity of Claudin-16 by blocking anionic permeability. On the other hand, Claudin 14, that is also located in TALH, inhibits the paracellular permeability of Claudin-16 to calcium. Recent wide genomic association analysis studies have detected four common synonymous variants (genetic polymorphisms of a single nucleotide, SNPs) at the locus of Claudin-14 gene that were significantly associated with the presence of renal lithiasis. Another study of wide genomic association and nephrolithiasis was carried out in the general population but including chromosome X, where claudin-2 gene is located. They detected nine SNPs that had a significant association with renal lithiasis risk. A greater knowledge of the paracellular pathway controlled by claudins and its regulation will allow us to develop future new treatments for idiopathic hypercalciuria and renal lithiasis.
Collapse
Affiliation(s)
- Armando Luis Negri
- Institute for Metabolic Research, Faculty of Medicine, Del Salvador University, Libertad 836, 1 Floor, 1012, Buenos Aires, Argentina.
| | - Elisa Elena Del Valle
- Institute for Metabolic Research, Faculty of Medicine, Del Salvador University, Libertad 836, 1 Floor, 1012, Buenos Aires, Argentina
| |
Collapse
|
9
|
Breiderhoff T, Himmerkus N, Meoli L, Fromm A, Sewerin S, Kriuchkova N, Nagel O, Ladilov Y, Krug S, Quintanova C, Stumpp M, Garbe-Schönberg D, Westernströer U, Merkel C, Brinkhus M, Altmüller J, Schweiger M, Mueller D, Mutig K, Morawski M, Halbritter J, Milatz S, Bleich M, Günzel D. Claudin-10a Deficiency Shifts Proximal Tubular Cl - Permeability to Cation Selectivity via Claudin-2 Redistribution. J Am Soc Nephrol 2022; 33:699-717. [PMID: 35031570 PMCID: PMC8970455 DOI: 10.1681/asn.2021030286] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Background The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiological role of claudin-10a in the kidney has been unclear. Methods To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice; confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining; and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. Results Mice deficient in claudin-10a were fertile and without overt phenotypes. Upon knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a consequence, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison of other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, as well as unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. Conclusions Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyperreabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.
Collapse
Affiliation(s)
- Tilman Breiderhoff
- T Breiderhoff, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Nina Himmerkus
- N Himmerkus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Luca Meoli
- L Meoli, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- A Fromm, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Sewerin
- S Sewerin, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Natalia Kriuchkova
- N Kriuchkova, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Nagel
- O Nagel, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yury Ladilov
- Y Ladilov, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Krug
- S Krug, Clinical Physiology / Div. of Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catarina Quintanova
- C Quintanova, Institute of Physiology, Christian-Albrechts-Universitat zu Kiel, Kiel, Germany
| | - Meike Stumpp
- M Stumpp, Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Garbe-Schönberg
- D Garbe-Schönberg, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrike Westernströer
- U Westernströer, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Cosima Merkel
- C Merkel, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Merle Brinkhus
- M Brinkhus, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Janine Altmüller
- J Altmüller, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Michal Schweiger
- M Schweiger, Cologne Center for Genomics, University of Cologne, Koln, Germany
| | - Dominik Mueller
- D Mueller, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- K Mutig, Institute for Functional Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morawski
- M Morawski, Leipzig University Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | - Jan Halbritter
- J Halbritter, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanne Milatz
- S Milatz, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Bleich
- M Bleich, Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dorothee Günzel
- D Günzel, Clinical Physiology / Div. of Nutritional Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
10
|
Establishment and characterization of a novel conditionally immortalized human parietal epithelial cell line. Exp Cell Res 2021; 405:112712. [PMID: 34181939 DOI: 10.1016/j.yexcr.2021.112712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
Parietal epithelial cells (PECs) are epithelial cells in the kidney, surrounding Bowman's space. When activated, PECs increase in cell volume, proliferate, migrate to the glomerular tuft and excrete extracellular matrix. Activated PECs are crucially involved in the formation of sclerotic lesions, seen in focal segmental glomerulosclerosis (FSGS). In FSGS, a number of glomeruli show segmental sclerotic lesions. Further disease progression will lead to increasing number of involved glomeruli and gradual destruction of the affected glomeruli. Although the involvement of PECs in FSGS has been acknowledged, little is known about the molecular processes driving PEC activation. To get more insights in this process, accurate in vivo and in vitro models are needed. Here, we describe the development and characterization of a novel conditionally immortalized human PEC (ciPEC) line. We demonstrated that ciPECs are differentiated when grown under growth-restrictive conditions and express important PEC-specific markers, while lacking podocyte and endothelial markers. In addition, ciPECs showed PEC-like morphology and responded to IL-1β treatment. We therefore conclude that we have successfully generated a novel PEC line, which can be used for future studies on the role of PECs in FSGS.
