1
|
Cardoso RV, Pereira PR, Freitas CS, De Freitas Silva AV, Midlej V, Conte-Júnior CA, Paschoalin VMF. Nano-Encapsulated Taro Lectin Can Cross an in vitro Blood-Brain Barrier, Induce Apoptosis and Autophagy and Inhibit the Migration of Human U-87 MG Glioblastoma Cells. Int J Nanomedicine 2025; 20:5573-5591. [PMID: 40321803 PMCID: PMC12049682 DOI: 10.2147/ijn.s511506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Background Tarin, purified from taro (Colocasia esculenta), promotes anticancer effect against glioblastoma cells, a heterogeneous and aggressive primary central nervous system tumor and one of the most challenging tumors for oncotherapy. If able to overcome the blood-brain barrier (BBB), tarin may comprise a natural defense against glioblastomas in a context of the development of novel drugs to control these malignant cell proliferations. Methods The anticancer effects of nano-encapsulated tarin were tested against U-87 MG cells and the molecular mechanisms involved in cell proliferation control were assessed by flow cytometry and transmission electron microscopy (TEM) analyses. The scratch assay was performed to investigate cell migration capacity, while nano-encapsulated tarin transport across the BBB was tested on the hCMEC/D3 endothelial cell line. Results Nano-encapsulated tarin induced autophagy in U-87 MG cells, characterized by the presence of autophagosomes as revealed by TEM and corroborating the flow cytometry analysis employing acridine orange. Additional ultrastructural changes, such as mitochondrial swelling, were also observed. The presence of apoptotic cells and caspase 3/7 activation indicate that nano-encapsulated tarin may also induce cell death through apoptosis. Glioblastoma cell proliferation was arrested in the G2/M cell cycle phase, and cell migration was delayed. Reduced cell proliferation and glioblastoma cell migration inhibition were significant, as tarin was efficiently transported across the BBB during in vitro assays. Conclusion Nano-encapsulated tarin may be effectively employed to inhibit glioblastoma cell proliferation and migration, as this novel formulation can overcome the BBB and induces carcinoma cell apoptosis and autophagy. Furthermore, nano-encapsulated tarin may comprise a novel chemotherapeutic agent against different tumoral lines, as it is able to control glioblastoma tumor proliferation by the same molecular mechanisms previously reported for breast adenocarcinomas. Additional studies should be carried out to clarify if nano-encapsulated tarin has a general effect on distinct carcinoma lines.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
2
|
Fu Y, Yi Y, Shao Y, Jiang J, Deng Q. Single-cell and spatial transcriptomic insights into glioma cellular heterogeneity and metabolic adaptations. Front Immunol 2025; 16:1561388. [PMID: 40255400 PMCID: PMC12006195 DOI: 10.3389/fimmu.2025.1561388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Glioblastoma, one of the most aggressive and heterogeneous malignant tumors, presents significant challenges for clinical management due to its cellular and metabolic complexity. This review integrates recent advancements in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics to elucidate glioblastoma's cellular heterogeneity and metabolic reprogramming. Diverse cellular subpopulations, including malignant proliferative cells, stem-like cells, mesenchymal-like cells, and immune-related cells, contribute to tumor progression, treatment resistance, and microenvironmental interactions. Spatial transcriptomics has further revealed distinct spatial distributions of these subpopulations, highlighting differences in metabolic activities between the tumor core and periphery. Key metabolic adaptations, such as enhanced glycolysis, fatty acid oxidation, and glutamine metabolism, play critical roles in supporting tumor growth, immune evasion, and therapeutic resistance. Targeting these metabolic pathways, especially in combination with immunotherapy, represents a promising avenue for glioblastoma treatment. This review emphasizes the importance of integrating single-cell and spatial multi-omics technologies to decode glioblastoma's metabolic landscape and explore novel therapeutic strategies. By addressing current challenges, such as metabolic redundancy and spatiotemporal dynamics, this work provides insights into advancing precision medicine for glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | - Qingshan Deng
- Department of Neurosurgery, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| |
Collapse
|
3
|
Wei D, Zhai B, Zeng H, Liu L, Gao H, Xiang S, Liu X, Ma J, Lin Y, Yao Y, Wang P. TRMT10A regulates tRNA-ArgCCT m 1G9 modification to generate tRNA-derived fragments influencing vasculogenic mimicry formation in glioblastoma. Cell Death Dis 2025; 16:209. [PMID: 40140670 PMCID: PMC11947273 DOI: 10.1038/s41419-025-07548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumor. The formation of vasculogenic mimicry (VM) in GBM is closely related to poor patient prognosis. Therefore, it is urgently necessary to explore the mechanisms that promote VM formation in GBM and identify therapeutic targets. CGGA data analysis revealed that TRMT10A expression is significantly downregulated in WHO grade IV primary glioma samples compared to grade II samples, consistent with the protein expression levels. Additionally, GBM patients with low TRMT10A expression have poorer prognoses. In human glioma cells, TRMT10A expression is significantly lower than in human astrocytes. Knockdown of TRMT10A reduces m1G9 modification of tRNA-ArgCCT, upregulates tRF-22 expression, and promotes glioma cell proliferation, migration, invasion, and tube formation. Overexpression of tRF-22 in glioma cells significantly downregulates MXD1 expression. tRF-22 negatively regulates MXD1 expression by binding to its 3'UTR, reducing MXD1's transcriptional inhibition of HIF1A, thereby promoting glioma cell proliferation, migration, invasion, and tube formation. Overexpression of TRMT10A combined with tRF-22 inhibition significantly reduces the number of VM channels and inhibits tumor growth in xenograft models in nude mice. This study elucidates the mechanism by which TRMT10A affects VM formation in glioma and provides a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Deng Wei
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Bei Zhai
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Zeng
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Long Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Han Gao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Shiqi Xiang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Arab S, Ghasemi S, Bahraminasab M, Ghanbari A, Heidari M, Kokhaei P, Bahrami A, Asgharzade S. CD73 Molecule Inhibitor Upregulates miR16 Expression in Experimental Glioblastoma and Inhibits Angiogenesis by Targeting VEGF. J Mol Neurosci 2025; 75:41. [PMID: 40140182 DOI: 10.1007/s12031-025-02307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/01/2025] [Indexed: 03/28/2025]
Abstract
The function of CD73 (Cluster of Differentiation 73), an enzyme involved in the formation of adenosine (ADO), in the development of glioblastomas has been demonstrated. Indeed, ADO helps tumor angiogenesis by stimulating endothelial cell migration, proliferation, and tube formation. However, the details of the molecular mechanisms are not yet fully understood. Given the importance of angiogenesis in cancer progression, invasion, and metastasis, this study aimed to investigate how the inhibition of CD73 by adenosine-5'-(α, β-methylene) diphosphate (APCP) affects the angiogenesis process of experimental orthotopic glioblastoma at mRNAs, microRNAs, and protein levels. According to the real-time-polymerase chain reaction (RT-PCR) results, inhibition of CD73 decreased the angiogenesis of glioblastoma by reducing the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) by ****P < 0.0001 and **P < 0.01, respectively. Furthermore, immunohistochemical staining showed that this treatment protocol attenuated the expression of VEGF and CD31. Moreover, APCP treatment significantly increased miR-16 expression in glioblastoma model rats by P < 0.001, but no significant change in miR-29A expression was observed. The results showed that the treatment did not lead to systemic damage or significant weight loss. Our results suggest that inhibition of CD73 may reduce the formation of new tumor vessels by inhibiting the VEGF, HIF-1α, and CD31 in this process. Therefore, CD73 may be a practical target and provide new opportunities to improve the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Heidari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Parviz Kokhaei
- Department of Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Oncology-Pathology, Karolinska University Hospital Solna and Karolinska Institute, BioClinicumStockholm, Sweden
| | - Abozar Bahrami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran.
