1
|
Boutin L, Liu M, Déchanet Merville J, Bedoya-Reina O, Wilhelm MT. EphA2 and phosphoantigen-mediated selective killing of medulloblastoma by γδT cells preserves neuronal and stem cell integrity. Oncoimmunology 2025; 14:2485535. [PMID: 40190167 PMCID: PMC11980450 DOI: 10.1080/2162402x.2025.2485535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Medulloblastoma (MB) is a pediatric brain tumor that develops in the cerebellum, representing one of the most common malignant brain cancers in children. Standard treatments include surgery, chemotherapy, and radiation, but despite a 5-y survival rate of approximately 70%, these therapies often lead to significant neurological damage in the developing brain. This underscores the urgent need for less toxic, more effective therapeutic alternatives. Recent advancements in cancer immunotherapy, including immune checkpoint inhibitors and CAR-T cell therapy, have revolutionized cancer treatment. One promising avenue is the use of Gamma Delta (γδ)T cells, a unique T cell population with potential advantages, such as non-alloreactivity, potent tumor cell lysis, and broad antigen recognition. However, their capacity to recognize and target MB cells remains underexplored. To investigate the therapeutic potential of γδT cells against MB, we analyzed the proportion and status of MB-infiltrated γδT cells within patient datasets. We next investigated the expression of γδT cell ligands on MB cells and identified the EphA2 receptor and the phosphoantigen/Butyrophilin complex as key ligands, activating Vγ9 Vδ1 and Vγ9 Vδ2 T cells, respectively, leading to significant MB cell lysis in both monolayer and spheroid models. Importantly, preliminary safety data showed that γδT cells did not target differentiated neurons or neuroepithelial stem cells derived from induced pluripotent stem cells, underscoring the selectivity and safety of this approach. In conclusion, γδT cells trigger an efficient and specific killing of MB and would offer a promising novel therapeutic strategy.
Collapse
MESH Headings
- Medulloblastoma/immunology
- Medulloblastoma/therapy
- Medulloblastoma/pathology
- Medulloblastoma/metabolism
- Humans
- Receptor, EphA2/metabolism
- Receptor, EphA2/immunology
- Cerebellar Neoplasms/immunology
- Cerebellar Neoplasms/therapy
- Cerebellar Neoplasms/pathology
- Neurons/immunology
- Neurons/metabolism
- Neurons/pathology
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Cell Line, Tumor
- Intraepithelial Lymphocytes/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Lola Boutin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | - Oscar Bedoya-Reina
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Margareta T Wilhelm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Rea A, Santana-Hernández S, Villanueva J, Sanvicente-García M, Cabo M, Suarez-Olmos J, Quimis F, Qin M, Llorens E, Blasco-Benito S, Torralba-Raga L, Perez L, Bhattarai B, Alari-Pahissa E, Georgoudaki AM, Balaguer F, Juan M, Pardo J, Celià-Terrassa T, Rovira A, Möker N, Zhang C, Colonna M, Spanholtz J, Malmberg KJ, Montagut C, Albanell J, Güell M, López-Botet M, Muntasell A. Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression. Nat Immunol 2025; 26:582-594. [PMID: 40119192 PMCID: PMC11957989 DOI: 10.1038/s41590-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2025] [Indexed: 03/24/2025]
Abstract
Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
Collapse
Grants
- 765104 EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- ICI24/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- SGR863 Generalitat de Catalunya (Government of Catalonia)
- 765104 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)
- PI21/00002 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00040 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- 2024PROD00089 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI23/00075 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- P01 CA111412 NCI NIH HHS
- Ministerio de Ciencia, Innovación y Universidades/FEDER CNS2023-144487
- AECC postdoctoral fellowship POSTD234709BLAS
- Ministerio de Ciencia, Innovación y Universidades PID2020-113963RBI00 Gobierno de Aragón B29-23R
- Ministerio de Ciencia, Innovación y Universidades PID2023-147310OB-I00
- Research Council of Norway 275469, 237579, the Research Council of Norway through its Centres of Excellence scheme 332727, the Norwegian Cancer Society-190386, 223310, The South-Eastern Norway Regional Health Authority 2021-073, 2024-053, Knut and Alice Wallenberg Foundation 2018.0106, Swedish Foundation for Strategic Research, and the US National Cancer Institute P01 CA111412, P009500901.
- CRIS EXCELLENCE 19-30, funded by CRIS Contra el Cáncer
- CIBERONC: CB16/12/00241
Collapse
Affiliation(s)
- Anna Rea
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Villanueva
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Mariona Cabo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Fabricio Quimis
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Eduard Llorens
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Lamberto Torralba-Raga
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Lorena Perez
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- IIS Aragon Foundation/ Dpt. Microbiology, Radiology Pediatry and Public Health, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfec), Zaragoza, Spain
| | - Toni Celià-Terrassa
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clara Montagut
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Joan Albanell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Marc Güell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Miguel López-Botet
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Sehl OC, Yang Y, Anjier AR, Nevozhay D, Cheng D, Guo K, Fellows B, Mohtasebzadeh AR, Mason EE, Sanders T, Kim P, Trease D, Koul D, Goodwill PW, Sokolov K, Wintermark M, Gordon N, Greve JM, Gopalakrishnan V. Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification. Mol Imaging Biol 2025; 27:78-88. [PMID: 39653984 DOI: 10.1007/s11307-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 02/08/2025]
Abstract
PURPOSE Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells. PROCEDURES Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc. RESULTS NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial. CONCLUSION MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.
