1
|
SILVA LUIZFERNANDOLOPES, SCHOLL JULIETENATHALI, WEBER AUGUSTOFERREIRA, DIAS CAMILAKEHL, PIZZATO PAULINERAFAELA, LIMA VINPIERDON, SÉVIGNY JEAN, BATTASTINI ANAMARIAOLIVEIRA, FIGUEIRÓ FABRÍCIO. Assessing the impact of CD73 inhibition on overcoming anti-EGFR resistance in glioma cells. Oncol Res 2025; 33:951-964. [PMID: 40191718 PMCID: PMC11964884 DOI: 10.32604/or.2024.055508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 04/09/2025] Open
Abstract
Objectives Glioblastoma (GB) is a grade IV glial tumor characterized by high malignancy and dismal prognosis, primarily due to high recurrence rates and therapeutic resistance. The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), regulates signaling pathways, including cell growth, proliferation, survival, migration, and cell death. Many cancers utilize immune checkpoints (ICs) to attenuate immune responses. CD73 is an enzyme that functions as an IC by hydrolyzing AMP to adenosine, suppressing immune cells in the tumor microenvironment. However, the role of CD73 in resistance to EGFR inhibitors is poorly understood. This study aims to elucidate the resistance mechanisms induced by anti-EGFR treatment and to evaluate an anti-CD73 approach to overcome resistance mediated by anti-EGFR monotherapy. Methods The U251 GB cell line was treated with AG1478, an EGFR inhibitor, and the resistance markers MRP-1, PD-L1, and CD73 were evaluated using flow cytometry. Additionally, we assessed the combination effects of AG1478 and APCP (an EGFR and a CD73 inhibitor, respectively) on cell cycle progression, proliferation, apoptosis, and migration in vitro. Results We observed high EGFR, PD-L1, and CD73 expression in human GB cells. The treatment with AG1478 increased the expression of resistance markers MRP-1, PD-L1, and CD73, whereas it decreased CTLA-4. The combination of AG1478 and APCP did not alter proliferation or apoptosis but interfered with cell cycling, arresting the cells in the G1 phase, decreasing cell motility and partially reversing MRP-1 overexpression. Conclusion In summary, our findings indicate that CD73 inhibition has a modest effect in overcoming resistance to EGFR monotherapy in vitro. Thus, further in vivo studies are needed, as the inhibition of both EGFR and CD73 affects cells in the tumor microenvironment and could potentially enhance anti-tumor immunity.
Collapse
Affiliation(s)
- LUIZ FERNANDO LOPES SILVA
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - JULIETE NATHALI SCHOLL
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - AUGUSTO FERREIRA WEBER
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - CAMILA KEHL DIAS
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - PAULINE RAFAELA PIZZATO
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - VINíCIUS PIERDONá LIMA
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - JEAN SÉVIGNY
- Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec City, G1V 0A6, Canada
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec, Université Laval, Québec City, G1V 4G2, Canada
| | - ANA MARIA OLIVEIRA BATTASTINI
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - FABRÍCIO FIGUEIRÓ
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
2
|
Manzanares-Guzmán A, Alfonseca-Ladrón de Guevara AC, Reza-Escobar E, Burciaga-Flores M, Canales-Aguirre A, Esquivel-Solís H, Lugo-Fabres PH, Camacho-Villegas TA. Isolation and Characterization of the First Antigen-Specific EGFRvIII vNAR from Freshwater Stingray ( Potamotrygon spp.) as a Drug Carrier in Glioblastoma Cancer Cells. Int J Mol Sci 2025; 26:876. [PMID: 39940647 PMCID: PMC11817625 DOI: 10.3390/ijms26030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma is the most common and highly malignant brain tumor in adults. New targeted therapeutic approaches are imperative. EGFRvIII has appealing therapeutic targets using monoclonal antibodies. Thus, endeavors toward developing new mAbs therapies for GBM capable of targeting the tumor EGFRvIII biomarker must prevail to improve the patient's prognosis. Here, we isolated and characterized an anti-EGFRvIII vNAR from a non-immune freshwater stingray mixed library, termed vNAR R426. The vNAR R426 and pEGFRvIII interaction was demonstrated by molecular docking and molecular dynamics, and the recognition of EGFRvIII in vitro was further confirmed by cell immunofluorescence staining. Moreover, the vNAR R426 was shown to be an effective cisplatin drug carrier in the U87-MG glioma cell line. The cisplatin-coupled vNAR demonstrated highly significant differences when compared to free CDDP at 72 h. Notably, the cisplatin-vNAR carrier achieved better efficacy in the U87-MG cell line. Thus, we described the vNAR R426 internalization by receptor-mediated endocytosis and the subsequent COPI-mediated nuclear translocation of EGFRvIII and highlighted the importance of this shuttle mechanism to enhance the targeted delivery of cisplatin within the glioma cell's nucleus and improved cytotoxic effect. In conclusion, vNAR R426 could be a potential therapeutic carrier for EGFRvIII-targeted glioblastoma and cancer therapies.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Andrea C. Alfonseca-Ladrón de Guevara
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Elia Reza-Escobar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Mirna Burciaga-Flores
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Carretera Tijuana-Ensenada km107, Ensenada C.P. 22860, Baja California, Mexico;
| | - Alejandro Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Hugo Esquivel-Solís
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Pavel H. Lugo-Fabres
- CONAHCYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| |
Collapse
|
3
|
Gong G, Jiang L, Zhou J, Su Y. Advancements in targeted and immunotherapy strategies for glioma: toward precision treatment. Front Immunol 2025; 15:1537013. [PMID: 39877359 PMCID: PMC11772277 DOI: 10.3389/fimmu.2024.1537013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
In recent years, significant breakthroughs have been made in cancer therapy, particularly with the development of molecular targeted therapies and immunotherapies, owing to advances in tumor molecular biology and molecular immunology. High-grade gliomas (HGGs), characterized by their high malignancy, remain challenging to treat despite standard treatment regimens, including surgery, radiotherapy, chemotherapy, and tumor treating fields (TTF). These therapies provide limited efficacy, highlighting the need for novel treatment strategies. Molecular targeted therapies and immunotherapy have emerged as promising avenues for improving treatment outcomes in high-grade gliomas. This review explores the current status and recent advancements in targeted and immunotherapeutic approaches for high-grade gliomas.
Collapse
Affiliation(s)
- Guangyuan Gong
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Lang Jiang
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Jing Zhou
- Department of Thoracic Surgery, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Yuanchao Su
- Department of Emergency Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| |
Collapse
|
4
|
Ellingson BM, Okobi Q, Chong R, Plawat R, Zhao E, Gafita A, Sonni I, Chun S, Filka E, Yao J, Telesca D, Li S, Li G, Lai A, Nghiemphu P, Czernin J, Nathanson DA, Cloughesy TF. A comparative study of preclinical and clinical molecular imaging response to EGFR inhibition using osimertinib in glioblastoma. Neurooncol Adv 2025; 7:vdaf022. [PMID: 40051661 PMCID: PMC11883343 DOI: 10.1093/noajnl/vdaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background To demonstrate the potential value of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) as a rapid, non-invasive metabolic imaging surrogate for pharmacological modulation of EGFR signaling in EGFR-driven GBM, we synchronously conducted a preclinical imaging study using patient-derived orthotopic xenograft (PDOX) models and validated it in a phase II molecular imaging study in recurrent GBM (rGBM) patients using osimertinib. Methods A GBM PDOX mouse model study was performed concurrently with an open-label, single-arm, single-center, phase II study of osimertinib (NCT03732352) that enrolled 12 patients with rGBM with EGFR alterations. Patients received osimertinib daily and 3 18F-FDG PET scans: two 24 h apart prior to dosing, and one 48 h after dosing. Results GBM PDOX models suggest osimertinib has limited impact on both 18F-FDG uptake (+ 9.8%-+25.9%) and survival (+ 15.5%; P = .01), which may be explained by insufficient exposure in the brain (Kpuu: 0.30) required to robustly inhibit the EGFR alterations found in GBM. Treatment with osimertinib had subtle, but measurable decreases in the linear rate of change of 18F-FDG nSUV growth rate averaging -4.5% per day (P = .01) and change in 18F-FDG uptake was correlated with change in tumor growth rate (R2 = 0.4719, P = .0195). No metabolic (PERCIST) or radiographic (RANO) responses were seen, and no improvements in PFS or OS were observed. Conclusions This study demonstrated the feasibility of using FDG PET as a clinically reliable imaging biomarker for assessing EGFR inhibition in GBM, while revealing osimertinib's limited impact on both metabolic activity and tumor growth in GBM, findings that were concordant between preclinical and clinical observations.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Qunicy Okobi
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Robert Chong
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Rhea Plawat
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Eva Zhao
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Andrei Gafita
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ida Sonni
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Saewon Chun
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Emese Filka
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Shanpeng Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Gang Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Phioanh Nghiemphu
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Johannes Czernin
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Horowitz MA, Ghadiyaram A, Mehkri Y, Chakravarti S, Liu J, Fox K, Gendreau J, Mukherjee D. Surgical resection of glioblastoma in the very elderly: An analysis of survival outcomes using the surveillance, epidemiology, and end results database. Clin Neurol Neurosurg 2024; 245:108469. [PMID: 39079287 DOI: 10.1016/j.clineuro.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Patients with glioblastoma (GBM) often undergo surgery to prolong survival. However, the use of surgery, and more specifically achieving gross total resection (GTR), in patients >80 years old has yet to be fully assessed. Using the Surveillance, Epidemiology, and End Results (SEER) database, we aim to assess the efficacy of surgical resection, radiotherapy (RT) and chemotherapy (CT) on overall survival (OS) in very elderly GBM patients compared to elderly counterparts (age 65-79 years). METHODS The SEER database was queried for all patients >65 years old with GBM (2000-2020). Patients not undergoing surgery or biopsy were excluded. Patients were stratified by age, and demographic relationships were assessed with chi-squared testing for categorical variables. Bivariable models were created using Kaplan-Meier survival estimates. All significant variables from bivariable analysis were included on multivariable Cox survival regression models to determine independent associations between clinical variables and OS. RESULTS A total of 27,090 operative GBM patients were identified; 1868 patients (15.92 %) were very elderly and 10,092 patients (84.38 %) were elderly. Very elderly patients were less likely to undergo GTR (28 % vs 35 %, p<0.001), RT (59 % vs 78 %, p<0.001) and CT (40 % vs 66 %, p<0.001). In multivariable Cox regression analysis, very elderly patients who achieved GTR (HR=.696, p<0.001), received RT (HR=0.583, p<0.001) and underwent CT (HR=0.4197, p<0.001) had significantly improved OS compared to very elderly patients that did not undergo these treatment options. CONCLUSION Currently, very elderly GBM patients undergo lower rates of aggressive surgery, RT and CT. However, very elderly patients that undergo surgery, RT and CT may have a survival advantage. These treatments should be considered as potential options for this patient population.
