1
|
Baldini C, Porte M, Rouleau E, Touat M. Liquid biopsy in gliomas-are we there yet? Ann Oncol 2025; 36:606-608. [PMID: 40180123 DOI: 10.1016/j.annonc.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- C Baldini
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Laboratoire d'Immunomonitoring en Oncologie, Oncology Immunomonitoring Unit, INSERM US23, CNRS UMS 3655, Gustave Roussy, Université Paris-Saclay, Villejuif, Ile-de-France, France.
| | - M Porte
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - E Rouleau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy, Villejuif, France
| | - M Touat
- Neuro-oncology Department, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| |
Collapse
|
2
|
Cabezas-Camarero S, Pérez-Alfayate R, García-Barberán V, Gandía-González ML, García-Feijóo P, López-Cade I, Lorca V, Casado-Fariñas I, Cerón MA, Paz-Cabezas M, Sotelo MJ, García Conde M, Roldán Delgado H, Sánchez Medina Y, Díaz-Millán I, Pérez-Segura P. ctDNA detection in cerebrospinal fluid and plasma and mutational concordance with the primary tumor in a multicenter prospective study of patients with glioma. Ann Oncol 2025; 36:660-672. [PMID: 39978637 DOI: 10.1016/j.annonc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) stands as an easily accessible reservoir for circulating tumor DNA (ctDNA) analysis in patients with central nervous system (CNS) tumors, although evidence is still limited. Our aim was to prospectively evaluate the feasibility of detecting ctDNA for mutational analysis in CSF and plasma in patients with glioma. METHODS This was a prospective study of patients with glioma diagnosed at four third-level hospitals in Spain. A customized next-generation sequencing (NGS) eight-gene panel (IDH1, IDH2, ATRX, TP53, PTEN, PIK3CA, EGFR, BRAF) was used in paired CSF, plasma and tumor samples. Mutation concordance occurred when the same pathogenic gene variant was detected in tumor and ctDNA. The prognostic value of ctDNA and that of its median variant allele frequency (mVAF) were analyzed. RESULTS Between February 2017 and March 2020, 37 patients with glioma were enrolled. The 32 patients with analyzable CSF samples comprised patients with new diagnosis (n = 23) and relapse (n = 9); World Health Organization fifth Edition types: IDH-mutant astrocytoma (n = 10), IDH-mutant oligodendroglioma (n = 6) and IDH-wildtype glioblastoma (n = 16); CSF-ctDNA-positive: 19/32 (59%); and CSF-ctDNA-negative: 13/32 (41%). CSF mutation numbers were 1 (10/19), 2 (7/19) and 3 (2/19). Frequencies of CSF-ctDNA-mutated genes were EGFR (8/19, 42%), PTEN (7/19, 37%), TP53 (6/19, 32%), IDH1 (5/19, 26%) and PIK3CA (4/19, 21%). Tumor-CSF mutation concordance was found in 16/19 (84%). Progression-free and overall survival were significantly shorter in ctDNA-positive patients with VAF equal to or greater than the mVAF compared with ctDNA-positive patients with VAF lower than the mVAF. No association was found between ctDNA in CSF and distance to closest CSF reservoir, tumor size or IDH status. ctDNA was detected in 2 of 14 (14%) individual plasma samples, in both cases concordant with the primary tumor. CONCLUSION CSF is a reliable reservoir for ctDNA analyses in patients with glioma. ctDNA is detectable in plasma although at a lower rate. Larger, prospective studies should be conducted to refine the potential role of liquid biopsy in this disease.
Collapse
Affiliation(s)
- S Cabezas-Camarero
- Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain; Department of Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain.
| | - R Pérez-Alfayate
- Department of Neurosurgery, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - V García-Barberán
- Molecular Oncology Laboratory, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - M L Gandía-González
- Department of Neurosurgery, Hospital Universitario La Paz, IdIPaz, Madrid, Spain
| | - P García-Feijóo
- Department of Neurosurgery, Hospital Universitario La Paz, IdIPaz, Madrid, Spain
| | - I López-Cade
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - V Lorca
- Molecular Oncology Laboratory, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - I Casado-Fariñas
- Pathology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - M A Cerón
- Experimental Therapeutics Unit, Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - M Paz-Cabezas
- Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain; Molecular Oncology Laboratory, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - M J Sotelo
- Department of Medical Oncology, Aliada Cancer Center, Lima, Spain; Department of Medical Oncology, Clínica San Felipe, Lima, Spain; Department of Medical Oncology, Hospital María Auxiliadora, Lima, Perú, Spain
| | - M García Conde
- Department of Neurosurgery, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife
| | - H Roldán Delgado
- Department of Neurosurgery, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife
| | - Y Sánchez Medina
- Department of Neurosurgery, Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - I Díaz-Millán
- Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain
| | - P Pérez-Segura
- Department of Medical Oncology, Hospital Clínico Universitario San Carlos, IdISSC, Madrid, Spain; Department of Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
| |
Collapse
|
3
|
Gavrjushin AV, Papusha LI, Veselkov AA, Zaitseva MA, Khukhlaeva EA, Konovalov AN, Druy AE. Liquid biopsy for the detection of H3K27m in patients with brainstem tumors. Neurosurg Rev 2025; 48:442. [PMID: 40415124 DOI: 10.1007/s10143-025-03593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/01/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
The treatment of diffuse brainstem tumors is prescribed in most cases without morphological or molecular genetic verification. "Liquid biopsy" is a minimally invasive technique that provides information about the biology of tumors without a standard biopsy. We set out to determine the informativeness of this diagnostic method for detecting H3K27 and BRAF V600E mutations in patients with diffuse brainstem tumors. Thirty patients (10 children, 20 adults) with radiologically verified brainstem tumors underwent CSF collection via lumbar puncture. Cell-free DNA (cfDNA) isolated from the CSF was used for detection of H3F3A K28M and BRAF V600E mutations via digital droplet PCR. In 23 patients, the study of these mutations was performed in parallel in the pool of cfDNA and DNA isolated from tumor tissue obtained during a standard tumor biopsy. A mutation in the BRAF gene was not detected in any patient. The H3F3A K28M mutation was detected in 7 samples of cfDNA and 8 samples of DNA isolated from tumor tissue obtained from 23 patients for whom the study was performed in parallel. The sensitivity and specificity of H3F3A K28M mutation detection in CSF and tumor tissue were 87.5% and 100%, respectively (P < 0.001, relative risk = 0.063, 95% CI: 0.009-0.417). Minimally invasive diagnosis of diffuse brainstem tumors via the "liquid biopsy" method is informative for the detection of specific H3F3A K28M mutations and allows the verification of the diagnosis of diffuse midline glioma with H3K27 (H3K28M) alterations without a standard biopsy. Despite the promising results, an important limitation of the work is the small sample size, which affects the statistical results and conclusions. Large multicenter studies are needed to further investigate the value of liquid biopsy in brainstem gliomas.
Collapse
Affiliation(s)
| | - L I Papusha
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | | | - M A Zaitseva
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | | | | | - A E Druy
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
4
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. A field resource for the glioma cerebrospinal fluid proteome: Impacts of resection and location on biomarker discovery. Neuro Oncol 2025; 27:948-962. [PMID: 39786485 DOI: 10.1093/neuonc/noae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown. METHODS Aptamer-based proteomics was performed on 147 CSF samples from 74 patients; 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas. This included pre- versus post-resection intracranial CSF samples obtained at early (1-16 days; n = 20 patients) or delayed (86-153 days; n = 11 patients) time points for patients with glioma. Paired lumbar versus intracranial glioma CSF samples were also obtained (n = 14 patients). RESULTS Significant differences were identified in the CSF proteome between lumbar, subarachnoid, and ventricular CSF in patients with gliomas. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome, with distinct sets of proteins present at different time points since resection. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies, such as bevacizumab and immunotherapies. CONCLUSIONS The intracranial glioma CSF proteome serves as a rich and dynamic reservoir of potential biomarkers that can be used to evaluate the effects of resection and other therapies over time. All data within this study, including detailed individual clinical annotations, are shared as a resource for the neuro-oncology community to collectively address these unanswered questions and further understand glioma biology through CSF proteomics.