Collapse
Affiliation(s)
- Olivia C Sehl
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA.
| | - Yanwen Yang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ariana R Anjier
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghang Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Kelvin Guo
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | | | | | - Erica E Mason
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Toby Sanders
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Petrina Kim
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - David Trease
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Dimpy Koul
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Joan M Greve
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Brain Tumor Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson- UT Health Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
5
|
Rechberger JS, Toll SA, Biswas S, You HB, Chow WD, Kendall N, Navalkele P, Khatua S. Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors. Cancers (Basel) 2025; 17:439. [PMID: 39941807 PMCID: PMC11816256 DOI: 10.3390/cancers17030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related mortality in children, with prognosis remaining dismal for some of these malignancies. Though the past two decades have seen advancements in surgery, radiation, and targeted therapy, major unresolved hurdles continue to undermine the therapeutic efficacy. These include challenges in suboptimal drug delivery through the blood-brain barrier (BBB), marked intra-tumoral molecular heterogeneity, and the elusive tumor microenvironment. Drug repurposing or re-tasking FDA-approved drugs with evidence of penetration into the CNS, using newer methods of intracranial drug delivery facilitating optimal drug exposure, has been an area of intense research. This could be a valuable tool, as most of these agents have already gone through the lengthy process of drug development and the evaluation of safety risks and the optimal pharmacokinetic profile. They can now be used and tested in clinics with an accelerated and different approach. Conclusions: The next-generation therapeutic strategy should prioritize repurposing oncologic and non-oncologic drugs that have been used for other indication, and have demonstrated robust preclinical activity against pediatric brain tumors. In combination with novel drug delivery techniques, these drugs could hold significant therapeutic promise in pediatric neurooncology.
Collapse
Affiliation(s)
| | - Stephanie A. Toll
- Children’s Hospital of Michigan, Central Michigan University School of Medicine, Saginaw, MI 48602, USA;
| | - Subhasree Biswas
- Bronglais General Hospital, Caradog Road, Aberystwyth SY23 1ER, Wales, UK;
| | - Hyo Bin You
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - William D. Chow
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - Nicholas Kendall
- School of Medicine, University of South Dakota Sanford, Vermillion, SD 57069, USA;
| | - Pournima Navalkele
- Division of Oncology, Children’s Hospital of Orange County, Orange, CA 92868, USA;
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Leong TW, Gao Z, David ET, Li X, Cai Q, Mwirigi JM, Zhang T, Giannotta M, Dejana E, Wiggins J, Krishnagiri S, Bachoo RM, Ge X, Price TJ, Qin Z. Spatially Precise and Minimally Invasive Delivery of Peptides to the Spinal Cord for Behavior Modulation. ACS NANO 2024; 18:34720-34729. [PMID: 39655357 DOI: 10.1021/acsnano.4c06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The blood-spinal cord barrier (BSCB) tightly regulates the transport of molecules from the blood to the spinal cord. Herein, we present an approach for transient modulation of BSCB permeability and localized delivery of peptides into the spinal cord for behavior modulation with high spatial resolution. This approach utilizes optical stimulation of vasculature-targeted nanoparticles and allows delivery of BSCB-impermeable molecules into the spinal cord without significant glial activation or impact on animal locomotor behavior. We demonstrate minimally invasive light delivery into the spinal cord using an optical fiber and BSCB permeability modulation in the lumbar region. Our method of BSCB modulation allows the delivery of bombesin, a centrally acting and itch-inducing peptide, into the spinal cord and induces a rapid and transient increase in itching behaviors in mice. This minimally invasive approach enables behavior modulation without genetic modifications and is promising for delivering a wide range of biologics into the spinal cord for potential therapy with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Tiffany W Leong
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhenghong Gao
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Eric T David
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xiaoqing Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Qi Cai
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Juliet M Mwirigi
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - John Wiggins
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sharada Krishnagiri
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Robert M Bachoo
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xiaoqian Ge
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Theodore J Price
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhenpeng Qin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
de Azevedo JTC, de Godoy JAP, de Souza C, Sielski MS, Coa LL, Barbosa A, Kerbauy LN, Kondo AT, Okamoto OK, Hamerschlak N, Kutner JM, Paiva RDMA. Current landscape of clinical use of ex vivo expanded natural killer cells for cancer therapy. EINSTEIN-SAO PAULO 2024; 22:eRW0612. [PMID: 39661859 PMCID: PMC11634336 DOI: 10.31744/einstein_journal/2024rw0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/05/2023] [Indexed: 12/13/2024] Open
Abstract
Natural Killer cells are immune leukocytes required for responses against tumor cells and virus-infected cells. In the last decade, natural killer cells have emerged as promising tools in cancer therapy, and clinical studies on patients treated with natural killer cells have revealed increased rates of disease-free survival. In this article, we review results from the major clinical trials that have used natural killer cells for cancer treatment, including their global distribution. We also discuss the major mechanisms of natural killer cell activation and expansion and focus on the advantages and disadvantages of each mechanism for clinical applications. Although natural killer cells can be isolated from several sources, primary natural killer cells are most commonly used in clinical trials. However, the frequency of natural killer cells available in peripheral and cord blood is low, necessitating development of methods for expansion of natural killer cells for clinical use. The development of a platform for the expansion of large-scale good manufacturing practice-compliant natural killer cells has limitations as several methods for natural killer cell activation and expansion yield conflicting results. Only techniques using feeder cells can produce large numbers of cells, allowing the "off-the-shelf" use of natural killer cells. However, advances in cell culture have supported the development of feeder-free platforms for natural killer cell expansion, which is fundamental for improving the safety of this type of cell therapy.
Collapse
Affiliation(s)
| | | | - Cláudia de Souza
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Micheli Severo Sielski
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Larissa Leggieri Coa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Augusto Barbosa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Lucila Nassif Kerbauy
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Andrea Tiemi Kondo
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Oswaldo Keith Okamoto
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Nelson Hamerschlak
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - José Mauro Kutner
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Raquel de Melo Alves Paiva
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Park H, Kim G, Kim N, Ha S, Yim H. Efficacy and safety of natural killer cell therapy in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1454427. [PMID: 39478866 PMCID: PMC11522797 DOI: 10.3389/fimmu.2024.1454427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In 2020, global cancer statistics reported 19.3 million new cases and 10 million deaths annually, highlighting the urgent need for effective treatments. Current therapies, such as surgery, radiation, and chemotherapy, have limitations in comprehensively addressing solid tumor. Recent advances in cancer biology and immuno-oncology, including CAR-T cell therapy, show promise but face efficacy challenges against solid tumors. Methods This meta-analysis systematically reviewed studies from PubMed, Embase, Cochrane, and ClinicalTrials.gov databases up to May 2024 to evaluate the clinical efficacy and safety of unmodified NK cell therapies in solid tumors. The included trials focused on reporting objective response rates (ORR). Results Thirty-one trials involving 600 patients across various cancers (e.g., NSCLC, HCC, breast, ovarian) were analyzed. NK cell therapies demonstrated promising ORRs, particularly 72.3% in hepatocellular carcinoma, often in combination with local therapies. Safety profiles were favorable, with fatigue being the most common adverse event. Discussion NK cell therapies represent a promising treatment option for solid tumors, offering a viable alternative to genetically modified cell therapies like CAR-T. Further research is needed to optimize the clinical utility of NK cell therapy and integrate it effectively into standard cancer treatment regimens. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023438410, identifier CRD42023438410.