Collapse
|
11
|
Prot-Bertoye C, Griveau C, Skjødt K, Cheval L, Brideau G, Lievre L, Ferriere E, Arbaretaz F, Garbin K, Zamani R, Marcussen N, Figueres L, Breiderhoff T, Muller D, Bruneval P, Houillier P, Dimke H. Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia. Am J Physiol Renal Physiol 2021; 321:F207-F224. [PMID: 34151590 DOI: 10.1152/ajprenal.00579.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Elsa Ferriere
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Kevin Garbin
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Muller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Bruneval
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomopathologie, Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Oh IH, Jo CH, Kim S, Jo S, Chung S, Kim GH. Thick ascending limb claudins are altered to increase calciuria and magnesiuria in metabolic acidosis. Am J Physiol Renal Physiol 2021; 320:F418-F428. [PMID: 33522409 DOI: 10.1152/ajprenal.00282.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary calcium and magnesium wasting is a characteristic feature of metabolic acidosis, and this study focused on the role of the thick ascending limb of Henle's loop in metabolic acidosis-induced hypercalciuria and hypermagnesiuria because thick ascending limb is an important site of paracellular calcium and magnesium reabsorption. Male Sprague-Dawley rats were used to determine the effects of acid loading (by adding NH4Cl, 7.2 mmol/220 g body wt/day to food slurry for 7 days) on renal expression of claudins and then to evaluate whether the results were reversed by antagonizing calcium-sensing receptor (using NPS-2143). At the end of each animal experiment, the kidneys were harvested for immunoblotting, immunofluorescence microscopy, and quantitative PCR (qPCR) analysis of claudins and the calcium-sensing receptor. As expected, NH4Cl loading lowered urinary pH and increased excretion of urinary calcium and magnesium. In NH4Cl-loaded rats, renal protein and mRNA expression of claudin-16, and claudin-19, were decreased compared with controls. However, claudin-14 protein and mRNA increased in NH4Cl-loaded rats. Consistently, the calcium-sensing receptor protein and mRNA were up-regulated in NH4Cl-loaded rats. All these changes were reversed by NPS-2143 coadministration and were confirmed using immunofluorescence microscopy. Hypercalciuria and hypermagnesiuria in NH4Cl-loaded rats were significantly ameliorated by NPS-2143 coadministration as well. We conclude that in metabolic acidosis, claudin-16 and claudin-19 in the thick ascending limb are down-regulated to produce hypercalciuria and hypermagnesiuria via the calcium-sensing receptor.NEW & NOTEWORTHY This study found that the thick ascending limb of Henle's loop is involved in the mechanisms of hypercalciuria and hypermagnesiuria in metabolic acidosis. Specifically, expression of claudin-16/19 and claudin-14 was altered via up-regulation of calcium-sensing receptor in NH4Cl-induced metabolic acidosis. Our novel findings contribute to understanding the regulatory role of paracellular tight junction proteins in the thick ascending limb.
Collapse
Affiliation(s)
- Il Hwan Oh
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Cave EM, Prigge KL, Crowther NJ, George JA, Padoa CJ. A Polymorphism in the Gene Encoding the Insulin Receptor Binding Protein ENPP-1 Is Associated with Decreased Glomerular Filtration Rate in an Under-Investigated Indigenous African Population. Kidney Blood Press Res 2020; 45:1009-1017. [PMID: 33271541 DOI: 10.1159/000511213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The C allele of the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP-1) rs1044498 polymorphism has previously been associated with increased binding of ENPP-1 to the insulin receptor (IR), resulting in decreased IR signalling and enhanced insulin resistance. It has also been associated with reduced kidney function in participants with diabetes of predominantly European and Asian descent. The association of this polymorphism with kidney disease in healthy Black South African participants has yet to be ascertained. OBJECTIVE This study, therefore, aimed to determine whether the K121Q polymorphism is associated with estimated glomerular filtration rate (eGFR) in a Black South African cohort. METHODS Black South African participants (n = 348) from an existing cohort with known eGFR levels were genotyped for the K121Q polymorphism using PCR-RFLP and assessed for any statistical association between genotype and kidney function. RESULTS Individuals with the A allele had significantly lower eGFR levels than individuals with the CC genotype (86.52 ± 18.95 vs. 93.29 ± 23.55 mL/min; p = 0.022). The association of the A allele with lower eGFR levels remained after controlling for sex, blood pressure, insulin resistance, age, smoking, thyroid-stimulating hormone, insulin-like growth factor-1, and BMI (R2 = 0.030, p < 0.001). CONCLUSION The rs1044498 A allele was significantly associated with lower eGFR levels in a cohort of apparently healthy Black South Africans, through an unknown mechanism that was independent of insulin resistance. It is possible that the rs1044498 polymorphism affects kidney function by altering the role of ENPP-1 in endothelial wound healing, podocyte signalling, or oxidative stress. Thus, the presence of this polymorphism may predispose individuals to a greater risk of CKD even in the absence of diabetes.
Collapse
Affiliation(s)
- Eleanor M Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa,
| | - Katherine L Prigge
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,National Health Laboratory Service University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,National Health Laboratory Service University of the Witwatersrand, Johannesburg, South Africa
| | - Jaya A George
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,National Health Laboratory Service University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn J Padoa
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,National Health Laboratory Service University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Wang Y, Zhao H, Nie X, Guo M, Jiang G, Xing M. Zinc application alleviates the adverse renal effects of arsenic stress in a protein quality control way in common carp. ENVIRONMENTAL RESEARCH 2020; 191:110063. [PMID: 32818499 DOI: 10.1016/j.envres.2020.110063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The potential antagonistic mechanism between zinc (Zn) and arsenic (As) on renal toxicity was investigated in common carp. The results showed that by increased Zn efflux and retention (as reflected by zinc transporter 1 (ZnT-1), Zrt- and Irt- 1ike protein (ZIP) and metallothionein (MT) expression), Zn co-administration significantly recovered the antioxidant function (catalase, CAT) and the level of renal barrier function (Occludin, Claudins and Zonula Occludens) in comparison to As treatment. Interestingly, Zn co-administration with As resulted in carps undergoing reduction of heat shock response (HSPs), a low induction of autophagy flux (Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (P62)) and decreased endoplasmic reticulum (ER) stress (activating transcription factor 6 (ATF-6), inositol requiring-1α (IRE1) and PKR-like ER kinase (PERK)) in the aspect of mRNA or protein levels. All these alleviated protein quality control processes induced by Zn under As stress was correlated with the no longer loosen tight connection, less swollen endoplasmic reticulum as well as reduced formation of autophagosomes and autophagic vesicles. Mechanically, post-transcriptional regulated protein quantities compromising phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway was demonstrated true causative forces inside the cell for Zn against As poisoning. In conclusion, we suggested the potential renal protective effect of Zn supplementation against As exposure by the modulation of protein quality control processes.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