Collapse
Affiliation(s)
| | - Ashwin Ghadiyaram
- Department of Neurological Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Yusuf Mehkri
- Department of Neurological Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Jiaqi Liu
- Department of Neurological Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Keiko Fox
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julian Gendreau
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debraj Mukherjee
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yousaf MA, Anwer SA, Basheera S, Sivanandan S. Computational investigation of Moringa oleifera phytochemicals targeting EGFR: molecular docking, molecular dynamics simulation and density functional theory studies. J Biomol Struct Dyn 2024; 42:1901-1923. [PMID: 37154824 DOI: 10.1080/07391102.2023.2206288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a prominent target for anticancer therapy due to its role in activating several cell signaling cascades. Clinically approved EGFR inhibitors are reported to show treatment resistance and toxicity, this study, therefore, investigates Moringa oleifera phytochemicals to find potent and safe anti-EGFR compounds. For that, phytochemicals were screened based on drug-likeness and molecular docking analysis followed by molecular dynamics simulation, density functional theory analysis and ADMET analysis to identify the effective inhibitors of EGFR tyrosine kinase (EGFR-TK) domain. Known EGFR-TK inhibitors (1-4 generations) were used as control. Among 146 phytochemicals, 136 compounds showed drug-likeness, of which Delta 7-Avenasterol was the most potential EGFR-TK inhibitor with a binding energy of -9.2 kcal/mol followed by 24-Methylenecholesterol (-9.1 kcal/mol), Campesterol (-9.0 kcal/mol) and Ellagic acid (-9.0 kcal/mol). In comparison, the highest binding affinity from control drugs was displayed by Rociletinib (-9.0 kcal/mol). The molecular dynamics simulation (100 ns) exhibited the structural stability of native EGFR-TK and protein-inhibitor complexes. Further, MM/PBSA computed the binding free energies of protein complex with Delta 7-Avenasterol, 24-Methylenecholesterol, Campesterol and Ellagic acid as -154.559 ± 18.591 kJ/mol, -139.176 ± 19.236 kJ/mol, -136.212 ± 17.598 kJ/mol and -139.513 ± 23.832 kJ/mol, respectively. Non-polar interactions were the major contributors to these energies. The density functional theory analysis also established the stability of these inhibitor compounds. ADMET analysis depicted acceptable outcomes for all top phytochemicals without displaying any toxicity. In conclusion, this report has identified promising EGFR-TK inhibitors to treat several cancers that can be further investigated through laboratory and clinical tests.
Collapse
Affiliation(s)
- Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Biology, Faculty of Science and Technology, Virtual University of Pakistan, Lahore, Pakistan
| | - Sadia Anjum Anwer
- Department of Biology, Faculty of Science and Technology, Virtual University of Pakistan, Lahore, Pakistan
| | - Shefin Basheera
- Department of Biotechnology and Bioinformatics, Saraswathy Thangavelu Extension Centre, A Research Centre of University of Kerala, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Puthenthope, Thiruvananthapuram, India
| | - Sreekumar Sivanandan
- Department of Biotechnology and Bioinformatics, Saraswathy Thangavelu Extension Centre, A Research Centre of University of Kerala, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Puthenthope, Thiruvananthapuram, India
| |
Collapse
|
7
|
Dyshlovoy SA, Hauschild J, Venz S, Krisp C, Kolbe K, Zapf S, Heinemann S, Fita KD, Shubina LK, Makarieva TN, Guzii AG, Rohlfing T, Kaune M, Busenbender T, Mair T, Moritz M, Poverennaya EV, Schlüter H, Serdyuk V, Stonik VA, Dierlamm J, Bokemeyer C, Mohme M, Westphal M, Lamszus K, von Amsberg G, Maire CL. Rhizochalinin Exhibits Anticancer Activity and Synergizes with EGFR Inhibitors in Glioblastoma In Vitro Models. Mol Pharm 2023; 20:4994-5005. [PMID: 37733943 DOI: 10.1021/acs.molpharmaceut.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Laboratory of Biologically Active Compounds, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald 17489, Germany
| | - Christoph Krisp
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katharina Kolbe
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Sarina Heinemann
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Krystian D Fita
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thomas Mair
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manuela Moritz
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ekaterina V Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Volodymyr Serdyuk
- Zentrum für Molekulare Neurobiologie (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Malte Mohme
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
8
|
Khan S, Martinez-Ledesma E, Dong J, Mahalingam R, Park SY, Piao Y, Koul D, Balasubramaniyan V, de Groot JF, Yung WKA. Neuronal differentiation drives the antitumor activity of mitogen-activated protein kinase kinase (MEK) inhibition in glioblastoma. Neurooncol Adv 2023; 5:vdad132. [PMID: 38130900 PMCID: PMC10734674 DOI: 10.1093/noajnl/vdad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) amplification is found in nearly 40%-50% of glioblastoma cases. Several EGFR inhibitors have been tested in glioblastoma but have failed to demonstrate long-term therapeutic benefit, presumably because of acquired resistance. Targeting EGFR downstream signaling with mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) inhibitors would be a more effective approach to glioblastoma treatment. We tested the therapeutic potential of MEK1/2 inhibitors in glioblastoma using 3D cultures of glioma stem-like cells (GSCs) and mouse models of glioblastoma. Methods Several MEK inhibitors were screened in an unbiased high-throughput platform using GSCs. Cell death was evaluated using flow cytometry and Western blotting (WB) analysis. RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and WB analysis were used to identify and validate neuronal differentiation. Results Unbiased screening of multiple MEK inhibitors in GSCs showed antiproliferative and apoptotic cell death in sensitive cell lines. An RNA-seq analysis of cells treated with trametinib, a potent MEK inhibitor, revealed upregulation of neurogenesis and neuronal differentiation genes, such as achaete-scute homolog 1 (ASCL1), delta-like 3 (DLL3), and neurogenic differentiation 4 (NeuroD4). We validated the neuronal differentiation phenotypes in vitro and in vivo using selected differentiation markers (β-III-tubulin, ASCL1, DLL3, and NeuroD4). Oral treatment with trametinib in an orthotopic GSC xenograft model significantly improved animal survival, with 25%-30% of mice being long-term survivors. Conclusions Our findings demonstrated that MEK1/2 inhibition promotes neuronal differentiation in glioblastoma, a potential additional mechanism of action of MEK1/2 inhibitors. Thus, MEK inhibitors could be efficacious in glioblastoma patients with activated EGFR/MAPK signaling.