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Moon HH, Park JE, Kim N, Park SY, Kim YH, Song SW, Hong CK, Kim JH, Kim HS. Prospective longitudinal analysis of physiologic MRI-based tumor habitat predicts short-term patient outcomes in IDH-wildtype glioblastoma. Neuro Oncol 2025; 27:841-853. [PMID: 39450860 PMCID: PMC11889713 DOI: 10.1093/neuonc/noae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND This study validates MRI-based tumor habitats in predicting time-to-progression (TTP), overall survival (OS), and progression sites in isocitrate dehydrogenase (IDH)-wildtype glioblastoma patients. METHODS Seventy-nine patients were prospectively enrolled between January 2020 and June 2022. MRI, including diffusion-weighted and dynamic susceptibility contrast imaging, were obtained immediately postoperation and at three serial timepoints. Voxels from cerebral blood volume and apparent diffusion coefficient maps were grouped into three habitats (hypervascular cellular, hypovascular cellular, and nonviable tissue) using k-means clustering. Predefined cutoffs for increases in hypervascular and hypovascular cellular habitat were applied to calculate the habitat risk score. Associations between spatiotemporal habitats, habitat risk score, TTP, and OS were investigated using Cox proportional hazards modeling. Habitat risk score was compared to tumor volume using time-dependent receiver operating characteristics analysis. Progression sites were matched with spatial habitats. RESULTS Increases in hypervascular and hypovascular cellular habitats and habitat risk scores were associated with shorter TTP and OS (all P < .05). Hypovascular cellular habitat and habitat risk scores 1 and 2 independently predicted TTP (hazard ratio [HR], 4.14; P = .03, HR, 4.51; P = .001 and HR, 10.02; P < .001, respectively). Hypovascular cellular habitat and habitat risk score 2 independently predicted OS (HR, 4.01, P = .003; and HR, 3.27, P < .001, respectively). Habitat risk score outperformed tumor volume in predicting TTP (12-month AUC, 0.762 vs. 0.646, P = .048). Hypovascular cellular habitat predicted progression sites (mean Dice index: 0.31). CONCLUSIONS Multiparametric physiologic MRI-based spatiotemporal tumor habitats and habitat risk scores are useful biomarkers for early tumor progression and outcomes in IDH-wildtype glioblastoma patients.
Collapse
Affiliation(s)
- Hye Hyeon Moon
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Woo Song
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
6
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Pancholi S, Shah R, Bose U, Yadav A, Murukan K, Pillai P. Hypoxic Secretome and Exosomes Derived From Human Glioblastoma Cells (U87MG) Promote Protumorigenic Phenotype of Microglia in Vitro. J Cell Biochem 2025; 126:e70002. [PMID: 39905831 DOI: 10.1002/jcb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/08/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Glioblastoma multiforme (GBM), a highly heterogeneous CNS tumor known for its highest incidence rates and poor prognosis has shown limited success in the therapies due to hypoxia-driving immune-suppression in the tumor microenvironment (TME). Emerging evidence highlights the involvement of tumor cell-derived exosomes in tumor-associated microglia polarization via transfer of exosomal onco-proteins and miRNAs. Although the regulatory role of long noncoding RNAs (lncRNAs) in immune signaling are known, its mechanism in microglial polarization via exosomes in GBM still remains poorly understood. In our study, we found that in comparison to the normoxic GBM-derived exosomes lncRNA H19 was significantly upregulated in hypoxic GBM-derived exosomes. Hypoxic GBM-derived exosomes and secretome (conditioned media) caused the reduction in the % phagocytosis of microglia as compared with the control group. Moreover, GBM secretome caused increase in the M2-specific genes (IL10, STAT-3, CD163, CD206) in microglia indicating its polarization to the protumorigenic (M2) phenotype. LncRNA H19 knocked down GBM-secretome treatment in microglia further reduced the STAT-3 expression indicating H19 mediated signaling. Overall, our results suggest the involvement of hypoxic exosomes and lncRNA H19 in microglial polarization and H19 as a potential target.
