1
|
Shi J, Liu X, Jiao Y, Tian J, An J, Zou G, Zhuo L. mTOR pathway: A key player in diabetic nephropathy progression and therapeutic targets. Genes Dis 2025; 12:101260. [PMID: 39717716 PMCID: PMC11665407 DOI: 10.1016/j.gendis.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis. It is implicated in diverse signaling pathways and has been observed to partake in the progression of diabetic nephropathy by inhibiting autophagy, promoting inflammation, and increasing oxidative stress. In this academic review, we have consolidated the understanding of the pathological mechanisms associated with four distinct resident renal cell types (podocytes, glomerular mesangial cells, renal tubular epithelial cells, and glomerular endothelial cells), as well as macrophages and T lymphocytes, within a diabetic environment. Additionally, we highlight the research progress in the treatment of diabetic nephropathy with drugs and various molecules interfering with the mTOR signaling pathway, providing a theoretical reference for the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Jingxuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029, China
| | - Xinze Liu
- Beijing University of Chinese Medicine China-Japan Friendship Clinical Medical College, Beijing 100029, China
| | - Yuanyuan Jiao
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China
| | - Jingwei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing 100007, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Jiaqi An
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Clinic Medical College, Peking University, Beijing 100191, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Grahammer F, Dumoulin B, Gulieva RE, Wu H, Xu Y, Sulaimanov N, Arnold F, Sandner L, Cordts T, Todkar A, Moulin P, Reichardt W, Puelles VG, Kramann R, Freedman BS, Busch H, Boerries M, Walz G, Huber TB. Cyclin-dependent kinase 4 drives cystic kidney disease in the absence of mTORC1 signaling activity. Kidney Int 2024; 106:856-869. [PMID: 39218392 DOI: 10.1016/j.kint.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A. In contrast to a rapid onset of cyst formation and kidney failure in mice with defective ciliogenesis, both kidney function, cyst formation discerned by magnetic resonance imaging and overall survival were strikingly improved in mice additionally lacking Raptor. However, these mice eventually succumbed to cystic kidney disease despite mTORC1 inactivation. In-depth transcriptome analysis revealed the rapid activation of other growth-promoting signaling pathways, overriding the effects of mTORC1 deletion and identified cyclin-dependent kinase (CDK) 4 as an alternate driver of cyst growth. Additional inhibition of CDK4-dependent signaling by the CDK4/6 inhibitor Palbociclib markedly slowed disease progression in mice and human organoid models of polycystic kidney disease and potentiated the effects of mTORC1 deletion/inhibition. Our findings indicate that cystic kidneys rapidly adopt bypass mechanisms typically observed in drug resistant cancers. Thus, future clinical trials need to consider combinatorial or sequential therapies to improve therapeutic efficacy in patients with cystic kidney disease.
Collapse
Affiliation(s)
- Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Bernhard Dumoulin
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramila E Gulieva
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hui Wu
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nurgazy Sulaimanov
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Frederic Arnold
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Lukas Sandner
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Tomke Cordts
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Abhijeet Todkar
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - Pierre Moulin
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Wilfried Reichardt
- Department of Diagnostic and Interventional Radiology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; Plurexa LLC, Seattle, Washington, USA
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between Deutsches Krebs Forschungs Zentrum (DKFZ) and Medical Center-University of Freiburg, Heidelberg, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center and Faculty of Medicine University of Freiburg, Freiburg, Germany; Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Kędzierska-Kapuza K, Łopuszyńska I, Niewiński G, Franek E, Szczuko M. The Influence of Non-Pharmacological and Pharmacological Interventions on the Course of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:3216. [PMID: 39339816 PMCID: PMC11434835 DOI: 10.3390/nu16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic kidney disease (PKD) includes autosomal dominant (ADPKD) and autosomal recessive (ARPKD) forms, both of which are primary genetic causes of kidney disease in adults and children. ADPKD is the most common hereditary kidney disease, with a prevalence of 329 cases per million in Europe. This condition accounts for 5-15% of end-stage chronic kidney disease (ESKD) cases, and in developed countries such as Poland, 8-10% of all dialysis patients have ESKD due to ADPKD. The disease is caused by mutations in the PKD1 and PKD2 genes, with PKD1 mutations responsible for 85% of cases, leading to a more aggressive disease course. Recent research suggests that ADPKD involves a metabolic defect contributing to cystic epithelial proliferation and cyst growth. Aim: This review explores the interplay between metabolism, obesity, and ADPKD, discussing dietary and pharmacological strategies that target these metabolic abnormalities to slow disease progression. Conclusion: Metabolic reprogramming therapies, including GLP-1 analogs and dual agonists of GIP/GLP-1 or glucagon/GLP-1 receptors, show promise, though further research is needed to understand their potential in ADPKD treatment fully.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Inga Łopuszyńska
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Grzegorz Niewiński
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University, 24 W. Broniewskiego St., 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Lv C, Zhou L, Zhou Y, Lew CCH, Lee ZY, Hasan MS, Li B, Liu Y, Lin J, Mao W, Stoppe C, van Zanten ARH, Li W, Liu Y, Ke L. Early protein delivery in critically ill patients with acute kidney injury: post hoc analysis of a multicenter cluster-randomized controlled trial. BURNS & TRAUMA 2024; 12:tkae027. [PMID: 39049866 PMCID: PMC11267585 DOI: 10.1093/burnst/tkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024]
Abstract
Background There is controversy over the optimal early protein delivery in critically ill patients with acute kidney injury (AKI). This study aims to evaluate whether the association between early protein delivery and 28-day mortality was impacted by the presence of AKI in critically ill patients. Methods This is a post hoc analysis of data from a multicenter cluster-randomised controlled trial enrolling newly admitted critically ill patients (n = 2772). Participants without chronic kidney disease and with complete data concerning baseline renal function were included in this study. The primary outcome was 28-day mortality. Cox proportional hazards models were used to analyze the association between early protein delivery, reflected by mean protein delivery from day 3-5 after enrollment, 28-day mortality and whether baseline AKI stages interacted with this association. Results Overall, 2552 patients were included, among whom 567 (22.2%) had AKI at enrollment (111 stage I, 87 stage II, 369 stage III). Mean early protein delivery was 0.60 ± 0.38 g/kg/day among the study patients. In the overall study cohort, each 0.1 g/kg/day increase in protein delivery was associated with a 5% reduction in 28-day mortality[hazard ratio (HR) = 0.95; 95% confidence interval (CI) 0.92-0.98, p < 0.001]. The association between early protein delivery and 28-day mortality significantly interacted with baseline AKI stages (adjusted interaction p = 0.028). Each 0.1 g/kg/day increase in early protein delivery was associated with a 4% reduction in 28-day mortality (HR = 0.96; 95%CI 0.92-0.99, p = 0.011) among patients without AKI and 9% (HR = 0.91; 95%CI 0.84-0.99, p = 0.021) among those with AKI stage III. However, such associations cannot be observed among patients with AKI stages I and II. Conclusions Increased early protein delivery (up to close to the guideline recommendation) was associated with reduced 28-day mortality in critically ill patients without AKI and with AKI stage III, but not in those with AKI stage I or II.