Collapse
Affiliation(s)
| | - Christopher J Graser
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D Hoplin
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Noor Malik
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A Palmer
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lucas P Carlstrom
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Samar Ikram
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Keyvan Ghadimi
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Fredric B Meyer
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie J Van Gompel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sani H Kizilbash
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Franziska Michor
- The Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- The Ludwig Center, Harvard University, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jian L Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Awais M, Rehman A, Bukhari SS. Advances in liquid biopsy and virtual biopsy for care of patients with glioma: a narrative review. Expert Rev Anticancer Ther 2025; 25:529-550. [PMID: 40183671 DOI: 10.1080/14737140.2025.2489629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The World Health Organization's 2021 classification of central nervous system neoplasms incorporated molecular and genetic features for classifying gliomas. Classification of gliomas located in deep-seated structures became a clinical conundrum given the absence of crucial pathological and molecular data. Advances in noninvasive imaging modalities offered virtual biopsy as a novel solution to this problem by identifying surrogate radiomic signatures. Liquid biopsies of blood or cerebrospinal fluid provided another enormous opportunity for identifying genomic, metabolomic and proteomic signatures. AREAS COVERED We summarize and appraise the current state of evidence with regards to virtual biopsy and liquid biopsy in the care of patients with gliomas. PubMed, Embase and Google Scholar were searched on 7/30/2024 for relevant articles published after the year 2013 in the English language. EXPERT OPINION A large body of preclinical and preliminary clinical evidence suggests that virtual biopsy is possible with the combined use of multiple novel imaging modalities in conjunction with machine learning and radiomics. Likewise, liquid biopsy in conjunction with focused ultrasound may be a valuable tool to obtain proteomic and genomic data regarding glioma in a minimally invasive manner. These modalities will likely become an integral part of care for patients with glioma in the future.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Radiology, The Aga Khan University, Karachi, Pakistan
| | - Abdul Rehman
- Department of Medicine, Tidal Health Peninsula Regional, Salisbury, MD, USA
| | - Syed Sarmad Bukhari
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
6
|
Riviere-Cazaux C, Suzuki Y, Kizilbash Z, Laxen WJ, Lacey JM, Wipplinger TM, Warrington AE, Keough MB, Kamga LF, Andersen KM, Canaday N, Kosel ML, Tortorelli S, Sener U, Ruff MW, Decker PA, Eckel-Passow JE, Kizilbash SH, Kaufmann TJ, Burns TC. Cerebrospinal fluid D-2-hydroxyglutarate for IDH-mutant glioma: utility for detection versus monitoring. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.08.25325500. [PMID: 40297463 PMCID: PMC12036399 DOI: 10.1101/2025.04.08.25325500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
BACKGROUND Imaging-based monitoring of gliomas is limited by treatment-related changes. D-2-hydroxyglutarate (D-2-HG), produced by the isocitrate dehydrogenase (IDH) mutation, is detectable in cerebrospinal fluid (CSF) that can be accessed from various anatomic compartments. We evaluated CSF D-2-HG as a serially accessible biomarker for IDH-mutant gliomas. METHODS A CLIA-approved gas chromatography mass spectrometry assay was developed for CSF D- and L-2-HG. Lumbar and cranial CSF samples were collected from patients with IDH-mutant gliomas or IDH-wild-type brain tumors and non-tumor pathologies via surgical field collection, lumbar punctures, Ommaya reservoirs, and ventriculoperitoneal shunts. RESULTS CSF D-2-HG was significantly higher in cranial than lumbar samples from IDH-mutant glioma patients (median lumbar=0.20 μM, cranial = 1.72 μM; p<0.0001). Cranial, but not lumbar, CSF D-2-HG distinguished primary IDH-mutant gliomas from IDH-wild type lesions (cranial AUC= 0.89, 95% confidence interval (CI)= 0.80-0.97); lumbar AUC= 0.52, 95% CI=0.28-0.76). When evaluated in recurrent lesions as a separate validation cohort, this finding was also reproduced in this group (cranial AUC=0.97, 95% CI= 0.94-1.00; lumbar AUC=0.60, 95% CI=0.38-0.83). Cranial CSF D-2-HG levels decreased to 0.54x of baseline with resection in seventeen patients (p=0.0129) but did not decrease significantly with chemoradiation in five patients (p=0.6250). Longitudinal anatomical changes, such as cavity collapse, influenced serial sample interpretation. In grade 4 IDH-mutant astrocytomas, serial cranial CSF D-2-HG increased with disease progression and differentiated stability from pseudoprogression when tumor-CSF contact was sufficient. CONCLUSIONS Serial cranial CSF D-2-HG shows promise as a monitoring biomarker in patients with IDH-mutant gliomas when anatomic variables remain constant. KEY POINTS Cranial CSF D-2-HG levels exceed that of lumbar CSF in patients with IDH-mutant gliomas.Cranial CSF D-2-HG may discriminate disease stability vs. treatment effects, although post-resection anatomical changes can impact monitoring. IMPORTANCE OF THE STUDY Improved glioma monitoring is needed due to challenges distinguishing disease progression from treatment-related changes on imaging. Toward this goal, we evaluated CSF D-2-HG as a biomarker of IDH-mutant gliomas using a CLIA-approved assay. This study answers whether D-2-HG can identify IDH-mutant gliomas via either cranial or lumbar CSF. Importantly, in seventeen patients, we demonstrate that CSF D-2-HG is responsive to cytoreduction via resection, but not chemoradiation in five patients. This is also the first study to demonstrate that longitudinal anatomical changes can impact evaluation of CSF D-2-HG as a monitoring biomarker. Finally, the study demonstrates that serial CSF D-2-HG can increase with disease progression, but not pseudoprogression or stable disease, in five patients with grade 4 IDH-mutant astrocytomas. These findings support the potential of CSF D-2-HG as a monitoring biomarker in patients with IDH-mutant gliomas, particularly when there are minimal changes to the anatomy of the resection cavity.
Collapse
|
7
|
D'Antonio F, Spinello Z, Bargiacchi L, Splendiani E, Rossi S, Masuelli L, Mastronuzzi A, Locatelli F, Ferretti E, Catanzaro G. Circulating microRNAs: A remarkable opportunity as non-invasive biomarkers from adult to pediatric brain tumor patients. Crit Rev Oncol Hematol 2025; 208:104650. [PMID: 39914569 DOI: 10.1016/j.critrevonc.2025.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Central nervous system (CNS) tumors represent the most frequent solid tumors among adolescents and children, and the leading cause of cancer-related death in men < 40 and women < 20 years of age. Brain tumors are challenging to diagnose, monitor, and treat. The current diagnostic approach involves magnetic resonance imaging (MRI), tumor histology, molecular characterization and cytologic analysis of cerebrospinal fluid (CSF). However, surgical procedures pose potential risks to the patient's health, not achieving good accuracy. For these reasons, it is crucial to identify new non-invasive disease biomarkers to improve patients' stratification at diagnosis and during follow-up and prognosis. MicroRNAs (miRNAs) are a class of short RNA molecules that have been demonstrated in numerous studies to be dysregulated in brain tumor patients. As a result, they may be used as biomarkers of brain tumors. Additionally, miRNAs can be analyzed in liquid biopsy samples, such as blood and CSF, providing a non-invasive source of biomolecular data on patients' disease status. This review aims to highlight the role of miRNAs in liquid biopsy, also known as circulating miRNAs, as potential non-invasive cancer biomarkers in both adult and pediatric populations and to suggest their potential impact on clinical trials.
Collapse
Affiliation(s)
- Federica D'Antonio
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy; Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Lavinia Bargiacchi
- Morphologic and Molecular Pathology Unit, Sant'Andrea University Hospital, Rome 00189, Italy
| | - Elena Splendiani
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angela Mastronuzzi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Giuseppina Catanzaro
- Department of Life, Health and Health Professions Sciences, Link Campus University, Rome 00165, Italy.
| |
Collapse
|
8
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 PMCID: PMC11930993 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Riviere-Cazaux C, Dong X, Mo W, Kumar R, Dai C, Carlstrom LP, Munoz-Casabella A, Ghadimi K, Nesvick CL, Andersen KM, Hoplin MD, Canaday N, Jusue-Torres I, Malik N, Campian JL, Ruff MW, Uhm JH, Eckel Passow JE, Kaufmann TJ, Routman DM, Kizilbash SH, Sener U, Warrington AE, Jenkins RB, Du P, Jia S, Burns TC. Longitudinal Glioma Monitoring via Cerebrospinal Fluid Cell-Free DNA. Clin Cancer Res 2025; 31:881-889. [PMID: 39715486 PMCID: PMC11873801 DOI: 10.1158/1078-0432.ccr-24-1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE Current methods for glioma response assessment are limited. This study aimed to assess the technical and clinical feasibility of molecular profiling using longitudinal intracranial cerebrospinal fluid (CSF) from patients with gliomas. EXPERIMENTAL DESIGN Adults with gliomas underwent longitudinal intracranial CSF collection via Ommaya reservoirs or ventriculoperitoneal shunts. Cell-free DNA (cfDNA) was extracted and analyzed using PredicineCARE for cancer variant profiling and/or PredicineSCORE for low-pass whole-genome sequencing. RESULTS Five patients (two females and three males; median age, 40 years; range, 32-64 years) underwent longitudinal intracranial CSF collection via Ommaya reservoirs (n = 4) or ventriculoperitoneal shunts (n = 1). In total, 47 CSF samples were obtained (median volume, 4.00 mL; 0.5-5 mL). Forty-one samples (87.2%) yielded sufficient cfDNA for testing. Patient-specific tumor-associated variant allelic frequencies (VAF), and thus tumor fraction, decreased in pre- versus postchemoradiation samples, including through pseudoprogression. These also increased with radiographic progression in three patients, although identifying the time of definitive disease progression from MRIs was a significant limitation. In two patients with isocitrate dehydrogenase (IDH)-mutant gliomas, decreasing IDH1 VAF after resection and chemoradiation correlated with decreased CSF D-2-hydroxyglutarate levels (0.64× and 0.62×, respectively, for the first patient and 0.01× and 0.07× for the other patient), although D-2-hydroxyglutarate and IDH1 VAF were not concordant in one patient thereafter. Moreover, the copy-number burden decreased below the limit of quantification during treatment and increased above the limit at progression. CONCLUSIONS Longitudinal intracranial CSF cfDNA can be obtained in patients with gliomas during their disease course. However, before deploying this technique, numerous questions and challenges should be answered.