Collapse
Affiliation(s)
- Heesook Park
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyurin Kim
- Department of Public Health, The Catholic University of Korea, Seoul, Republic of Korea
| | - Najin Kim
- Medical Library, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungyoen Ha
- Department of Statistics, Sungkyunkwan University of Korea, Seoul, Republic of Korea
| | - Hyeonwoo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
He YL, Liu JY, Almgrami RT, Fan YZ, Zhang Y. Cancer immunotherapy of Wilms tumor: a narrative review. Future Oncol 2024; 20:2293-2302. [PMID: 39235074 PMCID: PMC11508995 DOI: 10.1080/14796694.2024.2386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Wilms tumor (WT) is the most common malignant tumor of the urinary system in children. Though the traditional treatment of surgery plus radiotherapy and chemotherapy achieves exciting clinical efficacy, in relapsed and refractory cases, the long-term overall survival rates are poor. Besides, chemotherapy and radiation have serious long-term toxic side effects on children. Cancer immunotherapy is a new tumor therapy that works by activating the body's immune system to allow immune cells to kill tumor cells more efficiently. Currently, cancer immunotherapy has been tested in clinical trials or basic studies in WT. This article reviews the current status of clinical trials and basic research of cancer immunotherapy in WT to promote the application of cancer immunotherapy in WT patients.
Collapse
Affiliation(s)
- Yu Lin He
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Yan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rahma Taher Almgrami
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Zhong Fan
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Gauthier M, Pierson J, Moulin D, Mouginot M, Bourguignon V, Rhalloussi W, Vincourt JB, Dumas D, Bensoussan D, Chastagner P, Boura C, Decot V. Deciphering Natural Killer Cell Cytotoxicity Against Medulloblastoma in vitro and in vivo: Implications for Immunotherapy. Immunotargets Ther 2024; 13:319-333. [PMID: 38948503 PMCID: PMC11214763 DOI: 10.2147/itt.s458278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Medulloblastoma (MB) is the most prevalent paediatric brain tumour. Despite improvements in patient survival with current treatment strategies, the quality of life of these patients remains poor owing to the sequelae and relapse risk. An alternative, or, in addition to the current standard treatment, could be considered immunotherapy, such as Natural Killer cells (NK). NK cells are cytotoxic innate lymphoid cells that play a major role in cancer immunosurveillance. To date, the mechanism of cytotoxicity of NK cells, especially regarding the steps of adhesion, conjugation, cytotoxic granule polarisation in the cell contact area, perforin and granzyme release in two and three dimensions, and therapeutic efficacy in vivo have not been precisely described. Materials and Methods Each step of NK cytotoxicity against the three MB cell lines was explored using confocal microscopy for conjugation, Elispot for degranulation, flow cytometry, and luminescence assays for target cell necrosis and lysis and mediators released by cytokine array, and then confirmed in a 3D spheroid model. Medulloblastoma-xenografted mice were treated with NK cells. Their persistence was evaluated by flow cytometry, and their efficacy in tumour growth and survival was determined. In addition, their effects on the tumour transcriptome were evaluated. Results NK cells showed variable affinities for conjugation with MB target cells depending on their subgroup and cytokine activation. Chemokines secreted during NK and MB cell co-culture are mainly associated with angiogenesis and immune cell recruitment. NK cell cytotoxicity induces MB cell death in both 2D and 3D co-culture models. NK cells initiated an inflammatory response in a human MB murine model by modulating the MB cell transcriptome. Conclusion Our study confirmed that NK cells possess both in vitro and in vivo cytotoxic activity against MB cells and are of interest for the development of immunotherapy.
Collapse
Affiliation(s)
- Melanie Gauthier
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Julien Pierson
- CNRS UMR7039 CRAN, Université de Lorraine, Nancy, France
| | - David Moulin
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
| | - Manon Mouginot
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
| | | | | | | | | | - Danièle Bensoussan
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Pascal Chastagner
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Pediatric Oncology Department, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| | - Cédric Boura
- CNRS UMR7039 CRAN, Université de Lorraine, Nancy, France
| | - Veronique Decot
- CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France
- Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
11
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
12
|
Kiran S, Xue Y, Sarker DB, Li Y, Sang QXA. Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater 2024; 36:301-316. [PMID: 38496035 PMCID: PMC10940949 DOI: 10.1016/j.bioactmat.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
13
|
Yang H, Li M, Deng Y, Wen H, Luo M, Zhang W. Roles and interactions of tumor microenvironment components in medulloblastoma with implications for novel therapeutics. Genes Chromosomes Cancer 2024; 63:e23233. [PMID: 38607297 DOI: 10.1002/gcc.23233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024] Open
Abstract
Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed. To date, the tumor microenvironment (TME) has been shown to influence tumor growth, recurrence, and metastasis through immunosuppression, angiogenesis, and chronic inflammation. Treatments targeting TME components have emerged as promising approaches to the treatment of solid tumors. In this review, we summarize progress in research on medulloblastoma microenvironment components and their interactions. We also discuss challenges and future research directions for TME-targeting medulloblastoma therapy.
Collapse
Affiliation(s)
- Hanjie Yang
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Deng
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huantao Wen
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minjie Luo
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatric Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Tu C, Buckle I, Leal Rojas I, Rossi GR, Sester DP, Moore AS, Radford K, Guillerey C, Souza‐Fonseca‐Guimaraes F. Exploring NK cell receptor dynamics in paediatric leukaemias: implications for immunotherapy and prognosis. Clin Transl Immunology 2024; 13:e1501. [PMID: 38525380 PMCID: PMC10960520 DOI: 10.1002/cti2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.