Collapse
Affiliation(s)
- Cheng Lv
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - Lingliang Zhou
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Southeast University, 87 Ding Jiaqiao, Gulou District, Nanjing 210009, China
| | - Yufeng Zhou
- Department of Biostatistics, School of Public Health, Southern Medical University, 1023-1063 Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Charles Chin Han Lew
- Department of Dietetics and Nutrition, Ng Teng Fong General Hospital, Singapore, Singapore 1 Jurong East Street 21, Singapore
| | - Zheng-Yii Lee
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - M Shahnaz Hasan
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
- Department of Anaesthesiology, Universiti Malaya Medical Centre, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- National Institute of Healthcare Data Science, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- Research Institute of Critical Care Medicine and Emergency Rescue At Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, Jiangsu Province, China
| | - Yang Liu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Southeast University, 87 Ding Jiaqiao, Gulou District, Nanjing 210009, China
| | - Jiajia Lin
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
| | - Christian Stoppe
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Arthur Raymond Hubert van Zanten
- Department of Intensive Care, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP Ede, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Helix (Building 124), Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- National Institute of Healthcare Data Science, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- Research Institute of Critical Care Medicine and Emergency Rescue At Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, Jiangsu Province, China
| | - Yuxiu Liu
- Department of Biostatistics, School of Public Health, Southern Medical University, 1023-1063 Shatai South Road, Baiyun District, Guangzhou 510515, China
- National Institute of Healthcare Data Science, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- Research Institute of Critical Care Medicine and Emergency Rescue At Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, Jiangsu Province, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- National Institute of Healthcare Data Science, Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, China
- Research Institute of Critical Care Medicine and Emergency Rescue At Nanjing University, 22 Hankou Road, Gulou District, Nanjing 210093, Jiangsu Province, China
| |
Collapse
|
5
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
6
|
Farooqui Z, Banday AA. Angiotensin 1-7 exerts antioxidant effects, suppresses Mammalian Target of Rapamycin (mTOR) signaling, and inhibits apoptosis in renal proximal tubular cells. Peptides 2024; 172:171136. [PMID: 38104660 DOI: 10.1016/j.peptides.2023.171136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Oxidative stress is one of the crucial pathogenic factors involved in the progression of renal injury. Angiotensin (ANG) 1-7, a bioactive heptapeptide of the renin-angiotensin-aldosterone system is known to exert antioxidant and nephroprotective effects. However, the cellular mechanism involved in the beneficial effect of ANG 1-7 is not clear. Here, we assessed ANG 1-7's effect on H2O2-mediated oxidative damage in the human proximal tubular (HK2) cells and the underlying mechanisms. HK2 cells were incubated with H2O2 (500 µM, 4 h) pre-treated with and without ANG 1-7 (100 nM, 24 h), and reactive oxygen species (ROS) generation, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, apoptosis and mammalian target of rapamycin (mTOR) signaling were determined H2O2 induced an increase in oxidative and ER stress together with loss of mitochondrial membrane potential, decreased ATP levels, and induced apoptosis in HK2 cells. Moreover, H2O2 treatment resulted in the activation of mTOR complexes (mTORC1 and mTORC2) in these cells. ANG 1-7 significantly attenuated H2O2-induced ROS generation, ER stress and apoptosis, and also improved mitochondrial function. Additionally, pre-treatment of ANG 1-7 inhibited the H2O2-mediated mTOR activation. These effects of ANG 1-7 were blocked by co-treatment with the Mas receptor (MasR) inhibitor, A779. Furthermore, transfection of HK2 cells with Mas receptor siRNA also abolished the inhibitory effect of ANG 1-7 on mTOR activities. In conclusion, ANG 1-7 via MasR mitigates oxidative stress, suppresses mTOR signaling, and protects HK2 cells from ER stress, mitochondrial dysfunction, and apoptosis, suggesting ANG 1-7-MasR renoprotective effects.
Collapse
Affiliation(s)
- Zeba Farooqui
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
7
|
Espartero A, Vidal A, Lopez I, Raya AI, Rodriguez M, Aguilera-Tejero E, Pineda C. Rapamycin downregulates α-klotho in the kidneys of female rats with normal and reduced renal function. PLoS One 2023; 18:e0294791. [PMID: 38015969 PMCID: PMC10684065 DOI: 10.1371/journal.pone.0294791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023] Open
Abstract
Both mTOR and α-klotho play a role in the pathophysiology of renal disease, influence mineral metabolism and participate in the aging process. The influence of mTOR inhibition by rapamycin on renal α-klotho expression is unknown. Rats with normal (controls) and reduced (Nx) renal function were treated with rapamycin, 1.3 mg/kg/day, for 22 days. The experiments were conducted with rats fed 0.6% P diet (NP) and 0.2% P diet (LP). Treatment with rapamycin promoted phosphaturia in control and Nx rats fed NP and LP. A decrease in FGF23 was identified in controls after treatment with rapamycin. In rats fed NP, rapamycin decreased mRNA α-klotho/GADPH ratio both in controls, 0.6±0.1 vs 1.1±0.1, p = 0.001, and Nx, 0.3±0.1 vs 0.7±0.1, p = 0.01. At the protein level, a significant reduction in α-klotho was evidenced after treatment with rapamycin both by Western Blot: 0.6±0.1 vs 1.0±0.1, p = 0.01, in controls, 0.7±0.1 vs 1.1±0.1, p = 0.02, in Nx; and by immunohistochemistry staining. Renal α-klotho was inversely correlated with urinary P excretion (r = -0.525, p = 0.0002). The decrease in α-klotho after treatment with rapamycin was also observed in rats fed LP. In conclusion, rapamycin increases phosphaturia and down-regulates α-klotho expression in rats with normal and decreased renal function. These effects can be observed in animals ingesting normal and low P diet.
Collapse
Affiliation(s)
- Azahara Espartero
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio Lopez
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mariano Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, Campus Universitario Rabanales, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
8
|
Watany MM, El-Horany HE, Elhosary MM, Elhadidy AA. Clinical application of RUBCN/SESN2 mediated inhibition of autophagy as biomarkers of diabetic kidney disease. Mol Med 2022; 28:147. [PMID: 36476132 PMCID: PMC9730641 DOI: 10.1186/s10020-022-00580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deregulated autophagy in diabetes has been a field of many experimental studies recently. Impaired autophagy in diabetic kidneys orchestrates every step of diabetic nephropathy (DN) pathogenesis. This study aimed to evaluate three autophagy regulators; RUBCN, mTOR, and SESN2 as clinically applicable indicators of DN progression and as early predictors of DN. METHODS This retrospective study included 120 participants in 4 groups; G1: diabetic patients without albuminuria, G2: diabetic patients with microalbuminuria, G3: diabetic patients with macroalbuminuria and G4: healthy controls. RUBCN and SESN2 genes expression were tested by RT-qPCR. RUBCN, mTOR, and SESN2 serum proteins were quantitated by ELISA. RESULTS RUBCN mRNA was over-expressed in diabetic patients relative to controls with the highest level found in G3 followed by G2 then G1; (9.04 ± 0.64, 5.18 ± 0.73, 1.94 ± 0.41 respectively. P < 0.001). SESN2 mRNA expression was at its lowest level in G3 followed by G2 then G1 (0.1 ± 0.06, 0.48 ± 0.11, 0.78 ± 0.13 respectively. P < 0.001). Similar parallel reduction in serum SENS2 was observed. Serum RUBCN and mTOR were significantly elevated in diabetic patients compared to controls, with the increase parallel to albuminuria degree. RUBCN expression, serum RUBCN and mTOR strongly correlated with albuminuria (r = 0.912, 0.925 and 0.867 respectively). SESN2 expression and serum level negatively correlated with albuminuria (r = - 0.897 and -0.828 respectively); (All p < 0.001). Regression analysis showed that serum RUBCN, mTOR, RUBCN and SESN2 mRNAs could successfully predict DN. CONCLUSIONS The study proves the overexpression of RUBCN and mTOR in DN and the down-expression of SESN2. The three markers can be clinically used to predict DN and to monitor disease progression.
