1
|
Boyacıoğlu Ö, Kalali BD, Tongün E, Korkusuz P. A Niche-Based Perspective to Stem and Cancer Stem Cells of the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40178798 DOI: 10.1007/5584_2025_858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Lungs carry the principle function for the conduction and exchange of air through the primary, secondary, tertiary bronchi, bronchioles, and alveoli, resulting in the exchange of oxygen to carbon dioxide within the human tissues. Lung stem and progenitor cells enable differentiation of parenchymal and stromal elements and provide homeostasis and regeneration in the microenvironment against pulmonary diseases. Tumor-initiating cancer cells (TICs) refer to a subpopulation named as cancer stem cells (CSCs) of lung cancer exhibiting high self-renewal and proliferation capacity by Notch, Hippo, Hedgehog, and Wnt signaling pathways that leads to tumor development or recurrence. Lung cancer stem cells (LCSCs) are characterized by distinct genotypic or phenotypic alterations compared to healthy lung stem cells (LSCs) that provide a potential target to treat lung cancer. Therefore, understanding the cascades responsible for the transformation of healthy to CSCs is essential to develop new targeted therapy approaches. In this chapter, we precisely highlight the latest researches on LSCs and CSCs, key signaling mechanisms within the perspective of novel targeted therapy strategies.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey
| | - Berfin Deniz Kalali
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| | - Ege Tongün
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
2
|
Yang W, Wu C, Jiang C, Jing T, Lu M, Xia D, Peng D. FDX1 overexpression inhibits the growth and metastasis of clear cell renal cell carcinoma by upregulating FMR1 expression. Cell Death Discov 2025; 11:115. [PMID: 40118855 PMCID: PMC11928736 DOI: 10.1038/s41420-025-02380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Kidney cancer has caused more than 150,000 deaths in 185 countries around the world and is a serious threat to human life. Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. FDX1, a crucial gene for regulating copper death, plays an important role in tumors. However, its specific role in ccRCC remains unclear. In this study, by analysing data from the TCGA-KIRC and GEO databases and validation in clinical samples from our center, the expression characteristics of FDX1 and its relationship with tumor clinicopathological features and patient prognosis were clarified; the effects of FDX1 overexpression on ccRCC cell proliferation, apoptosis, migration, and invasion were determined via cell phenotype experiments and mouse orthotopic renal tumor growth models; and the downstream regulatory mechanism of FDX1 was determined via TMT proteomic sequencing, Co-IP assays, and RNA-sequencing detection. Our results confirmed that FDX1 was significantly underexpressed in ccRCC and that reduced FDX1 expression was associated with adverse clinicopathologic features and poor prognosis. FDX1 overexpression markedly inhibited the proliferation, migration, and invasion of ccRCC cells and promoted cell apoptosis in vitro. Mechanistically, FDX1 bound to the FMR1 protein and upregulated its expression, subsequently restraining Bcl-2 and N-cadherin expression and enhancing ALCAM, Cleaved Caspase-3, and E-cadherin expression. In mouse models, FDX1 overexpression significantly suppressed the growth and metastasis of renal tumors, but this inhibitory effect was markedly reversed after FMR1 expression was knocked down. Thus, our results confirmed that FDX1 expression is significantly reduced in ccRCC and serves as a prognostic marker for ccRCC patients and that its overexpression suppresses the growth and metastasis ability of ccRCC by promoting the expression of FRM1.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Cunjin Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Chaochao Jiang
- Department of Urology, Changxing Hospital of Traditional Chinese Medicine, Changxing, PR China
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Minghao Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ding Peng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| |
Collapse
|
3
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Peters JJ, Teng C, Peng K, Li X. Deciphering the Blood-Brain Barrier Paradox in Brain Metastasis Development and Therapy. Cancers (Basel) 2025; 17:298. [PMID: 39858080 PMCID: PMC11764143 DOI: 10.3390/cancers17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue. This dual role of the BBB-as both a protective system and a potential facilitator of metastatic cells-highlights its complexity. Even with metastasis therapy such as chemotherapy, BM usually recurs due to the BBB limiting the crossing of drugs via the efflux transporters; therefore, treatment efficacy is limited. The pathophysiology is also complex, and our understanding of the paradoxical interplay between the BBB components and metastatic cells still needs to be improved. However, advancements in clinical research are helping to bridge the knowledge gap, which is essential for developing effective metastasis therapy. By targeting the BBB neurovascular unit components such as the polarization of microglia, astrocytes, and pericytes, or by utilizing technological tools like focused ultrasound to transiently disrupt the BBB and therapeutic nanoparticles to improve drug delivery efficiency to BM tissue, we can better address this pathology. This narrative review delves into the latest literature to analyze the paradoxical role of the BBB components in the manifestation of BM and explores potential therapeutic avenues targeting the BBB-tumor cell interaction.