Collapse
Affiliation(s)
- Cui Tu
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
- Frazer Institute, The University of QueenslandWoolloongabbaQLDAustralia
| | - Irina Buckle
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | | - David P Sester
- TRI Flow Cytometry SuiteTranslational Research InstituteWoolloongabbaQLDAustralia
- Translational Research InstituteQueensland University of TechnologyBrisbaneQLDAustralia
| | - Andrew S Moore
- Oncology ServiceChildren's Health Queensland Hospital & Health ServiceSouth BrisbaneQLDAustralia
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Kristen Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Camille Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | |
Collapse
|
15
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Ma X, Wei X, Yang G, Li S, Liu R. A Novel Natural Killer Cell-related Gene Signature for Improving the Prediction of Prognosis and Immunotherapy Response in Bladder Cancer. Comb Chem High Throughput Screen 2024; 27:1205-1221. [PMID: 37653625 DOI: 10.2174/1386207326666230831164358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Bladder cancer (BLCA) is a commonly diagnosed cancer worldwide that exhibits high rates of recurrence and metastasis. Immunotherapy is increasingly being recognised in the clinical management of bladder cancer. In addition, the prospect of developing Natural Killer (NK) cell-related immunotherapy is promising in BLCA. METHODS We established and verified a prognostic signature based on NK cell-related gene expression. We then calculated the NKscore of BLCA samples and correlated it with the clinical outcomes, molecular subtypes of BLCA, tumour microenvironment (TME), and predicted efficacy of immune checkpoint inhibitors (ICI) and chemotherapy drugs to thoroughly explore the implications of the NKscore. Finally, the role of the NK signature gene HECTD1 in BLCA was verified by Quantitative Real-time PCR, Cell Counting Kit-8 Assay (CCK-8), Transwell Assay and Colony Formation Experiment. RESULTS We analysed NK cell-associated genes and identified six genes with significant prognostic relevance. A high NK score significantly represents a worse prognosis. NKscore was significantly correlated with seven types of classical molecular subtype classifications of BLCA. In addition, NKscore positively correlates with NK-related immune checkpoints, suggesting that emerging NK cell immune checkpoint inhibitors, such as monalizumab, may have potential therapeutic promise for patients with high NKscore. The results of the T cell inflamed score (TIS) and tumour immune dysfunction exclusion (TIDE) score confirmed the suitability of immunotherapy for patients with a high NK score. Likewise, patients with a high NK score may be more suitable for several significant chemotherapeutic drugs. Functional experiments showed that the knockdown of HECTD1 significantly attenuated the proliferation, migration, and invasion ability of tumour cells. CONCLUSION To sum up, the capability of our signature to predict prognosis and immunotherapy response was robust. Hopefully, these results will provide new insights for BLCA research and patient immunotherapy.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Xifeng Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guanghua Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuai Li
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Sandberg DI, Yu B. Direct Administration of Chemotherapy and Other Agents into the Fourth Ventricle to Treat Recurrent Malignant Brain Tumors in Children. Adv Tech Stand Neurosurg 2024; 53:119-137. [PMID: 39287806 DOI: 10.1007/978-3-031-67077-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Direct administration of chemotherapy and other agents into the fourth ventricle of the brain is a novel approach to treating recurrent malignant posterior fossa brain tumors in children. Candidates for this treatment approach include patients with recurrent medulloblastoma, ependymoma, atypical teratoid/rhabdoid tumor, and potentially other neoplasms that originate in the fourth ventricle or elsewhere in the posterior fossa. In this chapter, the authors first explain the rationale for considering fourth ventricular drug infusions in patients with recurrent malignant posterior fossa tumors. We then summarize the results of translational experiments conducted in piglets and non-human primates that demonstrated safety and favorable pharmacokinetics. These translational experiments led to several pilot human clinical trials, and the results of these trials are reviewed. Finally, currently open clinical trials testing infusion of various agents into the fourth ventricle are discussed, and thoughts about potential future directions are shared.
Collapse
Affiliation(s)
- David I Sandberg
- Departments of Pediatric Surgery and Neurosurgery, McGovern Medical School and Children's Memorial Hermann Hospital and the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Bangning Yu
- Department of Pediatric Surgery, McGovern Medical School and Children's Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Sokolov D, Sharda N, Banerjee A, Denisenko K, Basalious EB, Shukla H, Waddell J, Hamdy NM, Banerjee A. Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics. Curr Pharm Des 2024; 30:31-47. [PMID: 38151840 DOI: 10.2174/0113816128277350231219062154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.