Collapse
Affiliation(s)
- Mona M. Watany
- grid.412258.80000 0000 9477 7793Clinical Pathology Department, Faculty of Medicine, Tanta University, El Geish Street, Tanta, 31527 El-Gharbia Governorate Egypt
| | - Hemat E. El-Horany
- grid.412258.80000 0000 9477 7793Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527 Egypt ,grid.443320.20000 0004 0608 0056Biochemistry Department, College of Medicine, Ha’il University, Ha’il, 55211 Saudi Arabia
| | - Marwa M. Elhosary
- grid.412258.80000 0000 9477 7793Msc Immunology from Tanta Faculty of Science, Tanta, 31527 Egypt
| | - Ahmed A. Elhadidy
- grid.412258.80000 0000 9477 7793Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
9
|
刘 泽, 尤 达, 李 勇, 何 咏, 李 阿, 李 潘, 李 春. [Numb activates the mTORC1 signaling pathway in proximal tubular epithelial cells by upregulating V1G1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1462-1469. [PMID: 36329579 PMCID: PMC9637490 DOI: 10.12122/j.issn.1673-4254.2022.10.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the role of Numb in regulating mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway. METHODS Male BALB/C mouse models of acute kidney injury (AKI) were subjected to intravenous injections of Numb-siRNA or NC-siRNA with or without intraperitoneal cisplatin injections. After the treatments, the expressions and distribution of Numb and megalin in the renal tissues of the mice were detected with immunohistochemistry, and the renal expressions of Numb, S6, p-S6, S6K1, p-S6K1, 4EBP1 and p-4EBP1 were examined with Western blotting. The proximal renal tubular epithelial cells were isolated from the mice transfected with Numb-siRNA for in vitro culture. In NRK-52E cells, the effects of amino acid stimulation, Numb knockdown, and V1G1 overexpression, alone or in combination, on expressions of Numb, S6 and p-S6 were detected with Western blotting; the expressions of AMPK and p-AMPK were also detected in transfected NRK-52E cells, mouse kidneys and cultured mouse renal tubular epithelial cells. RESULTS In BALB/C mice, injection of Numb-siRNA caused significant reductions of Numb and p-S6 expressions without affecting megalin expression in the renal proximal tubules (P < 0.05). Cisplatin treatment obviously upregulated p-S6K1 and p-4EBP1 expressions in the kidneys of the mice (P < 0.05), and this effect was significantly inhibited by treatment with Numb-siRNA (P < 0.05). In NRK-52E cells, amino acid stimulation significantly upregulated the expression of p-S6 (P < 0.05), which was strongly suppressed by transfection with Numb-siRNA (P < 0.05). Numb knockdown inhibited AMPK activation in NRK-52E cells, mouse kidneys and primary proximal tubular epithelial cells (P < 0.05). Numb knockdown significantly downregulated V1G1 expression in NRK-52E cells (P < 0.05), and V1G1 overexpression obviously reversed the inhibitory effect of Numb-siRNA on S6 phosphorylation (P < 0.05). CONCLUSION Numb promotes the activation of mTORC1 signaling in proximal tubular epithelial cells by upregulating V1G1 expression.
Collapse
Affiliation(s)
- 泽 刘
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| | - 达 尤
- 湘南学院临床学院,湖南 郴州 423000School of Clinical Medicine, Xiangnan University, Chenzhou 423000, China
| | - 勇 李
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| | - 咏梅 何
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| | - 阿芳 李
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| | - 潘 李
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| | - 春艳 李
- 湘南学院护理学院,湖南 郴州 423000School of Nursing, Xiangnan University, Chenzhou 423000, China
| |
Collapse
|
10
|
Abou Daher A, Alkhansa S, Azar WS, Rafeh R, Ghadieh HE, Eid AA. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy. Antioxid Redox Signal 2022; 37:802-819. [PMID: 34544257 DOI: 10.1089/ars.2021.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802-819.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia, USA
| | - Rim Rafeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
12
|
Li F, Fang Y, Zhuang Q, Cheng M, Moronge D, Jue H, Meyuhas O, Ding X, Zhang Z, Chen JK, Wu H. Blocking ribosomal protein S6 phosphorylation inhibits podocyte hypertrophy and focal segmental glomerulosclerosis. Kidney Int 2022; 102:121-135. [PMID: 35483522 PMCID: PMC10711420 DOI: 10.1016/j.kint.2022.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yili Fang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiyuan Zhuang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meichu Cheng
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Desmond Moronge
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hao Jue
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Lamontagne JO, Zhang H, Zeid AM, Strittmatter K, Rocha AD, Williams T, Zhang S, Marneros AG. Transcription factors AP-2α and AP-2β regulate distinct segments of the distal nephron in the mammalian kidney. Nat Commun 2022; 13:2226. [PMID: 35468900 PMCID: PMC9038906 DOI: 10.1038/s41467-022-29644-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors AP-2α and AP-2β have been suggested to regulate the differentiation of nephron precursor populations towards distal nephron segments. Here, we show that in the adult mammalian kidney AP-2α is found in medullary collecting ducts, whereas AP-2β is found in distal nephron segments except for medullary collecting ducts. Inactivation of AP-2α in nephron progenitor cells does not affect mammalian nephrogenesis, whereas its inactivation in collecting ducts leads to defects in medullary collecting ducts in the adult. Heterozygosity for AP-2β in nephron progenitor cells leads to progressive distal convoluted tubule abnormalities and β-catenin/mTOR hyperactivation that is associated with renal fibrosis and cysts. Complete loss of AP-2β in nephron progenitor cells caused an absence of distal convoluted tubules, renal cysts, and fibrosis with β-catenin/mTOR hyperactivation, and early postnatal death. Thus, AP-2α and AP-2β have non-redundant distinct spatiotemporal functions in separate segments of the distal nephron in the mammalian kidney.
Collapse
Affiliation(s)
- Joseph O Lamontagne
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alia M Zeid
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alicia D Rocha
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sheryl Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
14
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
15
|
Grahammer F, Huber TB, Artunc F. Role of mTOR Signaling for Tubular Function and Disease. Physiology (Bethesda) 2021; 36:350-358. [PMID: 34514872 DOI: 10.1152/physiol.00021.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) forms two distinct intracellular multiprotein complexes that control a multitude of intracellular processes linked to metabolism, proliferation, actin cytoskeleton, and survival. Recent studies have identified the importance of these complexes for transport regulation of ions and nutrients along the entire nephron. First reports could link altered activity of these complexes to certain disease entities, i.e. diabetic nephropathy, acute kidney injury or hyperkalemia.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona FJ, Dafinger C, Houillier P, Jones DP, Kleinerüschkamp F, Oh J, Godefroid N, Eltan M, Güran T, Burtey S, Parotte MC, König J, Braun A, Bos C, Ibars Serra M, Rehmann H, Zwartkruis FJ, Renkema KY, Klingel K, Schulze-Bahr E, Schermer B, Bergmann C, Altmüller J, Thiele H, Beck BB, Dahan K, Sabatini D, Liebau MC, Vargas-Poussou R, Knoers NV, Konrad M, de Baaij JH. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J Am Soc Nephrol 2021; 32:2885-2899. [PMID: 34607910 PMCID: PMC8806087 DOI: 10.1681/asn.2021030333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium,Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Kuang Shen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anukrati Nigam
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Pascal Houillier
- Cordeliers Research Center, Centre National de la Recherche Scientifique (CNRS), ERL8228, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, University of Paris, Paris, France,Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), European Hospital Georges Pompidou, Paris, France,Reference Center for Hereditary Renal Diseases in Children and Adults (MARHEA), Paris, France
| | - Deborah P. Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Kleinerüschkamp
- Department of Pediatric Cardiology, University Children’s Hospital, Münster, Germany
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tülay Güran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Stéphane Burtey
- Center for Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Christine Parotte
- Division of Nephrology-Dialysis, Department of Internal Medicine, CHR Verviers East Belgium, Verviers, Belgium
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Alina Braun
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Ibars Serra
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Holger Rehmann
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J.T. Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,CECAD, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Limbach Genetics, Medizinische Genetik Mainz, Mainz, Germany,Division of Nephrology, Department of Medicine, University Hospital Freiburg, Breisgau, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Karin Dahan
- Center of Human Genetics, Gosselies, Belgium,Division of Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - David Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Max C. Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Rosa Vargas-Poussou
- Department of Genetics, AP-HP, European Hospital Georges Pompidou, Paris, France
| | - Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119165. [PMID: 34699872 DOI: 10.1016/j.bbamcr.2021.119165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.