Collapse
Affiliation(s)
- Jens Jeshu Peters
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Ding T, Hao S, Wang Z, Zhang W, Zhang G. Development of a nomogram for predicting radiation‑induced pneumonia in patients with lung cancer undergoing close‑range radiotherapy with radioactive 125I particles. Mol Clin Oncol 2025; 22:2. [PMID: 39534881 PMCID: PMC11552471 DOI: 10.3892/mco.2024.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
The most common and potentially fatal side effect of postoperative radiotherapy using radioactive 125I particles in the chest is radiation-induced pneumonia (RP). The present study aimed to develop a nomogram to accurately predict RP in patients with lung cancer following this type of radiotherapy. A retrospective analysis was conducted on data from 436 patients with advanced lung cancer who underwent close-range radiotherapy using radioactive 125I particles at the General Hospital of Northern Theater Command from January 2016 to December 2023 (Shenyang, China). Risk factors for RP were identified through least absolute shrinkage and selection operator logistic regression and multivariable logistic regression analysis. These factors were then used to construct a dynamic nomogram. The predictive performance of the nomogram was validated using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis. Additionally, the grading of RP and Kaplan-Meier analysis were performed. Preoperative N and M staging, the maximum dose and whether chemotherapy was administered were identified as significant predictors of RP. A dynamic nomogram for predicting RP was developed based on these risk factors. The area under the ROC curve was 0.878 (95% CI, 0.814-0.942) for the training cohort and 0.828 (95% CI, 0.787-0.870) for the validation cohort, indicating favorable discriminatory ability. The nomogram demonstrated excellent calibration. In both cohorts, the maximum dose parameter provided the most significant clinical benefits, supporting its promising clinical utility. Patients staged as T1 and T3 preoperatively were more likely to develop RP compared with those staged as T2 (P<0.001). Likewise, patients staged as M1 preoperatively, those receiving a maximum dose above the mean, and those who had undergone chemotherapy exhibited a higher probability of developing RP (P<0.001). The developed nomogram offers a precise and user-friendly tool for clinical application in predicting the risk of RP in patients with lung cancer undergoing close-range radiotherapy with radioactive 125I particles.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, P.R. China
| | - Wenwen Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, P.R. China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, P.R. China
| |
Collapse
|
6
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
7
|
Martínez-Espinosa I, Serrato JA, Ortiz-Quintero B. MicroRNAs in Lung Cancer Brain Metastasis. Int J Mol Sci 2024; 25:10325. [PMID: 39408656 PMCID: PMC11476622 DOI: 10.3390/ijms251910325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Brain metastasis is a significant clinical challenge for patients with advanced lung cancer, occurring in about 20-40% of cases. Brain metastasis causes severe neurological symptoms, leading to a poor prognosis and contributing significantly to lung cancer-related mortality. However, the underlying molecular mechanism behind brain metastasis remains largely unknown. MicroRNAs (miRNAs) are small, non-coding RNAs linked to several aspects of cancer progression, including metastasis. In the context of lung cancer, significant research has shown the involvement of miRNAs in regulating critical pathways related to metastatic spread to the brain. This review summarizes the scientific evidence regarding the regulatory roles of intra- and extracellular miRNAs, which specifically drive the spread of lung cancer cells to the brain. It also revises the known molecular mechanisms of brain metastasis, focusing on those from lung cancer as the primary tumor to better understand the complex mechanisms underlying this regulation. Understanding these complex regulatory mechanisms holds promise for developing novel diagnostic biomarkers and potential therapeutic strategies in brain metastasis.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Mexico City, Mexico
| |
Collapse
|
8
|
Zhou Y, Guo T, Liang F, Wang Z, Zhang J, Ni J, Zhu Z. Cumulative incidence and risk factors of brain metastases in metastatic non-small cell lung cancer without baseline brain metastasis: Pooled analysis of individualized patient data from IMpower130, IMpower131, and IMpower150. Cancer 2024; 130:2601-2610. [PMID: 38353467 DOI: 10.1002/cncr.35242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 01/05/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The objective of this study was to explore the abilities of atezolizumab plus chemotherapy in preventing brain metastases (BMs) among metastatic non-small cell lung cancer (NSCLC) without initial BMs, as well as the risk factors of BMs. METHODS Individual patient data from three trials involving first-line atezolizumab for metastatic NSCLC (IMpower130, IMpower131, and IMpower150) were pooled. Among patients without baseline BMs and without epidermal growth factor receptor (EGFR) and/or anaplastic lymphoma kinase (ALK) mutations, those receiving atezolizumab + chemotherapy ± bevacizumab were classified as the atezolizumab plus chemotherapy group and those receiving placebo + chemotherapy ± bevacizumab were classified as the chemotherapy group. The cumulative incidences of BM (CI-BMs) between the two groups were compared. Other factors associated with the CI-BM were analyzed by Cox regression analyses. RESULTS With a median follow-up of 17.6 months (range, 0.03-33.64 months), 74 (3.1%) of the 2380 enrolled patients developed BMs, including 50 (3.1%) and 24 (3.0%) in the atezolizumab plus chemotherapy group (n = 1589) and the chemotherapy group (n = 791), respectively. The CI-BMs at 6, 12, and 24 months were 1.7%, 2.8%, and 3.3%, respectively. After taking competing risk events into account, there was no significant difference in the CI-BMs between the two groups (p = .888). Nevertheless, the use of bevacizumab and the histology of nonsquamous NSCLC were found to be independently associated with the risk of BMs. CONCLUSIONS In patients with metastatic EGFR/ALK wild-type NSCLC without baseline BMs, adding atezolizumab in the first-line treatment might not reduce the CI-BM. However, the administration of bevacizumab may reduce the risk of BMs.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zezhou Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Smit DJ, Schneegans S, Pantel K. Clinical applications of circulating tumor cells in patients with solid tumors. Clin Exp Metastasis 2024; 41:403-411. [PMID: 38281256 PMCID: PMC11374849 DOI: 10.1007/s10585-024-10267-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
The concept of liquid biopsy analysis has been established more than a decade ago. Since the establishment of the term, tremendous advances have been achieved and plenty of methods as well as analytes have been investigated in basic research as well in clinical trials. Liquid biopsy refers to a body fluid-based biopsy that is minimal-invasive, and most importantly, allows dense monitoring of tumor responses by sequential blood sampling. Blood is the most important analyte for liquid biopsy analyses, providing an easily accessible source for a plethora of cells, cell-derived products, free nucleic acids, proteins as well as vesicles. More than 12,000 publications are listed in PubMed as of today including the term liquid biopsy. In this manuscript, we critically review the current implications of liquid biopsy, with special focus on circulating tumor cells, and describe the hurdles that need to be addressed before liquid biopsy can be implemented in clinical standard of care guidelines.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Svenja Schneegans
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
10
|
Dong T, Liang Y, Chen H, Li Y, Li Z, Gao X. Quantitative proteomics revealed protein biomarkers to distinguish malignant pleural effusion from benign pleural effusion. J Proteomics 2024; 302:105201. [PMID: 38768894 DOI: 10.1016/j.jprot.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
To identify protein biomarkers capable of early prediction regarding the distinguishing malignant pleural effusion (MPE) from benign pleural effusion (BPE) in patients with lung disease. A four-dimensional data independent acquisition (4D-DIA) proteomic was performed to determine the differentially expressed proteins in samples from 20 lung adenocarcinoma MPE and 30 BPE. The significantly differential expressed proteins were selected for Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. Protein biomarkers with high capability to discriminate MPE from BPE patients were identified by Random Forest (RF) algorithm prediction model, whose diagnostic and prognostic efficacy in primary tumors were further explored in public datasets, and were validated by ELISA experiment. 50 important proteins (30 up-regulated and 20 down-regulated) were selected out as potential markers to distinguish the MPE from BPE group. GO analysis revealed that those proteins involving the most important cell component is extracellular space. KEGG analysis identified the involvement of cellular adhesion molecules pathway. Furthermore, the Area Under Curve (AUC) of these proteins were ranged from 0.717 to 1.000,with excellent diagnostic properties to distinguish the MPE. Finally, significant survival and gene and protein expression analysis demonstrated BPIFB1, DPP4, HPRT1 and ABI3BP had high discriminating values. SIGNIFICANCE: We performed a 4D-DIA proteomics to determine the differentially expressed proteins in pleural effusion samples from MPE and BPE. Some potential protein biomarkers were identified to distinguish the MPE from BPE patients., which may provide helpful diagnostic and therapeutic insights for lung cancer. This is significant because the median survival time of patients with MPE is usually 4-12 months, thus, it is particularly important to diagnose MPE early to start treatments promptly. The most common causes of MPE are lung cancers, while pneumonia and tuberculosis are the main causes of BPE. If more diagnostic markers could be identified periodically, there would be an important significance to clinical diagnose and treatment with drugs in lung cancer patients.