Collapse
Affiliation(s)
- Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Aindrila Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kseniia Denisenko
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr Al Aini 11562, Cairo, Egypt
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
19
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Galat Y, Du Y, Perepitchka M, Li XN, Balyasnikova IV, Tse WT, Dambaeva S, Schneiderman S, Iannaccone PM, Becher O, Graham DK, Galat V. In vitro vascular differentiation system efficiently produces natural killer cells for cancer immunotherapies. Oncoimmunology 2023; 12:2240670. [PMID: 37720687 PMCID: PMC10501168 DOI: 10.1080/2162402x.2023.2240670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background Immunotherapeutic innovation is crucial for limited operability tumors. CAR T-cell therapy displayed reduced efficiency against glioblastoma (GBM), likely due to mutations underlying disease progression. Natural Killer cells (NKs) detect cancer cells despite said mutations - demonstrating increased tumor elimination potential. We developed an NK differentiation system using human pluripotent stem cells (hPSCs). Via this system, genetic modifications targeting cancer treatment challenges can be introduced during pluripotency - enabling unlimited production of modified "off-the-shelf" hPSC-NKs. Methods hPSCs were differentiated into hematopoietic progenitor cells (HPCs) and NKs using our novel organoid system. These cells were characterized using flow cytometric and bioinformatic analyses. HPC engraftment potential was assessed using NSG mice. NK cytotoxicity was validated using in vitro and in vitro K562 assays and further corroborated on lymphoma, diffuse intrinsic pontine glioma (DIPG), and GBM cell lines in vitro. Results HPCs demonstrated engraftment in peripheral blood samples, and hPSC-NKs showcased morphology and functionality akin to same donor peripheral blood NKs (PB-NKs). The hPSC-NKs also displayed potential advantages regarding checkpoint inhibitor and metabolic gene expression, and demonstrated in vitro and in vivo cytotoxicity against various cancers. Conclusions Our organoid system, designed to replicate in vivo cellular organization (including signaling gradients and shear stress conditions), offers a suitable environment for HPC and NK generation. The engraftable nature of HPCs and potent NK cytotoxicity against leukemia, lymphoma, DIPG, and GBM highlight the potential of this innovative system to serve as a valuable tool that will benefit cancer treatment and research - improving patient survival and quality of life.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuchen Du
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiao-Nan Li
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Irina V Balyasnikova
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William T Tse
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Svetlana Dambaeva
- Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sylvia Schneiderman
- Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oren Becher
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Douglas K Graham
- Pediatric Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Yamaguchi J, Ohka F, Motomura K, Saito R. Latest classification of ependymoma in the molecular era and advances in its treatment: a review. Jpn J Clin Oncol 2023; 53:653-663. [PMID: 37288489 DOI: 10.1093/jjco/hyad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Ependymoma is a rare central nervous system (CNS) tumour occurring in all age groups and is one of the most common paediatric malignant brain tumours. Unlike other malignant brain tumours, ependymomas have few identified point mutations and genetic and epigenetic features. With advances in molecular understanding, the latest 2021 World Health Organization (WHO) classification of CNS tumours divided ependymomas into 10 diagnostic categories based on the histology, molecular information and location; this accurately reflected the prognosis and biology of this tumour. Although maximal surgical resection followed by radiotherapy is considered the standard treatment method, and chemotherapy is considered ineffective, the validation of the role of these treatment modalities continues. Although the rarity and long-term clinical course of ependymoma make designing and conducting prospective clinical trials challenging, knowledge is steadily accumulating and progress is being made. Much of the clinical knowledge obtained from clinical trials to date was based on the previous histology-based WHO classifications, and the addition of new molecular information may lead to more complex treatment strategies. Therefore, this review presents the latest findings on the molecular classification of ependymomas and advances in its treatment.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Asl NS, Behfar M, Amiri RS, Mohseni R, Azimi M, Firouzi J, Faranoush M, Izadpanah A, Mohmmad M, Hamidieh AA, Habibi Z, Ebrahimi M. Intra-lesion injection of activated Natural Killer (NK) cells in recurrent malignant brain tumors. Int Immunopharmacol 2023; 120:110345. [PMID: 37267858 DOI: 10.1016/j.intimp.2023.110345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Despite multi-modal therapies for patients with malignant brain tumors, their median survival is < 2 years. Recently, NK cells have provided cancer immune surveillance through their direct natural cytotoxicity and by modulating dendritic cells to enhance the presentation of tumor antigens and regulate T-cell-mediated antitumor responses. However, the success of this treatment modality in brain tumors is unclear. The main reasons are; the brain tumor microenvironment, the NK cell preparations and administration, and the donor selection. Our previous study showed that intracranial injection of activated haploidentical NK cells resulted in the eradication of glioblastoma tumor mass in the animal model without any evidence of tumor recurrence. Therefore, in the present study, we evaluated the safety of intra-surgical cavity or intra cerebrospinal fluid (CSF) Injectionofex vivoactivated haploidentical NK cells in six patients with recurrent glioblastoma multiform (GBM) and malignant brain tumors resistance to chemo/radiotherapy. Our results indicated that activated haploidentical NK cells express activator and inhibitor markers and can kill the tumor cells. However, their cytotoxic potential on patient-derived GBM (PD-GBM) was more than that of its cell line. Also, their infusion increased the overall disease control rate by about 33.3%, with a mean survival of 400 days. Moreover, we showed that local administration of the activated haploidentical NK cells in malignant brain tumors is safe, feasible, tolerated at higher doses, and cost-effective.
Collapse
Affiliation(s)
- Niloufar Shayan Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Shams Amiri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Monireh Mohmmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Rodriguez A, Kamiya-Matsuoka C, Majd NK. The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors. Curr Oncol 2023; 30:5279-5298. [PMID: 37366884 DOI: 10.3390/curroncol30060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Establishing novel therapies for rare central nervous system (CNS) tumors is arduous due to challenges in conducting clinical trials in rare tumors. Immunotherapy treatment has been a rapidly developing field and has demonstrated improvements in outcomes for multiple types of solid malignancies. In rare CNS tumors, the role of immunotherapy is being explored. In this article, we review the preclinical and clinical data of various immunotherapy modalities in select rare CNS tumors, including atypical meningioma, aggressive pituitary adenoma, pituitary carcinoma, ependymoma, embryonal tumor, atypical teratoid/rhabdoid tumor, and meningeal solitary fibrous tumor. Among these tumor types, some studies have shown promise; however, ongoing clinical trials will be critical for defining and optimizing the role of immunotherapy for these patients.
Collapse
Affiliation(s)
- Andrew Rodriguez
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nazanin K Majd
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
27
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
28
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
29
|
Wang L, Chen Z, Liu G, Pan Y. Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2023; 10:990-1004. [PMID: 37396514 PMCID: PMC10308134 DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Natural killer (NK) cells eliminate a large variety of tumor cells and abnormal cells. However, NK cells in the tumor microenvironment (TME) are often functionally depleted. A few subsets of NK cells even promote tumor growth. This study reviewed the biological properties of NK cells, the dynamic phenotypic changes of NK cells in the TME, and the communication between NK cells and other immune and nonimmune cells.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Zhe Chen
- Department of Otolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
30
|
Hwang EI, Hanson D, Filbin MG, Mack SC. Why haven't we solved intracranial pediatric ependymoma? Current questions and barriers to treatment advances. Neoplasia 2023; 39:100895. [PMID: 36944298 PMCID: PMC10036929 DOI: 10.1016/j.neo.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Pediatric intracranial ependymoma has seen a recent exponential expansion of biological findings, rapidly dividing the diagnosis into several subgroups, each with specific molecular and clinical characteristics. While such subdivision may complicate clinical conclusions from historical trials, this knowledge also provides an opportunity for interrogating the major clinical and biological questions preventing near-term translation into effective therapy for children with ependymoma. In this article, we briefly review some of the most critical clinical questions facing both patient management and the construct of future trials in childhood ependymoma, as well as explore some of the current barriers to efficient translation of preclinical discovery to the clinic.