Collapse
|
18
|
High glucose-stimulated enhancer of zeste homolog-2 (EZH2) forces suppression of deptor to cause glomerular mesangial cell pathology. Cell Signal 2021; 86:110072. [PMID: 34224844 DOI: 10.1016/j.cellsig.2021.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Function of mTORC1 and mTORC2 has emerged as a driver of mesangial cell pathologies in diabetic nephropathy. The mechanism of mTOR activation is poorly understood in this disease. Deptor is a constitutive subunit and a negative regulator of both mTOR complexes. Mechanistic investigation in mesangial cells revealed that high glucose decreased the expression of deptor concomitant with increased mTORC1 and mTORC2 activities, induction of hypertrophy and, expression of fibronectin and PAI-1. shRNAs against deptor mimicked these pathologic outcomes of high glucose. Conversely, overexpression of deptor significantly inhibited all effects of high glucose. To determine the mechanism of deptor suppression, we found that high glucose significantly increased the expression of EZH2, resulting in lysine-27 tri-methylation of histone H3 (H3K27Me3). Employing approaches including pharmacological inhibition, shRNA-mediated downregulation and overexpression of EZH2, we found that EZH2 regulates high glucose-induced deptor suppression along with activation of mTOR, mesangial cell hypertrophy and fibronectin/PAI-1 expression. Moreover, expression of hyperactive mTORC1 reversed shEZH2-mediated inhibition of hypertrophy and expression of fibronectin and PAI-1 by high glucose. Finally, in renal cortex of diabetic mice, we found that enhanced expression of EZH2 is associated with decreased deptor levels and increased mTOR activity and, expression of fibronectin and PAI-1. Together, our findings provide a novel mechanism for mTOR activation via EZH2 to induce mesangial cell hypertrophy and matrix expansion during early progression of diabetic nephropathy. These results suggest a strategy for leveraging the intrinsic effect of deptor to suppress mTOR activity via reducing EZH2 as a novel therapy for diabetic nephropathy.
Collapse
|
19
|
Struk T, Nair V, Eichinger F, Kretzler M, Wedlich-Söldner R, Bayraktar S, Pavenstädt H. Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks. FASEB J 2020; 34:14490-14506. [PMID: 32931033 DOI: 10.1096/fj.201902493rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/11/2022]
Abstract
Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca2+ ] causes a rapid and transient actin reset (CaAR) measurable through live imaging microscopy using lifeact-mCherry as an actin dye in different cell types including the podocyte. This and other studies show the critical role [Ca2+ ] and the actin cytoskeleton play in podocyte homeostasis. To further investigate the role of [Ca2+ ] and the actin cytoskeleton in podocytes, we used a double fluorescent reporter mouse model to establish a primary podocyte culture system. We treated these podocytes temporarily with a Calcium Ionophore and facultatively with Latrunculin A, an inhibitor of actin polymerization. Unbiased genome wide transcriptional analysis identified a transcriptional response in podocytes to elevated [Ca2+ ] levels, affecting mRNA levels of PDGF-BB, RICTOR, and MIR17HG as mediators of Ca2+ -signaling. Comparison of the ex vivo transcriptional response from the primary podocyte culture with glomerular transcripts across a wide spectrum of CKD disease confirmed co-regulation of transcript sets, establishing the disease relevance of the model system. Our findings demonstrate novel [Ca2+ ] regulated gene networks in podocytes deepening our understanding of podocyte biology and disease.
Collapse
Affiliation(s)
- Thaddäus Struk
- Department of Medicine, University of Münster, Münster, Germany
| | - Viji Nair
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Felix Eichinger
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA.,Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | - Samet Bayraktar
- Department of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
20
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
21
|
AP-2β/KCTD1 Control Distal Nephron Differentiation and Protect against Renal Fibrosis. Dev Cell 2020; 54:348-366.e5. [PMID: 32553120 DOI: 10.1016/j.devcel.2020.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
The developmental mechanisms that orchestrate differentiation of specific nephron segments are incompletely understood, and the factors that maintain their terminal differentiation after nephrogenesis remain largely unknown. Here, the transcription factor AP-2β is shown to be required for the differentiation of distal tubule precursors into early stage distal convoluted tubules (DCTs) during nephrogenesis. In contrast, its downstream target KCTD1 is essential for terminal differentiation of early stage DCTs into mature DCTs, and impairment of their terminal differentiation owing to lack of KCTD1 leads to a severe salt-losing tubulopathy. Moreover, sustained KCTD1 activity in the adult maintains mature DCTs in this terminally differentiated state and prevents renal fibrosis by repressing β-catenin activity, whereas KCTD1 deficiency leads to severe renal fibrosis. Thus, the AP-2β/KCTD1 axis links a developmental pathway in the nephron to the induction and maintenance of terminal differentiation of DCTs that actively prevents their de-differentiation in the adult and protects against renal fibrosis.
Collapse
|
22
|
Soypacaci Z, Cakmak O, Cakalagoglu F, Gercik O, Ertekin I, Uzum A, Ersoy R, Akar S. The role of mammalian target of rapamycin pathway in the pathogenesis of pauci-immune glomerulonephritis. Ren Fail 2019; 41:907-913. [PMID: 31658846 PMCID: PMC7011872 DOI: 10.1080/0886022x.2019.1667829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The characteristic lesion of pauci-immune glomerulonephritis is focal necrotizing and crescentic glomerulonephritis. The underlying mechanisms in the formation or progression of crescent formation need further investigations. Therefore, we aimed to evaluate the role of mammalian target of rapamycin (mTOR), which might be a potential therapeutic target, in kidney biopsies of patients with pauci-immune glomerulonephritis. Methods: The patients diagnosed as pauci-immune glomerulonephritis at an outpatient nephrology clinic were retrospectively reviewed and those patients who had a kidney biopsy before receiving an immunosuppressive treatment were included in the study. Kidney biopsy specimens were immunohistochemically stained with mTOR, antibodies of phosphatase and tensin homolog (PTEN) and transforming growth factor-β (TGF-β) and scored by an experienced renal pathologist. Results: In total, 54 patients with pauci-immune glomerulonephritis (28 [52%] female) were included. According to the histopathologic examination, 22% of our cases were classified as focal, 33% crescentic, 22% mixed, and 22% as sclerotic. The mTOR was expressed in substantial percentages of glomeruli of patients with pauci-immune glomerulonephritis. However, we observed PTEN expression in all samples and mTOR in all tubulointerstitial areas. mTOR expression was found to be related with the presence of crescentic and sclerotic changes observed in glomeruli and the degree of fibrosis in interstitial areas. Serum creatinine level or response to treatment was not found to be associated with mTOR pathway expression. Conclusion: Our results suggest that mTOR pathway may play role in the pathogenesis of pauci-immune glomerulonephritis, besides targeting this signaling may be an alternative option for those patients.