Collapse
Affiliation(s)
- Sabbir Khan
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Jianwen Dong
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajasekaran Mahalingam
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soon Young Park
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuji Piao
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - John F de Groot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Yekula A, Hsia T, Kitchen RR, Chakrabortty SK, Yu W, Batool SM, Lewis B, Szeglowski AJ, Weissleder R, Lee H, Chi AS, Batchelor T, Carter BS, Breakefield XO, Skog J, Balaj L. Longitudinal analysis of serum-derived extracellular vesicle RNA to monitor dacomitinib treatment response in EGFR-amplified recurrent glioblastoma patients. Neurooncol Adv 2023; 5:vdad104. [PMID: 37811539 PMCID: PMC10559837 DOI: 10.1093/noajnl/vdad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R Kitchen
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | | | - Wei Yu
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | - Syeda M Batool
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Lewis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antoni J Szeglowski
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Johan Skog
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, Massachusetts, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Guo G, Gong K, Beckley N, Zhang Y, Yang X, Chkheidze R, Hatanpaa KJ, Garzon-Muvdi T, Koduru P, Nayab A, Jenks J, Sathe AA, Liu Y, Xing C, Wu SY, Chiang CM, Mukherjee B, Burma S, Wohlfeld B, Patel T, Mickey B, Abdullah K, Youssef M, Pan E, Gerber DE, Tian S, Sarkaria JN, McBrayer SK, Zhao D, Habib AA. EGFR ligand shifts the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastoma by suppressing invasion through BIN3 upregulation. Nat Cell Biol 2022; 24:1291-1305. [PMID: 35915159 PMCID: PMC9389625 DOI: 10.1038/s41556-022-00962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arifa Nayab
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer Jenks
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bryan Wohlfeld
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Toral Patel
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Mickey
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kalil Abdullah
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Youssef
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shulan Tian
- Department of Quantitative Heath Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samuel K McBrayer
- Department of Pediatrics and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
11
|
Lv D, Gimple RC, Zhong C, Wu Q, Yang K, Prager BC, Godugu B, Qiu Z, Zhao L, Zhang G, Dixit D, Lee D, Shen JZ, Li X, Xie Q, Wang X, Agnihotri S, Rich JN. PDGF signaling inhibits mitophagy in glioblastoma stem cells through N 6-methyladenosine. Dev Cell 2022; 57:1466-1481.e6. [PMID: 35659339 PMCID: PMC9239307 DOI: 10.1016/j.devcel.2022.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/14/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
Dysregulated growth factor receptor pathways, RNA modifications, and metabolism each promote tumor heterogeneity. Here, we demonstrate that platelet-derived growth factor (PDGF) signaling induces N6-methyladenosine (m6A) accumulation in glioblastoma (GBM) stem cells (GSCs) to regulate mitophagy. PDGF ligands stimulate early growth response 1 (EGR1) transcription to induce methyltransferase-like 3 (METTL3) to promote GSC proliferation and self-renewal. Targeting the PDGF-METTL3 axis inhibits mitophagy by regulating m6A modification of optineurin (OPTN). Forced OPTN expression phenocopies PDGF inhibition, and OPTN levels portend longer survival of GBM patients; these results suggest a tumor-suppressive role for OPTN. Pharmacologic targeting of METTL3 augments anti-tumor efficacy of PDGF receptor (PDGFR) and mitophagy inhibitors in vitro and in vivo. Collectively, we define PDGF signaling as an upstream regulator of oncogenic m6A regulation, driving tumor metabolism to promote cancer stem cell maintenance, highlighting PDGF-METTL3-OPTN signaling as a GBM therapeutic target.
Collapse
Affiliation(s)
- Deguan Lv
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cuiqing Zhong
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Qiulian Wu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Briana C Prager
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhixin Qiu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Linjie Zhao
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Derrick Lee
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Xiqing Li
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, China
| | - Qi Xie
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xiuxing Wang
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jeremy N Rich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.
| |
Collapse
|
12
|
CBX3 accelerates the malignant progression of glioblastoma multiforme by stabilizing EGFR expression. Oncogene 2022; 41:3051-3063. [PMID: 35459780 DOI: 10.1038/s41388-022-02296-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
CBX3, also known as HP1γ, is a major isoform of heterochromatin protein 1, whose deregulation has been reported to promote the development of human cancers. However, the molecular mechanism of CBX3 in glioblastoma multiforme (GBM) are unclear. Our study reported the identification of CBX3 as a potential therapeutic target for GBM. Briefly, we found that, CBX3 is significantly upregulated in GBM and reduces patient survival. In addition, functional assays demonstrated that CBX3 significantly promote the proliferation, invasion and tumorigenesis of GBM cells in vitro and in vivo. Mechanistically, Erlotinib, a small molecule targeting epidermal growth factor receptor (EGFR) tyrosine kinase, was used to demonstrate that CBX3 direct the malignant progression of GBM are EGFR dependent. Previous studies have shown that PARK2(Parkin) and STUB1(Carboxy Terminus of Hsp70-Interacting Protein) are EGFR-specific E3 ligases. Notably, we verified that CBX3 directly suppressed PARK2 and STUB1 at the transcriptional level through its CD domain to reduce the ubiquitination of EGFR. Moreover, the CSD domain of CBX3 interacted with PARK2 and regulated its ubiquitination to further reduce its protein level. Collectively, these results revealed an unknown mechanism underlying the pathogenesis of GBM and confirmed that CBX3 is a promising therapeutic target.
Collapse
|
13
|
Owen S, Alken S, Alshami J, Guiot MC, Kavan P, Reardon DA, Muanza T, Gibson N, Pemberton K, Solca F, Cseh A, Saran F. Genomic Analysis of Tumors from Patients with Glioblastoma with Long-Term Response to Afatinib. Onco Targets Ther 2022; 15:367-380. [PMID: 35422631 PMCID: PMC9005142 DOI: 10.2147/ott.s346725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is an aggressive form of central nervous system tumor. Recurrence rates following primary therapy are high, and few second-line treatment options provide durable clinical benefit. Aberrations of the epidermal growth factor receptor (EGFR) gene are observed in up to 57% of glioblastoma cases and EGFR overexpression has been identified in approximately 60% of primary glioblastomas. In preclinical studies, afatinib, a second-generation ErbB blocker, inhibited cell proliferation in cells harboring mutations commonly found in glioblastoma. In two previous Phase I/II studies of afatinib plus temozolomide in patients with glioblastoma, limited efficacy was observed; however, there was notable benefit in patients with the EGFR variant III (EGFRvIII) mutation, EGFR amplification, and those with loss of phosphatase and tensin homolog (PTEN). This case series report details treatment histories of three long-term responders from these trials. Next-generation sequencing of tumor samples identified alterations in a number of cancer-related genes, including mutations in, and amplification of, EGFR. Tumor samples from all three patients shared favorable prognostic factors, eg O6-methylguanine-DNA methyl-transferase (MGMT) gene promoter methylation; however, negative prognostic factors were also observed, suggesting that these shared genetic features did not completely account for the favorable responses. The genetic profile of the tumor from Patient 1 showed clear differences from the other two tumors: lack of involvement of EGFR aberrations but with a mutation occurring in PTPN11. Preclinical studies showed that single-agent afatinib and temozolomide both separately inhibit the growth of tumors with a C-terminal EGFR truncation, thus providing further rationale for combining these two agents in the treatment of glioblastomas harboring EGFR aberrations. These findings suggest that afatinib may provide treatment benefit in patients with glioblastomas that harbor ErbB family aberrations and, potentially, other genetic aberrations. Further studies are needed to establish which patients with newly diagnosed/recurrent glioblastomas may potentially benefit from treatment with afatinib.
Collapse
Affiliation(s)
- Scott Owen
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Scheryll Alken
- Radiation Oncology Unit, Royal Marsden Hospital, London, UK
- St James’s Hospital, Dublin, Ireland
| | - Jad Alshami
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Marie-Christine Guiot
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Neuropathology Division, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Petr Kavan
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thierry Muanza
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Neuropathology Division, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Radiation Oncology, Jewish General Hospital, Montreal, Canada
| | - Neil Gibson
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Flavio Solca
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Agnieszka Cseh
- Department of Medical Affairs, Boehringer Ingelheim International, Ingelheim am Rhein, Germany
| | - Frank Saran
- Radiation Oncology Unit, Royal Marsden Hospital, London, UK
- Department of Blood and Cancer, Auckland City Hospital, Auckland, New Zealand
- Correspondence: Frank Saran, Auckland City Hospital, Cancer and Blood Service, Building 8, 99 Park Road, Grafton, Private Bag 92024, Auckland, 1142, New Zealand, Tel +64 09 623 6046, Email
| |
Collapse
|
14
|
Bruno F, Pellerino A, Palmiero R, Bertero L, Mantovani C, Garbossa D, Soffietti R, Rudà R. Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects. Biomedicines 2022; 10:644. [PMID: 35327445 PMCID: PMC8945166 DOI: 10.3390/biomedicines10030644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour. As GBM incidence is associated with age, elderly people represent a consistent subgroup of patients. Elderly people with GBM show dismal prognosis (about 6 months) and limited response to treatments. Age is a negative prognostic factor, which correlates with clinical frailty, poorer tolerability to surgery or adjuvant radio-chemotherapy, and higher occurrence of comorbidities and/or secondary complications. The aim of this paper is to review the clinical and molecular characteristics, current therapeutic options, and prognostic factors of elderly patients with GBM.
Collapse
Affiliation(s)
- Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy; (A.P.); (R.P.); (R.S.); (R.R.)