Collapse
Affiliation(s)
- Tingyan Dong
- School of Medicine, Nanjing University, Nanjing, Jiangsu, China; Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Yueming Liang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China; Department of Geriatric Respiratory Medicine, Guangdong Provincial Geriatrics Institute,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Chen
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Yanling Li
- Guangzhou Huayin Medical Laboratory Center, Guangzhou, Guangdong, China
| | - Zhiping Li
- Shanghai Pudong New District Zhoupu Hospital, Shanghai, China
| | - Xinglin Gao
- Department of Geriatric Respiratory Medicine, Guangdong Provincial Geriatrics Institute,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Santos L, Moreira JN, Abrunhosa A, Gomes C. Brain metastasis: An insight into novel molecular targets for theranostic approaches. Crit Rev Oncol Hematol 2024; 198:104377. [PMID: 38710296 DOI: 10.1016/j.critrevonc.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.
Collapse
Affiliation(s)
- Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Antero Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal
| | - Célia Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-075, Portugal.
| |
Collapse
|
13
|
You M, Fu M, Shen Z, Feng Y, Zhang L, Zhu X, Zhuang Z, Mao Y, Hua W. HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis. Oncoimmunology 2024; 13:2356942. [PMID: 38778816 PMCID: PMC11110709 DOI: 10.1080/2162402x.2024.2356942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.
Collapse
Affiliation(s)
- Muyuan You
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhewei Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
14
|
Jirovec A, Flaman A, Godbout E, Serrano D, Werier J, Purgina B, Diallo JS. Immune profiling of dedifferentiated liposarcoma and identification of novel antigens for targeted immunotherapy. Sci Rep 2024; 14:11254. [PMID: 38755218 PMCID: PMC11099179 DOI: 10.1038/s41598-024-61860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.
Collapse
Affiliation(s)
- Anna Jirovec
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada.
| | - Ashley Flaman
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Elena Godbout
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Joel Werier
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Bibianna Purgina
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
15
|
Nicolau-Neto P, Peryassú BC, de Carvalho FN, Souza-Santos PT, Valverde P, Nascimento CM, Costa I, Dias FL, Pinto LFR. ALCAM is a biomarker of tumor aggressiveness and worse prognosis in glottic laryngeal squamous cell carcinoma. Head Neck 2024; 46:785-796. [PMID: 38196304 DOI: 10.1002/hed.27635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the second most frequent head and neck tumor. Prognosis of patients with LSCC has not improved in recent decades, showing a need for the identification of prognostic biomarkers and new therapeutic targets. Recently, we showed that ALCAM overexpression was associated with glottic LSCC prognosis. OBJECTIVES AND METHODS Aiming to validate the prognostic value of ALCAM, we evaluate the ALCAM protein levels by immunohistochemistry in 263 glottic LSCC surgically treated with neck dissection. RESULTS ALCAM was expressed in 48.7% and overexpressed in 36.5% of glottic LSCC samples. ALCAM overexpression was associated with lymph node metastasis (p = 0.030), lymphovascular involvement (p = 0.0002), high-grade tumors (p = 0.025), and tumor relapse (p = 0.043). Multivariate survival analyses showed an overfitting between ALCAM overexpression and lymph node metastasis as a prognostic variable. CONCLUSIONS High ALCAM expression was associated with an aggressive glottic LSCC profile.
Collapse
Affiliation(s)
- Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | | | | | | | - Priscila Valverde
- Divisão de Patologia, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | | | - Izabella Costa
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | - Fernando L Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Wen J, Yu JZ, Liu C, Ould Ismail AAO, Ma W. Exploring the Molecular Tumor Microenvironment and Translational Biomarkers in Brain Metastases of Non-Small-Cell Lung Cancer. Int J Mol Sci 2024; 25:2044. [PMID: 38396722 PMCID: PMC10889194 DOI: 10.3390/ijms25042044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Brain metastases represent a significant clinical challenge in the treatment of non-small-cell lung cancer (NSCLC), often leading to a severe decline in patient prognosis and survival. Recent advances in imaging and systemic treatments have increased the detection rates of brain metastases, yet clinical outcomes remain dismal due to the complexity of the metastatic tumor microenvironment (TME) and the lack of specific biomarkers for early detection and targeted therapy. The intricate interplay between NSCLC tumor cells and the surrounding TME in brain metastases is pivotal, influencing tumor progression, immune evasion, and response to therapy. This underscores the necessity for a deeper understanding of the molecular underpinnings of brain metastases, tumor microenvironment, and the identification of actionable biomarkers that can inform multimodal treatment approaches. The goal of this review is to synthesize current insights into the TME and elucidate molecular mechanisms in NSCLC brain metastases. Furthermore, we will explore the promising horizon of emerging biomarkers, both tissue- and liquid-based, that hold the potential to radically transform the treatment strategies and the enhancement of patient outcomes.
Collapse
Affiliation(s)
- Jiexi Wen
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Catherine Liu
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - A. Aziz O. Ould Ismail
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Weijie Ma
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
17
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
18
|
Duan W, Xia S, Tang M, Lin M, Liu W, Wang Q. Targeting of endothelial cells in brain tumours. Clin Transl Med 2023; 13:e1433. [PMID: 37830128 PMCID: PMC10570772 DOI: 10.1002/ctm2.1433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.
Collapse
Affiliation(s)
- Wenzhe Duan
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Shengkai Xia
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Mengyi Tang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Manqing Lin
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Wenwen Liu
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
19
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
20
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Vasco C, Rizzo A, Cordiglieri C, Corsini E, Maderna E, Ciusani E, Salmaggi A. The Role of Adhesion Molecules and Extracellular Vesicles in an In Vitro Model of the Blood-Brain Barrier for Metastatic Disease. Cancers (Basel) 2023; 15:cancers15113045. [PMID: 37297006 DOI: 10.3390/cancers15113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Metastatic brain disease (MBD) has seen major advances in clinical management, focal radiation therapy approaches and knowledge of biological factors leading to improved prognosis. Extracellular vesicles (EVs) have been found to play a role in tumor cross-talk with the target organ, contributing to the formation of a premetastatic niche. Human lung and breast cancer cell lines were characterized for adhesion molecule expression and used to evaluate their migration ability in an in vitro model. Conditioned culture media and isolated EVs, characterized by super resolution and electron microscopy, were tested to evaluate their pro-apoptotic properties on human umbilical vein endothelial cells (HUVECs) and human cerebral microvascular endothelial cells (HCMEC/D3) by annexin V binding assay. Our data showed a direct correlation between expression of ICAM1, ICAM2, β3-integrin and α2-integrin and the ability to firmly adhere to the blood-brain barrier (BBB) model, whereas the same molecules were down-regulated at a later step. Extracellular vesicles released by tumor cell lines were shown to be able to induce apoptosis in HUVEC while brain endothelial cells showed to be more resistant.