15
|
Sobreiro‐Almeida R, Melica ME, Lasagni L, Romagnani P, Neves NM. Co-cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro. Acta Physiol (Oxf) 2020; 230:e13491. [PMID: 32365407 DOI: 10.1111/apha.13491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
AIM Herein we propose creating a bilayer tubular kidney in-vitro model. It is hypothesized that membranes composed of decellularized porcine kidney extracellular matrix are valid substitutes of the tubular basement membrane by mimicking the physiological relevance of the in vivo environment and disease phenotypes. METHODS Extracellular matrix was obtained from decellularized porcine kidneys. After processing by lyophilization and milling, it was dissolved in an organic solvent and blended with poly(caprolactone). Porous membranes were obtained by electrospinning and seeded with human primary renal progenitor cells to evaluate phenotypic alterations. To create a bilayer model of the in vivo tubule, the same cells were differentiated into epithelial tubular cells and co-cultured with endothelial cells in opposite sites. RESULTS Our results demonstrate increasing metabolic activity, proliferation and total protein content of renal progenitors over time. We confirmed the expression of several genes encoding epithelial transport proteins and we could also detect tubular-specific proteins by immunofluorescence stainings. Functional and transport assays were performed trough the bilayer by quantifying both human serum albumin uptake and inulin leakage. Furthermore, we validated the chemical modulation of nephrotoxicity on this epithelium-endothelium model by cisplatin exposure. CONCLUSION The use of decellularized matrices in combination with primary renal cells was shown to be a valuable tool for modelling renal function and disease in vitro. We successfully validated our hypothesis by replicating the physiological conditions of an in vitro tubular bilayer model. The developed system may contribute significantly for the future investigation of advanced therapies for kidney diseases.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Barco Portugal
- ICVS/3B’s – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Maria Elena Melica
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Excellence Centre for Research Transfer and High Education for the Development of DE NOVO Therapies Florence Italy
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Excellence Centre for Research Transfer and High Education for the Development of DE NOVO Therapies Florence Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio” University of Florence Florence Italy
- Excellence Centre for Research Transfer and High Education for the Development of DE NOVO Therapies Florence Italy
- Nephrology and Dialysis Unit Meyer Children’s University Hospital Florence Italy
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Barco Portugal
- ICVS/3B’s – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
16
|
Curry JN, Tokuda S, McAnulty P, Yu ASL. Combinatorial expression of claudins in the proximal renal tubule and its functional consequences. Am J Physiol Renal Physiol 2020; 318:F1138-F1146. [PMID: 32174144 DOI: 10.1152/ajprenal.00057.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proximal renal tubule (PT) is characterized by a highly conductive paracellular pathway, which contributes to a significant amount of solute and water reabsorption by the kidney. Claudins are tight junction proteins that, in part, determine the paracellular permeability of epithelia. In the present study, we determined the expression pattern of the major PT claudins. We found that claudin-2 and claudin-10 are coexpressed throughout the PT, whereas claudin-3 is coexpressed with claudin-2 predominantly in the proximal straight tubule. Additionally, claudin-2 and claudin-3 are expressed separately within mutually exclusive populations of descending thin limbs. We developed a novel double-inducible Madin-Darby canine kidney I cell model to characterize in vitro the functional effect of coexpression of PT claudins. In keeping with previous studies, we found that claudin-2 alone primarily increased cation (Na+ and Ca2+) permeability, whereas claudin-10a alone increased anion (Cl-) permeability. Coexpression of claudin-2 and claudin-10a together led to a weak physical interaction between the isoforms and the formation of a monolayer with high conductance but neutral charge selectivity. Claudin-3 expression had a negligible effect on all measures of cell permeability, whether expressed alone or together with claudin-2. In cells coexpressing a claudin-2 mutant, S68C, together with claudin-10a, inhibition of cation permeability through the claudin-2 pore with a thiol-reactive pore blocker did not block anion permeation through claudin-10a. We conclude that claudin-2 and claudin-10a form independent paracellular cation- and anion-selective channels that function in parallel.
Collapse
Affiliation(s)
- Joshua N Curry
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Shinsaku Tokuda
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Patrick McAnulty
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
17
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
18
|
Sobreiro-Almeida R, Fonseca DR, Neves NM. Extracellular matrix electrospun membranes for mimicking natural renal filtration barriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109866. [DOI: 10.1016/j.msec.2019.109866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
|
19
|
Mallett AJ, Quinlan C, Patel C, Fowles L, Crawford J, Gattas M, Baer R, Bennetts B, Ho G, Holman K, Simons C. Precision Medicine Diagnostics for Rare Kidney Disease: Twitter as a Tool in Clinical Genomic Translation. Kidney Med 2019; 1:315-318. [PMID: 32734212 PMCID: PMC7380393 DOI: 10.1016/j.xkme.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
New technologies such as genomics present opportunities to deliver precision medicine, including in the diagnosis of rare kidney disorders. Simultaneously, social media platforms such as Twitter can provide rapid and wide-reaching information dissemination in health care and science. We present 2 cases in which the reporting of a novel genetic cause for human kidney disease was communicated through Twitter and then subsequently noted by treating clinicians, thereby resulting in rapid clinical diagnostic translation. In 1 family, this involved the reporting of heterozygous variants in GREB1L relating to autosomal dominant unilateral or bilateral renal agenesis, and in the other family, this involved biallelic variants in CLDN10 relating to autosomal recessive hypokalemic renal tubular phenotypes. The times from Twitter notification to clinical diagnostic genetic report for these families were 111 and 200 days, respectively. Although caution is required, these cases show that social media platforms can contribute to rapid and accessible academic communication that may benefit clinicians, genomics-based researchers, and patients and families affected by rare kidney diseases.