Collapse
Affiliation(s)
| | | | - Wei Mo
- Predicine, Inc., Hayward, California
| | - Rahul Kumar
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Chao Dai
- Predicine, Inc., Hayward, California
| | - Lucas P. Carlstrom
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | | | - Keyvan Ghadimi
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Cody L. Nesvick
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew D. Hoplin
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Canaday
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Noor Malik
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Joon H. Uhm
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Arthur E. Warrington
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Pan Du
- Predicine, Inc., Hayward, California
| | | | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Wu S, Deng K, Bu Y, Sheng Z, Yu J, Gao Y, Yan Z, Zhao R, Wang M, Li T, Bu X. Dynamic Monitoring of Circulating Tumor DNA to Predict the Risk of Non In Situ Recurrence of Postoperative Glioma: A Prospective Cohort Study. Cancer Med 2025; 14:e70733. [PMID: 40022576 PMCID: PMC11871513 DOI: 10.1002/cam4.70733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Glioma recurrence can be divided into in situ recurrence and non-in situ recurrence, and the mutation evolution of gliomas with different recurrence patterns is still unknown. We used sequential sequencing of circulating tumor DNA (ctDNA) to compare the somatic mutation profile and clonal evolution of gliomas with different recurrence patterns. To investigate the value of ctDNA in predicting early postoperative tumor recurrence and guiding prognosis stratification in patients with glioma. METHODS We prospectively recruited 92 patients with near-total resection of gliomas from our center. Two hundred and thirty-four postoperative tissue and Tumor In Situ Fluid (TISF) samples from 69 eligible patients were included in ctDNA analysis. RESULTS Among the 69 patients, 37 glioblastoma (GBM) patients experienced recurrence, and the median progression-free survival (mPFS) was not significantly different between the situ recurrence group and the non-in situ recurrence group (8.6 vs. 6.1 months). The ctDNA of recurrent tissue and TISF were significantly consistent. Before and after initial treatment, TISF-ctDNA mutant allele fraction (MAF), subclonal mutation, and alterations in related pathways (lysine degradation and PI3K pathway) were negatively correlated with treatment response and PFS. Among recurrent GBM patients, EGFR mutations were the most common. Mutations related to the RTK-RAS pathway (NF1) were most common in patients with situ recurrent GBM, while mutations in the MUC family and TP53 pathway (MUC16, CHEK2) were prevalent and continuously increased in patients with non-in situ recurrent GBM. CONCLUSIONS In glioma patients undergoing primary surgery, dynamic monitoring of ctDNA and genotyping can be used for early risk stratification, efficacy monitoring, and early recurrence detection, and provide a basis for clinical research to evaluate early therapeutic intervention.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Dayang Wang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Shuang Wu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Kaiyuan Deng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yage Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhiyuan Sheng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jinliang Yu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ruijiao Zhao
- Department of PathologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Meiyun Wang
- Department of RadiologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention InnovationZhengzhouHenanChina
- Department of Cerebrovascular DiseaseZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| |
Collapse
|
11
|
Pearlman AH, Wang Y, Kalluri A, Parker M, Cohen JD, Dudley J, Rincon-Torroella J, Xia Y, Gensler R, Alfonzo Horwitz M, Theodore J, Dobbyn L, Popoli M, Ptak J, Silliman N, Judge K, Groves M, Jackson CM, Jackson EM, Jallo GI, Lim M, Luciano M, Mukherjee D, Naidoo J, Rozati S, Sterling CH, Weingart J, Koschmann C, Mansouri A, Glantz M, Kamson D, Schreck KC, Pardo CA, Holdhoff M, Paul S, Kinzler KW, Papadopoulos N, Vogelstein B, Douville C, Bettegowda C. Detection of human brain cancers using genomic and immune cell characterization of cerebrospinal fluid through CSF-BAM. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.02.24318303. [PMID: 39677487 PMCID: PMC11643193 DOI: 10.1101/2024.12.02.24318303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Patients who have radiographically detectable lesions in their brain or other symptoms compatible with brain tumors pose challenges for diagnosis. The only definitive way to diagnose such patients is through brain biopsy, an obviously invasive and dangerous procedure. Here we present a new workflow termed "CSF-BAM" that simultaneously identifies B cell or T cell receptor rearrangements, A neuploidy, and M utations using PCR-mediated amplification of both strands of the DNA from CSF samples. We first describe the details of the molecular genetic assessments and then establish thresholds for positivity using training sets of libraries from patients with or without cancer. We then applied CSF-BAM to an independent set of 206 DNA samples from patients with common, aggressive cancer types as well as other forms of brain cancers. Among the 126 samples from patients with the most common aggressive cancer types (high grade gliomas, medulloblastomas, or metastatic cancers to the brain), the sensitivity of detection was >81%. None of 33 CSF-BAM assays (100% specificity, 90% to 100% credible interval) were positive in CSF samples from patients without brain cancers. The sensitivity of CSF-BAM was considerably higher than that achieved with cytology. CSF-BAM provides an integrated multi-analyte approach to identify neoplasia in the central nervous system, provides information about the immune environment in patients with or without cancer, and has the potential to inform the subsequent management of such patients. Statement of significance There is a paucity of technologies beyond surgical biopsy that can accurately diagnose central nervous system neoplasms. We developed a novel, sensitive and highly specific assay that can detect brain cancers by comprehensively identifying somatic mutations, chromosomal copy number changes, and adaptive immunoreceptor repertoires from samples of cerebrospinal fluid.
Collapse
|
12
|
O’Halloran K, Crotty EE, Christodoulou E, Leary SE, Miller A, Paulson VA, Lockwood CM, Margol AS, Biegel JA. Targeted detection of sequence variants in cell-free DNA from cerebrospinal fluid in pediatric central nervous system tumors. Front Oncol 2025; 14:1513073. [PMID: 39834946 PMCID: PMC11743934 DOI: 10.3389/fonc.2024.1513073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
The emergence of liquid biopsy technologies holds great promise in the cancer setting, including in pediatric central nervous system (CNS) tumors. In contrast to broad lower-depth sequencing, commonly referred to as low pass whole genome sequencing (WGS), targeted platforms with a higher depth of coverage have also been established. Here, we review targeted liquid biopsy techniques with applicability to pediatric CNS tumors. These include polymerase chain reaction (PCR), both droplet digital PCR and reverse transcription-based PCR, Sanger sequencing, and next-generation sequencing approaches that incorporate amplicon- and hybrid capture-based methods. The goal of this paper is to facilitate an understanding of these targeted techniques and provide a context for clinical relevance within disease categories, as well as a discussion on optimizing real-world implementation for pediatric CNS tumors.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Erin E. Crotty
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Eirini Christodoulou
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah E. Leary
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Alexandra Miller
- Brain and Spine Tumor Center, Perlmutter Cancer Center, New York University Langone, New York, NY, United States
- Department of Neurology, New York University-Langone Health, New York, NY, United States
| | - Vera A. Paulson
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Christina M. Lockwood
- Genetics and Solid Tumor Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Ashley S. Margol
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jaclyn A. Biegel
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Zuo M, Li T, Wang Z, Xiang Y, Chen S, Liu Y. Research progress on platelets in glioma. Chin Med J (Engl) 2025; 138:28-37. [PMID: 39252160 PMCID: PMC11717503 DOI: 10.1097/cm9.0000000000003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Collapse
Affiliation(s)
- Mingrong Zuo
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tengfei Li
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Madlener S, Stepien N, Senfter D, Mayr L, Laemmerer A, Hedrich C, Baumgartner A, Lötsch-Gojo D, Sterba J, Pokorna P, Kiesel B, Widhalm G, Eckert F, Preusser M, Rössler K, Azizi A, Peyrl A, Czech T, Haberler C, Slavc I, Kasprian G, Dorfer C, Furtner J, Gojo J. Detection of H3F3A K27M or BRAF V600E in liquid biopsies of brain tumor patients as diagnostic and monitoring biomarker: impact of tumor localization and sampling method. Acta Neuropathol 2025; 149:5. [PMID: 39751690 PMCID: PMC11698890 DOI: 10.1007/s00401-024-02842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management. However, the optimal strategy for monitoring gliomas by LB remains to be determined. In this study, we analyzed circulating tumor DNA (ctDNA) from 78 liquid biopsies (plasma n = 44, cerebrospinal fluid n = 34 (CSF)) of 35 glioma patients, determining H3F3A K28M (K27M) and BRAF V600E mutation allele frequency using droplet digital PCR (ddPCR). All results were correlated to clinically relevant parameters including diagnostic imaging and CSF aspiration site (ventricular vs lumbar) with respect to tumor localization. Regarding diagnostic accuracy, the calculated sensitivity score in the H3F3A K27M cohort was 84.61% for CSF and 73.68% for plasma. In the BRAF V600E cohort, we determined a sensitivity of 83.3% in plasma and 80% in CSF. The overall specificity was 100%. With respect to the CSF aspiration, the intra-operatively obtained CSF demonstrated 100% detection rate, followed by ventricular CSF obtained via Ommaya Reservoir/shunt puncture (93%) and CSF obtained via lumbar puncture (66%). Notably, this further correlated with the proximity of the CSF site to tumor localization. Longitudinal CSF monitoring demonstrated a good correlation to clinical and radiological disease evolution. Importantly, we show for the first time that monitoring BRAF V600E by ddPCR could serve as treatment response assessment in gliomas. In summary, our observation may inform recommendations with regard to location of CSF aspiration when incorporating LB into future treatment protocols.
Collapse
Affiliation(s)
- Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Laemmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Cora Hedrich
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pokorna
- Department of Biology, Faculty of Medicine and Central, European Institute of Technology, Masaryk University, Brno, Czech Republic
- Center for Precision Medicine, University Hospital Brno, Brno, Czech Republic
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Amedeo Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Research Center of Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, Krems-Stein, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Gavryushin AV, Papusha LI, Veselkov AA, Zaitseva MA, Khukhlaeva EA, Konovalov AN, Druy AE. [Liquid biopsy for detection of H3K27m and BRAF V600E mutations in patients with diffuse brainstem tumors]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2025; 89:11-19. [PMID: 39907662 DOI: 10.17116/neiro20258901111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Despite the progress in understanding the pathogenesis of diffuse brainstem tumors, treatment of these neoplasms is usually empirical and conducted without morphological and molecular verification. Liquid biopsy is a minimally invasive technique providing data on tumor biology without standard biopsy. This method is based on analysis of cell-free nucleic acids (predominantly, extracellular DNA) in biological fluids with detection of specific mutations. Despite wide implementation in diagnosis and disease monitoring in extracranial malignancies, it is infrequently applied in neuro-oncology. OBJECTIVE To estimate diagnostic value of liquid biopsy in detecting H3K27 and BRAF V600E mutations in patients with diffuse brainstem tumors. MATERIAL AND METHODS Lumbar puncture with cerebrospinal fluid sampling was performed in 16 patients (5 children and 11 adults) with diffuse brainstem tumors verified by neuroimaging data. Cell-free DNA (cfDNA) was used in digital droplet PCR for determination of H3F3A K28M and BRAF V600E oncogenic missense variants. In 14 patients, investigation of cfDNA was performed in parallel with analysis of correspondent mutations in DNA derived from tumor tissue. RESULTS None patient had BRAF V600E mutation. H3F3A K28M variant was detected in 5 CSF samples and 6 tumor specimens from patients who underwent surgical biopsy. Thus, overall sensitivity of the method in determination of H3F3A K28M variant was 92.9% (13/14). CONCLUSION Liquid biopsy is highly informative for identifying the specific mutation H3F3A K28M and often verifies diffuse brainstem glioma without standard biopsy.