Collapse
Affiliation(s)
- Chiara Vasco
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Ambra Rizzo
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Chiara Cordiglieri
- Preclinical Neuroimmunology Lab, Neurology IV Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
- Imaging Facility, National Institute of Molucular Genetics (INGM) "Romeo ed Enrica Invernizzi", c/o Policlinico di Milano Hospital, Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Elena Corsini
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Emanuela Maderna
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Chemistry SMeL122, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Andrea Salmaggi
- Neuroscience Department-Neurology/Stroke Unit, Ospedale A. Manzoni, ASST Lecco, 23900 Lecco, Italy
| |
Collapse
|
22
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
23
|
Song X, Xiong A, Wu F, Li X, Wang J, Jiang T, Chen P, Zhang X, Zhao Z, Liu H, Cheng L, Zhao C, Wang Z, Pan C, Cui X, Xu T, Luo H, Zhou C. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J Immunother Cancer 2023; 11:e006234. [PMID: 36854570 PMCID: PMC9980352 DOI: 10.1136/jitc-2022-006234] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Immunotherapy for malignant tumors has made great progress, but many patients do not benefit from it. The complex intratumoral heterogeneity (ITH) hindered the in-depth exploration of immunotherapy. Conventional bulk sequencing has masked intratumor complexity, preventing a more detailed discovery of the impact of ITH on treatment efficacy. Hence, we initiated this study to explore ITH at the multi-omics spatial level and to seek prognostic biomarkers of immunotherapy efficacy considering the presence of ITH. METHODS Using the segmentation strategy of digital spatial profiling (DSP), we obtained differential information on tumor and stromal regions at the proteomic and transcriptomic levels. Based on the consideration of ITH, signatures constructed by candidate proteins in different regions were used to predict the efficacy of immunotherapy. RESULTS Eighteen patients treated with a bispecific antibody (bsAb)-KN046 were enrolled in this study. The tumor and stromal areas of the same samples exhibited distinct features. Signatures consisting of 11 and 18 differentially expressed DSP markers from the tumor and stromal areas, respectively, were associated with treatment response. Furthermore, the spatially resolved signature identified from the stromal areas showed greater predictive power for bsAb immunotherapy response (area under the curve=0.838). Subsequently, our stromal signature was validated in an independent cohort of patients with non-small cell lung cancer undergoing immunotherapy. CONCLUSION We deciphered ITH at the spatial level and demonstrated for the first time that genetic information in the stromal region can better predict the efficacy of bsAb treatment. TRIAL REGISTRATION NUMBER NCT03838848.
Collapse
Affiliation(s)
- Xinyu Song
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Anwen Xiong
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Jing Wang
- Clinical research center, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Tao Jiang
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Peixin Chen
- School of Medicine, Tongji University, Shanghai, China
| | | | - Zhikai Zhao
- Department of Pathology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Huifang Liu
- Department of Pathology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Zhehai Wang
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, Shandong, China
| | - Chaohu Pan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co Ltd, Shenzhen, Guangdong, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co Ltd, Shenzhen, Guangdong, China
| | - Ting Xu
- Alphamab Biopharmaceuticals, Suzhou, Jiangsu, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co Ltd, Shenzhen, Guangdong, China
| | - Caicun Zhou
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
24
|
Hsu TC, Lin C. Learning from small medical data-robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder. BIOINFORMATICS ADVANCES 2023; 3:vbac100. [PMID: 36698767 PMCID: PMC9832968 DOI: 10.1093/bioadv/vbac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Motivation Cancer is one of the world's leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction. Results We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening. Availability and implementation The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Te-Cheng Hsu
- Institute of Communications Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Che Lin
- To whom correspondence should be addressed.
| |
Collapse
|
25
|
Yang YM, Ye L, Ruge F, Fang Z, Ji K, Sanders AJ, Jia S, Hao C, Dou QP, Ji J, Jiang WG. Activated Leukocyte Cell Adhesion Molecule (ALCAM), a Potential 'Seed' and 'Soil' Receptor in the Peritoneal Metastasis of Gastrointestinal Cancers. Int J Mol Sci 2023; 24:ijms24010876. [PMID: 36614319 PMCID: PMC9821744 DOI: 10.3390/ijms24010876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell-cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer metastasis. In the present study, we investigated potential roles of ALCAM in the peritoneal transcoelomic metastasis in gastrointestinal cancers, a metastatic type commonly occurred in gastro-intestinal and gynaecological malignancies and resulting in poor clinical outcomes. Specifically, we studied whether ALCAM acts as both a 'seed' receptor in these tumour cells and a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. Gastric cancer and pancreatic cancer tissues with or without peritoneal metastasis were compared for their levels of ALCAM expression. The impact of ALCAM expression in these tumours was also correlated to the patients' clinical outcomes, namely peritoneal metastasis-free survival. In addition, cancer cells of gastric and pancreatic origins were used to create cell models with decreased or increased levels of ALCAM expression by genetic knocking down or overexpression, respectively. Human peritoneal mesothelial cells were also genetically transfected to generate cell models with different profiles of ALCAM expression. These cell models were used in the tumour-mesothelial interaction assay to assess if and how the interaction was influenced by ALCAM. Both gastric and pancreatic tumour tissues from patients who developed peritoneal metastases had higher levels of ALCAM transcript than those without. Patients who had tumours with high levels of ALCAM had a much shorter peritoneal metastasis free survival compared with those who had low ALCAM expression (p = 0.006). ALCAM knockdown of the mesothelial cell line MET5A rendered the cells with reduced interaction with both gastric cancer cells and pancreatic cancer cells. Likewise, levels of ALCAM in both human gastric and pancreatic cancer cells were also a determining factor for their adhesiveness to mesothelial cells, a process that was likely to be triggered the phosphorylation of the SRC kinase. A soluble ALCAM (sALCAM) was found to be able to inhibit the adhesiveness between cancer cells and mesothelial cells, mechanistically behaving like a SRC kinase inhibitor. ALCAM is an indicator of peritoneal metastasis in both gastric and pancreatic cancer patients. It acts as not only a potential peritoneal 'soil' receptor of tumour seeding but also a 'soil' receptor in peritoneal mesothelial cells during cancer metastasis. These findings have an important therapeutic implication for treating peritoneal transcoelomic metastases.