Collapse
Affiliation(s)
- Andrew J Mallett
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Melbourne, VIC, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Catherine Quinlan
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Melbourne, VIC, Australia.,Department of Paediatric Nephrology, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, VIC, Australia
| | - Chirag Patel
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Lindsay Fowles
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Joanna Crawford
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Michael Gattas
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Richard Baer
- Department of Nephrology, Mater Public Hospital, South Brisbane, QLD, Australia
| | - Bruce Bennetts
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Department of Molecular Genetics, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Genetic Medicine and Discipline of Child & Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gladys Ho
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Department of Molecular Genetics, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Genetic Medicine and Discipline of Child & Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Holman
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Department of Molecular Genetics, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Genetic Medicine and Discipline of Child & Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cas Simons
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Curry JN, Yu ASL. Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 2019; 316:F966-F969. [PMID: 30838875 DOI: 10.1152/ajprenal.00519.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The proximal tubule (PT) is responsible for the majority of calcium reabsorption by the kidney. Most PT calcium transport appears to be passive, although the molecular facilitators have not been well established. Emerging evidence supports a major role for PT calcium transport in idiopathic hypercalciuria and the development of kidney stones. This review will cover recent developments in our understanding of PT calcium transport and the role of the PT in kidney stone formation.
Collapse
Affiliation(s)
- Joshua N Curry
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
21
|
Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37:303-313. [PMID: 30833775 DOI: 10.1038/s41587-019-0048-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.
Collapse
|
22
|
Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, Wolvetang EJ, McMahon AP, Holm TM, Davidson AJ. A Simple Bioreactor-Based Method to Generate Kidney Organoids from Pluripotent Stem Cells. Stem Cell Reports 2018; 11:470-484. [PMID: 30033089 PMCID: PMC6092837 DOI: 10.1016/j.stemcr.2018.06.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development. Technically simple and cost-efficient protocol for kidney organoid generation Tubular organoids are obtained rapidly, with high efficiency, yield, and robustness Organoids contain nephrons that correspond to human fetal nephrons The applicability to model congenital kidney defects is presented
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Hollywood
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Jen-Hsing Shih
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Teresa M Holm
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
23
|
|
24
|
Chevtchik NV, Mihajlovic M, Fedecostante M, Bolhuis-Versteeg L, Sastre Toraño J, Masereeuw R, Stamatialis D. A bioartificial kidney device with polarized secretion of immune modulators. J Tissue Eng Regen Med 2018; 12:1670-1678. [DOI: 10.1002/term.2694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022]
Affiliation(s)
- N. V. Chevtchik
- Bioartificial Organs, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede the Netherlands
| | - M. Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - M. Fedecostante
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - L. Bolhuis-Versteeg
- Bioartificial Organs, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede the Netherlands
| | - J. Sastre Toraño
- Division of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - R. Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht the Netherlands
| | - D. Stamatialis
- Bioartificial Organs, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede the Netherlands
| |
Collapse
|
25
|
Curry JN, Yu AS. Magnesium Handling in the Kidney. Adv Chronic Kidney Dis 2018; 25:236-243. [PMID: 29793662 DOI: 10.1053/j.ackd.2018.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Magnesium is a divalent cation that fills essential roles as regulator and cofactor in a variety of biological pathways, and maintenance of magnesium balance is vital to human health. The kidney, in concert with the intestine, has an important role in maintaining magnesium homeostasis. Although micropuncture and microperfusion studies in the mammalian nephron have shone a light on magnesium handling in the various nephron segments, much of what we know about the protein mediators of magnesium handling in the kidney have come from more recent genetic studies. In the proximal tubule and thick ascending limb, magnesium reabsorption is believed to occur primarily through the paracellular shunt pathway, which ultimately depends on the electrochemical gradient setup by active sodium reabsorption. In the distal convoluted tubule, magnesium transport is transcellular, although magnesium reabsorption also appears to be related to active sodium reabsorption in this segment. In addition, evidence suggests that magnesium transport is highly regulated, although a specific hormonal regulator of extracellular magnesium has yet to be identified.
Collapse
|
26
|
Kim S, Kim GH. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One 2017; 12:e0189221. [PMID: 29252987 PMCID: PMC5734727 DOI: 10.1371/journal.pone.0189221] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Background Claudin-2, ZO-1, and occludin are major components of tight junctions (TJs) in the proximal tubule. However, their roles in maintaining paracellular permeability as leaky epithelia have yet to be defined. Methods To investigate the contributory role of TJ proteins in the leaky proximal tubule, we xamined the effect of inhibiting claudin-2, occludin, and ZO-1 expression on transepithelial electrical resistance (TER) and paracellular permeability using the immortalized human proximal tubule epithelial cell line HK-2. For this, small-interfering RNAs (siRNAs) against claudin-2, occludin and ZO-1 were transfected into HK-2 cells. TER and transepithelial flux rates of dextrans (4 and 70 kDa) were determined after 24 h. Results Transfection of siRNAs (25 nM) knocked down TJ protein expression. Control HK-2 monolayers achieved a steady-state TER of 6–8 Ω·cm2 when grown in 12-well Transwell filters, which are compatible with leaky epithelia. Knockdown of claudin-2 decreased in TER and increased occludin expression. Transfection with siRNA against either occludin or ZO-1 increased TER and decreased claudin-2 expression. TER was decreased by co-inhibition of claudin-2 and ZO-1 but increased by co-inhibition of claudin-2 and occludin. TER was suppressed when claudin-2, occludin, and ZO-1 were all inhibited. Dextran flux rate was increased by claudin-2, occludin, or ZO-1 siRNA transfection. Increased dextran flux was enhanced by co-transfection of claudin-2, ZO-1, and occludin siRNA. Conclusions The depletion of claudin-2, occludin and ZO-1 in HK-2 cells had differential effects on TER and macromolecule flux. We demonstrated that integration of claudin-2, occludin and ZO-1 is necessary for maintaining the function of the proximal tubular epithelium.