Collapse
Affiliation(s)
- A V Gavryushin
- Burdenko Neurosurgical Center, Moscow, Russia
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - L I Papusha
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - M A Zaitseva
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - A E Druy
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
16
|
Weller J, Potthoff A, Zeyen T, Schaub C, Duffy C, Schneider M, Herrlinger U. Current status of precision oncology in adult glioblastoma. Mol Oncol 2024; 18:2927-2950. [PMID: 38899374 PMCID: PMC11619805 DOI: 10.1002/1878-0261.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of precision oncology, the application of targeted drugs based on comprehensive molecular profiling, has revolutionized treatment strategies in oncology. This review summarizes the current status of precision oncology in glioblastoma (GBM), the most common and aggressive primary brain tumor in adults with a median survival below 2 years. Targeted treatments without prior target verification have consistently failed. Patients with BRAF V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell heterogeneity, and pathway redundancies. Systematic screening for actionable molecular alterations resulted in low rates (< 10%) of targeted treatments. Efficacy was observed in one-third and currently appears to be limited to BRAF-, VEGFR-, and mTOR-directed treatments. Advancing precision oncology for GBM requires consideration of pathways instead of single alterations, new trial concepts enabling rapid and adaptive drug evaluation, a focus on drugs with sufficient bioavailability in the CNS, and the extension of target discovery and validation to the tumor microenvironment, tumor cell networks, and their interaction with immune cells and neurons.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Thomas Zeyen
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Christina Schaub
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Cathrina Duffy
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| |
Collapse
|
17
|
Rudà R, Pellerino A, Soffietti R. Blood and cerebrospinal fluid biomarkers in neuro-oncology. Curr Opin Neurol 2024; 37:693-701. [PMID: 39329301 DOI: 10.1097/wco.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the value of blood and CSF biomarkers in primary CNS tumors. RECENT FINDINGS Several analytes can be assessed with liquid biopsy techniques, including circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free RNA, circulating proteins and metabolites, extracellular vesicles and tumor-educated platelets. Among diffuse gliomas of the adult, ctDNA in blood or CSF has represented the most used analyte, with the detection of molecular alterations such as MGMT promoter, PTEN, EGFRVIII, TERT promoter mutation and IDH R132H mutation. In general, CSF is enriched for ctDNA as compared with plasma. The use of MRI-guided focused ultrasounds to disrupt the blood-brain barrier could enhance the level of biomarkers in both blood and CSF. The detection of MYD88 L265P mutation with digital droplet PCR and the detection of ctDNA with next generation sequencing represent the best tools to diagnose and monitoring CNS lymphomas under treatment. In meningiomas, the low concentration of ctDNA is a limiting factor for the detection of driver mutations, such as NF2, AKTs, SMO, KLF4, TRAF7, SMARCB1, SMARCE1, PTEN, and TERT; an alternative approach could be the isolation of ctDNA through circulating extracellular vesicles. Liquid biopsies are being used extensively for diagnosis and surveillance of diffuse midline gliomas, in particular with the detection of the driver mutation H3K27M. Last, specific methylome patterns in CSF may allow the distinction of glioblastomas from CNS lymphomas or meningiomas. SUMMARY This review summarizes the current knowledge and future perspectives of liquid biopsy of blood and CSF for diagnosis and monitoring of primary CNS tumors.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | | |
Collapse
|
18
|
Klinsing S, Beck J, Weber KJ, Bornemann-Kolatzki K, Dettki M, Urban H, Roller B, Chow KU, Reis H, Wild PJ, Schuetz E, Euskirchen P, Steinbach JP, Ronellenfitsch MW, Harter PN, Zeiner PS. Detection of diagnostic somatic copy number alterations from cerebrospinal fluid cell-free DNA in brain tumor patients. Acta Neuropathol Commun 2024; 12:177. [PMID: 39568088 PMCID: PMC11580493 DOI: 10.1186/s40478-024-01887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
The gold standard for precise diagnostic classification of brain tumors requires tissue sampling, which carries relevant procedural risks. Brain biopsies often have limited sensitivity and fail to address tumor heterogeneity, because small tissue parts are being examined. This study aims to explore the detection and quantification of diagnostically relevant somatic copy number aberrations (SCNAs) in cell-free DNA (cfDNA) extracted from cerebrospinal fluid (CSF) in a real-world cohort of patients with defined brain tumor subtypes. A total of 33 CSF samples were collected from 30 patients for cfDNA extraction. Shallow whole-genome sequencing was conducted on CSF samples containing > 3ng of cfDNA and corresponding tissue DNA from nine patients. The sequencing cohort encompassed 26 samples of 23 patients, comprising 12 with confirmed CNS cancer as compared to 11 patients with either ambiguous CNS lesions (n = 5) or non-cancer CNS lesions (n = 6). After mapping and quality filtering SCNAs were called by depth-of-coverage analyses with a binning of 5.5 Mbp. SCNAs were exclusively identified in CSF cfDNA from brain tumor patients (10/12, 83%). In tumor patients, SCNAs were detectable in cfDNA from all patients with, but also in five of seven patients without tumor cells detected by CSF cytopathology. A substantial number of shared SCNAs were traceable between tissue and CSF in matched pair analyses. Additionally, some SCNAs unique to either CSF or tissue indicating spatial heterogeneity or tumor evolution. Also, diagnostically relevant genomic alterations as well as essential and desirable SCNAs as implemented in the current WHO classification of CNS tumors for certain primary brain tumor subtypes were traceable. In summary, this minimally invasive cfDNA-based LB approach employing shallow whole genome sequencing demonstrates potential for providing a molecularly informed diagnosis of CNS cancers, mapping tumor heterogeneity, tracking tumor evolution, and surveilling tumor patients. Further prospective trials are warranted.
Collapse
Affiliation(s)
- Svenja Klinsing
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Beck
- Chronix Biomedical, Oncocyte, Göttingen, Germany
| | - Katharina J Weber
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | | | - Mareike Dettki
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Hans Urban
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Bastian Roller
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Kai U Chow
- Ambulantes Krebszentrum, Frankfurt, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | | | - Philipp Euskirchen
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Und Humboldt Universität Zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, A Partnership Between DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site MunichA Partnership Between DKFZ and University, University Hospital, LMU Munich, Munich, Germany
| | - Pia S Zeiner
- Dr. Senckenberg Institute of Neurooncology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany.
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.
- University Cancer Center (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
19
|
Berzero G, Pieri V, Palazzo L, Finocchiaro G, Filippi M. Liquid biopsy in brain tumors: moving on, slowly. Curr Opin Oncol 2024; 36:521-529. [PMID: 39011725 DOI: 10.1097/cco.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW Due to limited access to the tumor, there is an obvious clinical potential for liquid biopsy in patients with primary brain tumors. Here, we review current approaches, present limitations to be dealt with, and new promising data that may impact the field. RECENT FINDINGS The value of circulating tumor cell-free DNA (ctDNA) in the cerebrospinal fluid (CSF) for the noninvasive diagnosis of primary brain tumors has been confirmed in several reports. The detection of ctDNA in the peripheral blood is desirable for patient follow-up but requires ultrasensitive methods to identify low mutant allelic frequencies. Digital PCR approaches and targeted gene panels have been used to identify recurrent hotspot mutations and copy number variations (CNVs) from CSF or plasma. Tumor classification from circulating methylomes in plasma has been actively pursued, although the need of advanced bioinformatics currently hampers clinical application. The use of focused ultrasounds to open the blood-brain barrier may represent a way to enrich of ctDNA the peripheral blood and enhance plasma-based liquid biopsy. SUMMARY Monitoring CNVs and hotspot mutations by liquid biopsy is a promising tool to detect minimal residual disease and strengthen response assessment in patients with primary brain tumors. Novel methods to increase the relative and/or absolute amount of ctDNA can improve the clinical potential of plasma-based liquid biopsies.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | | | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Hickman RA, Miller AM, Holle BM, Jee J, Liu SY, Ross D, Yu H, Riely GJ, Ombres C, Gewirtz AN, Reiner AS, Nandakumar S, Price A, Kaley TJ, Graham MS, Vanderbilt C, Rana S, Hill K, Chabot K, Campos C, Nafa K, Shukla N, Karajannis M, Li B, Berger M, Ladanyi M, Pentsova E, Boire A, Brannon AR, Bale T, Mellinghoff IK, Arcila ME. Real-world experience with circulating tumor DNA in cerebrospinal fluid from patients with central nervous system tumors. Acta Neuropathol Commun 2024; 12:151. [PMID: 39289779 PMCID: PMC11406943 DOI: 10.1186/s40478-024-01846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
The characterization of genetic alterations in tumor samples has become standard practice for many human cancers to achieve more precise disease classification and guide the selection of targeted therapies. Cerebrospinal fluid (CSF) can serve as a source of tumor DNA in patients with central nervous system (CNS) cancer. We performed comprehensive profiling of CSF circulating tumor DNA (ctDNA) in 711 patients using an FDA-authorized platform (MSK-IMPACT™) in a hospital laboratory. We identified genetic alterations in 489/922 (53.0%) CSF samples with clinically documented CNS tumors. None of 85 CSF samples from patients without CNS tumors had detectable ctDNA. The distribution of clinically actionable somatic alterations was consistent with tumor-type specific alterations across the AACR GENIE cohort. Repeated CSF ctDNA examinations from the same patients identified clonal evolution and emergence of resistance mechanisms. ctDNA detection was associated with shortened overall survival following CSF collection. Next-generation sequencing of CSF, collected through a minimally invasive lumbar puncture in a routine hospital setting, provides clinically actionable cancer genotype information in a large fraction of patients with CNS tumors.