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy; (A.P.); (R.P.); (R.S.); (R.R.)
| | - Rosa Palmiero
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy; (A.P.); (R.P.); (R.S.); (R.R.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Cristina Mantovani
- Division of Radiotherapy, Department of Oncology, University and City of Health and Science, 10126 Turin, Italy;
| | - Diego Garbossa
- Division of Neurosurgery, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy;
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy; (A.P.); (R.P.); (R.S.); (R.R.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science, 10126 Turin, Italy; (A.P.); (R.P.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco and Treviso Hospitals, 31100 Treviso, Italy
| |
Collapse
|
15
|
Tang CP, Clark O, Ferrarone JR, Campos C, Lalani AS, Chodera JD, Intlekofer AM, Elemento O, Mellinghoff IK. GCN2 kinase activation by ATP-competitive kinase inhibitors. Nat Chem Biol 2022; 18:207-215. [PMID: 34949839 PMCID: PMC9549920 DOI: 10.1038/s41589-021-00947-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
Small-molecule kinase inhibitors represent a major group of cancer therapeutics, but tumor responses are often incomplete. To identify pathways that modulate kinase inhibitor response, we conducted a genome-wide knockout (KO) screen in glioblastoma cells treated with the pan-ErbB inhibitor neratinib. Loss of general control nonderepressible 2 (GCN2) kinase rendered cells resistant to neratinib, whereas depletion of the GADD34 phosphatase increased neratinib sensitivity. Loss of GCN2 conferred neratinib resistance by preventing binding and activation of GCN2 by neratinib. Several other Food and Drug Administration (FDA)-approved inhibitors, such erlotinib and sunitinib, also bound and activated GCN2. Our results highlight the utility of genome-wide functional screens to uncover novel mechanisms of drug action and document the role of the integrated stress response (ISR) in modulating the response to inhibitors of oncogenic kinases.
Collapse
Affiliation(s)
- Colin P Tang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Owen Clark
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Carl Campos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - John D Chodera
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Physics and Biophysics Program, Weill Cornell Medicine, New York, NY, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Pharmacology Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Umphlett M, Bilal KH, Martini ML, Suwala AK, Ahuja S, Rashidipour O, Germano I, Snuderl M, Morgenstern P, Tsankova NM. IDH-mutant astrocytoma with EGFR amplification-Genomic profiling in four cases and review of literature. Neurooncol Adv 2022; 4:vdac067. [PMID: 35669011 PMCID: PMC9159664 DOI: 10.1093/noajnl/vdac067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Mount Sinai West, New York, New York, USA
| | | | - Michael L Martini
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, California, USA
| | - Sadhna Ahuja
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Isabelle Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Health, New York, New York, USA
| | - Peter Morgenstern
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Zhang B, Xu Z, Liu Q, Xia S, Liu Z, Liao Z, Gou S. Design, synthesis and biological evaluation of cinnamamide-quinazoline derivatives as potential EGFR inhibitors to reverse T790M mutation. Bioorg Chem 2021; 117:105420. [PMID: 34655841 DOI: 10.1016/j.bioorg.2021.105420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Gatekeeper T790M mutation in EGFR is the most common factor for acquired resistance. Acrylamide-bearing 4-anilinoquinazoline scaffold are powerful irreversible inhibitors for overcoming resistance. In this work, three series of EGFR inhibitors derived from incorporation of cinnamamide into the quinazoline scaffold were designed and synthesized to reverse resistance resulting from insurgence of T790M mutation. SAR studies revealed that methoxy and acetoxy substitutions on the cinnamic phenyl ring were found to elevate the activity. In particular, compound 7g emerged as the most potent derivative against mutant-type H1975 cells, which exhibited comparable activity to osimertinib (0.95 μM) towards H1975 cells with an IC50 value of 1.22 μM. Kinase inhibition studies indicated that 7g showed excellent inhibitory effect on EGFRT790M enzyme, which was 11 times more effective than gefitinib. Besides, selectivity index of 7g toward the EGFRT790M mutant over the EGFRWT is 2.72, hinting its effect of reducing off-target. Mechanism study indicated that 7g induced apoptosis of H1975 cells and arrest the cell cycle at G2/M phase in a dose-dependent manner. Moreover, 7g could significantly inhibit the expression of p-EGFR and its downstream p-AKT and p-ERK in H1975 cells. Molecular docking was also performed to gain insights into the ligand-binding interactions of 7g inside EGFRWT and EGFRT790M binding sites.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shengjin Xia
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
18
|
Sohn B, An C, Kim D, Ahn SS, Han K, Kim SH, Kang SG, Chang JH, Lee SK. Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant. J Neurooncol 2021; 155:267-276. [PMID: 34648115 PMCID: PMC8651601 DOI: 10.1007/s11060-021-03870-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Purpose In glioma, molecular alterations are closely associated with disease prognosis. This study aimed to develop a radiomics-based multiple gene prediction model incorporating mutual information of each genetic alteration in glioblastoma and grade 4 astrocytoma, IDH-mutant. Methods From December 2014 through January 2020, we enrolled 418 patients with pathologically confirmed glioblastoma (based on the 2016 WHO classification). All selected patients had preoperative MRI and isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor amplification, and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss status. Patients were randomly split into training and test sets (7:3 ratio). Enhancing tumor and peritumoral T2-hyperintensity were auto-segmented, and 660 radiomics features were extracted. We built binary relevance (BR) and ensemble classifier chain (ECC) models for multi-label classification and compared their performance. In the classifier chain, we calculated the mean absolute Shapley value of input features. Results The micro-averaged area under the curves (AUCs) for the test set were 0.804 and 0.842 in BR and ECC models, respectively. IDH mutation status was predicted with the highest AUCs of 0.964 (BR) and 0.967 (ECC). The ECC model showed higher AUCs than the BR model for ATRX (0.822 vs. 0.775) and MGMT promoter methylation (0.761 vs. 0.653) predictions. The mean absolute Shapley values suggested that predicted outcomes from the prior classifiers were important for better subsequent predictions along the classifier chains. Conclusion We built a radiomics-based multiple gene prediction chained model that incorporates mutual information of each genetic alteration in glioblastoma and grade 4 astrocytoma, IDH-mutant and performs better than a simple bundle of binary classifiers using prior classifiers’ prediction probability. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03870-z.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Chansik An
- Department of Radiology and Research Institute, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Dain Kim
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
El-Meguid EAA, Moustafa GO, Awad HM, Zaki ER, Nossier ES. Novel benzothiazole hybrids targeting EGFR: Design, synthesis, biological evaluation and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Maggio I, Franceschi E, Gatto L, Tosoni A, Di Nunno V, Tonon C, Brandes AA. Radiomics, mirnomics, and radiomirRNomics in glioblastoma: defining tumor biology from shadow to light. Expert Rev Anticancer Ther 2021; 21:1265-1272. [PMID: 34433354 DOI: 10.1080/14737140.2021.1971518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glioblastoma is a highly aggressive brain tumor with an extremely poor prognosis. Genetic characterization of this tumor has identified alterations with prognostic and therapeutic impact, and many efforts are being made to improve molecular knowledge on glioblastoma. Invasive procedures, such as tumor biopsy or radical resection, are needed to characterize the tumor. AREAS COVERED The role of microRNA in cancer is an expanding field of research as many microRNAs have been shown to correlate with patient prognosis and treatment response. Novel methodologies like radiomics, radiogenomics, and radiomiRNomics are under evaluation to improve the amount of prognostic and predictive biomarkers available. EXPERT OPINION The role of radiomics, radiogenomics, and radiomiRNomic for the characterization of glioblastoma will further improve in the coming years.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Caterina Tonon
- Ircss Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Bologna, Italy
| |
Collapse
|
21
|
Wang Z, Peet NP, Zhang P, Jiang Y, Rong L. Current Development of Glioblastoma Therapeutic Agents. Mol Cancer Ther 2021; 20:1521-1532. [PMID: 34172531 DOI: 10.1158/1535-7163.mct-21-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans. Over the past several decades, despite improvements in neurosurgical techniques, development of powerful chemotherapeutic agents, advances in radiotherapy, and comprehensive genomic profiling and molecular characterization, treatment of GBM has achieved very limited success in increasing overall survival. Thus, identifying and understanding the key molecules and barriers responsible for the malignant phenotypes and treatment resistance of GBM will yield new potential therapeutic targets. We review the most recent development of receptor tyrosine kinase targeted therapy for GBM and discuss the current status of several novel strategies with the emphasis on blood-brain barrier penetration as a major obstacle for small-molecule drugs to achieve their therapeutic goals. Likewise, a major opportunity for the treatment of GBM lies in the use of biomarkers for the discovery and development of new receptor tyrosine kinase targeted therapy.