Collapse
Affiliation(s)
- Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
27
|
Mihajlovic M, Fedecostante M, Oost MJ, Steenhuis SKP, Lentjes EGWM, Maitimu-Smeele I, Janssen MJ, Hilbrands LB, Masereeuw R. Role of Vitamin D in Maintaining Renal Epithelial Barrier Function in Uremic Conditions. Int J Mol Sci 2017; 18:ijms18122531. [PMID: 29186865 PMCID: PMC5751134 DOI: 10.3390/ijms18122531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
As current kidney replacement therapies are not efficient enough for end-stage renal disease (ESRD) treatment, a bioartificial kidney (BAK) device, based on conditionally immortalized human proximal tubule epithelial cells (ciPTEC), could represent an attractive solution. The active transport activity of such a system was recently demonstrated. In addition, endocrine functions of the cells, such as vitamin D activation, are relevant. The organic anion transporter 1 (OAT-1) overexpressing ciPTEC line presented 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1) and vitamin D receptor (VDR), responsible for vitamin D activation, degradation and function, respectively. The ability to produce and secrete 1α,25-dihydroxy-vitamin D3, was shown after incubation with the precursor, 25-hydroxy-vitamin D3. The beneficial effect of vitamin D on cell function and behavior in uremic conditions was studied in the presence of an anionic uremic toxins mixture. Vitamin D could restore cell viability, and inflammatory and oxidative status, as shown by cell metabolic activity, interleukin-6 (IL-6) levels and reactive oxygen species (ROS) production, respectively. Finally, vitamin D restored transepithelial barrier function, as evidenced by decreased inulin-FITC leakage in biofunctionalized hollow fiber membranes (HFM) carrying ciPTEC-OAT1. In conclusion, the protective effects of vitamin D in uremic conditions and proven ciPTEC-OAT1 endocrine function encourage the use of these cells for BAK application.
Collapse
Affiliation(s)
- Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Michele Fedecostante
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Miriam J Oost
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Sonja K P Steenhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Eef G W M Lentjes
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Inge Maitimu-Smeele
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
28
|
Edwards A, Crambert G. Versatility of NaCl transport mechanisms in the cortical collecting duct. Am J Physiol Renal Physiol 2017; 313:F1254-F1263. [PMID: 28877883 DOI: 10.1152/ajprenal.00369.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl-/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl- transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.
Collapse
Affiliation(s)
- Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and .,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Gilles Crambert
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
29
|
Bongers EMHF, Shelton LM, Milatz S, Verkaart S, Bech AP, Schoots J, Cornelissen EAM, Bleich M, Hoenderop JGJ, Wetzels JFM, Lugtenberg D, Nijenhuis T. A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations. J Am Soc Nephrol 2017; 28:3118-3128. [PMID: 28674042 DOI: 10.1681/asn.2016080881] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/11/2017] [Indexed: 11/03/2022] Open
Abstract
Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.
Collapse
Affiliation(s)
| | | | - Susanne Milatz
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
30
|
Tight junctions of the proximal tubule and their channel proteins. Pflugers Arch 2017; 469:877-887. [DOI: 10.1007/s00424-017-2001-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022]
|
31
|
Der E, Ranabothu S, Suryawanshi H, Akat KM, Clancy R, Morozov P, Kustagi M, Czuppa M, Izmirly P, Belmont HM, Wang T, Jordan N, Bornkamp N, Nwaukoni J, Martinez J, Goilav B, Buyon JP, Tuschl T, Putterman C. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2017; 2:93009. [PMID: 28469080 DOI: 10.1172/jci.insight.93009] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Lupus nephritis is a leading cause of mortality among systemic lupus erythematosus (SLE) patients, and its heterogeneous nature poses a significant challenge to the development of effective diagnostics and treatments. Single cell RNA sequencing (scRNA-seq) offers a potential solution to dissect the heterogeneity of the disease and enables the study of similar cell types distant from the site of renal injury to identify novel biomarkers. We applied scRNA-seq to human renal and skin biopsy tissues and demonstrated that scRNA-seq can be performed on samples obtained during routine care. Chronicity index, IgG deposition, and quantity of proteinuria correlated with a transcriptomic-based score composed of IFN-inducible genes in renal tubular cells. Furthermore, analysis of cumulative expression profiles of single cell keratinocytes dissociated from nonlesional, non-sun-exposed skin of patients with lupus nephritis also revealed upregulation of IFN-inducible genes compared with keratinocytes isolated from healthy controls. This indicates the possible use of scRNA-seq analysis of skin biopsies as a biomarker of renal disease. These data support the potential utility of scRNA-seq to provide new insights into the pathogenesis of lupus nephritis and pave the way for exploiting a readily accessible tissue to reflect injury in the kidney.
Collapse
Affiliation(s)
- Evan Der
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Saritha Ranabothu
- Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hemant Suryawanshi
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Kemal M Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Robert Clancy
- New York University School of Medicine, New York, New York, USA
| | - Pavel Morozov
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Manjunath Kustagi
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Mareike Czuppa
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Peter Izmirly
- New York University School of Medicine, New York, New York, USA
| | | | - Tao Wang
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicole Jordan
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicole Bornkamp
- New York University School of Medicine, New York, New York, USA
| | - Janet Nwaukoni
- New York University School of Medicine, New York, New York, USA
| | - July Martinez
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Beatrice Goilav
- Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jill P Buyon
- New York University School of Medicine, New York, New York, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
32
|
Peter A, Fatykhova D, Kershaw O, Gruber AD, Rueckert J, Neudecker J, Toennies M, Bauer TT, Schneider P, Schimek M, Eggeling S, Suttorp N, Hocke AC, Hippenstiel S. Localization and pneumococcal alteration of junction proteins in the human alveolar-capillary compartment. Histochem Cell Biol 2017; 147:707-719. [PMID: 28247028 DOI: 10.1007/s00418-017-1551-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 02/03/2023]
Abstract
Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal-to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.