Collapse
Affiliation(s)
- Sangati Pancholi
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ritvi Shah
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Utsav Bose
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ankit Yadav
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karthik Murukan
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash Pillai
- Department of Zoology, Division of Neurobiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
8
|
Zhang I, Maysinger D, Beus M, Mravak A, Yu Z, Perić Bakulić M, Dion PA, Rouleau GA, Bonačić-Koutecký V, Antoine R, Sanader Maršić Ž. Gold nanoclusters Au 25AcCys 18 normalize intracellular ROS without increasing cytoplasmic alarmin acHMGB1 abundance in human microglia and neurons. NANOSCALE 2025; 17:1092-1104. [PMID: 39607703 DOI: 10.1039/d4nr03512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This study focuses on the modulatory effects of gold nanoclusters with 25 gold atoms and 18 acetyl cysteines (Au25AcCys18) in human microglia, human iPSC-derived neurons and SH-SY5Y differentiated human neuronal cells. The combination of chemical, biological, and computational methods shows the well-retained viability of these human cells treated with Au25AcCys18, interactions between Au25AcCys18 and transcription factor TFEB (computational approach), interactions between TFEB and HMGB1 (proximity ligation assay and molecular modeling using AlphaFold), modulation of the abundance and location of acHMGB1 by Au25AcCys18 (immunocytochemistry), and the reduction of ROS in cells treated with Au25AcCys18 (CellROX live imaging). These novel findings in human neural cells, particularly neurons, encourage further studies in experimental animal models of neurological disorders and/or human organoids to exploit the unique structural and photophysical properties of gold nanoclusters and to better understand their ability to modulate molecular mechanisms in human cells.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Maja Beus
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Antonija Mravak
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Ziqi Yu
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Rodolphe Antoine
- Institut Lumière Matière, CNRS UMR 5306, Université Claude Bernard Lyon 1, Univ. Lyon, 69622 Villeurbanne Cedex, France
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| |
Collapse
|
9
|
Simões JLB, Braga GDC, Fontana M, Assmann CE, Bagatini MD. The Neuroprotective Role of A2A Adenosine Purinoceptor Modulation as a Strategy Against Glioblastoma. Brain Sci 2024; 14:1286. [PMID: 39766485 PMCID: PMC11674974 DOI: 10.3390/brainsci14121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer, frequently presenting an unfavorable prognosis. The current treatment options for this neoplasia are still limited, highlighting the need for further research evaluating new drugs to treat GBM or to serve as an adjuvant to improve the efficiency of currently used therapies. In this sense, the inhibition of A2A receptors in the brain has presented a neuroprotective role for several diseases, such as neurodegenerative conditions, and it has been suggested as a possible pharmacological target in some types of cancer; thus, it also can be underscored as a potential target in GBM. Recently, Istradefylline (IST) was approved by the FDA for treating Parkinson's disease, representing a safe drug that acts through the inhibition of the A2A receptor, and it has also been suggested as an antineoplastic drug. Therefore, this work aims to explore the effects of A2A receptor inhibition as a therapy for GBM and assess the feasibility of this blockage occurring through the effects of IST.
Collapse
Affiliation(s)
- Júlia Leão Batista Simões
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Geórgia de Carvalho Braga
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Michelli Fontana
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Medical Sciences, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
10
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
11
|
Nohman AI, Schwarm FP, Stein M, Schänzer A, Koch C, Uhl E, Kolodziej M. Significantly higher expression of high-mobility group AT hook protein 2 (HMGA2) in the border zone of glioblastoma. J Neurosurg Sci 2024; 68:668-675. [PMID: 36987772 DOI: 10.23736/s0390-5616.22.05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND High-mobility group AT-hook protein 2 (HMGA2) is a gene regulatory protein that is correlated with metastatic potential and poor prognosis. It has been shown that HMGA2 is overexpressed in various tumors such as lung cancer or pancreatic cancer. The invasive character and highly aggressive structure of glioblastoma let us to investigate HMGA2 expression in the border zone of the tumor more closely. We compared HMGA2 expression between glioblastoma and normal brain tissue. In addition, we analyzed and compared HMGA2 expression in the border and center zones of tumors. Correlation tests between HMGA expression and clinical parameters such as MGMT-status and survival were performed. METHODS Samples from 23 patients with WHO grade 4 glioblastomas were analyzed for HMGA2 expression using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) and correlated with clinical parameters. The areas from the tumor center and border were analyzed separately. Two normal brain tissue specimens were used as the controls. RESULTS Our results confirm that HMGA2 is higher expressed in glioblastoma compared to healthy brain tissue (qPCR, P=0.013; IHC, P=0.04). Moreover, immunohistochemistry revealed significantly higher HMGA2 expression in the border zone of the tumor than in the tumor center zone (P=0.012). Survival analysis revealed a tendency for shorter survival when HMGA2 was highly expressed in the border zone. CONCLUSIONS The results reveal an overexpression of HMGA2 in the border zone of glioblastomas; thus, the expression cluster of HMGA2 seems to be heterogenous and thorough borough surgical resection of the vital and aggressive border cells might be important to inhibit the invasive character of the tumor.
Collapse
Affiliation(s)
- Amin I Nohman
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany -
- Unit of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht Karl University Hospital of Heidelberg, Heidelberg, Germany -
| | - Frank P Schwarm
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Marco Stein
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Department of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Eberhard Uhl
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
12
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
13
|
Taule EM, Brekke J, Miletic H, Sætran H, Maric S, HogenEsch I, Mahesparan R. Breaking boundaries: A rare case of glioblastoma with uncommon extraneural metastases: A case report and literature review. BRAIN & SPINE 2024; 4:103927. [PMID: 39823071 PMCID: PMC11736052 DOI: 10.1016/j.bas.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Introduction Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients. Research question Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action? Material and methods This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases. A literature review was conducted to identify potential patient or tumor characteristics that may serve as risk factors for metastasis. Results ENM from GBM are likely underreported, with limited examples in the literature and low survival rates of only a few months. Certain clinical and histopathological factors, such as male sex, younger age, temporal lobe location, and specific biological markers, have been associated with a higher likelihood of metastasis formation. Bone and/or bone marrow metastases are the most common sites. Despite various treatment regimens being attempted, there is no consensus on the optimal therapeutic approach for this patient group. Conclusion Clinical and histopathological factors can aid clinicians in recognizing the potential for ENM in GBM patients. Our review identifies some of the possible patient- and tumor-related risk factors. However, further research is crucial to identify specific molecular markers and elucidate the underlying biological mechanisms that is essential for development of targeted therapies.