Collapse
Affiliation(s)
- Yi Ming Yang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ke Ji
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- School of Natural and Social Science, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| | - Shuqin Jia
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Chunyi Hao
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
| | - Q. Ping Dou
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jiafu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Street, Haidian District, Beijing 100089, China
- Correspondence: (J.J.); (W.G.J.)
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Correspondence: (J.J.); (W.G.J.)
| |
Collapse
|
26
|
Westphal, M, Pantel K, Ricklefs FL, Maire C, Riethdorf S, Mohme M, Wikman H, Lamszus K. Circulating tumor cells and extracellular vesicles as liquid biopsy markers in neuro-oncology: prospects and limitations. Neurooncol Adv 2022; 4:ii45-ii52. [PMID: 36380859 PMCID: PMC9650476 DOI: 10.1093/noajnl/vdac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For many tumor entities, tumor biology and response to therapy are reflected by components that can be detected and captured in the blood stream. The so called “liquid biopsy” has been stratified over time into the analysis of circulating tumor cells (CTC), extracellular vesicles (EVs), and free circulating components such as cell-free nucleic acids or proteins. In neuro-oncology, two distinct areas need to be distinguished, intrinsic brain tumors and tumors metastatic to the brain. For intrinsic brain tumors, specifically glioblastoma, CTCs although present in low abundance, contain highly relevant, yet likely incomplete biological information for the whole tumor. For brain metastases, CTCs can have clinical relevance for patients especially with oligometastatic disease and brain metastasis in cancers like breast and lung cancer. EVs shed from the tumor cells and the tumor environment provide complementary information. Sensitive technologies have become available that are able to detect both, CTCs and EVs in the peripheral blood of patients with intrinsic and metastatic brain tumors despite the blood brain barrier. In reference to glioblastoma EVs, being shed by tumor cells and microenvironment and being more diffusible than CTCs may yield a more complete reflection of the whole tumor compared to low-abundance CTCs representing only a fraction of the multiclonal tumor heterogeneity. We here review the emerging aspects of CTCs and EVs as liquid biopsy biomarkers in neuro-oncology.
Collapse
Affiliation(s)
- Manfred Westphal,
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Cecile Maire
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Sabine Riethdorf
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Malte Mohme
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Harriet Wikman
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Katrin Lamszus
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| |
Collapse
|
27
|
Zhu L, Yang F, Wang G, Li Q. CXC Motif Chemokine Receptor Type 4 Disrupts Blood-Brain Barrier and Promotes Brain Metastasis Through Activation of the PI3K/AKT Pathway in Lung Cancer. World Neurosurg 2022; 166:e369-e381. [PMID: 35817351 DOI: 10.1016/j.wneu.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND CXC motif chemokine receptor type 4 (CXCR4) is an indispensable factor in the process of lung cancer brain metastasis (LCBM). The PI3K/AKT signal pathway is crucial in affecting cell invasion and metastasis and serves as a pivotal regulator in LCBM. However, the relationship between CXCR4 and the PI3K/AKT signal pathway is unclear. This study aimed to explore the underlying mechanisms of CXCR4 and PI3K/AKT in LCBM. METHODS Two lung cancer cells (A549 and H1299) and cells transfected with short hairpin RNA (shRNA)-CXCR4 were cocultured with normal human astrocyte cells and human brain endothelial (hCMEC/D3) cells to establish a blood-brain barrier model in vitro. The proliferation, migration, and invasion tight junction proteins (claudin-5, occludin, and ZO-1) were examined. Finally, results were verified in a nude mice model. RESULTS The abilities of cell proliferation, migration, and invasion were significantly reduced in A549 and H1299 cells transfected with shRNA-CXCR4 compared with the negative control group. The proteins phosphorylated PI3K and phosphorylated AKT were downregulated in lung cancer cells transfected with shRNA-CXCR4. The proteins claudin-5, occludin, and ZO-1 were upregulated in the A549 and H1299 cells transfected with shRNA-CXCR4. In vivo experiment results confirmed that the knockdown of CXCR4 played a protective role in the process of LCBM. CONCLUSIONS Our findings revealed that CXCR4 promotes LCBM by regulating the PI3K/Akt signal pathway. We also demonstrated that inhibiting CXCR4 could lead to prevention of LCBM. This study provides further rationale for clinical therapy that targets CXCR4/PI3K/AKT.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
28
|
Tyckaert F, Zanin N, Morsomme P, Renard HF. Rac1, actin cytoskeleton and microtubules are key players in clathrin-independent endophilin-A3-mediated endocytosis. J Cell Sci 2022; 135:276016. [PMID: 35703091 DOI: 10.1242/jcs.259623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022] Open
Abstract
Endocytic mechanisms actively regulate plasma membrane composition and sustain fundamental cellular functions. Recently, we identified a clathrin-independent endocytic (CIE) modality mediated by the BAR domain protein endophilin-A3 (endoA3), which controls the cell surface homeostasis of the tumor marker CD166/ALCAM. Deciphering the molecular machinery of endoA3-dependent CIE should therefore contribute to a better understanding of its pathophysiological role, which remains so far unknown. Here, we investigate the role in this mechanism of actin, Rho GTPases and microtubules, which are major actors of CIE processes. We show that the actin cytoskeleton is dynamically associated with endoA3- and CD166-positive endocytic carriers and that its perturbation strongly inhibits the uptake process of CD166. We also reveal that the Rho GTPase Rac1, but not Cdc42, is a master regulator of this endocytic route. Finally, we provide evidence that microtubules and kinesin molecular motors are required to potentiate endoA3-dependent endocytosis. Of note, our study also highlights potential compensation phenomena between endoA3-dependent CIE and macropinocytosis. Altogether, our data deepen our understanding of this CIE modality and further differentiate it from other unconventional endocytic mechanisms.
Collapse
Affiliation(s)
- François Tyckaert
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium.,UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Natacha Zanin
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
29
|
Bindeman WE, Fingleton B. Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev 2022; 41:107-129. [PMID: 34967926 PMCID: PMC8930623 DOI: 10.1007/s10555-021-10015-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Metastasis is considered to be responsible for 90% of cancer-related deaths. Although it is clinically evident that metastatic patterns vary by primary tumor type, the molecular mechanisms underlying the site-specific nature of metastasis are an area of active investigation. One mechanism that has emerged as an important player in this process is glycosylation, or the addition of sugar moieties onto protein and lipid substrates. Glycosylation is the most common post-translational modification, occurring on more than 50% of translated proteins. Many of those proteins are either secreted or expressed on the cell membrane, thereby making glycosylation an important mediator of cell-cell interactions, including tumor-microenvironment interactions. It has been recently discovered that alteration of glycosylation patterns influences cancer metastasis, both globally and in a site-specific manner. This review will summarize the current knowledge regarding the role of glycosylation in the tropism of cancer cells for several common metastatic sites, including the bone, lung, brain, and lymph nodes.