Collapse
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Neurology, Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Bridget M Holle
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Justin Jee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Si-Yang Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Helena Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina Ombres
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Alexandra N Gewirtz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Subhiksha Nandakumar
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Adam Price
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Katherine Hill
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kiana Chabot
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Carl Campos
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Matthias Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bob Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
21
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Liu G, Gao Y, Mei J, Yan Z, Zhao R, Wang M, Li T, Bu X. Predicting recurrent glioblastoma clinical outcome to immune checkpoint inhibition and low-dose bevacizumab with tumor in situ fluid circulating tumor DNA analysis. Cancer Immunol Immunother 2024; 73:193. [PMID: 39105794 PMCID: PMC11303371 DOI: 10.1007/s00262-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming to enhance systemic responses to immunotherapy. METHODS In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each treatment. RESULTS The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2-11.1) and 14.3 months (95% CI, 6.5-22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were significantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly associated with worse prognosis. CONCLUSIONS Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy and guide treatment. CLINICAL TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov, NCT05540275.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dayang Wang
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Guanzheng Liu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jie Mei
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruijiao Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
22
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
23
|
Abdullah KG. Classifying Glioma via Liquid Biopsy: Progress toward an Unmet Clinical Need. Clin Cancer Res 2024; 30:2860-2861. [PMID: 38652677 DOI: 10.1158/1078-0432.ccr-24-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The diagnosis and classification of glioma by liquid biopsy represent a critical unmet need in neuro-oncology. A recent study demonstrates targeted next-generation sequencing of cell-free DNA from cerebrospinal fluid as an evolving option for liquid biopsy in patients with glioma. See related article by Iser et al., p. 2974.
Collapse
Affiliation(s)
- Kalil G Abdullah
- Department of Neurosurgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Papadimitrakis D, Perdikakis M, Gargalionis AN, Papavassiliou AG. Biomarkers in Cerebrospinal Fluid for the Diagnosis and Monitoring of Gliomas. Biomolecules 2024; 14:801. [PMID: 39062515 PMCID: PMC11274947 DOI: 10.3390/biom14070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumor and are characterized by a plethora of heterogeneous molecular alterations. Current treatments require the emergence of reliable biomarkers that will aid personalized treatment decisions and increase life expectancy. Glioma tissues are not as easily accessible as other solid tumors; therefore, detecting prominent biomarkers in biological fluids is necessary. Cerebrospinal fluid (CSF) circulates adjacent to the cerebral parenchyma and holds promise for discovering useful prognostic, diagnostic, and predictive biomarkers. In this review, we summarize extensive research regarding the role of circulating DNA, tumor cells, proteins, microRNAs, metabolites, and extracellular vesicles as potential CSF biomarkers for glioma diagnosis, prognosis, and monitoring. Future studies should address discrepancies and issues of specificity regarding CSF biomarkers, as well as the validation of candidate biomarkers.
Collapse
Affiliation(s)
- Dimosthenis Papadimitrakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Miltiadis Perdikakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| | - Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, ‘Attikon’ University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (M.P.)
| |
Collapse
|
25
|
Belue MJ, Harmon SA, Chappidi S, Zhuge Y, Tasci E, Jagasia S, Joyce T, Camphausen K, Turkbey B, Krauze AV. Diagnosing Progression in Glioblastoma-Tackling a Neuro-Oncology Problem Using Artificial-Intelligence-Derived Volumetric Change over Time on Magnetic Resonance Imaging to Examine Progression-Free Survival in Glioblastoma. Diagnostics (Basel) 2024; 14:1374. [PMID: 39001264 PMCID: PMC11241823 DOI: 10.3390/diagnostics14131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and the most common primary brain tumor, defined by nearly uniform rapid progression despite the current standard of care involving maximal surgical resection followed by radiation therapy (RT) and temozolomide (TMZ) or concurrent chemoirradiation (CRT), with an overall survival (OS) of less than 30% at 2 years. The diagnosis of tumor progression in the clinic is based on clinical assessment and the interpretation of MRI of the brain using Response Assessment in Neuro-Oncology (RANO) criteria, which suffers from several limitations including a paucity of precise measures of progression. Given that imaging is the primary modality that generates the most quantitative data capable of capturing change over time in the standard of care for GBM, this renders it pivotal in optimizing and advancing response criteria, particularly given the lack of biomarkers in this space. In this study, we employed artificial intelligence (AI)-derived MRI volumetric parameters using the segmentation mask output of the nnU-Net to arrive at four classes (background, edema, non-contrast enhancing tumor (NET), and contrast-enhancing tumor (CET)) to determine if dynamic changes in AI volumes detected throughout therapy can be linked to PFS and clinical features. We identified associations between MR imaging AI-generated volumes and PFS independently of tumor location, MGMT methylation status, and the extent of resection while validating that CET and edema are the most linked to PFS with patient subpopulations separated by district rates of change throughout the disease. The current study provides valuable insights for risk stratification, future RT treatment planning, and treatment monitoring in neuro-oncology.
Collapse
Affiliation(s)
- Mason J. Belue
- Artificial Intelligence Resource, Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (M.J.B.); (S.A.H.); (B.T.)
| | - Stephanie A. Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (M.J.B.); (S.A.H.); (B.T.)
| | - Shreya Chappidi
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
- Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Ave., Cambridge CB3 0FD, UK
| | - Ying Zhuge
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| | - Sarisha Jagasia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| | - Thomas Joyce
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (M.J.B.); (S.A.H.); (B.T.)
| | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD 20892, USA; (S.C.); (Y.Z.); (S.J.); (T.J.); (K.C.)
| |
Collapse
|
26
|
Nayak L, Bettegowda C, Scherer F, Galldiks N, Ahluwalia M, Baraniskin A, von Baumgarten L, Bromberg JEC, Ferreri AJM, Grommes C, Hoang-Xuan K, Kühn J, Rubenstein JL, Rudà R, Weller M, Chang SM, van den Bent MJ, Wen PY, Soffietti R. Liquid biopsy for improving diagnosis and monitoring of CNS lymphomas: A RANO review. Neuro Oncol 2024; 26:993-1011. [PMID: 38598668 PMCID: PMC11145457 DOI: 10.1093/neuonc/noae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florian Scherer
- Department of Medicine I, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Medical Faculty and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), and Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Manmeet Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland OH and Miami Cancer Institute, Baptist Health South Florida, International University, Miami, Florida, USA
| | - Alexander Baraniskin
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians—University of Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Andrés J M Ferreri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Khê Hoang-Xuan
- APHP, Department of Neuro-oncology, Groupe Hospitalier Pitié-Salpêtrière; Sorbonne Université, Paris Brain Institute ICM, Paris, France
| | - Julia Kühn
- Department of Medicine I, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - James L Rubenstein
- UCSF Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, California, USA
| | | | - Patrick Y Wen
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
27
|
Rosas-Alonso R, Colmenarejo-Fernández J, Pernía O, Burdiel M, Rodríguez-Antolín C, Losantos-García I, Rubio T, Moreno-Velasco R, Esteban-Rodríguez I, Martínez-Marín V, Yubero P, Costa-Fraga N, Díaz-Lagares A, López-López R, Díaz-Martin E, García JF, Sánchez CV, Gandía-González ML, Moreno-Bueno G, de Castro J, de Cáceres II. Evaluation of the clinical use of MGMT methylation in extracellular vesicle-based liquid biopsy as a tool for glioblastoma patient management. Sci Rep 2024; 14:11398. [PMID: 38762534 PMCID: PMC11102540 DOI: 10.1038/s41598-024-62061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GB) is a devastating tumor of the central nervous system characterized by a poor prognosis. One of the best-established predictive biomarker in IDH-wildtype GB is O6-methylguanine-DNA methyltransferase (MGMT) methylation (mMGMT), which is associated with improved treatment response and survival. However, current efforts to monitor GB patients through mMGMT detection have proven unsuccessful. Small extracellular vesicles (sEVs) hold potential as a key element that could revolutionize clinical practice by offering new possibilities for liquid biopsy. This study aimed to determine the utility of sEV-based liquid biopsy as a predictive biomarker and disease monitoring tool in patients with IDH-wildtype GB. Our findings show consistent results with tissue-based analysis, achieving a remarkable sensitivity of 85.7% for detecting mMGMT in liquid biopsy, the highest reported to date. Moreover, we suggested that liquid biopsy assessment of sEV-DNA could be a powerful tool for monitoring disease progression in IDH-wildtype GB patients. This study highlights the critical significance of overcoming molecular underdetection, which can lead to missed treatment opportunities and misdiagnoses, possibly resulting in ineffective therapies. The outcomes of our research significantly contribute to the field of sEV-DNA-based liquid biopsy, providing valuable insights into tumor tissue heterogeneity and establishing it as a promising tool for detecting GB biomarkers. These results have substantial implications for advancing predictive and therapeutic approaches in the context of GB and warrant further exploration and validation in clinical settings.