Collapse
Affiliation(s)
- Zilai Wang
- Chicago BioSolutions, Inc., Chicago, Illinois.
| | | | - Pin Zhang
- Chicago BioSolutions, Inc., Chicago, Illinois
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
23
|
Greenall SA, McKenzie M, Seminova E, Dolezal O, Pearce L, Bentley J, Kuchibhotla M, Chen SC, McDonald KL, Kornblum HI, Endersby R, Adams TE, Johns TG. Most clinical anti-EGFR antibodies do not neutralize both wtEGFR and EGFRvIII activation in glioma. Neuro Oncol 2021; 21:1016-1027. [PMID: 31002307 DOI: 10.1093/neuonc/noz073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although epidermal growth factor receptor (EGFR) and its truncated, autoactive mutant EGFR variant (v)III are bona fide drivers of tumorigenesis in some gliomas, therapeutic antibodies developed to neutralize this axis have not improved patient survival in a limited number of trials. Previous studies using cells transduced to exogenously express EGFRvIII may have compromised mechanistic studies of anti-EGFR therapeutics. Therefore, we re-assessed the activity of clinical EGFR antibodies in patient-derived gliomaspheres that endogenously express EGFRvIII. METHODS The antitumor efficacy of antibodies was assessed using in vitro proliferation assays and intracranial orthografts. Receptor activation status, antibody engagement, oncogenic signaling, and mechanism of action after antibody treatment were analyzed by immunoprecipitation and western blotting. Tracking of antibody receptor complexes was conducted using immunofluorescence. RESULTS The EGFR domain III-targeting antibodies cetuximab, necitumumab, nimotuzumab, and matuzumab did not neutralize EGFRvIII activation. Chimeric monoclonal antibody 806 (ch806) neutralized EGFRvIII, but not wild-type (wt)EGFR activation. Panitumumab was the only antibody that neutralized both EGFRvIII and wtEGFR, leading to reduction of p-S6 signaling and superior in vitro and in vivo antitumor activity. Mechanistically, panitumumab induced recycling of receptor but not degradation as previously described. Panitumumab, via its unique avidity, stably cross-linked EGFRvIII to prevent its activation, while ch806 induced a marked reduction in the active EGFRvIII disulphide-bonded dimer. CONCLUSIONS We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII. The superior in vitro and in vivo antitumor activity of panitumumab supports further clinical testing of this antibody against EGFRvIII-stratified glioma.
Collapse
Affiliation(s)
- Sameer A Greenall
- Department of Oncology, Monash University and Monash Health, Clayton, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Brain Cancer Discovery Collaborative, New South Wales, Australia
| | - Mathew McKenzie
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | | | - Olan Dolezal
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | | | - John Bentley
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Mani Kuchibhotla
- Cancer Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Shengnan C Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Kerrie L McDonald
- Brain Cancer Discovery Collaborative, New South Wales, Australia.,Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, New South Wales, Australia
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, California, USA
| | - Raelene Endersby
- Brain Cancer Discovery Collaborative, New South Wales, Australia.,Cancer Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | | | - Terrance G Johns
- Brain Cancer Discovery Collaborative, New South Wales, Australia.,Cancer Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
24
|
Zhang B, Liu Z, Xia S, Liu Q, Gou S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur J Med Chem 2021; 216:113300. [PMID: 33640672 DOI: 10.1016/j.ejmech.2021.113300] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Multi-target, especially dual-target, drug design has become a popular research field for cancer treatment. Development of small molecule dual-target inhibitors through hybridization strategy can provide highly potent and selective anticancer agents. In this study, three series of quinazoline derivatives bearing a benzene-sulfonamide moiety were designed and synthesized as dual EGFR/CAIX inhibitors. All the synthesized compounds were evaluated against epidermoid carcinoma (A431) and non-small cell lung cancer (A549 and H1975) cell lines, which displayed weak to potent anticancer activity. In particular, compound 8v emerged as the most potent derivative against mutant-type H1975 cells, which exhibited comparable activity to osimertinib. Importantly, 8v exhibited stronger anti-proliferative activity than osimertinib against H1975 cells under hypoxic condition. Kinase inhibition studies indicated that 8v showed excellent inhibitory effect on EGFRT790M enzyme, which was 41 times more effective than gefitinib and almost equal to osimertinib. Mechanism studies revealed that 8v exhibited remarkable CAIX inhibitory effect comparable to acetazolamide and significantly inhibited the expression of p-EGFR as well as its downstream p-AKT and p-ERK in H1975 cells. Notably, 8v was found to inhibit the expression of CAIX and its upstream HIF-1α in H1975 cells under hypoxic condition. Molecular docking was also performed to gain insights into the ligand-binding interactions of 8v inside EGFRWT, EGFRT790M and CAIX binding sites.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shengjin Xia
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
25
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
26
|
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways 'Lock up the beast'. Ecancermedicalscience 2021; 15:1176. [PMID: 33680090 PMCID: PMC7929780 DOI: 10.3332/ecancer.2021.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis-despite aggressive primary treatment composed of surgery, radiotherapy and chemotherapy, median survival is still around 15 months. It starts to grow again after a year of treatment and eventually nothing is effective at this stage. Recurrent GBM is one of the most disappointing fields for researchers in which their efforts have gained no benefit for patients. They were directed for a long time towards understanding the molecular basis that leads to the development of GBM. It is now known that GBM is a heterogeneous disease and resistance comes mainly from the regrowth of malignant cells after eradicating specific clones by targeted treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, vascular endothelial growth factor receptor are known to be highly active in primary and recurrent GBM through different underlying pathways, despite this bevacizumab is the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immunotherapy is another important promising modality of treatment of GBM, after proper understanding of the microenvironment of the tumour and overcoming the reasons that historically stigmatise GBM as an 'immunologically cold tumour'. Radiotherapy can augment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy which targets immune pathways at different stages and through different receptors further enhances immune stimulation against GBM. Delivery of pro-drugs to be activated at the tumour site and suicidal genes by gene therapy using different vectors shows promising results. Despite using neurotropic viral vectors specifically targeting glial cells (which are the cells of origin of GBM), no significant improvement of overall-survival has been seen as yet. Non-viral vectors 'polymeric and non-polymeric' show significant tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, in this review, we aim to study the possible role of different molecular pathways that are involved in GBM's recurrence, we will also review the most relevant and recent clinical experience with targeted treatments and immunotherapies. We will discuss trials utilised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent GBM pointing to the causes of potential disappointing preliminary results of some of them. Additionally, we are suggesting a possible future treatment based on recent successful clinical data that could alter the outcome for GBM patients.
Collapse
Affiliation(s)
- Shaimaa M El-Khayat
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21568, Egypt
| | - Waleed O Arafat
- Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
27
|
Ohkawa Y, Wade A, Lindberg OR, Chen KY, Tran VM, Brown SJ, Kumar A, Kalita M, James CD, Phillips JJ. Heparan Sulfate Synthesized by Ext1 Regulates Receptor Tyrosine Kinase Signaling and Promotes Resistance to EGFR Inhibitors in GBM. Mol Cancer Res 2021; 19:150-161. [PMID: 33028660 PMCID: PMC7785678 DOI: 10.1158/1541-7786.mcr-20-0420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/06/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Signaling from multiple receptor tyrosine kinases (RTK) contributes to therapeutic resistance in glioblastoma (GBM). Heparan sulfate (HS), present on cell surfaces and in the extracellular matrix, regulates cell signaling via several mechanisms. To investigate the role for HS in promoting RTK signaling in GBM, we generated neural progenitor cells deficient for HS by knockout of the essential HS-biosynthetic enzyme Ext1, and studied tumor initiation and progression. HS-null cells had decreased proliferation, invasion, and reduced activation of multiple RTKs compared with control. In vivo tumor establishment was significantly decreased, and rate of tumor growth reduced with HS-deficient cells implanted in an HS-poor microenvironment. To investigate if HS regulates RTK activation through platelet-derived growth factor receptor α (PDGFRα) signaling, we removed cell surface HS in patient-derived GBM lines and identified reduced cell surface PDGF-BB ligand. Reduced ligand levels were associated with decreased phosphorylation of PDGFRα, suggesting HS promotes ligand-receptor interaction. Using human GBM tumorspheres and a murine GBM model, we show that ligand-mediated signaling can partially rescue cells from targeted RTK inhibition and that this effect is regulated by HS. Indeed, tumor cells deficient for HS had increased sensitivity to EGFR inhibition in vitro and in vivo. IMPLICATIONS: Our study shows that HS expressed on tumor cells and in the tumor microenvironment regulates ligand-mediated signaling, promoting tumor cell proliferation and invasion, and these factors contribute to decreased tumor cell response to targeted RTK inhibition.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anna Wade
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Olle R Lindberg
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Katharine Y Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Spencer J Brown
- Departments of Bioengineering and Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Mausam Kalita
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
28
|
Increased Radiation-Associated T-Cell Infiltration in Recurrent IDH-Mutant Glioma. Int J Mol Sci 2020; 21:ijms21207801. [PMID: 33096928 PMCID: PMC7590222 DOI: 10.3390/ijms21207801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
Most gliomas are associated with a fatal prognosis and remain incurable because of their infiltrative growth. Consequently, the addition of immunotherapy to conventional therapy may improve patient outcomes. Here, we analyzed T-cell infiltration and, therefore, a major prerequisite for successful immunotherapy in a series of primary (n = 78) and recurrent (n = 66) isocitrate dehydrogenase (IDH)-mutant glioma and their changes following treatment with radio- and/or chemotherapy. After multicolor immunofluorescence staining, T cells were counted in entire tumor sections using a software-based setup. Newly diagnosed diffuse IDH-mutant gliomas displayed a median T-cell infiltration of 0.99 T cells/mm2 (range: 0-48.97 CD3+ T cells/mm2), which was about two-fold increased for CD3+, helper, and cytotoxic T cells in recurrent glioma. Furthermore, T-cell infiltration of recurrent tumors was associated with the type of adjuvant treatment of the primary tumor. Interestingly, only glioma patients solely receiving radiotherapy presented consistently with increased T-cell infiltration in their recurrent tumors. This was confirmed in a subset of 27 matched pairs. In conclusion, differences in the T-cell infiltration of primary and recurrent gliomas were demonstrated, and evidence was provided for a beneficial long-term effect on T-cell infiltration upon treatment with radiotherapy.