Collapse
Affiliation(s)
- Zeki Soypacaci
- Department of Nephrology, Izmir Katip Celebi University , Izmir , Turkey
| | - Ozlem Cakmak
- Department of Internal Medicine, Izmir Katip Celebi University , Izmir , Turkey
| | - Fulya Cakalagoglu
- Department of Pathology, Izmir Katip Celebi University , Izmir , Turkey
| | - Onay Gercik
- Department of Rheumatology, Izmir Katip Celebi University , Izmir , Turkey
| | - Ibrahim Ertekin
- Department of Nephrology, Izmir Katip Celebi University , Izmir , Turkey
| | - Atilla Uzum
- Department of Nephrology, Izmir Katip Celebi University , Izmir , Turkey
| | - Rifki Ersoy
- Department of Nephrology, Izmir Katip Celebi University , Izmir , Turkey
| | - Servet Akar
- Department of Rheumatology, Izmir Katip Celebi University , Izmir , Turkey
| |
Collapse
|
23
|
Zhu R, Allingstrup MJ, Perner A, Doig GS. The Effect of IV Amino Acid Supplementation on Mortality in ICU Patients May Be Dependent on Kidney Function: Post Hoc Subgroup Analyses of a Multicenter Randomized Trial. Crit Care Med 2019; 46:1293-1301. [PMID: 29771700 DOI: 10.1097/ccm.0000000000003221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We investigated whether preexisting kidney function determines if ICU patients may benefit from increased (2.0 g/kg/d) protein intake. DESIGN Post hoc, hypothesis-generating, subgroup analysis of a multicenter, phase 2, randomized clinical trial. All analyses were conducted by intention to treat and maintained group allocation. Ninety-day mortality was the primary outcome. SETTING ICUs of 16 hospitals throughout Australia and New Zealand. PATIENTS Adult critically ill patients expected to remain in the study ICU for longer than 2 days. INTERVENTIONS Random allocation to receive a daily supplement of up to 100 g of IV amino acids to achieve a total protein intake of 2.0 g/kg/d or standard nutrition care. MEASUREMENTS AND MAIN RESULTS A total of 474 patients were randomized: 235 to standard care and 239 to IV amino acid supplementation. There was a statistically significant interaction between baseline kidney function and supplementation with study amino acids (p value for interaction = 0.026). Within the subgroup of patients with normal kidney function at randomization, patients who were allocated to receive the study amino acid supplement were less likely to die before study day 90 (covariate-adjusted risk difference, -7.9%; 95% CI, -15.1 to -0.7; p = 0.034). Furthermore, amino acid supplementation significantly increased estimated glomerular filtration rate in these patients (repeated-measures treatment × time interaction p = 0.009). Within the subgroup of patients with baseline kidney dysfunction and/or risk of progression of acute kidney injury, a significant effect of the study intervention on mortality was not found (covariate-adjusted risk difference, -0.6%; 95% CI, -16.2 to 15.2; p = 0.95). CONCLUSIONS In this post hoc, hypothesis-generating, subgroup analysis, we observed reduced mortality and improved estimated glomerular filtration rate in ICU patients with normal kidney function who were randomly allocated to receive increased protein intake (up to 2.0 g/kg/d). We strongly recommend confirmation of these results in trials with low risk of bias before this treatment is recommended for routine care.
Collapse
Affiliation(s)
- Ran Zhu
- Northern Clinical School Intensive Care Research Unit, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Matilde J Allingstrup
- Northern Clinical School Intensive Care Research Unit, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Perner
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gordon S Doig
- Northern Clinical School Intensive Care Research Unit, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Brinkkoetter PT, Bork T, Salou S, Liang W, Mizi A, Özel C, Koehler S, Hagmann HH, Ising C, Kuczkowski A, Schnyder S, Abed A, Schermer B, Benzing T, Kretz O, Puelles VG, Lagies S, Schlimpert M, Kammerer B, Handschin C, Schell C, Huber TB. Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Rep 2019; 27:1551-1566.e5. [PMID: 31042480 PMCID: PMC6506687 DOI: 10.1016/j.celrep.2019.04.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).
Collapse
Affiliation(s)
- Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Salou
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athanasia Mizi
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Cem Özel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - H Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Christina Ising
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | | | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology, Monash Health, Melbourne, VIC, Australia
| | - Simon Lagies
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Manuel Schlimpert
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
25
|
Esmaeili S, Motamedrad M, Hemmati M, Mehrpour O, Khorashadizadeh M. Prevention of kidney cell damage in hyperglycaemia condition by adiponectin. Cell Biochem Funct 2019; 37:148-152. [PMID: 30908696 DOI: 10.1002/cbf.3380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/27/2019] [Indexed: 11/07/2022]
Abstract
Adiponectin (APN) is an adipocytokine, secreted from adipose tissue and has anti-inflammatory, anti-ageing, and antidiabetic properties. Hyperglycaemia can damage the renal cells, and mammalian target of rapamycin (mTOR), along with Sirtuin 1 (SIRT1), have an important role in kidney cell response to hyperglycaemia. Therefore, understanding the relationship between adiponectin, mTOR, and SIRT1 proteins is beneficial for deciphering the mechanism of adiponectin function. In this study, Human Embryonic Kidney-293 (HEK-293) cells were cultured under normal and high-glucose condition, with and without APN (1, 10, and 100 ng/mL) for 48 hours. mTOR protein expression was evaluated by western blot analysis, and SIRT1 protein was assessed using ELISA method. To evaluate hyperglycaemia-mediated cytotoxicity, cell viability was determined using MTT assay. Data showed that APN in high dose (100 ng/mL) significantly reduced the expression of mTOR and p-mTOR, increased SIRT1 protein, and also improved cell viability compared with the control high glucose (p ≤ 0.05). According to this results, APN can be useful in preventing renal cell damage, by affecting on the expression of mTOR and SIRT1 proteins, as well as increasing the survival of kidney cells in hyperglycaemia conditions. SIGNIFICANCE OF THE STUDY: Adiponectin triggered mTOR/p-mTOR/SIRT1 pathway and decreased cell death in human kidney cells. Our findings provide preliminary experimental data that support further studies on the potential therapeutic role of adiponectin in diabetes and diabetic-induced metabolic complications.
Collapse
Affiliation(s)
- Sajad Esmaeili
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Motamedrad
- Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| | - Mina Hemmati
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
27
|
Wang J, Yang C, Yuan Z, Yi J, Wu J. T-2 Toxin Exposure Induces Apoptosis in TM3 Cells by Inhibiting Mammalian Target of Rapamycin/Serine/Threonine Protein Kinase(mTORC2/AKT) to Promote Ca 2+Production. Int J Mol Sci 2018; 19:3360. [PMID: 30373220 PMCID: PMC6274855 DOI: 10.3390/ijms19113360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023] Open
Abstract
Although mTOR (the mammalian target of rapamycin) can regulate intracellular free Ca2+concentration in normal cultured podocytes, it remains elusive as to how mTORC2/AKT-mediated Ca2+participates in the process of T-2 toxin-induced apoptosis. The potential signaling responsible for intracellular Ca2+ concentration changes was investigated using immunoblot assays in an in vitro model of TM3 cell injury induced by T-2 toxin. Changes in Ca2+ were assessed using the Ca2+-sensitive fluorescent indictor dye Fura 2-AM. The cytotoxicity of TM3 cells was assessed with an MTT bioassay, and apoptosis was measured using Annexin V-FITC staining. Following T-2 toxin treatment, the growth of cells, phospho-mTORSer2481, phospho-mTORSer2448, and phospho-AktSer473 were significantly decreased in a time-dependent manner, whereas Ca2+ and apoptosis were increased. T-2 toxin-induced apoptosis was prevented by BAPTA-AM (a Ca2+chelator) and MHY1485 (an mTOR activator), and the application of mTOR activator MHY1485 also prevented the increase of intracellular free Ca2+concentration in TM3 cells. Our results strongly suggest that T-2 toxin exposure induces apoptosis in TM3 cells by inhibiting mTORC2/AKT to promote Ca2+ production.