Collapse
Affiliation(s)
- Erlend Moen Taule
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| | - Jorunn Brekke
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Hege Sætran
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Snezana Maric
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ineke HogenEsch
- Department of Neurology, Fonna Hospital Trust, Haugesund, Norway
| | - Rupavathana Mahesparan
- Department of Clinical Medicine, University of Bergen Faculty of Medicine and Dentistry, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Li X, Xu J, Li X, Shi J, Wei C, Liang Q. Profiling hypoxia signaling reveals a lncRNA signature contributing to immunosuppression in high-grade glioma. Front Immunol 2024; 15:1471388. [PMID: 39416790 PMCID: PMC11479907 DOI: 10.3389/fimmu.2024.1471388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Hypoxic conditions in glioma are linked to tumor aggressiveness, poor prognosis, and treatment resistance. Long non-coding RNAs (lncRNAs) play key roles in the hypoxic and immune microenvironment of cancers, but their link to hypoxia-induced immunosuppression in high-grade glioma (HGG) is not well-studied. Methods Gene expression profiles from TCGA and CGGA, along with clinical and genomic data, were analyzed. Bioinformatics methods including Consensus Clustering, Pearson correlation, and Cox regression analyses were used. Cell proliferation was assessed using cell counting kit-8 and colony formation assays. Glioma-macrophage interactions were evaluated using a co-culture model. Results Hypoxia subtype clustering showed hypoxic stress correlates with worse HGG prognosis. Eight hypoxia-related lncRNAs (AP000695.4, OSMR-AS1, AC078883.3, RP11-545E17.3, LINC01057, LINC01503, TP73-AS1, and LINC00672) with prognostic value were identified, forming a risk signature that separated patients into distinct prognostic groups. Multivariate Cox regression confirmed the signature as an independent prognostic factor. High-risk patients had greater hypoxia, leading to an immunosuppressive environment and immunotherapy resistance via tumor-associated macrophages (TAMs). TP73-AS1 significantly influenced hypoxia-induced TAM infiltration and M2 polarization. Conclusions We profiled hypoxic stress in HGG and developed an 8-lncRNA hypoxia-related signature predicting patient survival and immunotherapy response, emphasizing its role in hypoxia-induced immunosuppression.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingcheng Xu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Li
- International Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianghua Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunmi Wei
- Department of Radiotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Zhang Y, Ding X, Zhang X, Li Y, Xu R, Li HJ, Zuo D, Chen G. Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic Strategies. Front Pharmacol 2024; 15:1404687. [PMID: 39286635 PMCID: PMC11402718 DOI: 10.3389/fphar.2024.1404687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ye Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Jun Li
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Guang Chen
- Department of Pharmacy, Taizhou Second People's Hospital (Mental Health Center affiliated to Taizhou University School of Medicine), Taizhou University, Taizhou, Zhejiang, China
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
16
|
Ma K, Wang S, Ma Y, Zeng L, Xu K, Mu N, Lai Y, Shi Y, Yang C, Chen B, Quan Y, Li L, Lu Y, Yang Y, Liu Y, Hu R, Wang X, Chen Y, Bian X, Feng H, Li F, Chen T. Increased oxygen stimulation promotes chemoresistance and phenotype shifting through PLCB1 in gliomas. Drug Resist Updat 2024; 76:101113. [PMID: 39053384 DOI: 10.1016/j.drup.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Gliomas, the most common CNS (central nerve system) tumors, face poor survival due to severe chemoresistance exacerbated by hypoxia. However, studies on whether altered hypoxic conditions benefit for chemo-sensitivity and how gliomas react to increased oxygen stimulation are limited. In this study, we demonstrated that increased oxygen stimulation promotes glioma growth and chemoresistance. Mechanically, increased oxygen stimulation upregulates miR-1290 levels. miR-1290, in turn, downregulates PLCB1, while PLCB1 facilitates the proteasomal degradation of β-catenin and active-β-catenin by increasing the proportion of ubiquitinated β-catenin in a destruction complex-independent mechanism. This process inhibits PLCB1 expression, leads to the accumulation of active-β-catenin, boosting Wnt signaling through an independent mechanism and ultimately promoting chemoresistance in glioma cells. Pharmacological inhibition of Wnt by WNT974 could partially inhibit glioma volume growth and prolong the shortened survival caused by increased oxygen stimulation in a glioma-bearing mouse model. Moreover, PLCB1, a key molecule regulated by increased oxygen stimulation, shows promising predictive power in survival analysis and has great potential to be a biomarker for grading and prognosis in glioma patients. These results provide preliminary insights into clinical scenarios associated with altered hypoxic conditions in gliomas, and introduce a novel perspective on the role of the hypoxic microenvironment in glioma progression. Furthermore, the outcomes reveal the potential risks of utilizing hyperbaric oxygen treatment (HBOT) in glioma patients, particularly when considering HBOT as a standalone option to ameliorate neuro-dysfunctions or when combining HBOT with a single chemotherapy agent without radiotherapy.