Collapse
Affiliation(s)
- Wendy E Bindeman
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
30
|
Zhang H, Xie S, Fan R, Wang F, Xie Z, Jiang W. Elevated ALCAM Expression Associated with Endotypes and Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2022; 15:1063-1077. [PMID: 35210812 PMCID: PMC8858028 DOI: 10.2147/jir.s350609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Chronic rhinosinusitis with polyps (CRSwNP) is characterized by high heterogeneity and postoperative recurrence rate. This study aimed to explore the clinical significance of activated leukocyte cell adhesion molecule (ALCAM) in endotyping CRSwNP and predicting its recurrence. Methods We recruited 120 CRSwNP patients including 70 non-eosinophilic CRSwNP (neCRSwNP) and 50 eosinophilic CRSwNP (eCRSwNP) patients, and 40 healthy controls (HCs). Serum and tissue samples were collected. Serum ALCAM levels were detected by enzyme-linked immunosorbent assay (ELISA), and tissue ALCAM expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The predictive values of ALCAM expression for CRSwNP endotypes and postoperative recurrence were assessed. Results The serum levels of ALCAM were significantly increased in CRSwNP patients in comparison with HCs and were correlated with the peripheral eosinophil count, tissue eosinophil counts, and percentage. Multivariate analysis and receiver operating characteristic (ROC) curve highlighted that serum ALCAM levels were associated with CRSwNP endotypes. Tissue ALCAM expression was significantly enhanced in CRSwNP patients, especially in eCRSwNP patients. At the end of the study, 110 patients completed the follow-up schedule, 78 patients were categorized into the non-recurrent group, and the other 32 patients were included in the recurrent group. The serum ALCAM levels were elevated in the recurrent group compared with the non-recurrent group, and ALCAM expression in the tissue was significantly elevated. The ROC curve exhibited a high predictive ability of serum ALCAM in predicting postoperative recurrence. Logistic regression and Kaplan–Meier curves demonstrated that serum ALCAM was an independent risk factor for postoperative recurrence. Conclusion This is the first report suggesting that ALCAM expression was upregulated and associated with mucosal eosinophil infiltration and CRSwNP recurrence. Serum ALCAM could be a promising biomarker for distinguishing endotypes and predicting postoperative recurrence in CRwNP patients.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ruohao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Fengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Weihong Jiang, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China, Email
| |
Collapse
|
31
|
Tehranian C, Fankhauser L, Harter PN, Ratcliffe CDH, Zeiner PS, Messmer JM, Hoffmann DC, Frey K, Westphal D, Ronellenfitsch MW, Sahai E, Wick W, Karreman MA, Winkler F. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol 2022; 24:213-225. [PMID: 34216217 PMCID: PMC8804893 DOI: 10.1093/neuonc/noab159] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brain metastases (BM) are a frequent complication of malignant melanoma (MM), with limited treatment options and poor survival. Prevention of BM could be more effective and better tolerated than treating established BM in various conditions. METHODS To investigate the temporospatial dynamics of PI3K/Akt/mTOR (PAM) pathway activation during BM formation and the preventive potential of its inhibition, in vivo molecular imaging with an Akt biosensor was performed, and long-term intravital multiphoton microscopy through a chronic cranial window in mice. RESULTS In vivo molecular imaging revealed invariable PAM pathway activation during the earliest steps of brain colonization. In order to perform a long-term intravascular arrest and to extravasate, circulating MM cells needed to activate their PAM pathway during this process. However, the PAM pathway was quite heterogeneously activated in established human brain metastases, and its inhibition with the brain-penetrant PAM inhibitor GNE-317 resulted in only modest therapeutic effects in mice. In contrast, giving GNE-317 in preventive schedules that included very low doses effectively reduced the growth rate and number of BM in two MM mouse models over time, and led to an overall survival benefit. Longitudinal intravital multiphoton microscopy found that the first, rate-limiting steps of BM formation-permanent intravascular arrest, extravasation, and initial perivascular growth-are most vulnerable to dual PI3K/mTOR inhibition. CONCLUSION These findings establish a key role of PAM pathway activation for critical steps of early metastatic brain colonization and reveal its pharmacological inhibition as a potent avenue to prevent the formation of clinically relevant BM.
Collapse
Affiliation(s)
- Cedric Tehranian
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Fankhauser
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | | | - Pia S Zeiner
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Katharina Frey
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael W Ronellenfitsch
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
33
|
Yang Y, Sanders AJ, Ruge F, Dong X, Cui Y, Dou QP, Jia S, Hao C, Ji J, Jiang WG. Activated leukocyte cell adhesion molecule (ALCAM)/CD166 in pancreatic cancer, a pivotal link to clinical outcome and vascular embolism. Am J Cancer Res 2021; 11:5917-5932. [PMID: 35018233 PMCID: PMC8727815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM, or CD166) is a cell adhesion molecule and one of potential tumour metastasis 'soil' receptors that via homotypic and heterotypic interactions, mediates cancer cell adhesion. The present study investigated clinical, pathological and prognostic values of ALCAM in patients with pancreatic cancer. Human pancreatic cancer (PANC-1 and Mia PaCa-2) and human vascular endothelial cell lines were used to construct cell models differentially expressing levels of ALCAM. Tumour-endothelial interaction and tumour migration were assessed by a DiI-based method and electric cell-substrate impedance sensing (ECIS) assay. Pancreatic cancer tissues (n=223), collected immediately after surgery, were analysed for levels of the ALCAM transcripts, which were also analysed against clinical, pathological and clinical outcomes of the patients. ALCAM protein was assessed by immunohistochemistry on a tissue array. Our study demonstrate that pancreatic cancer tissues had significantly higher levels of ALCAM transcripts than normal tissues (P<0.00001). There were no significant differences with staging, differentiation and tumour locations. Tumours from patients who died of pancreatic cancer had significantly high levels of ALCAM compared with those who lived (P=0.018), and this finding was further supported by ROC analysis (P=0.016). Multivariant analysis showed that ALCAM is an independent prognosis factor for overall survival (HR=5.485), with both nodal status and TNM staging contributing to the model (HR=2.578 and 3.02, respectively). A surprising finding was the relationship between ALCAM expression and microvessel embolism of tumour cells (P=0.021, with vs without tumour embolism). Levels of ALCAM were found to be a determinant factor to adherence of the pancreatic cancer cells to vascular endothelial cells, as demonstrated by pancreatic cancer cell models genetically engineered to express differential levels of ALCAM. The tumour-endothelial interaction mediated by ALCAM was readily blocked by addition of soluble ALCAM. Our data supports the conclusion that ALCAM expression is aberrant in pancreatic cancer and its raised expression is an independent prognostic factor for the survival of the patients and the microvascular embolism by cancer cells. Our results suggest that ALCAM plays a key role in mediating tumour-endothelial cell interactions and enhancing tumour embolism in pancreatic cancer, and targeting ALCAM represents a potential therapeutic strategy for treating human pancreatic cancer.