Collapse
|
31
|
Allan DS, Wu C, Mortlock RD, Chakraborty M, Rezvani K, Davidson-Moncada JK, Dunbar CE, Childs RW. Expanded NK cells used for adoptive cell therapy maintain diverse clonality and contain long-lived memory-like NK cell populations. Mol Ther Oncolytics 2023; 28:74-87. [PMID: 36699615 PMCID: PMC9842935 DOI: 10.1016/j.omto.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Multiple clinical trials exploring the potential of adoptive natural killer (NK) cell therapy for cancer have employed ex vivo expansion using feeder cells to obtain large numbers of NK cells. We have previously utilized the rhesus macaque model to clonally track the NK cell progeny of barcode-transduced CD34+ stem and progenitor cells after transplant. In this study, NK cells from barcoded rhesus macaques were used to study the changes in NK cell clonal patterns that occurred during ex vivo expansion using culture protocols similar to those employed in clinical preparation of human NK cells including irradiated lymphoblastoid cell line (LCL) feeder cells or K562 cells expressing 4-1BBL and membrane-bound interleukin-21 (IL-21). NK expansion cultures resulted in the proliferation of clonally diverse NK cells, which, at day 14 harvest, contained greater than 50% of the starting barcode repertoire. Diversity as measured by Shannon index was maintained after culture. With both LCL and K562 feeders, proliferation of long-lived putative memory-like NK cell clones was observed, with these clones continuing to constitute a mean of 31% of the total repertoire of expanded cells. These experiments provide insight into the clonal makeup of expanded NK cell clinical products.
Collapse
Affiliation(s)
- David S.J. Allan
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mala Chakraborty
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan K. Davidson-Moncada
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard W. Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
34
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
35
|
Tran TAT, Kim YH, Duong THO, Thangaraj J, Chu TH, Jung S, Kim IY, Moon KS, Kim YJ, Lee TK, Lee CW, Yun H, Lee JJ, Lee HJ, Lee KH, Jung TY. Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus irinotecan in a glioblastoma mouse model. Front Immunol 2023; 13:1009484. [PMID: 36703992 PMCID: PMC9871756 DOI: 10.3389/fimmu.2022.1009484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Bev) plus irinotecan (Iri) against glioblastoma multiforme (GBM) were investigated. For the experimental design, NK cells were expanded and activated by K562 cells expressing the OX40 ligand and membrane-bound IL-18 and IL-21. The effects of Bev and Iri on the proliferation and NK ligand expression of GBM cells were evaluated through MTT assay and flow cytometry. The cytotoxic effects of NK cells against Bev plus Iri-treated GBM cells were also predicted via the LDH assay in vitro. The therapeutic effect of different injected NK cell routes and numbers combined with the different doses of Bev and Iri was confirmed according to tumor size and survival in the subcutaneous (s.c) and intracranial (i.c) U87 xenograft NOD/SCID IL-12Rγnull mouse model. The presence of injected-NK cells in tumors was detected using flow cytometry and immunohistochemistry ex vivo. As a result, Iri was found to affect the proliferation and NK ligand expression of GBM cells, while Bev did not cause differences in these cellular processes. However, the administration of Bev modulated Iri efficacy in the i.c U87 mouse model. NK cells significantly enhanced the cytotoxic effects against Bev plus Iri-treated GBM cells in vitro. Although the intravenous (IV) injection of NK cells in combination with Bev plus Iri significantly reduced the tumor volume in the s.c U87 mouse model, only the direct intratumorally (IT) injection of NK cells in combination with Bev plus Iri elicited delayed tumor growth in the i.c U87 mouse model. Tumor-infiltrating NK cells were detected after IV injection of NK cells in both s.c and i.c U87 mouse models. In conclusion, the potential therapeutic effect of NK cells combined with Bev plus Iri against GBM cells was limited in this study. Accordingly, further research is required to improve the accessibility and strength of NK cell function in this combination treatment.
Collapse
Affiliation(s)
- Thi-Anh-Thuy Tran
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Young-Hee Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Thi-Hoang-Oanh Duong
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - JayaLakshmi Thangaraj
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Young Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung-Sub Moon
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Young-Jin Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Tae-Kyu Lee
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Department of Internal Medicine, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea,*Correspondence: Tae-Young Jung, ; Kyung-Hwa Lee,
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea,Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, Republic of Korea,Department of Neurosurgery, Chonnam National University Medical School, and Hwasun Hospital, Hwasun, Republic of Korea,*Correspondence: Tae-Young Jung, ; Kyung-Hwa Lee,
| |
Collapse
|
36
|
Estevez-Ordonez D, Gary SE, Atchley TJ, Maleknia PD, George JA, Laskay NMB, Gross EG, Devulapalli RK, Johnston JM. Immunotherapy for Pediatric Brain and Spine Tumors: Current State and Future Directions. Pediatr Neurosurg 2022; 58:313-336. [PMID: 36549282 PMCID: PMC10233708 DOI: 10.1159/000528792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae. SUMMARY There is a substantial need for the development of new therapeutic approaches, and since the introduction of immunotherapy by immune checkpoint inhibitors, there has been an exponential increase in clinical trials to adopt these and other immunotherapy approaches in children with brain tumors. In this review, we summarize the current immunotherapy landscape for various pediatric brain tumor types including choroid plexus tumors, embryonal tumors (medulloblastoma, AT/RT, PNETs), ependymoma, germ cell tumors, gliomas, glioneuronal and neuronal tumors, and mesenchymal tumors. We discuss the latest clinical trials and noteworthy preclinical studies to treat these pediatric brain tumors using checkpoint inhibitors, cellular therapies (CAR-T, NK, T cell), oncolytic virotherapy, radioimmunotherapy, tumor vaccines, immunomodulators, and other targeted therapies. KEY MESSAGES The current landscape for immunotherapy in pediatric brain tumors is still emerging, but results in certain tumors have been promising. In the age of targeted therapy, genetic tumor profiling, and many ongoing clinical trials, immunotherapy will likely become an increasingly effective tool in the neuro-oncologist armamentarium.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA,