Collapse
Affiliation(s)
- Andrea Peter
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department for Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Diana Fatykhova
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany
| | - Jens Rueckert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Mario Toennies
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstrasse 11, 14165, Berlin, Germany
| | - Torsten T Bauer
- Lungenklinik Heckeshorn, HELIOS Klinikum Emil von Behring, Walterhöferstrasse 11, 14165, Berlin, Germany
| | - Paul Schneider
- Department for General and Thoracic Surgery, DRK Clinics, Drontheimer Strasse 39-40, 13359, Berlin, Germany
| | - Maria Schimek
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin, Rudower Straße 48, 12351, Berlin, Germany
| | - Stephan Eggeling
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin, Rudower Straße 48, 12351, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
33
|
Muto S. Physiological roles of claudins in kidney tubule paracellular transport. Am J Physiol Renal Physiol 2017; 312:F9-F24. [DOI: 10.1152/ajprenal.00204.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport.
Collapse
Affiliation(s)
- Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
34
|
Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc Natl Acad Sci U S A 2016; 114:E219-E227. [PMID: 28028216 DOI: 10.1073/pnas.1611684114] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The thick ascending limb (TAL) of Henle's loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2.
Collapse
|
35
|
Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, Wallace E, Warnock D, Najafian B. Urinary Podocyte Loss Is Increased in Patients with Fabry Disease and Correlates with Clinical Severity of Fabry Nephropathy. PLoS One 2016; 11:e0168346. [PMID: 27992580 PMCID: PMC5161377 DOI: 10.1371/journal.pone.0168346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease is a major complication of Fabry disease. Podocytes accumulate globotriaosylceramide inclusions more than other kidney cell types in Fabry patients. Podocyte injury occurs early in age, and is progressive. Since injured podocytes detach into the urine (podocyturia), we hypothesized that podocyturia would increase in Fabry patients and correlate with clinical severity of Fabry nephropathy. Urine specimens from 39 Fabry patients and 24 healthy subjects were evaluated for podocyturia. Most of the Fabry patients and many healthy subjects had podocyturia. The number of podocytes per gram of urine creatinine (UPodo/g Cr) was 3.6 fold greater in Fabry patients (3,741 ± 2796; p = 0.001) than healthy subjects (1,040 ± 972). Fabry patients with normoalbuminuria and normoproteinuria had over 2-fold greater UPodo/g Cr than healthy subjects (p = 0.048). UPodo/gCr was inversely related to eGFR in male patients (r = -0.69, p = 0.003). UPodo/gCr was directly related to urine protein creatinine ratio (r = 0.33; p = 0.04) in all Fabry patients. These studies confirm increased podocyturia in Fabry disease, even when proteinuria and albuminuria are absent. Podocyturia correlates with clinical severity of Fabry nephropathy, and potentially may be of prognostic value.
Collapse
Affiliation(s)
- Brent Fall
- Department of Pathology, University of Washington, Seattle, United States America
| | - C Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, United States America
| | - Michael Mauer
- Departments of Pediatrics, University of Minnesota, Minneapolis, United States America.,Departments of Medicine, University of Minnesota, Minneapolis, United States America
| | - Stuart Shankland
- Department of Medicine, University of Washington, Seattle, United States America
| | - Jeffrey Pippin
- Department of Medicine, University of Washington, Seattle, United States America
| | - Jonathan A Jefferson
- Department of Medicine, University of Washington, Seattle, United States America
| | - Eric Wallace
- Department of Medicine, University of Alabama, Birmingham, United States America
| | - David Warnock
- Department of Medicine, University of Alabama, Birmingham, United States America
| | - Behzad Najafian
- Department of Pathology, University of Washington, Seattle, United States America
| |
Collapse
|
36
|
Milatz S, Breiderhoff T. One gene, two paracellular ion channels—claudin-10 in the kidney. Pflugers Arch 2016; 469:115-121. [DOI: 10.1007/s00424-016-1921-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
|
37
|
Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch 2016; 469:35-44. [DOI: 10.1007/s00424-016-1909-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|
38
|
Hashimoto Y, Kawahigashi Y, Hata T, Li X, Watari A, Tada M, Ishii-Watabe A, Okada Y, Doi T, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Efficacy and safety evaluation of claudin-4-targeted antitumor therapy using a human and mouse cross-reactive monoclonal antibody. Pharmacol Res Perspect 2016; 4:e00266. [PMID: 27713828 PMCID: PMC5045943 DOI: 10.1002/prp2.266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
Claudin‐4 (CLDN‐4), a tight‐junction protein, is overexpressed in various malignant tumors, including gastric, colorectal, pancreatic, and breast cancers. However, CLDN‐4 is also expressed in normal tissues, including the liver, pancreas, kidney, and small intestine. Whether CLDN‐4 is an effective and safe target for cancer therapy has been unclear owing to the lack of a binder with both CLDN‐4 specificity and cross‐reactivity to human and murine cells. In this study, we successfully generated a rat anti‐CLDN‐4 monoclonal antibody (5D12) that was specific to, and cross‐reactive with, human and mouse CLDN‐4. 5D12 recognized the second extracellular domain of human CLDN‐4 in a conformation‐dependent manner. A human–rat chimeric IgG1 of 5D12 (xi‐5D12) activated the FcγIIIa receptor, indicating the activation of antibody‐dependent cellular cytotoxicity in CLDN‐4‐expressing cells. Moreover, xi‐5D12 significantly suppressed tumor growth in mice bearing human colorectal and gastric tumors without apparent adverse effects, such as weight loss or liver and kidney damage. These results suggest that CLDN‐4 is a potent target for cancer therapy and that an anti‐CLDN‐4 antibody is a promising candidate anticancer agent.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Yumi Kawahigashi