Collapse
Affiliation(s)
- Yiming Yang
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Xuefei Dong
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Yuxin Cui
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| | - Qing Ping Dou
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State UniversityDetroit, MI 48201, USA
| | - Shuqin Jia
- Peking University Cancer Hospital and Institute and Key Laboratory of CarcinogenesisFucheng Street, Beijing 100142, China
| | - Chunyi Hao
- Peking University Cancer Hospital and Institute and Key Laboratory of CarcinogenesisFucheng Street, Beijing 100142, China
| | - Jiafu Ji
- Peking University Cancer Hospital and Institute and Key Laboratory of CarcinogenesisFucheng Street, Beijing 100142, China
| | - Wen G Jiang
- Cardiff University School of MedicineHeath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
34
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
35
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Lan C, Liu CC, Nie XC, Lei L, Xiao ZX, Li MX, Tang XN, Jia MY, Xu HT. FAM83A Promotes the Proliferative and Invasive Abilities of Cervical Cancer Cells via Epithelial-Mesenchymal Transition and the Wnt Signaling Pathway. J Cancer 2021; 12:6320-6329. [PMID: 34659522 PMCID: PMC8489145 DOI: 10.7150/jca.62563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The family with sequence similarity 83, member A (FAM83A) gene is associated with the occurrence and development of many malignant tumors. Our aim was to explore the role of FAM83A in cervical cancer. FAM83A was overexpressed or knocked down in cervical cancer cells, and the expressions of FAM83A, key proteins involved in the epithelial-mesenchymal transition (EMT), and Wnt signaling pathway-related proteins were detected by western blot analysis. Cell proliferative and invasive abilities were also examined using cell proliferation, colony formation, and Matrigel invasion assays. Cells were treated with the Wnt pathway inhibitor XAV-939 to determine whether Wnt signaling was necessary for the effect of FAM83A on cervical cancer cells. FAM83A was highly expressed in cervical cancer tissues and was associated with differentiation, TNM stage, lymph node metastasis, and poor prognosis in patients with cervical cancer. Knockdown of FAM83A inhibited the proliferation, colony formation, and invasion of cervical cancer cells. The opposite results were observed in FAM83A-overexpressing cells, and FAM83A overexpression also promoted EMT and Wnt signaling. XAV-939 reversed the activation of Wnt signaling and EMT induced by FAM83A. In conclusion, FAM83A expression was increased in cervical cancers and correlated with poor prognosis of patients. FAM83A overexpression can activate the Wnt signaling pathway, facilitate EMT, and promote the proliferative and invasive abilities of cervical cancer cells.
Collapse
Affiliation(s)
- Chong Lan
- Department of Gynecology, Shenyang Women and Children's Hospital, Shenyang, China
| | - Chen-Chen Liu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Xiao-Cui Nie
- Department of Gynecology, Shenyang Women and Children's Hospital, Shenyang, China
| | - Lei Lei
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Zhang-Xian Xiao
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Ming-Xi Li
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Xue-Nan Tang
- Department of Gynecology, Shenyang Women and Children's Hospital, Shenyang, China
| | - Ming-Yu Jia
- Department of Gynecology, Shenyang Women and Children's Hospital, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| |
Collapse
|
37
|
Luo L, Liu P, Zhao K, Zhao W, Zhang X. The Immune Microenvironment in Brain Metastases of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:698844. [PMID: 34336687 PMCID: PMC8316686 DOI: 10.3389/fonc.2021.698844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastasis of non-small cell lung cancer is associated with poor survival outcomes and poses rough clinical challenges. At the era of immunotherapy, it is urgent to perform a comprehensive study uncovering the specific immune microenvironment of brain metastases of NSCLC. The immune microenvironment of brain is distinctly different from microenvironments of extracranial lesions. In this review, we summarized the process of brain metastases across the barrier and revealed that brain is not completely immune-privileged. We comprehensively described the specific components of immune microenvironment for brain metastases such as central nervous system-derived antigen-presenting cells, microglia and astrocytes. Besides, the difference of immune microenvironment between brain metastases and primary foci of lung was particularly demonstrated.