Collapse
Affiliation(s)
- Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
28
|
Xu Y, Ling Y, Yang F, Deng J, Rong L, Jiang M, Jiang X. The mTOR/p70S6K1 signaling pathway in renal fibrosis of children with immunoglobulin A nephropathy. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317717831. [PMID: 28685619 PMCID: PMC5843880 DOI: 10.1177/1470320317717831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: The purpose of this study was to explore whether mTOR/p70S6K1 signaling is activated in renal fibrosis of immunoglobulin A nephropathy. Methods: Seventy-two children with immunoglobulin A nephropathy were divided into three groups according to their clinical features and pathological grades. Six normal renal specimens were included in the control group. The expression levels of angiotensin II, mTOR, p70S6K1, E-cadherin, and α-smooth muscle actin in renal tissues were determined by immunohistochemistry method, the potential correlations of these indexes and relationship between these indexes and the clinicopathological indexes were analyzed. Results: Compared to the control group, the expression levels of angiotensin II, mTOR, p70S6K1, and α-smooth muscle actin were significantly higher and the expression levels of E-cadherin were lower both in glomeruli and tubulointerstitium of immunoglobulin A nephropathy children. And the most significant differences were found in the nephrotic syndrome group and pathological grade IV group. In immunoglobulin A nephropathy renal tissues, the expression levels of angiotensin II in glomeruli and tubulointerstitium were both positively correlated with the expression levels of mTOR and α- smooth muscle actin, and negatively correlated with the expression levels of E-cadherin. Conclusion: The mTOR/p70S6K1 signaling was activated in renal tissues of children with immunoglobulin A nephropathy, and future studies will need to address the mechanism of mTOR/p70S6K1 signaling in the progress of renal fibrosis in immunoglobulin A nephropathy.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, P.R. China
| | - Fan Yang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Jiong Deng
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Mengjie Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
- Xiaoyun Jiang, Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2,Yuexiu District, Guangzhou, P.R. China.
| |
Collapse
|
29
|
Mami I, Pallet N. tRNA fragmentation and protein translation dynamics in the course of kidney injury. RNA Biol 2018; 15:1147-1156. [PMID: 26513712 DOI: 10.1080/15476286.2015.1107704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cells under stressful microenvironmental conditions initiate integrated molecular circuitries that aim at reducing general protein translation rates while redirecting protein synthesis toward a selective set of stress-response proteins. The consequence of the activation of this dynamic system is a reduction of the energy expenditure of the cell, and a metabolic rewiring that shapes adaptation under stress, which will, in fine, promote cell survival. In general, the translation initiation step is the prime target of translation reduction, with 2 molcular modules inhibiting translation initiation: the mechanistic target of Rapamycin complex 1, and the stress related kinases eIF2 kinases, which are all involved in the cellular responses to kidney injuries. tRNA (tRNA) dynamics and fragmentation have recently gained a considerable weight in the field of the non-coding RNA biology, and emerge as an important system for protein translation modulation under cellular stress. More precisely, stress-induced tRNA (tiRNA), the cleavage products of the ribonuclease angiogenin, are generated under various stress conditions, including oxidative stress and endoplasmic reticulum stress, and contribute to protein translation reprogramming in mammal cells. Current clinical and experimental evidence indicates that the angiogenin-tRNA fragmentation system is initiated under renal insults, and is involved in the tissue adaptation upon kidney injury. In addition, this system represents a potential source for minimally-invasive or non invasive biomarkers of early kidney injury. Besides RNA interference, tRNA fragments are likely involved in other fundamental cellular functions, including inflammation, and a better understanding of the molecular basis of tRNA functions will drive discoveries on the fundamental role of non coding RNA biology, as exemplified by microRNA, in the regulation of kidney homeostasis.
Collapse
Affiliation(s)
- Iadh Mami
- a INSERM U1147, Center Universitaire des Saints Pères , Paris , France.,b Université Paris Descartes , Paris , France
| | - Nicolas Pallet
- a INSERM U1147, Center Universitaire des Saints Pères , Paris , France.,b Université Paris Descartes , Paris , France.,c Service de Biochimie, Hôpital Européen Gorges Pompidou , Paris , France
| |
Collapse
|
30
|
Phosphorylated mTOR Expression Profiles in Human Normal and Carcinoma Tissues. DISEASE MARKERS 2017; 2017:1397063. [PMID: 28831205 PMCID: PMC5555007 DOI: 10.1155/2017/1397063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key controller of cell growth and proliferation in normal tissues and solid tumors. In the present study, an immunohistochemical analysis of the expression pattern of phosphorylated mTOR (p-mTOR) was performed in human normal fetal and adult tissues and various carcinoma tissues. p-mTOR expression showed tissue and cell type specificity in normal and cancer tissues. In normal fetal and adult tissues, p-mTOR staining was observed in the intestinal crypt, intrahepatic bile ductule, pancreatic duct, distal nephron of the kidney, umbrella cell of urothelium, mesothelial cell, and choroid plexus. In cancer tissues, p-mTOR expression was higher in adenocarcinoma than in other types of cancers, in metastatic cancer than in primary cancer, and in the forefront of the infiltrating cancer cells. These results suggest that p-mTOR is implicated not only in cell proliferation but also in tubular morphogenesis in normal and cancer tissues. In addition, mTOR activation appears to be associated with cancer cell invasion and migration in solid tumors.
Collapse
|
31
|
Nishizono R, Kikuchi M, Wang SQ, Chowdhury M, Nair V, Hartman J, Fukuda A, Wickman L, Hodgin JB, Bitzer M, Naik A, Wiggins J, Kretzler M, Wiggins RC. FSGS as an Adaptive Response to Growth-Induced Podocyte Stress. J Am Soc Nephrol 2017; 28:2931-2945. [PMID: 28720684 DOI: 10.1681/asn.2017020174] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 11/03/2022] Open
Abstract
Glomerular sclerotic lesions develop when the glomerular filtration surface area exceeds the availability of podocyte foot process coverage, but the mechanisms involved are incompletely characterized. We evaluated potential mechanisms using a transgenic (podocin promoter-AA-4E-BP1) rat in which podocyte capacity for hypertrophy in response to growth factor/nutrient signaling is impaired. FSGS lesions resembling human FSGS developed spontaneously by 7 months of age, and could be induced earlier by accelerating kidney hypertrophy by nephrectomy. Early segmental glomerular lesions occurred in the absence of a detectable reduction in average podocyte number per glomerulus and resulted from the loss of podocytes in individual glomerular capillary loops. Parietal epithelial cell division, accumulation on Bowman's capsule, and tuft invasion occurred at these sites. Three different interventions that prevented kidney growth and glomerular enlargement (calorie intake reduction, inhibition of mammalian target of rapamycin complex, and inhibition of angiotensin-converting enzyme) protected against FSGS lesion development, even when initiated late in the process. Ki67 nuclear staining and unbiased transcriptomic analysis identified increased glomerular (but not podocyte) cell cycling as necessary for FSGS lesion development. The rat FSGS-associated transcriptomic signature correlated with human glomerular transcriptomes associated with disease progression, compatible with similar processes occurring in man. We conclude that FSGS lesion development resulted from glomerular growth that exceeded the capacity of podocytes to adapt and adequately cover some parts of the filtration surface. Modest modulation of the growth side of this equation significantly ameliorated FSGS progression, suggesting that glomerular growth is an underappreciated therapeutic target for preservation of renal function.