Collapse
Affiliation(s)
- Rocío Rosas-Alonso
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| | - Julian Colmenarejo-Fernández
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Olga Pernía
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Miranda Burdiel
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | | | - Tania Rubio
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Rocío Moreno-Velasco
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Isabel Esteban-Rodríguez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Department of Pathology, La Paz University Hospital, Madrid, Spain
| | | | - Paloma Yubero
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Nicolas Costa-Fraga
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael López-López
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Oncology, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Juan F García
- MD Anderson International Foundation, Madrid, Spain
- Department of Pathology, MD Anderson Cancer Center, Madrid, Spain
| | | | | | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- MD Anderson International Foundation, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Javier de Castro
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Ibánez de Cáceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| |
Collapse
|
28
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. The dynamic impact of location and resection on the glioma CSF proteome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307463. [PMID: 38798641 PMCID: PMC11118641 DOI: 10.1101/2024.05.15.24307463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.
Collapse
|
29
|
Patel J, Aittaleb R, Doherty R, Gera A, Lau B, Messinger D, Wadden J, Franson A, Saratsis A, Koschmann C. Liquid biopsy in H3K27M diffuse midline glioma. Neuro Oncol 2024; 26:S101-S109. [PMID: 38096156 PMCID: PMC11066927 DOI: 10.1093/neuonc/noad229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 02/15/2024] Open
Abstract
Diffuse midline glioma (DMG) with H3K27M mutation is an aggressive and difficult to treat pediatric brain tumor. Recurrent gain of function mutations in H3.3 (H3.3A) and H3.1 (H3C2) at the 27th lysine to methionine (H3K27M) are seen in over 2/3 of DMGs, and are associated with a worse prognosis. Due to the anatomical location of DMG, traditional biopsy carries risk for neurologic injury as it requires penetration of vital midline structures. Further, radiographic (MRI) monitoring of DMG often shows nonspecific changes, which makes therapeutic monitoring difficult. This indicates a critical need for more minimally invasive methods, such as liquid biopsy, to understand, diagnose, and monitor H3K27M DMG. Here, we review the use of all modalities to date to detect biomarkers of H3K27M in cerebrospinal fluid (CSF), blood, and urine, and compare their effectiveness in detection, diagnosis, and monitoring treatment response. We provide specific detail of recent efforts to monitor CSF and plasma H3K27M cell-free DNA in patients undergoing therapy with the imipridone ONC201. Lastly, we discuss the future of therapeutic monitoring of H3K27M-DMG, including biomarkers such as mitochondrial DNA, mutant and modified histones, and novel sequencing-based approaches for improved detection methods.
Collapse
Affiliation(s)
- Jina Patel
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rayan Aittaleb
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ananya Gera
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Benison Lau
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Dana Messinger
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Andrea Franson
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| | | | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Szmyd B, Stanisławska P, Podstawka M, Zaczkowski K, Izbiński PM, Kulczycka-Wojdala D, Stawski R, Wiśniewski K, Janczar K, Braun M, Białasiewicz P, Jaskólski DJ, Bobeff EJ. D-Loop Mutations as Prognostic Markers in Glioblastoma-A Pilot Study. Int J Mol Sci 2024; 25:4334. [PMID: 38673919 PMCID: PMC11050196 DOI: 10.3390/ijms25084334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma, a highly aggressive brain tumor, poses significant treatment challenges. A deeper investigation into its molecular complexity is essential for the identification of novel prognostic biomarkers and therapeutic strategies, potentially improving patient outcomes in terms of survival and quality of life. While nuclear DNA mutations have been extensively studied, the role of mitochondrial DNA (mtDNA) mutations, specifically in the D-loop region, remains poorly understood. This prospective case-control study aimed to assess the prognostic significance of the mtDNA D-loop m.16126T>C variant in glioblastoma patients. Immunohistochemistry and droplet digital PCR (ddPCR) were employed for mutation analysis, complemented by statistical analyses and a literature review. The study cohort comprised 22 glioblastoma patients (mean age 59.36 ± 14.17, 12 (54.55%) females), and 25 controls (59.48 ± 13.22, 12 (80%) females). The D-loop m.16126T>C variant was observed in four (18%) of the glioblastoma samples and was associated with shorter median survival (9.5 vs. 18 months; p = 0.016, log-rank test). This study underscores the importance of investigating mtDNA, especially D-loop variants, in glioblastoma, suggesting its potential as a prognostic biomarker and, therefore, its possible therapeutic targets, warranting further exploration.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Patrycja Stanisławska
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Małgorzata Podstawka
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Karol Zaczkowski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Patryk M. Izbiński
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | | | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Karolina Janczar
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland; (K.J.); (M.B.)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland; (K.J.); (M.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
| | - Ernest J. Bobeff
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (B.S.); (P.S.); (M.P.); (K.Z.); (P.M.I.); (K.W.); (D.J.J.)
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
31
|
Valerius AR, Webb MJ, Hammad N, Sener U, Malani R. Cerebrospinal Fluid Liquid Biopsies in the Evaluation of Adult Gliomas. Curr Oncol Rep 2024; 26:377-390. [PMID: 38488990 DOI: 10.1007/s11912-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW This review aims to discuss recent research regarding the biomolecules explored in liquid biopsies and their potential clinical uses for adult-type diffuse gliomas. RECENT FINDINGS Evaluation of tumor biomolecules via cerebrospinal fluid (CSF) is an emerging technology in neuro-oncology. Studies to date have already identified various circulating tumor DNA, extracellular vesicle, micro-messenger RNA and protein biomarkers of interest. These biomarkers show potential to assist in multiple avenues of central nervous system (CNS) tumor evaluation, including tumor differentiation and diagnosis, treatment selection, response assessment, detection of tumor progression, and prognosis. In addition, CSF liquid biopsies have the potential to better characterize tumor heterogeneity compared to conventional tissue collection and CNS imaging. Current imaging modalities are not sufficient to establish a definitive glioma diagnosis and repeated tissue sampling via conventional biopsy is risky, therefore, there is a great need to improve non-invasive and minimally invasive sampling methods. CSF liquid biopsies represent a promising, minimally invasive adjunct to current approaches which can provide diagnostic and prognostic information as well as aid in response assessment.
Collapse
Affiliation(s)
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Nouran Hammad
- Jordan University of Science and Technology School of Medicine, Irbid, Jordan
| | - Ugur Sener
- Department of Neurology, Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rachna Malani
- University of UT - Huntsman Cancer Institute (Department of Neurosurgery), Salt Lake City, UT, USA
| |
Collapse
|
32
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
33
|
Arthur C, Carlson LM, Svoboda J, Sandvik U, Jylhä C, Nordenskjöld M, Holm S, Tham E. Liquid biopsy guides successful molecular targeted therapy of an inoperable pediatric brainstem neoplasm. NPJ Precis Oncol 2024; 8:44. [PMID: 38388693 PMCID: PMC10884019 DOI: 10.1038/s41698-024-00535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Midline CNS tumors are occasionally inaccessible for surgical biopsies. In these instances, cell-free DNA (cfDNA) may serve as a viable alternative for molecular analysis and identification of targetable mutations. Here, we report a young child with an inoperable brainstem tumor in whom a stereotactic biopsy was deemed unsafe. The tumor progressed on steroids and after radiotherapy the patient developed hydrocephalus and received a ventriculoperitoneal shunt. Droplet digital PCR analysis of cfDNA from an intraoperative cerebrospinal fluid liquid biopsy revealed a BRAF V600 mutation enabling targeted treatment with MEK and BRAF inhibitors. The patient, now on trametinib and dabrafenib for 1 year, has had substantial tumor volume regression and reduction of contrast enhancement on MRIs and is making remarkable clinical progress. This case highlights that in a subset of CNS tumors, access to liquid biopsy analysis may be crucial to identify actionable therapeutic targets that would otherwise go undiscovered.
Collapse
Affiliation(s)
- Cecilia Arthur
- Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Lena-Maria Carlson
- Pediatric Oncology, Karolinska University Hospital, 171 77, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jan Svoboda
- Department of Pediatric Radiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Ulrika Sandvik
- Department of Clinical Neuroscience, Division of Neurosurgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Cecilia Jylhä
- Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Stefan Holm
- Pediatric Oncology, Karolinska University Hospital, 171 77, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Emma Tham
- Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
| |
Collapse
|
34
|
Walke A, Krone C, Stummer W, König S, Suero Molina E. Protoporphyrin IX in serum of high-grade glioma patients: A novel target for disease monitoring via liquid biopsy. Sci Rep 2024; 14:4297. [PMID: 38383693 PMCID: PMC10881484 DOI: 10.1038/s41598-024-54478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
High-grade gliomas (HGG) carry a dismal prognosis. Diagnosis comprises MRI followed by histopathological evaluation of tissue; no blood biomarker is available. Patients are subjected to serial MRIs and, if unclear, surgery for monitoring of tumor recurrence, which is laborious. MRI provides only limited diagnostic information regarding the differentiation of true tumor progression from therapy-associated side effects. 5-aminolevulinic acid (5-ALA) is routinely used for induction of protoporphyrin IX (PpIX) accumulation in malignant glioma tissue, enabling improved tumor visualization during fluorescence-guided resection (FGR). We investigated whether PpIX can also serve as a serum HGG marker to monitor relapse. Patients (HGG: n = 23 primary, pHGG; n = 5 recurrent, rHGG) undergoing FGR received 5-ALA following standard clinical procedure. The control group of eight healthy volunteers (HCTR) also received 5-ALA. Serum was collected before and repeatedly up to 72 h after drug administration. Significant PpIX accumulation in HGG was observed after 5-ALA administration (ANOVA: p = 0.005, post-hoc: HCTR vs. pHGG p = 0.029, HCTR vs. rHGG p = 0.006). Separation of HCTR from pHGG was possible when maximum serum PpIX levels were reached (CI95% of tMax). ROC analysis of serum PpIX within CI95% of tMax showed successful classification of HCTR and pHGG (AUCROC 0.943, CI95% 0.884-1.000, p < 0.001); the optimal cut-off for diagnosis was 1275 pmol PpIX/ml serum, reaching 87.0% accuracy, 90.5% positive predictive and 84.0% negative predictive value. Baseline PpIX level was similar in patient and control groups. Thus, 5-ALA is required for PpIX induction, which is safe at the standard clinical dosage. PpIX is a new target for liquid biopsy in glioma. More extensive clinical studies are required to characterize its full potential.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany.