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Tomoyuki Hata
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Xiangru Li
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Akihiro Watari
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals National Institute of Health Sciences Tokyo 158-0098 Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals National Institute of Health Sciences Tokyo 158-0098 Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology National Institute of Infectious Diseases Tokyo 162-8640 Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology Nara Medical University Nara 634-8521 Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences Osaka University Osaka 565-0871 Japan
| |
Collapse
|
39
|
Xu J, Yang Y, Hao P, Ding X. Claudin 8 Contributes to Malignant Proliferation in Human Osteosarcoma U2OS Cells. Cancer Biother Radiopharm 2016; 30:400-4. [PMID: 26560196 DOI: 10.1089/cbr.2015.1815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human osteosarcoma (OS) represents one of the most common primary sarcomas often originating in the metaphyses of long bones. However, its underlying molecular pathogenesis is still only vaguely understood. Several tight junction proteins were shown to be associated with and involved in tumorigenesis. This study is aimed to evaluate the role of Claudin 8 (CLDN8) in human OS. Lentivirus-based short hairpin RNA targeting CLDN8 specifically depleted its endogenous expression in U2OS and SW1353 OS cells, with a reduction by 97.7% and 89.3%, respectively, in contrast to control. Depletion of CLDN8 led to a significant diminution in cell viability and proliferation. To test the mechanism by which CLDN8 modulates cell proliferation, the flow cytometry assay and apoptosis assay were performed and confirmed that G1-S transition was blocked and a strong proapoptotic effect was induced in U2OS cells by CLDN8 knockdown. These data demonstrate that CLDN8 plays an essential role in OS proliferation in vitro, which will provide a new opportunity for discovering and identifying novel effective treatment strategies.
Collapse
Affiliation(s)
- Jianqiang Xu
- 1 Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yaoqi Yang
- 1 Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Ping Hao
- 1 Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xiaoyi Ding
- 2 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
40
|
Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol 2016; 790:28-35. [PMID: 27395800 DOI: 10.1016/j.ejphar.2016.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
Abstract
The limited removal of metabolic waste products in dialyzed kidney patients leads to high morbidity and mortality. One powerful solution for a more complete removal of those metabolites might be offered by a bioartificial kidney device (BAK), which contains a hybrid "living membrane" with functional proximal tubule epithelial cells (PTEC). These cells are supported by an artificial functionalized hollow fiber membrane (HFM) and are able to actively remove the waste products. In our earlier studies, conditionally immortalized human PTEC (ciPTEC) showed to express functional organic cationic transporter 2 (OCT2) when seeded on small size flat or hollow fiber polyethersulfone (PES) membranes. Here, an upscaled "living membrane" is presented. We developed and assessed the functionality of modules containing three commercially available MicroPES HFM supporting ciPTEC. The HFM were optimally coated with L-Dopa and collagen IV to support a uniform and tight monolayer formation of matured ciPTEC under static culturing conditions. Both abundant expression of zonula occludens-1 (ZO-1) protein and limited diffusion of FITC-inulin confirm a clear barrier function of the monolayer. Furthermore, the uptake of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+), a fluorescent OCT2 substrate, was studied in absence and presence of known OCT inhibitors, such as cimetidine and a cationic uremic solutes mixture. The ASP+ uptake by the living upscaled membrane was decreased by 60% in the presence of either inhibitor, proving the active function of OCT2. In conclusion, this study presents a successful upscaling of a living membrane with active organic cation transport as a support for BAK device.
Collapse
Affiliation(s)
- Natalia Vladimirovna Chevtchik
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Michele Fedecostante
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Milos Mihajlovic
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marieke Rüth
- eXcorLab GmbH, Industrie Center Obernburg, Obernburg, Germany
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, UIPS Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
41
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
42
|
Jansen J, De Napoli IE, Fedecostante M, Schophuizen CMS, Chevtchik NV, Wilmer MJ, van Asbeck AH, Croes HJ, Pertijs JC, Wetzels JFM, Hilbrands LB, van den Heuvel LP, Hoenderop JG, Stamatialis D, Masereeuw R. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations. Sci Rep 2015; 5:16702. [PMID: 26567716 PMCID: PMC4644946 DOI: 10.1038/srep16702] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022] Open
Abstract
The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering.