Collapse
Affiliation(s)
- Ryuzoh Nishizono
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masao Kikuchi
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | - Akihiro Fukuda
- Departments of Internal Medicine.,Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaur A, Sharma S. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:293-312. [PMID: 28417246 DOI: 10.1007/s10787-017-0336-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to Phosphatidylinositol-3-kinase related kinase superfamily. The signaling pathways of mTOR are integrated through the protein complexes of mTORC1 and mTORC2. mTORC1 controls protein synthesis, cell growth, proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of disease conditions, including cancer, cardiovascular, neurodegenerative, and various renal diseases. The hyperactivation of the mTOR pathway leads to increase in cell growth and proliferation and also has been documented to stimulate tumor growth. Therefore, investigation of the involvement of mTOR and its downstream pathways in various diseases intensively preoccupied scientific community. The present review is focussed on recent advances in the understanding of the mTOR signaling pathway and its role in health and various diseases.
Collapse
Affiliation(s)
- Avileen Kaur
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
33
|
Zschiedrich S, Bork T, Liang W, Wanner N, Eulenbruch K, Munder S, Hartleben B, Kretz O, Gerber S, Simons M, Viau A, Burtin M, Wei C, Reiser J, Herbach N, Rastaldi MP, Cohen CD, Tharaux PL, Terzi F, Walz G, Gödel M, Huber TB. Targeting mTOR Signaling Can Prevent the Progression of FSGS. J Am Soc Nephrol 2017; 28:2144-2157. [PMID: 28270414 DOI: 10.1681/asn.2016050519] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/16/2017] [Indexed: 01/04/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling is involved in a variety of kidney diseases. Clinical trials administering mTOR inhibitors to patients with FSGS, a prototypic podocyte disease, led to conflicting results, ranging from remission to deterioration of kidney function. Here, we combined complex genetic titration of mTOR complex 1 (mTORC1) levels in murine glomerular disease models, pharmacologic studies, and human studies to precisely delineate the role of mTOR in FSGS. mTORC1 target genes were significantly induced in microdissected glomeruli from both patients with FSGS and a murine FSGS model. Furthermore, a mouse model with constitutive mTORC1 activation closely recapitulated human FSGS. Notably, the complete knockout of mTORC1 by induced deletion of both Raptor alleles accelerated the progression of murine FSGS models. However, lowering mTORC1 signaling by deleting just one Raptor allele ameliorated the progression of glomerulosclerosis. Similarly, low-dose treatment with the mTORC1 inhibitor rapamycin efficiently diminished disease progression. Mechanistically, complete pharmacologic inhibition of mTOR in immortalized podocytes shifted the cellular energy metabolism toward reduced rates of oxidative phosphorylation and anaerobic glycolysis, which correlated with increased production of reactive oxygen species. Together, these data suggest that podocyte injury and loss is commonly followed by adaptive mTOR activation. Prolonged mTOR activation, however, results in a metabolic podocyte reprogramming leading to increased cellular stress and dedifferentiation, thus offering a treatment rationale for incomplete mTOR inhibition.
Collapse
Affiliation(s)
- Stefan Zschiedrich
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany.,Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Kristina Eulenbruch
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Munder
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Björn Hartleben
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, and
| | - Simon Gerber
- Imagine Institute, Institut national de la santé et de la recherche médicale (INSERM) U1163, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Matias Simons
- Imagine Institute, Institut national de la santé et de la recherche médicale (INSERM) U1163, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Amandine Viau
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Martine Burtin
- Institut national de la santé et de la recherche médicale (INSERM) U1151, Université Paris Descartes, Institut Necker Enfants Malades, Hopital Necker, Paris, France
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL
| | - Nadja Herbach
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Maria-Pia Rastaldi
- Renal Research Laboratory, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Ospedale Maggiore Policlinico and Fondazione D'Amico, Milan, Italy
| | - Clemens D Cohen
- Division of Nephrology, Hypertension and Clinical Immunology, Städtisches Klinikum München, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale, Paris, France; and
| | - Fabiola Terzi
- Institut national de la santé et de la recherche médicale (INSERM) U1151, Université Paris Descartes, Institut Necker Enfants Malades, Hopital Necker, Paris, France
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Markus Gödel
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany; .,BIOSS Centre for Biological Signalling Studies, and.,Center for Systems Biology (ZBSA), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, Rashid A, Moodad S, Block K, Gorin Y, Abboud HE, Eid AA. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal 2016; 25:703-719. [PMID: 27393154 PMCID: PMC5079418 DOI: 10.1089/ars.2015.6562] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. RESULTS High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. INNOVATION Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. CONCLUSION mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703-719.
Collapse
Affiliation(s)
- Stéphanie Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon .,2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Suzan Boutary
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Kawthar Braych
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Ramzi Sabra
- 3 Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Charbel Massaad
- 2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Ahmed Hamdy
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Awad Rashid
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Sarah Moodad
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Karen Block
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Yves Gorin
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Hanna E Abboud
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Assaad A Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
35
|
Alshaman R, Truong L, Oyekan A. Role of mechanistic target of rapamycin (mTOR) in renal function and ischaemia-reperfusion induced kidney injury. Clin Exp Pharmacol Physiol 2016; 43:1087-1096. [DOI: 10.1111/1440-1681.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Alshaman
- Centre for Cardiovascular Diseases; College of Pharmacy and Health Sciences; Texas Southern University; Houston TX USA
| | - Luan Truong
- Department of Pathology & Genomic Medicine; Houston Methodist Hospital; Houston TX USA
| | - Adebayo Oyekan
- Centre for Cardiovascular Diseases; College of Pharmacy and Health Sciences; Texas Southern University; Houston TX USA
| |
Collapse
|
36
|
Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016; 12:587-609. [PMID: 27477490 DOI: 10.1038/nrneph.2016.108] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.
Collapse
|
37
|
Affiliation(s)
- Florian Grahammer
- a Department of Medicine IV , Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Germany
| | - Tobias B Huber
- a Department of Medicine IV , Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Germany.,b BIOSS - Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg , Freiburg , Germany.,c FRIAS - Freiburg Institute for Advanced Studies, Albert-Ludwigs-University , Freiburg , Germany.,d ZBSA - Center for Systems Biology, Albert-Ludwigs-University , Freiburg , Germany
| |
Collapse
|
38
|
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 2016; 23:990-1003. [PMID: 27304501 PMCID: PMC4910876 DOI: 10.1016/j.cmet.2016.05.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Since the discovery that rapamycin, a small molecule inhibitor of the protein kinase mTOR (mechanistic target of rapamycin), can extend the lifespan of model organisms including mice, interest in understanding the physiological role and molecular targets of this pathway has surged. While mTOR was already well known as a regulator of growth and protein translation, it is now clear that mTOR functions as a central coordinator of organismal metabolism in response to both environmental and hormonal signals. This review discusses recent developments in our understanding of how mTOR signaling is regulated by nutrients and the role of the mTOR signaling pathway in key metabolic tissues. Finally, we discuss the molecular basis for the negative metabolic side effects associated with rapamycin treatment, which may serve as barriers to the adoption of rapamycin or similar compounds for the treatment of diseases of aging and metabolism.