Collapse
|
29
|
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22:1073-1113. [PMID: 32328653 PMCID: PMC7594557 DOI: 10.1093/neuonc/noaa106] [Citation(s) in RCA: 703] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are the most common form of malignant primary brain tumor and an important cause of morbidity and mortality. In recent years there have been important advances in understanding the molecular pathogenesis and biology of these tumors, but this has not translated into significantly improved outcomes for patients. In this consensus review from the Society for Neuro-Oncology (SNO) and the European Association of Neuro-Oncology (EANO), the current management of isocitrate dehydrogenase wildtype (IDHwt) glioblastomas will be discussed. In addition, novel therapies such as targeted molecular therapies, agents targeting DNA damage response and metabolism, immunotherapies, and viral therapies will be reviewed, as well as the current challenges and future directions for research.
Collapse
Affiliation(s)
- Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eudocia Quant Lee
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Chang
- University of California San Francisco, San Francisco, California, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy F Cloughesy
- David Geffen School of Medicine, Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - John F DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Monika E Hegi
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Emilie Le Rhun
- University of Lille, Inserm, Neuro-oncology, General and Stereotaxic Neurosurgery service, University Hospital of Lille, Lille, France; Breast Cancer Department, Oscar Lambret Center, Lille, France and Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Schiff
- University of Virginia School of Medicine, Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague and Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Jonathan Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Andreas von Deimling
- Neuropathology and Clinical Cooperation Unit Neuropathology, University Heidelberg and German Cancer Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neuro-oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - David A Reardon
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
Kopylov AM, Zavyalova EG, Pavlova GV, Pronin IN. [Theranostics for glioblastoma with monoclonal antibodies to the epidermal growth factor receptor]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2020; 84:113-118. [PMID: 32649821 DOI: 10.17116/neiro202084031113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review is devoted to analysis of the prospects of theranostics for multiform glioblastoma with monoclonal antibodies to the epidermal growth factor receptor (EGFR). Treatment of various malignancies demonstrated high potential of the use of EGFR. However, in case of glioblastoma, the effectiveness of monoclonal antibodies to EGFR is constrained by the absence of informative criteria for assessing the effectiveness of diagnosis and treatment of disease.
Collapse
Affiliation(s)
- A M Kopylov
- Lomonosov Moscow State University, Moscow, Russia.,Apto-Pharm LLC, Moscow, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Moscow, Russia.,Apto-Pharm LLC, Moscow, Russia
| | - G V Pavlova
- Apto-Pharm LLC, Moscow, Russia.,Institute of Gene Biology of RAS, Moscow, Russia.,Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
31
|
Yu X, Zhang A, Sun G, Li X. Molecular selectivity design of mitogen-inducible gene-derived phosphopeptides between oncogenic HER kinases. J Mol Graph Model 2020; 99:107661. [PMID: 32574989 DOI: 10.1016/j.jmgm.2020.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
Abstract
Mitogen-inducible gene (MIG) is a natural negative regulator of the oncogenic HER kinase signaling by binding at the activation interface of kinase domain to disrupt the kinase dimerization. In this study, we systematically examine the binding structures, dynamics and energetics of MIG region 2 to four HER kinases based on their crystal or modeled complex structures, and identify an 8-mer phosphopeptide segment pYpY from the core strand sequence of MIG region 2 as the binding hotspot of MIG protein to HER kinases. We demonstrate that the small pYpY phosphopeptide can partially restore the binding affinity of full-length MIG protein, but exhibit a moderate selectivity over different HER kinases (S = 2.3-fold). In addition, the two phosphotyrosine residues pTyr394 and pTyr395 play an essential role in MIG-HER binding; dephosphorylation of them would fully eliminate the binding capability. A machine evolution algorithm is used to optimize the wild-type pYpY phosphopeptide, aiming to simultaneously improve affinity for these kinases and to maximize the affinity gap between different kinases. Consequently, a population is computationally evolved as selective phosphopeptide candidates; the dissociation constants of four representatives with HER kinases are systematically determined using binding affinity analysis, from which their selectivity is derived. The designed pYpYp3 phosphopeptide possesses a high selectivity over different HER kinases (S = 4.8-fold) and satisfactory affinity profile to these kinase (KD = 140-1000 μM). Structural analysis observes that the global binding modes of pYpYp3 to different kinases are roughly consistent, but its local conformation may vary considerably, thus conferring specificity to the phosphopeptide.
Collapse
Affiliation(s)
- Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Aiying Zhang
- Orthopaedic Trauma, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guoyu Sun
- Intensive Care Unit, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
32
|
Chi AS, Cahill DP, Reardon DA, Wen PY, Mikkelsen T, Peereboom DM, Wong ET, Gerstner ER, Dietrich J, Plotkin SR, Norden AD, Lee EQ, Nayak L, Tanaka S, Wakimoto H, Lelic N, Koerner MV, Klofas LK, Bertalan MS, Arrillaga-Romany IC, Betensky RA, Curry WT, Borger DR, Balaj L, Kitchen RR, Chakrabortty SK, Valentino MD, Skog J, Breakefield XO, Iafrate AJ, Batchelor TT. Exploring Predictors of Response to Dacomitinib in EGFR-Amplified Recurrent Glioblastoma. JCO Precis Oncol 2020; 4:1900295. [PMID: 32923886 DOI: 10.1200/po.19.00295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.
Collapse
Affiliation(s)
- Andrew S Chi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daniel P Cahill
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A Reardon
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Tom Mikkelsen
- Ontario Brain Institute, Toronto, Ontario, Canada.,Henry Ford Hospital, Detroit, MI
| | | | - Eric T Wong
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Jorg Dietrich
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Scott R Plotkin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew D Norden
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Eudocia Q Lee
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Lakshmi Nayak
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Shota Tanaka
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nina Lelic
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mara V Koerner
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lindsay K Klofas
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mia S Bertalan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | - William T Curry
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Darrel R Borger
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | - A John Iafrate
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tracy T Batchelor
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
A comprehensive overview on the molecular biology of human glioma: what the clinician needs to know. Clin Transl Oncol 2020; 22:1909-1922. [PMID: 32222898 DOI: 10.1007/s12094-020-02340-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The molecular biology of human glioma is a complex and fast-growing field in which basic research needs to meet clinical expectations in terms of anti-tumor efficacy. Although much effort is being done in molecular biology research, significant contribution to the quality of life and overall survival still lacks. The vastness of molecular biology literature makes it virtually impossible for clinicians to keep up to date in the field. This paper reviews some practical concepts regarding glioma tumorigenesis from the clinician's perspective. Five main aspects are discussed: major intracellular signaling pathways involved in glioma formation; genomic, epigenetic and transcriptomic relevant features of glioma; the prognostic and predictive values of molecular markers according to the new WHO classification of glial tumors; the importance of molecular and cellular heterogeneity in glioblastoma, responsible for its therapy resistance; and the interaction between glioma and the immune system, in view of the novel and promising targeted therapies.
Collapse
|
34
|
|
35
|
Miller ML, Tome-Garcia J, Waluszko A, Sidorenko T, Kumar C, Ye F, Tsankova NM. Practical Bioinformatic DNA-Sequencing Pipeline for Detecting Oncogene Amplification and EGFRvIII Mutational Status in Clinical Glioblastoma Samples. J Mol Diagn 2019; 21:514-524. [PMID: 31000415 DOI: 10.1016/j.jmoldx.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with dismal prognosis. Oncogenic mutations in glioblastoma frequently affect receptor tyrosine kinase pathway components that are challenging to quantify because of heterogeneous expression. EGFRvIII, a common oncogenic receptor tyrosine kinase mutant protein in glioblastoma, potentiates tumor malignancy and is an emerging tumor-specific immunotarget, underlining the need for its more accessible and quantitative detection. We used normalized next-generation sequencing data from 117 brain and 371 reference clinical tumor samples to detect focal gene amplifications across the commercial Ion AmpliSeq Cancer Hotspot Panel version 2 and infer EGFRvIII status based on relative coverage dropout of the gene's truncated region within EGFR. In glioblastomas (n = 45), amplification of EGFR [18 (40%)], PDGFRA [3 (7%)], KIT [2 (4%)], MET [1 (2%)], and AKT1 [1 (2%)] was detected. With respect to EGFR and PDGFRA amplification, there was near-complete agreement between next-generation sequencing and in situ hybridization. Consistent with previous reports, this method detected EGFRvIII exclusively in EGFR-amplified glioblastomas [8 (44%)], which was confirmed using long-range PCR. Our study offers a practical method for detecting oncogene amplifications and large intragenic mutations in a clinically implemented hotspot panel that can be quantified using z scores. The validated detection of EGFRvIII using DNA sequencing eliminates problems with transcript degradation, and the provided script facilitates efficient incorporation into a laboratory's bioinformatic pipeline.