Collapse
Affiliation(s)
- Kang Ma
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shi Wang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yingjie Ma
- Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Lan Zeng
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kai Xu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ning Mu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Lai
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaning Shi
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuanyan Yang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Beike Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yulian Quan
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Li
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongling Lu
- Medical Research Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Yang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Liu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Rong Hu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yujie Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Hua Feng
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Li
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Tunan Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
17
|
Keshavarz M, Dianat-Moghadam H, Ghorbanhosseini SS, Sarshari B. Oncolytic virotherapy improves immunotherapies targeting cancer stemness in glioblastoma. Biochim Biophys Acta Gen Subj 2024; 1868:130662. [PMID: 38901497 DOI: 10.1016/j.bbagen.2024.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Despite advances in cancer therapies, glioblastoma (GBM) remains the most resistant and recurrent tumor in the central nervous system. GBM tumor microenvironment (TME) is a highly dynamic landscape consistent with alteration in tumor infiltration cells, playing a critical role in tumor progression and invasion. In addition, glioma stem cells (GSCs) with self-renewal capability promote tumor recurrence and induce therapy resistance, which all have complicated eradication of GBM with existing therapies. Oncolytic virotherapy is a promising field of therapy that can kill tumor cells in a targeted manner. Manipulated oncolytic viruses (OVs) improve cancer immunotherapy by directly lysis tumor cells, infiltrating antitumor cells, inducing immunogenic cell death, and sensitizing immune-resistant TME to an immune-responsive hot state. Importantly, OVs can target stemness-driven GBM progression. In this review, we will discuss how OVs as a therapeutic option target GBM, especially the GSC subpopulation, and induce immunogenicity to remodel the TME, which subsequently enhances immunotherapies' efficiency.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrang Sarshari
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rosberg R, Smolag KI, Sjölund J, Johansson E, Bergelin C, Wahldén J, Pantazopoulou V, Ceberg C, Pietras K, Blom AM, Pietras A. Hypoxia-induced complement component 3 promotes aggressive tumor growth in the glioblastoma microenvironment. JCI Insight 2024; 9:e179854. [PMID: 39172519 PMCID: PMC11466187 DOI: 10.1172/jci.insight.179854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma with a high rate of relapse despite intensive treatment. Tumor recurrence is tightly linked to radio-resistance, which in turn is associated with hypoxia. Here, we discovered a strong link between hypoxia and local complement signaling using publicly available bulk, single-cell, and spatially resolved transcriptomic data from patients with GBM. Complement component 3 (C3) and the receptor C3AR1 were both associated with aggressive disease and shorter survival in human glioma. In a genetically engineered mouse model of GBM, we found C3 specifically in hypoxic tumor areas. In vitro, we found an oxygen level-dependent increase in C3 and C3AR1 expression in response to hypoxia in several GBM and stromal cell types. C3a induced M2 polarization of cultured microglia and macrophages in a C3aR-dependent fashion. Targeting C3aR using the antagonist SB290157 prolonged survival of glioma-bearing mice both alone and in combination with radiotherapy while reducing the number of M2-polarized macrophages. Our findings establish a strong link between hypoxia and complement pathways in GBM and support a role of hypoxia-induced C3a/C3aR signaling as a contributor to glioma aggressiveness by regulating macrophage polarization.
Collapse
Affiliation(s)
- Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Karolina I. Smolag
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Christina Bergelin
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Julia Wahldén
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Crister Ceberg
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Huang H, Shah H, Hao J, Lin J, Prayson RA, Xie L, Bao S, Chakraborty AA, Jankowsky E, Zhao J, Yu JS. Long non-coding RNA lung cancer-associated transcript-1 promotes glioblastoma progression by enhancing Hypoxia-inducible factor 1 alpha activity. Neuro Oncol 2024; 26:1388-1401. [PMID: 38456228 PMCID: PMC11300024 DOI: 10.1093/neuonc/noae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS lncRNAs induced by hypoxia in GSCs were identified by RNA-seq. Lung cancer-associated transcript-1 (LUCAT1) expression was assessed by qPCR, RNA-seq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, The Cancer Genome Atlas, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNA-seq, Western blot, immunohistochemistry, co-IP, ChIP, ChIP-seq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS A new isoform of Lucat1 is induced by Hypoxia inducible factor 1 alpha (HIF1α) and Nuclear factor erythroid 2-related factor 2 (NRF2) in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hariti Shah
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Hao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jianhong Lin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, The Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Liangqi Xie
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Cai X, Qian M, Zhang K, Li Y, Chang B, Chen M. Profiling and Bioinformatics Analyses of Hypoxia-Induced Differential Expression of Long Non-coding RNA in Glioblastoma Multiforme Cells. Biochem Genet 2024; 62:3052-3070. [PMID: 38066404 DOI: 10.1007/s10528-023-10597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
Hypoxic microenvironments are intricately linked to malignant characteristics of glioblastoma multiforme (GBM). Long non-coding ribonucleic acids (lncRNAs) have been reported to be involved in the progression of GBM and closely associated with hypoxia. Nevertheless, the differential expression profiles as well as functional roles of lncRNAs in GBM cells under hypoxic conditions remain largely obscure. We explored the expression profiles of lncRNAs in hypoxic U87 cells as well as T98G cells using sequencing analysis. The effect of differentially expressed lncRNAs (DElncRNAs) was assessed through bioinformatic analysis. Furthermore, the expression of lncRNAs significantly dysregulated in both U87 and T98G cells was further validated using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Relevant cell functional experiments were also conducted. We used predicted RNA-binding proteins (RBPs) to construct an interaction network via the interaction prediction module. U87 and T98G cells showed dysregulation of 1115 and 597 lncRNAs, respectively. Gene Ontology (GO) analysis indicated that altered lncRNA expression was associated with nucleotide-excision repair and cell metabolism in GBM cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the association between dysregulated lncRNAs and the Hippo signaling pathway under hypoxia. The dysregulation of six selected lncRNAs (ENST00000371192, uc003tnq.3, ENST00000262952, ENST00000609350, ENST00000610036, and NR_046262) was validated by qRT-PCR. Investigation of lncRNA-microRNA (miRNA)-mRNA networks centered on HIF-1α demonstrated cross-talk between the six validated lncRNAs and 16 related miRNAs. Functional experiments showed the significant inhibition of GBM cell proliferation, invasion, and migration by the knockdown of uc003tnq.3 in vitro. Additionally, uc003tnq.3 was used to construct a comprehensive RBP-transcription factor (TF)-miRNA interaction network. The expression of LncRNAs was dysregulated in GBM cells under hypoxic conditions. The identified six lncRNAs might exert important effect on the development of GBM under hypoxic microenvironment.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Mengshu Qian
- Department of Emergency and Critical Care Medicine, Kong Jiang Hospital of Yangpu District, Shanghai, 200082, China
| | - Kui Zhang
- Department of Plastic Surgery, Xuzhou Medical University Affiliated Xuzhou City Hospital, Xuzhou, 221000, Jiangsu, China
| | - Yanzhen Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China
| | - Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lu Jiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ming Chen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
22
|
Lee VK, Tejero R, Silvia N, Sattiraju A, Ramakrishnan A, Shen L, Wojcinski A, Kesari S, Friedel RH, Zou H, Dai G. 3D Brain Vascular Niche Model Captures Invasive Behavior and Gene Signatures of Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601756. [PMID: 39026692 PMCID: PMC11257506 DOI: 10.1101/2024.07.09.601756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Glioblastoma (GBM) is a lethal brain cancer with no effective treatment; understanding how GBM cells respond to tumor microenvironment remains challenging as conventional cell cultures lack proper cytoarchitecture while in vivo animal models present complexity all at once. Developing a culture system to bridge the gap is thus crucial. Here, we employed a multicellular approach using human glia and vascular cells to optimize a 3-dimensional (3D) brain vascular niche model that enabled not only long-term culture of patient derived GBM cells but also recapitulation of key features of GBM heterogeneity, in particular invasion behavior and vascular association. Comparative transcriptomics of identical patient derived GBM cells in 3D and in vivo xenotransplants models revealed that glia-vascular contact induced genes concerning neural/glia development, synaptic regulation, as well as immune suppression. This gene signature displayed region specific enrichment in the leading edge and microvascular proliferation zones in human GBM and predicted poor prognosis. Gene variance analysis also uncovered histone demethylation and xylosyltransferase activity as main themes for gene adaption of GBM cells in vivo . Furthermore, our 3D model also demonstrated the capacity to provide a quiescence and a protective niche against chemotherapy. In summary, an advanced 3D brain vascular model can bridge the gap between 2D cultures and in vivo models in capturing key features of GBM heterogeneity and unveil previously unrecognized influence of glia-vascular contact for transcriptional adaption in GBM cells featuring neural/synaptic interaction and immunosuppression.