| | - Christopher Krone
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
35
|
Shen L, Zhang Z, Wu P, Yang J, Cai Y, Chen K, Chai S, Zhao J, Chen H, Dai X, Yang B, Wei W, Dong L, Chen J, Jiang P, Cao C, Ma C, Xu C, Zou Y, Zhang J, Xiong W, Li Z, Xu S, Shu B, Wang M, Li Z, Wan Q, Xiong N, Chen S. Mechanistic insight into glioma through spatially multidimensional proteomics. SCIENCE ADVANCES 2024; 10:eadk1721. [PMID: 38363834 PMCID: PMC10871530 DOI: 10.1126/sciadv.adk1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Characterizing the tumor microenvironment at the molecular level is essential for understanding the mechanisms of tumorigenesis and evolution. However, the specificity of the blood proteome in localized region of the tumor and its linkages with other systems is difficult to investigate. Here, we propose a spatially multidimensional comparative proteomics strategy using glioma as an example. The blood proteome signature of tumor microenvironment was specifically identified by in situ collection of arterial and venous blood from the glioma region of the brain for comparison with peripheral blood. Also, by integrating with different dimensions of tissue and peripheral blood proteomics, the information on the genesis, migration, and exchange of glioma-associated proteins was revealed, which provided a powerful method for tumor mechanism research and biomarker discovery. The study recruited multidimensional clinical cohorts, allowing the proteomic results to corroborate each other, reliably revealing biological processes specific to gliomas, and identifying highly accurate biomarkers.
Collapse
Affiliation(s)
- Lei Shen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Pengfei Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jingyi Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Keyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingwei Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bangkun Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lixin Dong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pucha Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Changjun Cao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jibo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenping Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangxiang Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bing Shu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zejin Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
37
|
Uziel O, Kanner AA, Beery E, Lev S, Lahav M, Horn‐Fichman S, Nof SH, Laviv Y, Yust‐Katz S, Amiel A, Shkara RA, Siddeeq M, Levy‐Barda A, Raanani P, Sela Y, Cohen Z, Siegal T. Is serum-derived exosomal hTERT transcript a marker of oncogenic activity in primary brain tumors? An exploratory study. Cancer Med 2024; 13:e6784. [PMID: 38155481 PMCID: PMC10823760 DOI: 10.1002/cam4.6784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND In order to proliferate indefinitely, all tumors require a telomere maintenance mechanism. The expression of human telomerase reverse transcriptase (hTERT) enables telomere maintenance and provides cancer cells with limitless replicative potential. As such, it may serve as an attractive biomarker for oncogenic activity. This study explored whether a liquid biopsy that analyses blood derived exosomal hTERT transcript (e-hTERT-trans) may serve as such a biomarker in gliomas and meningiomas when compared to healthy controls. METHODS Exosomes were isolated from the pre-operative sera of patients' samples stored in the biobank of both Rabin and Sheba Medical Centers. The levels of e-hTERT-trans were measured in 81 healthy controls, 117 meningiomas, 17 low-grade gliomas, and 61 glioblastomas. Clinical parameters of the patients were collected retrospectively and compared to the levels of the e-hTERT-trans. RESULTS The upper normal limit of controls e-hTERT-trans was 1.85 relative quantitation (RQ). The rate of detection increased with rising tumor grade and correlated with tumor recurrence in meningiomas: mean RQ without recurrence (2.17 ± 11.7) versus with recurrence (3.59 ± 4.42; p = 0.002). In glioblastomas, preoperative measurements correlated with tumor volume and with the disease course on serial sampling. CONCLUSIONS We demonstrated for the first time that the expression of e-hTERT-trans transcript can be measured in the serum of primary brain tumors. This exosomal marker carries the potential to serve as a biomarker once used in conjunction with other clinical and radiological parameters. Future studies are required to investigate whether the sensitivity could be augmented and whether it can be implemented into routine patients care.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research CenterPetah TikvaIsrael
- Institute of HematologyDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Andrew A. Kanner
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Department of NeurosurgeryRabin Medical CenterPetah TikvaIsrael
| | - Einat Beery
- The Felsenstein Medical Research CenterPetah TikvaIsrael
| | - Sapir Lev
- Department of NeurosurgeryRabin Medical CenterPetah TikvaIsrael
| | - Meir Lahav
- The Felsenstein Medical Research CenterPetah TikvaIsrael
- Institute of HematologyDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Suzana Horn‐Fichman
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Neuropathology, Department of PathologyRabin Medical CenterPetah TikvaIsrael
| | - Sagi Har Nof
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Department of NeurosurgeryRabin Medical CenterPetah TikvaIsrael
| | - Yuseph Laviv
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Department of NeurosurgeryRabin Medical CenterPetah TikvaIsrael
| | - S. Yust‐Katz
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Neurooncology UnitDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
| | - Alexandra Amiel
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Neurooncology UnitDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
| | | | - Mustafa Siddeeq
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Department of NeurosurgerySheba Medical CenterRamat‐GanIsrael
| | - Adva Levy‐Barda
- Biobank, Department of PathologyRabin Medical CenterPetah TikvaIsrael
| | - Pia Raanani
- The Felsenstein Medical Research CenterPetah TikvaIsrael
- Institute of HematologyDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Yaron Sela
- The Center of Internet Psychology Reichman UniversityHerzliyaIsrael
| | - Zvi Cohen
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Department of NeurosurgerySheba Medical CenterRamat‐GanIsrael
| | - Tali Siegal
- Neurooncology UnitDavidoff Cancer Center, Rabin Medical CenterPetah TikvaIsrael
- Hebrew University and Medical SchoolJerusalemIsrael
| |
Collapse
|
38
|
Jones JJ, Jones KL, Wong SQ, Whittle J, Goode D, Nguyen H, Iaria J, Stylli S, Towner J, Pieters T, Gaillard F, Kaye AH, Drummond KJ, Morokoff AP. Plasma ctDNA enables early detection of temozolomide resistance mutations in glioma. Neurooncol Adv 2024; 6:vdae041. [PMID: 38596716 PMCID: PMC11003533 DOI: 10.1093/noajnl/vdae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Liquid biopsy based on circulating tumor DNA (ctDNA) is a novel tool in clinical oncology, however, its use has been limited in glioma to date, due to low levels of ctDNA. In this study, we aimed to demonstrate that sequencing techniques optimized for liquid biopsy in glioma patients can detect ctDNA in plasma with high sensitivity and with potential clinical utility. Methods We investigated 10 glioma patients with tumor tissue available from at least 2 surgical operations, who had 49 longitudinally collected plasma samples available for analysis. Plasma samples were sequenced with CAPP-seq (AVENIO) and tissue samples with TSO500. Results Glioma-derived ctDNA mutations were detected in 93.8% of plasma samples. 25% of all mutations detected were observed in plasma only. Mutations of the mismatch repair (MMR) genes MSH2 and MSH6 were the most frequent circulating gene alterations seen after temozolomide treatment and were frequently observed to appear in plasma prior to their appearance in tumor tissue at the time of surgery for recurrence. Conclusions This pilot study suggests that plasma ctDNA in glioma is feasible and may provide sensitive and complementary information to tissue biopsy. Furthermore, plasma ctDNA detection of new MMR gene mutations not present in the initial tissue biopsy may provide an early indication of the development of chemotherapy resistance. Additional clinical validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Jordan J Jones
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Kate L Jones
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - James Whittle
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Hong Nguyen
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Josie Iaria
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Stan Stylli
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - James Towner
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Thomas Pieters
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Frank Gaillard
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Kate J Drummond
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Andrew P Morokoff
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Smalley I, Boire A, Brastianos P, Kluger HM, Hernando-Monge E, Forsyth PA, Ahmed KA, Smalley KSM, Ferguson S, Davies MA, Glitza Oliva IC. Leptomeningeal disease in melanoma: An update on the developments in pathophysiology and clinical care. Pigment Cell Melanoma Res 2024; 37:51-67. [PMID: 37622466 DOI: 10.1111/pcmr.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Leptomeningeal disease (LMD) remains a major challenge in the clinical management of metastatic melanoma patients. Outcomes for patient remain poor, and patients with LMD continue to be excluded from almost all clinical trials. However, recent trials have demonstrated the feasibility of conducting prospective clinical trials in these patients. Further, new insights into the pathophysiology of LMD are identifying rational new therapeutic strategies. Here we present recent advances in the understanding of, and treatment options for, LMD from metastatic melanoma. We also annotate key areas of future focus to accelerate progress for this challenging but emerging field.
Collapse
Affiliation(s)
- Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla Brastianos
- Department of Medicine, MGH Cancer Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Eva Hernando-Monge
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology and Immunology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
40
|
Gavryushin AV, Veselkov AA, Khukhlaeva EA, Konovalov AN, Druy AE. [Liquid biopsy in diagnosis of central nervous system tumors]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:110-117. [PMID: 39670787 DOI: 10.17116/neiro202488061110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Tumor tissue samples are necessary for histological diagnosis. Biopsy is associated with certain difficulties, especially in neuro-oncology. An alternative approach (liquid biopsy) is currently being developed. The last one is based on analysis of biological fluids regarding DNA of tumors and other biomarkers. This less invasive diagnostic method may be valuable to overcome the disadvantages of traditional biopsy. OBJECTIVE To analyze available literature data on potential benefits and disadvantages of liquid biopsy. MATERIAL AND METHODS We reviewed the PubMed database throughout the last 18 years. RESULTS The main targets for liquid biopsy are circulating tumor cells, extracellular vesicles, free circulating DNA and tumor microRNA. Analysis of these biomarkers is perspective for diagnostics and assessment of diseases in neuro-oncology. However, this technique is still poorly understood and has limitations. Therefore, further research is required to explore its capabilities for wider use in clinical practice. CONCLUSION Tissue and liquid biopsy can improve the accuracy of diagnosis, assessment of prognosis and effectiveness of treatment of CNS tumors.