Collapse
Affiliation(s)
- Lumeng Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyi Liu
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zarghami N, Soto MS, Perez-Balderas F, Khrapitchev AA, Karali CS, Johanssen VA, Ansorge O, Larkin JR, Sibson NR. A novel molecular magnetic resonance imaging agent targeting activated leukocyte cell adhesion molecule as demonstrated in mouse brain metastasis models. J Cereb Blood Flow Metab 2021; 41:1592-1607. [PMID: 33153376 PMCID: PMC8217895 DOI: 10.1177/0271678x20968943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 01/26/2023]
Abstract
Molecular magnetic resonance imaging (MRI) allows visualization of biological processes at the molecular level. Upregulation of endothelial ALCAM (activated leukocyte cell adhesion molecule) is a key element for leukocyte recruitment in neurological disease. The aim of this study, therefore, was to develop a novel molecular MRI contrast agent, by conjugating anti-ALCAM antibodies to microparticles of iron oxide (MPIO), for detection of endothelial ALCAM expression in vivo. Binding specificity of ALCAM-MPIO was demonstrated in vitro under static and flow conditions. Subsequently, in a proof-of-concept study, mouse models of brain metastasis were induced by intracardial injection of brain-tropic human breast carcinoma, lung adenocarcinoma or melanoma cells to upregulate endothelial ALCAM. At selected time-points, mice were injected intravenously with ALCAM-MPIO, and ALCAM-MPIO induced hypointensities were observed on T2*-weighted images in all three models. Post-gadolinium MRI confirmed an intact blood-brain barrier, indicating endoluminal binding. Correlation between endothelial ALCAM expression and ALCAM-MPIO binding was confirmed histologically. Statistical analysis indicated high sensitivity (80-90%) and specificity (79-83%) for detection of endothelial ALCAM in vivo with ALCAM-MPIO. Given reports of endothelial ALCAM upregulation in numerous neurological diseases, this advance in our ability to image ALCAM in vivo may yield substantial improvements for both diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Niloufar Zarghami
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Francisco Perez-Balderas
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Christina Simoglou Karali
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Vanessa A Johanssen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Department of Clinical Neuropathology, John Radcliffe Hospital, Oxford, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Zhang C. Case Report: Treatment of Alectinib in NSCLC With Brain Metastasis Patient Refractory to Radiotherapy After Resistance to Crizotinib. Front Oncol 2021; 11:709188. [PMID: 34262876 PMCID: PMC8273575 DOI: 10.3389/fonc.2021.709188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Brain metastasis is the most common form of tumor recurrence after resistance to crizotinib in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC). The treatment of brain metastasis in patients with ALK-positive NSCLC requires a multidisciplinary approach, including targeted therapy, chemotherapy, and radiotherapy. At present, no optimal treatment for these patients has been identified, although radiotherapy has remained a vital treatment. Case Presentation We experienced a patient with ALK-positive NSCLC who developed brain metastasis after crizotinib therapy. ALK rearrangement was not detected in a blood sample using next-generation sequencing. In accordance with National Comprehensive Cancer Network guidance, the patient underwent whole-brain radiotherapy. However, the number of metastatic sites unexpectedly increased. In desperation, the patient was empirically given alectinib after radiotherapy failure, and unanticipated success was achieved. Conclusions This case revealed some new insights. First, liquid biopsy is complementary to tissue biopsy in patients with NSCLC, mainly in those with EGFR mutation. However, ALK rearrangement should be assessed using tissue biopsy as much as possible. Second, brain metastasis of NSCLC might respond to second-generation tyrosine kinase inhibitors (TKIs), such as alectinib and ceritinib, after resistance to crizotinib regardless of the presence or absence of ALK rearrangement in liquid biopsy. Finally, combined radiotherapy and TKI therapy appears optimal in patients with brain metastasis of NSCLC after resistance to crizotinib in the absence of a definitive driver gene.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin, China
| |
Collapse
|
40
|
Jin H, Zheng W, Hou J, Peng H, Zhuo H. An Essential NRP1-Mediated Role for Tagln2 in Gastric Cancer Angiogenesis. Front Oncol 2021; 11:653246. [PMID: 34150622 PMCID: PMC8213069 DOI: 10.3389/fonc.2021.653246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Knowledge about the precise biological role and underlying mechanism of Tagln2 in tumor progression is relatively limited, especially in angiogenesis focused on tumor derived endothelial cells (ECs) has rarely been reported. Here, the function, molecular mechanism and potential clinical value of Tagln2 in gastric cancer (GC) angiogenesis were investigated. GC tissue microarrays were used to assess the expression of Tagln2 in ECs. The relationships between expression and clinicopathological features were analyzed to evaluate the clinical value of Tagln2. Gain- and loss-of-function approaches were performed in ECs to investigate the functions of Tagln2 in angiogenesis. A combination of angiogenesis antibody array, RNA-Seq analyses and a series of in vitro experiments were performed to reveal the proangiogenic mechanism mediated by NRP1. Immunohistochemistry performed on an independent tissue chip (n=75) revealed significant upregulation of Tagln2 in tumor-derived ECs which were specifically immunolabeled with CD34. Additionally, high Tagln2 levels correlated significantly with the presence of lymph node as well as distant metastases. Gain- and loss-of-function approaches highlighted the function of Tagln2 in promoting EC proliferation, motility, and capillary-like tube formation and in reducing apoptosis. Tagln2 upregulation led to significantly increased mRNA and protein levels of NRP1 and subsequently activated the NRP1/VEGFR2 and downstream MAPK signaling pathways. These data indicate the importance of Tagln2 in angiogenesis, as a potential therapeutic target, and as a candidate prognostic marker in GC.
Collapse
Affiliation(s)
- Hongwei Jin
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| |
Collapse
|
41
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
42
|
Menini S, Iacobini C, Vitale M, Pesce C, Pugliese G. Diabetes and Pancreatic Cancer-A Dangerous Liaison Relying on Carbonyl Stress. Cancers (Basel) 2021; 13:313. [PMID: 33467038 PMCID: PMC7830544 DOI: 10.3390/cancers13020313] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Both type 2 (T2DM) and type 1 (T1DM) diabetes mellitus confer an increased risk of pancreatic cancer in humans. The magnitude and temporal trajectory of the risk conferred by the two forms of diabetes are similar, suggesting a common mechanism. Carbonyl stress is a hallmark of hyperglycemia and dyslipidemia, which accompanies T2DM, prediabetes, and obesity. Accumulating evidence demonstrates that diabetes promotes pancreatic ductal adenocarcinoma (PDAC) in experimental models of T2DM, a finding recently confirmed in a T1DM model. The carbonyl stress markers advanced glycation end-products (AGEs), the levels of which are increased in diabetes, were shown to markedly accelerate tumor development in a mouse model of Kras-driven PDAC. Consistently, inhibition of AGE formation by trapping their carbonyl precursors (i.e., reactive carbonyl species, RCS) prevented the PDAC-promoting effect of diabetes. Considering the growing attention on carbonyl stress in the onset and progression of several cancers, including breast, lung and colorectal cancer, this review discusses the mechanisms by which glucose and lipid imbalances induce a status of carbonyl stress, the oncogenic pathways activated by AGEs and their precursors RCS, and the potential use of carbonyl-scavenging agents and AGE inhibitors in PDAC prevention and treatment, particularly in high-risk diabetic individuals.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (S.M.); (C.I.); (M.V.)
| |
Collapse
|
43
|
Healey N. Better treatments for lung cancer that spreads to the brain. Nature 2020; 587:S14-S15. [PMID: 33208971 DOI: 10.1038/d41586-020-03155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Karreman MA, Winkler F. Targeting an adhesion molecule to prevent brain colonization of lung cancer. Neuro Oncol 2020; 22:899-900. [PMID: 32296850 DOI: 10.1093/neuonc/noaa099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Matthia A Karreman
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
45
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Genes that Mediate Metastasis across the Blood-Brain Barrier. Trends Cancer 2020; 6:660-676. [PMID: 32417182 DOI: 10.1016/j.trecan.2020.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Brain metastasis is an important cause of mortality in patients with cancer and represents the majority of all intracranial tumors. A key step during the metastatic journey of the cancer cell to the brain is the invasion through the blood-brain barrier (BBB). Nevertheless, the molecular mechanisms that govern this process remain unknown. The BBB has been blamed for limiting the access of therapeutic drugs to the brain, which provides a safe haven for cancer cells in the brain and confers poor prognosis for the patient. Here, we explore the genes that control the transmigration of metastatic cancer cells across the BBB, offering new targets for the development of gene and cell therapies against brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|