Collapse
|
23
|
Slobodyanyuk M, Bahcheli AT, Klein ZP, Bayati M, Strug LJ, Reimand J. Directional integration and pathway enrichment analysis for multi-omics data. Nat Commun 2024; 15:5690. [PMID: 38971800 PMCID: PMC11227559 DOI: 10.1038/s41467-024-49986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Omics techniques generate comprehensive profiles of biomolecules in cells and tissues. However, a holistic understanding of underlying systems requires joint analyses of multiple data modalities. We present DPM, a data fusion method for integrating omics datasets using directionality and significance estimates of genes, transcripts, or proteins. DPM allows users to define how the input datasets are expected to interact directionally given the experimental design or biological relationships between the datasets. DPM prioritises genes and pathways that change consistently across the datasets and penalises those with inconsistent directionality. To demonstrate our approach, we characterise gene and pathway regulation in IDH-mutant gliomas by jointly analysing transcriptomic, proteomic, and DNA methylation datasets. Directional integration of survival information in ovarian cancer reveals candidate biomarkers with consistent prognostic signals in transcript and protein expression. DPM is a general and adaptable framework for gene prioritisation and pathway analysis in multi-omics datasets.
Collapse
Affiliation(s)
- Mykhaylo Slobodyanyuk
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Alexander T Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada
| | - Zoe P Klein
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada
| | - Masroor Bayati
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, the Hospital for Sick Children Research Institute, 686 Bay Str, Toronto, ON M5G 0A4, Canada
- Departments of Statistical Sciences, Computer Science and Division of Biostatistics, University of Toronto, 700 University Avenue, Toronto, ON M5G 1Z5, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON M5G 0A3, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Str Suite 15-701, Toronto, ON M5G 1L7, Canada.
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle Room 4386, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Feldman L. Hypoxia within the glioblastoma tumor microenvironment: a master saboteur of novel treatments. Front Immunol 2024; 15:1384249. [PMID: 38994360 PMCID: PMC11238147 DOI: 10.3389/fimmu.2024.1384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) tumors are the most aggressive primary brain tumors in adults that, despite maximum treatment, carry a dismal prognosis. GBM tumors exhibit tissue hypoxia, which promotes tumor aggressiveness and maintenance of glioma stem cells and creates an overall immunosuppressive landscape. This article reviews how hypoxic conditions overlap with inflammatory responses, favoring the proliferation of immunosuppressive cells and inhibiting cytotoxic T cell development. Immunotherapies, including vaccines, immune checkpoint inhibitors, and CAR-T cell therapy, represent promising avenues for GBM treatment. However, challenges such as tumor heterogeneity, immunosuppressive TME, and BBB restrictiveness hinder their effectiveness. Strategies to address these challenges, including combination therapies and targeting hypoxia, are actively being explored to improve outcomes for GBM patients. Targeting hypoxia in combination with immunotherapy represents a potential strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Lisa Feldman
- Division of Neurosurgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
25
|
Zhang X, Zheng P, Meng B, Zhuang H, Lu B, Yao J, Han F, Luo S. Histamine-related genes participate in the establishment of an immunosuppressive microenvironment and impact the immunotherapy response in hepatocellular carcinoma. Clin Exp Med 2024; 24:129. [PMID: 38884870 PMCID: PMC11182831 DOI: 10.1007/s10238-024-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Chronic inflammation is pivotal in the pathogenesis of hepatocellular carcinoma (HCC). Histamine is a biologically active substance that amplifies the inflammatory and immune response and serves as a neurotransmitter. However, knowledge of histamine's role in HCC and its effects on immunotherapy remains lacking. We focused on histamine-related genes to investigate their potential role in HCC. The RNA-seq data and clinical information regarding HCC were obtained from The Cancer Genome Atlas (TCGA). After identifying the differentially expressed genes, we constructed a signature using the univariate Cox proportional hazard regression and least absolute shrinkage and selection operator (LASSO) analyses. The signature's predictive performance was evaluated using a receiver operating characteristic curve (ROC) analysis. Furthermore, drug sensitivity, immunotherapy effects, and enrichment analyses were conducted. Histamine-related gene expression in HCC was confirmed using quantitative real-time polymerase chain reaction (qRT-PCR). A histamine-related gene prognostic signature (HRGPS) was developed in TCGA. Time-dependent ROC and Kaplan-Meier survival analyses demonstrated the signature's strong predictive power. Importantly, patients in high-risk groups exhibited a higher frequency of TP53 mutations, elevated immune checkpoint-related gene expression, and increased infiltration of immunosuppressive cells-indicating a potentially favorable response to immunotherapy. In addition, drug sensitivity analysis revealed that the signature could effectively predict chemotherapy efficacy and sensitivity. qRT-PCR results validated histamine-related gene overexpression in HCC. Our findings demonstrate that inhibiting histamine-related genes and signaling pathways can impact the therapeutic effect of anti-PD-1/PD-L1. The precise predictive ability of our signature in determining the response to different therapeutic options highlights its potential clinical significance.