| | - Sam E Gary
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Pedram D Maleknia
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jordan A George
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rishi K Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Shalita C, Hanzlik E, Kaplan S, Thompson EM. Immunotherapy for the treatment of pediatric brain tumors: a narrative review. Transl Pediatr 2022; 11:2040-2056. [PMID: 36643672 PMCID: PMC9834947 DOI: 10.21037/tp-22-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The goal of this narrative review is to report and summarize the completed pediatric immunotherapy clinical trials for primary CNS tumors. Pediatric central nervous system (CNS) tumors are the most common cause of pediatric solid cancer in children aged 0 to 14 years and the leading cause of cancer mortality. Survival rates for some pediatric brain tumors have improved, however, there remains a large portion of pediatric brain tumors with poor survival outcomes despite advances in treatment. Cancer immunotherapy is a growing field that has shown promise in the treatment of pediatric brain tumors that have historically shown a poor response to treatment. This narrative review provides a summary and discussion of the published literature focused on treating pediatric brain tumors with immunotherapy. METHODS MEDLINE via PubMed, Embase and Scopus via Elsevier were searched. The search utilized a combination of keywords and subject headings to include pediatrics, brain tumors, and immunotherapies. Manuscripts included in the analysis included completed clinical studies using any immunotherapy intervention with a patient population that consisted of at least half pediatric patients (<18 years) with primary CNS tumors. Conference abstracts were excluded as well as studies that did not include completed safety or primary outcome results. KEY CONTENT AND FINDINGS Search results returned 1,494 articles. Screening titles and abstracts resulted in 180 articles for full text review. Of the 180 articles, 18 were included for analysis. Another two articles were ultimately included after review of references and inclusion of newly published articles, for a total of 20 included articles. Immunotherapies included dendritic cell vaccines, oncolytic virotherapy/viral immunotherapy, chimeric antigen receptor (CAR) T-cell therapy, peptide vaccines, immunomodulatory agents, and others. CONCLUSIONS In this review, 20 published articles were highlighted which use immunotherapy in the treatment of primary pediatric brain tumors. To date, most of the studies published utilizing immunotherapy were phase I and pilot studies focused primarily on establishing safety and maximum dose-tolerance and toxicity while monitoring survival endpoints. With established efficacy and toxicity profiles, future trials may progress to further understanding the overall survival and quality of life benefits to pediatric patients with primary brain tumors.
Collapse
Affiliation(s)
| | - Emily Hanzlik
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Samantha Kaplan
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, USA.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
38
|
Xiao J, Zhang T, Gao F, Zhou Z, Shu G, Zou Y, Yin G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers (Basel) 2022; 14:cancers14225657. [PMID: 36428748 PMCID: PMC9688567 DOI: 10.3390/cancers14225657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an important component of the innate immune system, natural killer (NK) cells have gained increasing attention in adoptive cell therapy for their safety and efficacious tumor-killing effect. Unlike T cells which rely on the interaction between TCRs and specific peptide-MHC complexes, NK cells are more prone to be served as "off-the-shelf" cell therapy products due to their rapid recognition and killing of tumor cells without MHC restriction. In recent years, constantly emerging sources of therapeutic NK cells have provided flexible options for cancer immunotherapy. Advanced genetic engineering techniques, especially chimeric antigen receptor (CAR) modification, have yielded exciting effectiveness in enhancing NK cell specificity and cytotoxicity, improving in vivo persistence, and overcoming immunosuppressive factors derived from tumors. In this review, we highlight current advances in NK-based adoptive cell therapy, including alternative sources of NK cells for adoptive infusion, various CAR modifications that confer different targeting specificity to NK cells, multiple genetic engineering strategies to enhance NK cell function, as well as the latest clinical research on adoptive NK cell therapy.
Collapse
Affiliation(s)
- Jiani Xiao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fei Gao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| |
Collapse
|
39
|
Schakelaar MY, Monnikhof M, Crnko S, Pijnappel E, Meeldijk J, Ten Broeke T, Bovenschen N. Cellular Immunotherapy for Medulloblastoma. Neuro Oncol 2022; 25:617-627. [PMID: 36219688 PMCID: PMC10076947 DOI: 10.1093/neuonc/noac236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, making up ~20% of all primary pediatric brain tumors. Current therapies consist of maximal surgical resection and aggressive radio- and chemotherapy. A third of the treated patients cannot be cured and survivors are often left with devastating long-term side effects. Novel efficient and targeted treatment is desperately needed for this patient population. Cellular immunotherapy aims to enhance and utilize immune cells to target tumors, and has been proven successful in various cancers. However, for MB, the knowledge and possibilities of cellular immunotherapy are limited. In this review, we provide a comprehensive overview of the current status of cellular immunotherapy for MB, from fundamental in vitro research to in vivo models and (ongoing) clinical trials. In addition, we compare our findings to cellular immunotherapy in glioma, an MB-like intracranial tumor. Finally, future possibilities for MB are discussed to improve efficacy and safety.