Collapse
Affiliation(s)
- A V Gavryushin
- Burdenko Neurosurgical Center, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | | | - A E Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
41
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
42
|
Zanin L, Sachkova A, Panciani PP, Rohde V, Fontanella MM, Schatlo B. Liquid Biopsy in Low-Grade Glioma: A Systematic Review and a Proposal for a Clinical Utility Score. Cell Mol Neurobiol 2023; 43:3833-3845. [PMID: 37704931 PMCID: PMC10661806 DOI: 10.1007/s10571-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Liquid biopsy research on Low-Grade gliomas (LGG) has remained less conspicuous than that on other malignant brain tumors. Reliable serum markers would be precious for diagnosis, follow- up and treatment. We propose a clinical utility score (CUS) for biomarkers in LGG that mirrors their clinical usefulness. We conducted a PRISMA review. We examined each biomarker classifying them by CUS and Level of Evidence (LOE). We identified four classes of biomarkers: (1). Circulating protein-(a) vitronectin discriminates LGG from HGG (Sn:98%, Sp:91%, CUS: 3, LOE: III), (b) CTLA-4 discriminates LGG from HGG, (cutoff: 220.43 pg/ml, Sn: 82%, Sp: 78%, CUS:3, LOE:III), (c) pre-operative TGF b1 predict astrocytoma (cutoff: 2.52 ng/ml, Sn: 94.9%, Sp: 100%, CUS:3, LOE:VI). (2). micro-RNA (miR)-(a) miR-16 discriminates between WHO IV and WHO II and III groups (AUC = 0.98, CUS:3, LOE: III), (b) miR-454-3p is higher in HGG than in LGG (p = 0.013, CUS:3, LOE: III), (c) miR-210 expression is related to WHO grades (Sn 83.2%, Sp 94.3%, CUS: 3, LOE: III). (3). Circulating DNA-(a) IDH1R132H mutation detected in plasma by combined COLD and digital PCR (Sn: 60%, Sp: 100%, CUS: 3, LOE: III). 4. Exosomes-(a) SDC1 serum levels could discriminate GBM from LGG (Sn: 71%, Sp: 91%, CUS: 2C, LOE: VI). Our investigation showed that miRs appear to have the highest clinical utility. The LOE of the studies assessed is generally low. A combined approach between different biomarkers and traditional diagnostics may be considered. We identified four main classes of biomarkers produced by LGG. We examined each biomarker, classifying them by clinical utility score (CUS) and level of evidence (LOE). Micro-RNA (miRs) appears to have the highest CUS and LOE.
Collapse
Affiliation(s)
- Luca Zanin
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Alexandra Sachkova
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, 37075, Göttingen, Germany
| | - Pier Paolo Panciani
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marco Maria Fontanella
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Karschnia P, Smits M, Reifenberger G, Le Rhun E, Ellingson BM, Galldiks N, Kim MM, Huse JT, Schnell O, Harter PN, Mohme M, von Baumgarten L, Albert NL, Huang RY, Mehta MP, van den Bent M, Weller M, Vogelbaum MA, Chang SM, Berger MS, Tonn JC. A framework for standardised tissue sampling and processing during resection of diffuse intracranial glioma: joint recommendations from four RANO groups. Lancet Oncol 2023; 24:e438-e450. [PMID: 37922934 PMCID: PMC10849105 DOI: 10.1016/s1470-2045(23)00453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Marion Smits
- Department of Neuroradiology and Nuclear Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Research Center Juelich, Institute of Neuroscience and Medicine, Juelich, Germany
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Schnell
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Patrick N Harter
- German Cancer Consortium, Partner Site Munich, Munich, Germany; Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | | | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany.
| |
Collapse
|
44
|
Sheng Z, Bu C, Mei J, Xu S, Zhang Z, Guo G, Gao Y, Xing L, Chen Z, Hernesniemi J, Zemmar A, Bu X. Tracking tumor evolution during the first-line treatment in brain glioma via serial profiling of cell-free tumor DNA from tumor in situ fluid. Front Oncol 2023; 13:1238607. [PMID: 37920153 PMCID: PMC10619896 DOI: 10.3389/fonc.2023.1238607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Objective Tumor in situ fluid (TISF) refers to the fluid within surgical cavities of glioma. Several studies preliminarily proved the value of cell-free tumor DNA (cf-tDNA) from TISF in the dynamic characterization of the glioma genome. Here, we assessed the potential utility of TISF cf-tDNA in broad aspects of tumor evolution under therapeutic pressure. Methods This study was conducted under an Institutional Review Board-approved protocol at Henan Provincial People's Hospital (China). Cf-tDNA samples were sequenced with a designed 68-gene panel. A total of 205 cf-tDNA samples from 107 patients were studied. The clinical relevance of serial cf-tDNA profiling during the postoperative course was analyzed. Results At least one tumor mutations were detected in 179/205 (87.3%) TISF cf-tDNA samples. Serial cf-tDNA was complementary to molecular residual disease and to initial tumors. Serial cf-tDNA revealed the selection of pre-existing mismatch repair-deficient cells by temozolomide as a resistant mechanism. Cf-tDNA parameters during treatment were predictive of recurrence, and serial cf-tDNA monitoring had diagnostic value for early recurrence. A total of 223 potentially actionable genomic alterations were assessed in cf-tDNA samples, wherein 78% were not found in any tumor tissue. Conclusions In conclusion, serial TISF cf-tDNA profiling is valuable in tracking the tumor evolution of glioma during treatment and may be a feasible non-invasive option for monitoring glioma in future prospective studies and clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Juha International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Chaojie Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Psychological Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jie Mei
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Sensen Xu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ziyue Zhang
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Guangzhong Guo
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yushuai Gao
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Liyuan Xing
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Juha International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Juha Hernesniemi
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Juha International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ajmal Zemmar
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Juha International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Juha International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
45
|
Berzero G, Pieri V, Mortini P, Filippi M, Finocchiaro G. The coming of age of liquid biopsy in neuro-oncology. Brain 2023; 146:4015-4024. [PMID: 37289981 PMCID: PMC10545511 DOI: 10.1093/brain/awad195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit; Neurophysiology Unit; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
46
|
Phillips KA, Kamson DO, Schiff D. Disease Assessments in Patients with Glioblastoma. Curr Oncol Rep 2023; 25:1057-1069. [PMID: 37470973 DOI: 10.1007/s11912-023-01440-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE OF REVIEW The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.
Collapse
Affiliation(s)
- Kester A Phillips
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute, 550 17Th Ave Suite 540, Seattle, WA, 98122, USA
| | - David O Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 201 North Broadway, Skip Viragh Outpatient Cancer Building, 9Th Floor, Room 9177, Mailbox #3, Baltimore, MD, 21218, USA
| | - David Schiff
- Division of Neuro-Oncology, University of Virginia Health System, 1300 Jefferson Park Avenue, West Complex, Room 6225, Charlottesville, VA, 22903, USA.
| |
Collapse
|
47
|
Bonacchi R, De Meo E. Editorial for "Deep Learning for Noninvasive Assessment of H3 K27M Mutation Status in Diffuse Midline Gliomas Using MR Imaging". J Magn Reson Imaging 2023; 58:862-863. [PMID: 36661197 DOI: 10.1002/jmri.28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Affiliation(s)
| | - Ermelinda De Meo
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| |
Collapse
|
48
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
49
|
Douville C, Curtis S, Summers M, Azad TD, Rincon-Torroella J, Wang Y, Mattox A, Avigdor B, Dudley J, Materi J, Raj D, Nair S, Bhanja D, Tuohy K, Dobbyn L, Popoli M, Ptak J, Nehme N, Silliman N, Blair C, Judge K, Gallia GL, Groves M, Jackson CM, Jackson EM, Laterra J, Lim M, Mukherjee D, Weingart J, Naidoo J, Koschmann C, Smith N, Schreck KC, Pardo CA, Glantz M, Holdhoff M, Kinzler KW, Papadopoulos N, Vogelstein B, Bettegowda C. Seq-ing the SINEs of central nervous system tumors in cerebrospinal fluid. Cell Rep Med 2023; 4:101148. [PMID: 37552989 PMCID: PMC10439243 DOI: 10.1016/j.xcrm.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.
Collapse
Affiliation(s)
- Christopher Douville
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Samuel Curtis
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mahmoud Summers
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jordina Rincon-Torroella
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Yuxuan Wang
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Austin Mattox
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bracha Avigdor
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan Dudley
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Joshua Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Sumil Nair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Debarati Bhanja
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Kyle Tuohy
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Lisa Dobbyn
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Popoli
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Janine Ptak
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nadine Nehme
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie Silliman
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cherie Blair
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kathy Judge
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Mari Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - John Laterra
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | | - Carl Koschmann
- Division of Pediatric Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Natalya Smith
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Glantz
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Matthias Holdhoff
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nickolas Papadopoulos
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Ludwig Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Krauze AV, Sierk M, Nguyen T, Chen Q, Yan C, Hu Y, Jiang W, Tasci E, Zgela TC, Sproull M, Mackey M, Shankavaram U, Meerzaman D, Camphausen K. Glioblastoma survival is associated with distinct proteomic alteration signatures post chemoirradiation in a large-scale proteomic panel. Front Oncol 2023; 13:1127645. [PMID: 37637066 PMCID: PMC10448824 DOI: 10.3389/fonc.2023.1127645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2023] Open
Abstract
Background Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.
Collapse
Affiliation(s)
- Andra Valentina Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Michael Sierk
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Trinh Nguyen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Chunhua Yan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Ying Hu
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - William Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|