Collapse
Affiliation(s)
- Xianzhou Zhang
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Peng Zheng
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Bo Meng
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Bing Lu
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jun Yao
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Suxia Luo
- Department of Hepatic Biliary Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
26
|
Ayoup MS, Rabee AR, Abdel-Hamid H, Amer A, Abu-Serie MM, Ashraf S, Ghareeb DA, Ibrahim RS, Hawsawi MB, Negm A, Ismail MMF. Design and Synthesis of Quinoxaline Hybrids as Modulators of HIF-1a, VEGF, and p21 for Halting Colorectal Cancer. ACS OMEGA 2024; 9:24643-24653. [PMID: 38882127 PMCID: PMC11170630 DOI: 10.1021/acsomega.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
A library of 16 3-benzyl-N 1-substituted quinoxalin-2-ones was synthesized as N 1-substituted quinoxalines and quinoxaline-triazole hybrids via click reaction. These compounds were tested for their anticancer activity via MTT assay on HCT-116 and normal colonocyte cell lines to assess their cytotoxic potentials and safety profiles. Overall, compounds 6, 9, 14, and 20 were found to be promising anticolorectal cancer agents; they exhibited remarkable cytotoxicity (IC50 0.05-0.07 μM) against HCT-116 cells within their safe doses (EC100) on normal colon cells. Their pronounced anticancer activities were observed as severe morphological alterations and shrinkage of the treated cancer cells. Besides, qRT-PCR analysis was conducted showing the potential of the promising hits to downregulate HIF-1a, VEGF, and BCL-2 as well as their ability to enhance the expression of proapoptotic genes p21, p53, and BAX in HCT-116 cells. In silico prediction revealed that most of our compounds agree with Lipinski and Veber parameters of rules, in addition to remarkable medicinal chemistry and drug-likeness parameters with no CNS side effects. Interestingly, docking studies of the compounds in the VEGFR-2' active site showed significant affinity toward the essential amino acids, which supported the biological results.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ahmed R Rabee
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria 21934, Egypt
| | - Samah Ashraf
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria 21934, Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Al Taif Road, Makkah 24382, Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
27
|
Tang M, Qu Y, He P, Yao E, Guo T, Yu D, Zhang N, Kiratitanaporn W, Sun Y, Liu L, Wang Y, Chen S. Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model. Mater Today Bio 2024; 26:101077. [PMID: 38765247 PMCID: PMC11099333 DOI: 10.1016/j.mtbio.2024.101077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Glioblastoma (GBM) presents a significant therapeutic challenge due to the limited efficacy of existing treatments. Chimeric antigen receptor (CAR) T-cell therapy offers promise, but its potential in solid tumors like GBM is undermined by the physical barrier posed by the extracellular matrix (ECM). To address the inadequacies of traditional 2D cell culture, animal models, and Matrigel-based 3D culture in mimicking the mechanical characteristics of tumor tissues, we employed biomaterials and digital light processing-based 3D bioprinting to fabricate biomimetic tumor models with finely tunable ECM stiffness independent of ECM composition. Our results demonstrated that increased material stiffness markedly impeded CAR-T cell penetration and tumor cell cytotoxicity in GBM models. The 3D bioprinted models enabled us to examine the influence of ECM stiffness on CAR-T cell therapy effectiveness, providing a clinically pertinent evaluation tool for CAR-T cell development in stiff solid tumors. Furthermore, we developed an innovative heat-inducible CAR-T cell therapy, effectively overcoming the challenges posed by the stiff tumor microenvironment.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tianze Guo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Di Yu
- Department of Human Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nancy Zhang
- Department of Human Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
28
|
Dong M, Zhang X, Peng P, Chen Z, Zhang Y, Wan L, Xiang W, Liu G, Guo Y, Xiao Q, Wang B, Guo D, Zhu M, Yu X, Wan F. Hypoxia-induced TREM1 promotes mesenchymal-like states of glioma stem cells via alternatively activating tumor-associated macrophages. Cancer Lett 2024; 590:216801. [PMID: 38479552 DOI: 10.1016/j.canlet.2024.216801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFβ2, which activated the TGFβR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFβ2/TGFβR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Peng Peng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital to Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Zirong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Zhang
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guohao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Zhang R, Li X, Zhang S. The Role of Bacteria in Central Nervous System Tumors: Opportunities and Challenges. Microorganisms 2024; 12:1053. [PMID: 38930435 PMCID: PMC11205425 DOI: 10.3390/microorganisms12061053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Tumors of the central nervous system (CNS) are severe and refractory diseases with poor prognosis, especially for patients with malignant glioblastoma and brain metastases. Currently, numerous studies have explored the potential role of bacteria and intestinal flora in tumor development and treatment. Bacteria can penetrate the blood-brain barrier (BBB), targeting the hypoxic microenvironment at the core of tumors, thereby eliminating tumors and activating both the innate and adaptive immune responses, rendering them promising therapeutic agents for CNS tumors. In addition, engineered bacteria and derivatives, such as bacterial membrane proteins and bacterial spores, can also be used as good candidate carriers for targeted drug delivery. Moreover, the intestinal flora can regulate CNS tumor metabolism and influence the immune microenvironment through the "gut-brain axis". Therefore, bacterial anti-tumor therapy, engineered bacterial targeted drug delivery, and intervention of the intestinal flora provide therapeutic modalities for the treatment of CNS tumors. In this paper, we performed a comprehensive review of the mechanisms and therapeutic practices of bacterial therapy for CNS tumors and discussed potential future research directions in this field.