Collapse
Affiliation(s)
- Michael L Miller
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Tome-Garcia
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aneta Waluszko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatyana Sidorenko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chitra Kumar
- Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York
| | - Fei Ye
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York.
| | - Nadejda M Tsankova
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
36
|
NOZAWA T, OKADA M, NATSUMEDA M, EDA T, ABE H, TSUKAMOTO Y, OKAMOTO K, OISHI M, TAKAHASHI H, FUJII Y, KAKITA A. EGFRvIII Is Expressed in Cellular Areas of Tumor in a Subset of Glioblastoma. Neurol Med Chir (Tokyo) 2019; 59:89-97. [PMID: 30787232 PMCID: PMC6434422 DOI: 10.2176/nmc.oa.2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/17/2018] [Indexed: 12/04/2022] Open
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific cell surface antigen often expressed in glioblastoma and has drawn much attention as a possible therapeutic target. We performed immunohistochemistry on histology sections of surgical specimens taken from 67 cases with glioblastoma, isocitrate dehydrogenase-wild type, and evaluated the morphological characteristics and distribution of the EGFRvIII-positive tumor cells. We then evaluated the localization of EGFRvIII-expression within the tumor and peritumoral areas. EGFRvIII immunopositivity was detected in 15 specimens taken from 13 patients, including two recurrent specimens taken from the same patient at relapse. Immunofluorescence staining demonstrated that EGFRvIII-positive cells were present in cells positive for glial fibrillary acidic protein (GFAP), and some showed astrocytic differentiation with multiple fine processes and others did not shown. The EGFRvIII-positive cells were located in cellular areas of the tumor, but not in the invading zone. In the two recurrent cases, EGFRvIII-positive cells were markedly decreased in one case and retained in the other. With regard to overall survival, univariate analysis indicated that EGFRvIII-expression in patients with glioblastoma was not significantly associated with a favorable outcome. Double-labeling immunofluorescence staining of EGFRvIII and GFAP showed that processes of large, well differentiated, GFAP-positive glia extend to and surround less differentiated, EGFRvIII-positive glial cells in cellular areas of tumor. However, in the tumor periphery, EGFRvIII-positive tumor cells were not observed. This finding suggests that EGFRvIII is involved in tumor proliferation, but that invading glioma cells lose their EGFRvIII expression.
Collapse
Affiliation(s)
- Takanori NOZAWA
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Masayasu OKADA
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Manabu NATSUMEDA
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Takeyoshi EDA
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Hideaki ABE
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Yoshihiro TSUKAMOTO
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Kouichirou OKAMOTO
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Makoto OISHI
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Hitoshi TAKAHASHI
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Yukihiko FUJII
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| | - Akiyoshi KAKITA
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Niigata, Japan
| |
Collapse
|
37
|
Eskilsson E, Røsland GV, Solecki G, Wang Q, Harter PN, Graziani G, Verhaak RGW, Winkler F, Bjerkvig R, Miletic H. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol 2019; 20:743-752. [PMID: 29040782 DOI: 10.1093/neuonc/nox191] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with glioblastoma (GBM) have a universally poor prognosis and are in urgent need of effective treatment strategies. Recent advances in sequencing techniques unraveled the complete genomic landscape of GBMs and revealed profound heterogeneity of individual tumors even at the single cell level. Genomic profiling has detected epidermal growth factor receptor (EGFR) gene alterations in more than half of GBMs. Major genetic events include amplification and mutation of EGFR. Yet, treatment strategies targeting EGFR have thus far failed in clinical trials. In this review, we discuss the clonal and functional heterogeneity of EGFRs in GBM development and critically reassess the potential of EGFRs as therapeutic targets.
Collapse
Affiliation(s)
- Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Norway
| | - Gergely Solecki
- Department of Neurooncology, University Hospital Heidelberg, Germany
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Patrick N Harter
- Edinger-Institute, Goethe-University Medical School, Frankfurt am Main, Germany
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roel G W Verhaak
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Frank Winkler
- Department of Neurooncology, University Hospital Heidelberg, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Center, University of Bergen, Norway.,Norlux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Center, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Romagnoli R, Prencipe F, Oliva P, Baraldi S, Baraldi PG, Schiaffino Ortega S, Chayah M, Kimatrai Salvador M, Lopez-Cara LC, Brancale A, Ferla S, Hamel E, Ronca R, Bortolozzi R, Mariotto E, Mattiuzzo E, Viola G. Design, Synthesis, and Biological Evaluation of 6-Substituted Thieno[3,2- d]pyrimidine Analogues as Dual Epidermal Growth Factor Receptor Kinase and Microtubule Inhibitors. J Med Chem 2019; 62:1274-1290. [PMID: 30633509 DOI: 10.1021/acs.jmedchem.8b01391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The clinical evidence for the success of tyrosine kinase inhibitors in combination with microtubule-targeting agents prompted us to design and develop single agents that possess both epidermal growth factor receptor (EGFR) kinase and tubulin polymerization inhibitory properties. A series of 6-aryl/heteroaryl-4-(3',4',5'-trimethoxyanilino)thieno[3,2- d]pyrimidine derivatives were discovered as novel dual tubulin polymerization and EGFR kinase inhibitors. The 4-(3',4',5'-trimethoxyanilino)-6-( p-tolyl)thieno[3,2- d]pyrimidine derivative 6g was the most potent compound of the series as an antiproliferative agent, with half-maximal inhibitory concentration (IC50) values in the single- or double-digit nanomolar range. Compound 6g bound to tubulin in the colchicine site and inhibited tubulin assembly with an IC50 value of 0.71 μM, and 6g inhibited EGFR activity with an IC50 value of 30 nM. Our data suggested that the excellent in vitro and in vivo profile of 6g may be derived from its dual inhibition of tubulin polymerization and EGFR kinase.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Santiago Schiaffino Ortega
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Mariem Chayah
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Maria Kimatrai Salvador
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , King Edward VII Avenue , Cardiff CF10 3NB , U.K
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , King Edward VII Avenue , Cardiff CF10 3NB , U.K
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia , Università di Brescia , 25123 Brescia , Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Elena Mariotto
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Elena Mattiuzzo
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy.,Istituto di Ricerca Pediatrica (IRP) , Corso Stati Uniti 4 , 35128 Padova , Italy
| |
Collapse
|
39
|
Mistry AM, Greenplate AR, Ihrie RA, Irish JM. Beyond the message: advantages of snapshot proteomics with single-cell mass cytometry in solid tumors. FEBS J 2019; 286:1523-1539. [PMID: 30549207 DOI: 10.1111/febs.14730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Single-cell technologies that can quantify features of individual cells within a tumor are critical for treatment strategies aiming to target cancer cells while sparing or activating beneficial cells. Given that key players in protein networks are often the primary targets of precision oncology strategies, it is imperative to transcend the nucleic acid message and read cellular actions in human solid tumors. Here, we review the advantages of multiplex, single-cell mass cytometry in tissue and solid tumor investigations. Mass cytometry can quantitatively probe nearly any cellular feature or target. In discussing the ability of mass cytometry to reveal and characterize a broad spectrum of cell types, identify rare cells, and study functional behavior through protein signaling networks in millions of individual cells from a tumor, this review surveys publications of scientific advances in solid tumor biology made with the aid of mass cytometry. Advances discussed include functional identification of rare tumor and tumor-infiltrating immune cells and dissection of cellular mechanisms of immunotherapy in solid tumors and the periphery. The review concludes by highlighting ways to incorporate single-cell mass cytometry in solid tumor precision oncology efforts and rapidly developing cytometry techniques for quantifying cell location and sequenced nucleic acids.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison R Greenplate
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
Doyle SP, Gurbani SS, Ross AS, Rosen H, Barrett CD, Olson JJ, Shim H, Shu HK, Sengupta S. The role of erlotinib and the Optune device in a patient with an epidermal growth factor receptor viii amplified glioblastoma. Oxf Med Case Reports 2018; 2018:omy095. [PMID: 30410775 PMCID: PMC6217712 DOI: 10.1093/omcr/omy095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 12/03/2022] Open
Abstract
The standard treatment for patients diagnosed with glioblastoma is surgical resection of tumor followed by high dose radiation and chemotherapy with temozolomide. For patients who experience allergic reactions to temozolomide despite desensitization protocols, alternative therapies must be considered. In this report, we present such a patient who then received treatment with an epidermal growth factor receptor inhibitor, erlotinib, concurrent with a tumor-treating field device, Optune. Through this combination of a targeted molecular therapy and the Optune device, the patient has been able to achieve stable disease 9 months after completing radiation.
Collapse
Affiliation(s)
- Sean P Doyle
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - Alexandra S Ross
- Departments of Neurology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Havi Rosen
- Departments of Neurology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Hui-Kuo Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Soma Sengupta
- Departments of Neurology and Medical Oncology, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
42
|
Back M, Rodriguez M, Jayamanne D, Khasraw M, Lee A, Wheeler H. Understanding the Revised Fourth Edition of the World Health Organization Classification of Tumours of the Central Nervous System (2016) for Clinical Decision-making: A Guide for Oncologists Managing Patients with Glioma. Clin Oncol (R Coll Radiol) 2018; 30:556-562. [DOI: 10.1016/j.clon.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022]
|
43
|
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a member of the tyrosine kinase superfamily receptor. Gliomas are tumors originating from glial cells, which show a range of aggressiveness depending on grade and stage. Many EGFR gene alterations have been identified in gliomas, especially glioblastomas, including amplifications, deletions and single nucleotide polymorphisms (SNPs). Glioblastomas are discussed as a separate entity due to their high correlation with EGFR mutants and the reported association of the latter with survival and response to treatment in this glioma subgroup. This review is a comprehensive report of EGFR gene alterations and their relations with several clinical factors in glioblastomas and other gliomas. It covers all EGFR gene alterations including point mutations, SNPs, methylations, copy number variations and amplifications, assessed with regard to different clinical variables, including response to therapy and survival. This review also discusses the current prognostic status of EGFR in glioblastomas and other gliomas, and highlights gaps in previous studies. This serves as an update for the medical community about the role of EGFR gene alterations in gliomas and specifically glioblastomas, as a means for targeted treatment and prognosis.