Collapse
|
39
|
Grahammer F, Ramakrishnan SK, Rinschen MM, Larionov AA, Syed M, Khatib H, Roerden M, Sass JO, Helmstaedter M, Osenberg D, Kühne L, Kretz O, Wanner N, Jouret F, Benzing T, Artunc F, Huber TB, Theilig F. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J Am Soc Nephrol 2016; 28:230-241. [PMID: 27297946 DOI: 10.1681/asn.2015111224] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/14/2016] [Indexed: 01/03/2023] Open
Abstract
Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Suresh K Ramakrishnan
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexey A Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maryam Syed
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Hazim Khatib
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Jörn Oliver Sass
- Bioanalytics and Biochemistry, Department of Natural Sciences, Bonn Rhein Sieg University of Applied Sciences, Rheinbach, Germany.,Division of Clinical Chemistry and Biochemistry and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Martin Helmstaedter
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothea Osenberg
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucas Kühne
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicola Wanner
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liege, Belgium; and
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ferruh Artunc
- Department of Medical IV, Sektion Nieren- und Hochdruckkrankheiten, University of Tübingen, Tübingen, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS, Centre for Biological Signalling Studies and.,FRIAS, Freiburg Institute for Advanced Studies and ZBSA, Center for Biological System Analysis, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland;
| |
Collapse
|
40
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H, Levtchenko E, Mekahli D. Autophagy in renal diseases. Pediatr Nephrol 2016; 31:737-52. [PMID: 26141928 DOI: 10.1007/s00467-015-3134-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Autophagy is the cell biology process in which cytoplasmic components are degraded in lysosomes to maintain cellular homeostasis and energy production. In the healthy kidney, autophagy plays an important role in the homeostasis and viability of renal cells such as podocytes and tubular epithelial cells and of immune cells. Recently, evidence is mounting that (dys)regulation of autophagy is implicated in the pathogenesis of various renal diseases, and might be an attractive target for new renoprotective therapies. In this review, we provide an overview of the role of autophagy in kidney physiology and kidney diseases.
Collapse
Affiliation(s)
- Stéphanie De Rechter
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.
| | - Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Department of Microbiology and Immunology Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Lambertus P van den Heuvel
- Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.,Translational Metabolic Laboratory and Department of Paediatric Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Grahammer F, Nesterov V, Ahmed A, Steinhardt F, Sandner L, Arnold F, Cordts T, Negrea S, Bertog M, Ruegg MA, Hall MN, Walz G, Korbmacher C, Artunc F, Huber TB. mTORC2 critically regulates renal potassium handling. J Clin Invest 2016; 126:1773-82. [PMID: 27043284 DOI: 10.1172/jci80304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.
Collapse
|
43
|
Axelsson J, Rippe A, Rippe B. mTOR inhibition with temsirolimus causes acute increases in glomerular permeability, but inhibits the dynamic permeability actions of puromycin aminonucleoside. Am J Physiol Renal Physiol 2015; 308:F1056-64. [PMID: 25740597 DOI: 10.1152/ajprenal.00632.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/25/2015] [Indexed: 01/21/2023] Open
Abstract
Inhibitors of the mammalian target of rapamycin (mTORi) can produce de novo proteinuria in kidney transplant patients. On the other hand, mTORi has been shown to suppress disease progression in several animal models of kidney disease. In the present study, we investigated whether glomerular permeability can be acutely altered by the mTORi temsirolimus and whether mTORi can affect acute puromycin aminonucleoside (PAN) or angiotensin II (ANG II)-induced glomerular hyperpermeability. In anesthetized Wistar rats, the left ureter was cannulated for urine collection, while simultaneously blood access was achieved. Temsirolimus was administered as a single intravenous dose 30 min before the start of the experiments in animals infused with PAN or ANG II or in nonexposed animals. Polydispersed FITC-Ficoll-70/400 (molecular radius 10-80 Å) and (51)Cr-EDTA infusion was given during the whole experiment. Measurements of Ficoll in plasma and urine were performed sequentially before the temsirolimus injection (baseline) and at 5, 15, 30, 60, and 120 min after the start of the experiments. Urine and plasma samples were analyzed by high-performance size-exclusion chromatography (HPSEC) to assess glomerular sieving coefficients (θ) for Ficoll10-80Å. Temsirolimus per se increased baseline glomerular permeability to Ficoll50-80Å 45 min after its administration, a reactive oxygen species (ROS)-dependent phenomenon. PAN caused a rapid and reversible increase in glomerular permeability, peaking at 5 min, and again at 60-120 min, which could be blocked by the ROS scavenger tempol. mTORi abrogated the second permeability peak induced by PAN. However, it had no effect on the immediate ANG II- or PAN-induced increases in glomerular permeability.
Collapse
Affiliation(s)
| | - Anna Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| | - Bengt Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Dong G, Liu Y, Zhang L, Huang S, Ding HF, Dong Z. mTOR contributes to ER stress and associated apoptosis in renal tubular cells. Am J Physiol Renal Physiol 2014; 308:F267-74. [PMID: 25428129 DOI: 10.1152/ajprenal.00629.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ER stress has been implicated in the pathogenesis of both acute and chronic kidney diseases. However, the molecular regulation of ER stress in kidney cells and tissues remains poorly understood. In this study, we examined tunicamycin-induced ER stress in renal proximal tubular cells (RPTC). Tunicamycin induced the phosphorylation and activation of PERK and eIF2α within 2 h in RPTC, which was followed by the induction of GRP78 and CHOP. Consistently, tunicamycin also induced apoptosis in RPTC. Interestingly, mTOR was activated rapidly during tunicamycin treatment, as indicated by phosphorylation of both mTOR and p70S6K. Inhibition of mTOR with rapamycin partially suppressed the phosphorylation of PERK and eIF2a and the induction of CHOP and GRP78 induction during tunicamycin treatment. Rapamycin also inhibited apoptosis during tunicamycin treatment and increased cell survival. Collectively, the results suggest that mTOR plays a regulatory role in ER stress, and inhibition of mTOR may have potential therapeutic effects in ER stress-related renal diseases.
Collapse
Affiliation(s)
- Guie Dong
- Department of Cellular Biology and Anatomy, Georgia Reagents University and Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, Georgia
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Huang
- Department of Biochemistry and Molecular Biology, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, Georgia; and
| | - Han-Fei Ding
- Cancer Center, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Georgia Reagents University and Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China;
| |
Collapse
|
45
|
Smeets B, Huber TB. Sestrin 2: a regulator of the glomerular parietal epithelial cell phenotype. Am J Physiol Renal Physiol 2014; 307:F798-9. [PMID: 25143460 DOI: 10.1152/ajprenal.00435.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Bart Smeets
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany;
| | - Tobias B Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
46
|
Wang H, Misaki T, Taupin V, Eguchi A, Ghosh P, Farquhar MG. GIV/girdin links vascular endothelial growth factor signaling to Akt survival signaling in podocytes independent of nephrin. J Am Soc Nephrol 2014; 26:314-27. [PMID: 25012178 DOI: 10.1681/asn.2013090985] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα-interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases.
Collapse
Affiliation(s)
- Honghui Wang
- Departments of Cellular and Molecular Medicine and
| | - Taro Misaki
- Departments of Cellular and Molecular Medicine and
| | | | - Akiko Eguchi
- Medicine, University of California, San Diego, La Jolla, California
| | - Pradipta Ghosh
- Medicine, University of California, San Diego, La Jolla, California
| | | |
Collapse
|
47
|
Schlondorff J. How many Achilles' heels does a podocyte have? An update on podocyte biology: Table 1. Nephrol Dial Transplant 2014; 30:1091-7. [DOI: 10.1093/ndt/gfu214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022] Open
|