Collapse
Affiliation(s)
- Michael Y Schakelaar
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Emma Pijnappel
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan Meeldijk
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
40
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
41
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
42
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|
43
|
Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - An update. Adv Drug Deliv Rev 2022; 185:114303. [PMID: 35460714 DOI: 10.1016/j.addr.2022.114303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Even though the last decade has seen a surge in the identification of molecular targets and targeted therapies in pediatric brain tumors, the blood brain barrier (BBB) remains a significant challenge in systemic drug delivery. This continues to undermine therapeutic efficacy. Recent efforts have identified several strategies that can facilitate enhanced drug delivery into pediatric brain tumors. These include invasive methods such as intra-arterial, intrathecal, and convection enhanced delivery and non-invasive technologies that allow for transient access across the BBB, including focused ultrasound and nanotechnology. This review discusses current strategies that are being used to enhance delivery of different therapies across the BBB to the tumor site - a major unmet need in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Erica A Power
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Julian S Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Sumit Gupta
- Department of Pediatric Hematology/Oncology, Roseman University of Health Sciences, Las Vegas, NV 89118, United States
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
44
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
45
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|
46
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
47
|
Liang KH, Chang CC, Wu KS, Yu AL, Sung SY, Lee YY, Liang ML, Chen HH, Fen JJ, Chao ME, Liao YT, Wong TT. Notch signaling and natural killer cell infiltration in tumor tissues underlie medulloblastoma prognosis. Sci Rep 2021; 11:23282. [PMID: 34857809 PMCID: PMC8639846 DOI: 10.1038/s41598-021-02651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma is the most common embryonic brain tumor in children. We investigated a cohort of 52 Asian medulloblastoma patients aged between 0 and 19 years old, who received surgical resections and post-resection treatments in the Taipei Medical University Hospital and the Taipei Veterans General Hospital. Genome-wide RNA sequencing was performed on fresh-frozen surgical tissues. These data were analyzed using the CIBERSORTx immune deconvolution software. Two external clinical and molecular datasets from United States (n = 62) and Canada (n = 763) were used to evaluate the transferability of the gene-signature scores across ethnic populations. The abundance of 13 genes, including DLL1, are significantly associated with overall survival (All Cox regression P < 0.001). A gene-signature score was derived from the deep transcriptome, capable of indicating patients’ subsequent tumor recurrence (Hazard Ratio [HR] 1.645, confidence interval [CI] 1.337–2.025, P < 0.001) and mortality (HR 2.720, CI 1.798–4.112, P < 0.001). After the adjustment of baseline clinical factors, the score remains indicative of recurrence-free survival (HR 1.604, CI 1.292–1.992, P < 0.001) and overall survival (HR 2.781, CI 1.762–4.390, P < 0.001). Patients stratified by this score manifest not only distinct prognosis but also different molecular characteristics: Notch signaling ligands and receptors are comparatively overexpressed in patients with poorer prognosis, while tumor infiltrating natural killer cells are more abundant in patients with better prognosis. Additionally, immunohistochemical staining showed the DLL1 protein, a major ligand in the Notch signaling pathway, and the NCAM1 protein, a representative biomarker of natural killer cells, are present in the surgical tissues of patients of four molecular subgroups, WNT, SHH, Group 3 and Group 4. NCAM1 RNA level is also positively associated with the mutation burden in tumor (P = 0.023). The gene-signature score is validated successfully in the Canadian cohort (P = 0.009) as well as its three molecular subgroups (SHH, Group 3 and Group 4; P = 0.047, 0.018 and 0.040 respectively). In conclusion, pediatric medullablastoma patients can be stratified by gene-signature scores with distinct prognosis and molecular characteristics. Ligands and receptors of the Notch signaling pathway are overexpressed in the patient stratum with poorer prognosis. Tumor infiltrating natural killer cells are more abundant in the patient stratum with better prognosis.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Che-Chang Chang
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Yen Lee
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Muh-Lii Liang
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Jun-Jeng Fen
- Department of Informatics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Meng-En Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan. .,Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
48
|
Zhang J, Wang T. Immune cell landscape and immunotherapy of medulloblastoma. Pediatr Investig 2021; 5:299-309. [PMID: 34938973 PMCID: PMC8666938 DOI: 10.1002/ped4.12261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022] Open
Abstract
Medulloblastoma is the most common primary pediatric malignancy of the central nervous system. Recurrent and refractory patients account for approximately 30% of them. Immune cells are an important component of the brain tumor microenvironment, including tumor-associated macrophages, T lymphocytes, natural killer cells, dendritic cells, neutrophils and B lymphocytes. Understanding how they behave and interact is important in the investigation of the onset and progression of medulloblastoma. Here, we overview the features and recent advances of each component of immune cells in medulloblastoma. Meanwhile, immunotherapy is a promising but also challenging treatment strategy for medulloblastoma. At present, there are a growing number of immunotherapeutic approaches under investigation including immune checkpoint inhibitors, oncolytic viruses, cancer vaccines, chimeric antigen receptor T cell therapies, and natural killer cells in recurrent and refractory medulloblastoma patients.
Collapse
Affiliation(s)
- Jin Zhang
- Department of PediatricsBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Hematology Oncology CenterBeijing Children’s HospitalCapital Medical UniversityBeijingChina
| | - Tianyou Wang
- Hematology Oncology CenterBeijing Children’s HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
49
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
50
|
Ak M, Toll SA, Hein KZ, Colen RR, Khatua S. Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology. AJNR Am J Neuroradiol 2021; 43:792-801. [PMID: 34649914 DOI: 10.3174/ajnr.a7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Exponential technologic advancements in imaging, high-performance computing, and artificial intelligence, in addition to increasing access to vast amounts of diverse data, have revolutionized the role of imaging in medicine. Radiomics is defined as a high-throughput feature-extraction method that unlocks microscale quantitative data hidden within standard-of-care medical imaging. Radiogenomics is defined as the linkage between imaging and genomics information. Multiple radiomics and radiogenomics studies performed on conventional and advanced neuro-oncology image modalities show that they have the potential to differentiate pseudoprogression from true progression, classify tumor subgroups, and predict recurrence, survival, and mutation status with high accuracy. In this article, we outline the technical steps involved in radiomics and radiogenomics analyses with the use of artificial intelligence methods and review current applications in adult and pediatric neuro-oncology.
Collapse
Affiliation(s)
- M Ak
- From the Department of Radiology (M.A., R.R.C.), University of Pittsburgh, Pittsburgh, Pennsylvania.,Hillman Cancer Center (M.A., R.R.C.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - S A Toll
- Department of Hematology-Oncology (S.A.T.), Children's Hospital of Michigan, Detroit, Michigan
| | - K Z Hein
- Department of Leukemia (K.Z.H.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - R R Colen
- From the Department of Radiology (M.A., R.R.C.), University of Pittsburgh, Pittsburgh, Pennsylvania.,Hillman Cancer Center (M.A., R.R.C.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - S Khatua
- Department of Pediatric Hematology-Oncology (S.K.), Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|