Collapse
Affiliation(s)
- J Jansen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Physiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - I E De Napoli
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - M Fedecostante
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Physiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - C M S Schophuizen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Physiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - N V Chevtchik
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - M J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - A H van Asbeck
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - H J Croes
- Department of Cell Biology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - J C Pertijs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - J F M Wetzels
- Department of Nephrology, Radboud university medical center, Nijmegen, The Netherlands
| | - L B Hilbrands
- Department of Nephrology, Radboud university medical center, Nijmegen, The Netherlands
| | - L P van den Heuvel
- Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology &Growth and Regeneration, Catholic University Leuven, Leuven, Belgium
| | - J G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - D Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - R Masereeuw
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Div. Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, The Netherlands
| |
Collapse
|
43
|
Plain A, Wulfmeyer VC, Milatz S, Klietz A, Hou J, Bleich M, Himmerkus N. Corticomedullary difference in the effects of dietary Ca²⁺ on tight junction properties in thick ascending limbs of Henle's loop. Pflugers Arch 2015; 468:293-303. [PMID: 26497703 DOI: 10.1007/s00424-015-1748-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022]
Abstract
The thick ascending limb of Henle's loop (TAL) drives an important part of the reabsorption of divalent cations. This reabsorption occurs via the paracellular pathway formed by the tight junction (TJ), which in the TAL shows cation selectivity. Claudins, a family of TJ proteins, determine the permeability and selectivity of this pathway. Mice were fed with normal or high-Ca(2+) diet, and effects on the reabsorptive properties of cortical and medullary TAL segments were analysed by tubule microdissection and microperfusion. Claudin expression was investigated by immunostaining and quantitative PCR. We show that the TAL adapted to high Ca(2+) load in a sub-segment-specific manner. In medullary TAL, transcellular NaCl transport was attenuated. The transepithelial voltage decreased from 10.9 ± 0.6 mV at control diet to 8.3 ± 0.5 mV at high Ca(2+) load, thereby reducing the driving force for Ca(2+) and Mg(2+) uptake. Cortical TAL showed a reduction in paracellular Ca(2+) and Mg(2+) permeabilities from 8.2 ± 0.7 to 6.2 ± 0.5 ∙ 10(-4) cm/s and from 4.8 ± 0.5 to 3.0 ± 0.2 · 10(-4) cm/s at control and high-Ca(2+) diet, respectively. Expression, localisation and regulation of claudins 10, 14, 16 and 19 differed along the corticomedullary axis: Towards the cortex, the main site of divalent cation reabsorption in TAL, high-Ca(2+) intake led to a strong upregulation of claudin-14 within TAL TJs while claudin-16 and -19 were unaltered. Towards the inner medulla, only claudin-10 was present in TAL TJ strands. In summary, high-Ca(2+) diet induced a reduction of divalent cation reabsorption via a diminution of NaCl transport and driving force in mTAL and via decreased paracellular permeabilities in cTAL. We reveal an important regulatory pattern along the corticomedullary axis and improve the understanding how the kidney disposes of detrimental excess Ca(2+).
Collapse
Affiliation(s)
- Allein Plain
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Susanne Milatz
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Adrian Klietz
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Jianghui Hou
- Washington University Renal Division, St. Louis, MO, USA
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University Kiel, Olshausenstraße 40, Kiel, 24098, Germany.
| |
Collapse
|
44
|
Abstract
Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH) is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR), which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline.
Collapse
|
45
|
Slusser A, Bathula CS, Sens DA, Somji S, Sens MA, Zhou XD, Garrett SH. Cadherin expression, vectorial active transport, and metallothionein isoform 3 mediated EMT/MET responses in cultured primary and immortalized human proximal tubule cells. PLoS One 2015; 10:e0120132. [PMID: 25803827 PMCID: PMC4372585 DOI: 10.1371/journal.pone.0120132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. METHODS Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. RESULTS It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. CONCLUSIONS The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype.
Collapse
Affiliation(s)
- Andrea Slusser
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
47
|
McKee R, Gerlach GF, Jou J, Cheng CN, Wingert RA. Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene Expr Patterns 2014; 16:104-13. [PMID: 25460834 DOI: 10.1016/j.gep.2014.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
The kidney is comprised of nephrons - epithelial tubes with specialized segments that reabsorb and secrete solutes, perform osmoregulation, and produce urine. Different nephron segments exhibit unique combinations of ion channels, transporter proteins, and cell junction proteins that govern permeability between neighboring cells. The zebrafish pronephros is a valuable model to study the mechanisms of vertebrate nephrogenesis, but many basic features of segment gene expression in renal progenitors and mature nephrons have not been characterized. Here, we analyzed the temporal and spatial expression pattern of tight junction components during zebrafish kidney ontogeny. During nephrogenesis, renal progenitors show discrete expression domains of claudin (cldn) 15a, cldn8, occludin (ocln) a, oclnb, tight junction protein (tjp) 2a, tjp2b, and tjp3. Interestingly, transcripts encoding these genes exhibit dynamic spatiotemporal domains during the time when pronephros segment domains are established. These data provide a useful gene expression map of cell junction components during zebrafish nephrogenesis. As such, this information complements the existing molecular map of nephron segment characteristics, and can be used to characterize kidney development mutants as well as various disease models, in addition to aiding in the elucidation of mechanisms governing epithelial regeneration after acute nephron injury.
Collapse
Affiliation(s)
- Robert McKee
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jonathan Jou
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
48
|
Wilmes A, Jennings P. The Use of Renal Cell Culture for Nephrotoxicity Investigations. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Wilmes A, Aschauer L, Limonciel A, Pfaller W, Jennings P. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicol Appl Pharmacol 2014; 279:163-72. [DOI: 10.1016/j.taap.2014.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 01/04/2023]
|
50
|
Markov AG, Amasheh S. Tight junction physiology of pleural mesothelium. Front Physiol 2014; 5:221. [PMID: 25009499 PMCID: PMC4067758 DOI: 10.3389/fphys.2014.00221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/27/2014] [Indexed: 01/12/2023] Open
Abstract
Pleura consists of visceral and parietal cell layers, producing a fluid, which is necessary for lubrication of the pleural space. Function of both mesothelial cell layers is necessary for the regulation of a constant pleural fluid volume and composition to facilitate lung movement during breathing. Recent studies have demonstrated that pleural mesothelial cells show a distinct expression pattern of tight junction proteins which are known to ubiquitously determine paracellular permeability. Most tight junction proteins provide a sealing function to epithelia, but some have been shown to have a paracellular channel function or ambiguous properties. Here we provide an in-depth review of the current knowledge concerning specific functional contribution of these proteins determining transport and barrier function of pleural mesothelium.
Collapse
Affiliation(s)
- Alexander G Markov
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| | - Salah Amasheh
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|