Collapse
|
44
|
Morisse MC, Jouannet S, Dominguez-Villar M, Sanson M, Idbaih A. Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Rev Neurother 2018; 18:729-737. [PMID: 30099909 DOI: 10.1080/14737175.2018.1510321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the deadliest primary malignant central nervous system (CNS) tumor with a median overall survival of 15 months despite a very intensive therapeutic regimen including maximal safe surgery, radiotherapy, and chemotherapy. Therefore, GBM treatment still raises major biological and therapeutic challenges. Areas covered: One of the hallmarks of the GBM is its tumor microenvironment including tumor-associated macrophages (TAM). TAM, accounting for approximately 30% of the GBM bulk cell population, may explain, at least in part, the immunosuppressive features of GBMs. The TAM are active and highly plastic immune cells and include two major ontogenetically different cell populations: (i) microglia and, (ii) monocytes-derived macrophages (MDM). TAM recruited to the tumor bulk can be reprogramed by GBM cells resulting in an ineffective anti-tumor response. Interestingly, interactions between TAM and GBM cells promote tumor oncogenesis (i.e. tumor cells proliferation and migration/invasion). This review aims to explore TAM targeting in GBM as a promising therapeutic option in the near future. Expert Commentary: A better understanding of TAM-GBM interactions and dynamics will certainly uncover new anti-GBM therapeutic avenues.
Collapse
Affiliation(s)
- Mony Chenda Morisse
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France.,b Department of Medical Oncology , CHU Sud , Amiens , France
| | - Stéphanie Jouannet
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| | | | - Marc Sanson
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| | - Ahmed Idbaih
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| |
Collapse
|
45
|
Xiao Q, Dong M, Cheng F, Mao F, Zong W, Wu K, Wang H, Xie R, Wang B, Lei T, Guo D. LRIG2 promotes the proliferation and cell cycle progression of glioblastoma cells in vitro and in vivo through enhancing PDGFRβ signaling. Int J Oncol 2018; 53:1069-1082. [PMID: 30015847 PMCID: PMC6065455 DOI: 10.3892/ijo.2018.4482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
The leucine-rich repeats and immunoglobulin-like domains (LRIG) gene family, comprising LRIG1, 2 and 3, encodes integral membrane proteins. It has been well established that LRIG1 negatively regulates multiple growth factor signaling pathways and is considered to be a tumor suppressor; however, the biological functions of LRIG2 remain largely unexplored. It was previously demonstrated that LRIG2 positively regulates epidermal growth factor receptor (EGFR) signaling, the most common aberrant receptor tyrosine kinase (RTK) signaling in glioblastoma multiforme (GBM), which promotes GBM growth. In the present study, the effect of LRIG2 on the proliferation of GBM cells was further addressed, as well as the possible mechanisms underlying the regulatory effect of LRIG2 on platelet-derived growth factor receptor β (PDGFRβ) signaling, another common oncogenic RTK signaling pathway in GBM. First, the expression levels of endogenous LRIG2 and PDGFRβ were found to vary notably in human GBM, and the LRIG2 expression level was positively correlated with the expression level of PDGFRβ. Furthermore, to the best of our knowledge, this is the first study to demonstrate that LRIG2 promoted the PDGF-BB-induced proliferation of GBM cells in vitro and in vivo through regulating the PDGFRβ signaling-mediated cell cycle progression. Mechanistically, LRIG2 has the ability to physically interact with PDGFRβ, promoting the total expression and the activation of PDGFRβ, and enhancing its downstream signaling pathways of Akt and signal transducer and activator of transcription 3 and the effectors of key regulators of cell cycle progression, resulting in increased GBM cell proliferation. Collectively, these data indicated that LRIG2 may serve as a tumor promoter gene in gliomagenesis by positively regulating PDGFRβ signaling, another important oncogenic RTK signaling pathway, in addition to the previously reported EGFR signaling in GBM modulated by LRIG2, and validated LRIG2 as a promising therapeutic target for the treatment of GBM characterized by multiple aberrant RTK signaling.
Collapse
Affiliation(s)
- Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weifeng Zong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ruifan Xie
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
46
|
Nguyen HS, Shabani S, Awad AJ, Kaushal M, Doan N. Molecular Markers of Therapy-Resistant Glioblastoma and Potential Strategy to Combat Resistance. Int J Mol Sci 2018; 19:ijms19061765. [PMID: 29899215 PMCID: PMC6032212 DOI: 10.3390/ijms19061765] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system. With its overall dismal prognosis (the median survival is 14 months), GBMs demonstrate a resounding resilience against all current treatment modalities. The absence of a major progress in the treatment of GBM maybe a result of our poor understanding of both GBM tumor biology and the mechanisms underlying the acquirement of treatment resistance in recurrent GBMs. A comprehensive understanding of these markers is mandatory for the development of treatments against therapy-resistant GBMs. This review also provides an overview of a novel marker called acid ceramidase and its implication in the development of radioresistant GBMs. Multiple signaling pathways were found altered in radioresistant GBMs. Given these global alterations of multiple signaling pathways found in radioresistant GBMs, an effective treatment for radioresistant GBMs may require a cocktail containing multiple agents targeting multiple cancer-inducing pathways in order to have a chance to make a substantial impact on improving the overall GBM survival.
Collapse
Affiliation(s)
- Ha S Nguyen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Neurosurgery, California Institute of Neuroscience, Thousand Oaks, CA 91360, USA.
| | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ahmed J Awad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 11941, Palestine.
| | - Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ninh Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Neurosurgery, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
47
|
Coleman N, Ameratunga M, Lopez J. Development of Molecularly Targeted Agents and Immunotherapies in Glioblastoma: A Personalized Approach. Clin Med Insights Oncol 2018; 12:1179554918759079. [PMID: 29511362 PMCID: PMC5833160 DOI: 10.1177/1179554918759079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, precision cancer medicine has driven major advances in the management of advanced solid tumours with the identification and targeting of putative driver aberrations transforming the clinical outcomes across multiple cancer types. Despite pivotal advances in the characterization of genomic landscape of glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. Immunotherapy strategies similarly have had limited success. Multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in glioblastoma and the impact of precision medicine in this disease. We highlight challenges for precision medicine in glioblastoma, focusing on the issues of tumour heterogeneity, pharmacokinetic-pharmacodynamic optimization and outline the modern hypothesis-testing strategies being undertaken to address these key challenges.
Collapse
Affiliation(s)
- Niamh Coleman
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| | | | - Juanita Lopez
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| |
Collapse
|
48
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
49
|
The Influence of EGFR Inactivation on the Radiation Response in High Grade Glioma. Int J Mol Sci 2018; 19:ijms19010229. [PMID: 29329222 PMCID: PMC5796178 DOI: 10.3390/ijms19010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
Lack of effectiveness of radiation therapy may arise from different factors such as radiation induced receptor tyrosine kinase activation and cell repopulation; cell capability to repair radiation induced DNA damage; high grade glioma (HGG) tumous heterogeneity, etc. In this study, we analyzed the potential of targeting epidermal growth factor receptor (EGFR) in inducing radiosensitivity in two human HGG cell lines (11 and 15) that displayed similar growth patterns and expressed the receptor protein at the cell surface. We found that 15 HGG cells that express more EGFR at the cell surface were more sensitive to AG556 (an EGFR inhibitor), compared to 11 HGG cells. Although in line 15 the effect of the inhibitor was greater than in line 11, it should be noted that the efficacy of this small-molecule EGFR inhibitor as monotherapy in both cell lines has been modest, at best. Our data showed a slight difference in the response to radiation of the HGG cell lines, three days after the treatment, with line 15 responding better than line 11. However, both cell lines responded to ionizing radiation in the same way, seven days after irradiation. EGFR inhibition induced radiosensitivity in 11 HGG cells, while, in 15 HGG cells, the effect of AG556 treatment on radiation response was almost nonexistent.
Collapse
|
50
|
Stec WJ, Rosiak K, Siejka P, Peciak J, Popeda M, Banaszczyk M, Pawlowska R, Treda C, Hulas-Bigoszewska K, Piaskowski S, Stoczynska-Fidelus E, Rieske P. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes. Oncotarget 2017; 7:31907-25. [PMID: 27004406 PMCID: PMC5077985 DOI: 10.18632/oncotarget.8201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.
Collapse
Affiliation(s)
- Wojciech J Stec
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Kamila Rosiak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Paulina Siejka
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Marta Popeda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Roza Pawlowska
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Cezary Treda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Sylwester Piaskowski
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|