Collapse
Affiliation(s)
| | | | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China; (R.Z.); (X.L.)
| |
Collapse
|
30
|
Yang H, Niu L, Jia J, Liang W, Li Q, Pan Y. Extracellular vesicles: Mediators of microenvironment in hypoxia-associated neurological diseases. Clin Neurol Neurosurg 2024; 240:108250. [PMID: 38552364 DOI: 10.1016/j.clineuro.2024.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia is a prevalent characteristic of numerous neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. Extracellular vesicles (EVs) are minute particles released by cells that contain diverse biological materials, including proteins, lipids, and nucleic acids. They have been implicated in a range of physiological and pathological processes including intercellular communication, immune responses, and disease progression. EVs are believed to play a pivotal role in modulating the microenvironment of hypoxia-associated neurological diseases. These EVs are capable of transporting hypoxia-inducible factors such as proteins and microRNAs to neighboring or remote cells, thereby influencing their behavior. Furthermore, EVs can traverse the blood-brain barrier, shielding the brain from detrimental substances in the bloodstream. This enables them to deliver their payload directly to the brain cells, potentially intensifying the effects of hypoxia. Nonetheless, the capacity of EVs to breach the blood-brain barrier presents new opportunities for drug delivery. The objective of this study was to elucidate the role of EVs as mediators of information exchange during tissue hypoxia, a pathophysiological process in ischemic stroke and malignant gliomas. We also investigated their involvement in the progression and regression of major diseases of the central nervous system, which are pertinent to the development of therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Hu Yang
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Liang Niu
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Juan Jia
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Department of Anesthesiology, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wentao Liang
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Qiang Li
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Yawen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
31
|
Dvorakova K, Skarkova V, Vitovcova B, Soukup J, Vosmikova H, Pleskacova Z, Skarka A, Bartos MC, Krupa P, Kasparova P, Petera J, Rudolf E. Expression of STAT3 and hypoxia markers in long-term surviving malignant glioma patients. BMC Cancer 2024; 24:509. [PMID: 38654280 PMCID: PMC11036726 DOI: 10.1186/s12885-024-12221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Glioblastoma is a malignant and aggressive type of central nevous system malignancy characterized by many distinct biological features including extensive hypoxia. Hypoxia in glioblatoma associates with complex signaling patterns including activation of several pathways such as MAPK, PI3K-AKT/mTOR and IL-6/JAK/STAT3 with the master regulator HIF-1, which in turn drive particular tumor behaviors determining, in the end, treatment outcomes and patients fate. Thus, the present study was designed to investigate the expression of selected hypoxia related factors including STAT3 in a small set of long-term surviving glioma patients. METHODS The expression of selected hypoxia related factors including STAT3 was evaluated in a time series of formalin fixed paraffin embedded and cryopreserved glioma samples from repeatedly resected patients. In addition, comparative studies were also conducted on primary glioma cells derived from original patient samples, stabilized glioma cell lines and tumor-xenograft mice model. Obtained data were correlated with clinical findings too. RESULTS Glioblastoma samples of the analyzed patients displayed heterogeneity in the expression of hypoxia- related and EMT markers with most interesting trend being observed in pSTAT3. This heterogeneity was subsequently confirmed in other employed models (primocultures derived from glioblastoma tissue resections, cryopreserved tumor specimens, stabilized glioblastoma cell line in vitro and in vivo) and concerned, in particular, STAT3 expression which remained stable. In addition, subsequent studies on the role of STAT3 in the context of glioblastoma hypoxia demonstrated opposing effects of its deletion on cell viability as well as the expression of hypoxia and EMT markers. CONCLUSIONS Our results suport the importance of STAT3 expression and activity in the context of hypoxia in malignant glioblastoma long-term surviving glioma patients while emphasizing heterogeneity of biological outcomes in varying employed tumor models.
Collapse
Affiliation(s)
- Katerina Dvorakova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Veronika Skarkova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Soukup
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Pathology, Military University Hospital Prague, Prague, Czech Republic
- Department of Pathology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Hana Vosmikova
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zuzana Pleskacova
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adam Skarka
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michael Christian Bartos
- Department of Neurosurgery, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Krupa
- Department of Neurosurgery, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Kasparova
- The Fingerland Department of Pathology, Faculty of Medicine n Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
32
|
Chen Y, Ma Y, Shi K, Chen H, Han X, Wei C, Lyu Y, Huang Y, Yu R, Song Y, Song Q, Jiang J, Feng J, Lin Y, Chen J, Chen H, Zheng G, Gao X, Jiang G. Self-Disassembling and Oxygen-Generating Porphyrin-Lipoprotein Nanoparticle for Targeted Glioblastoma Resection and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307454. [PMID: 38299428 DOI: 10.1002/adma.202307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Indexed: 02/02/2024]
Abstract
The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuxiao Ma
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Kexin Shi
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiao Han
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chenxuan Wei
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yingqi Lyu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yingying Lin
- Brain Injury Centre, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China
| | - Gang Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
33
|
Marallano VJ, Ughetta ME, Tejero R, Nanda S, Ramalingam R, Stalbow L, Sattiraju A, Huang Y, Ramakrishnan A, Shen L, Wojcinski A, Kesari S, Zou H, Tsankov AM, Friedel RH. Hypoxia drives shared and distinct transcriptomic changes in two invasive glioma stem cell lines. Sci Rep 2024; 14:7246. [PMID: 38538643 PMCID: PMC10973515 DOI: 10.1038/s41598-024-56102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 07/12/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.
Collapse
Affiliation(s)
- Valerie J Marallano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary E Ughetta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rut Tejero
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sidhanta Nanda
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rohana Ramalingam
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren Stalbow
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anirudh Sattiraju
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yong Huang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexandre Wojcinski
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
34
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
35
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
36
|
Fu Z, Chen Z, Ye J, Ji J, Ni W, Lin W, Lin H, Lu L, Zhu G, Xie Q, Yan F, Chen G, Liu F. Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma. Cancers (Basel) 2024; 16:840. [PMID: 38398231 PMCID: PMC10887327 DOI: 10.3390/cancers16040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jingya Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weifang Ni
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weibo Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Haopu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Liquan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Ganggui Zhu
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China;
| | - Qin Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| |
Collapse
|
37
|
Nóbrega AHL, Pimentel RS, Prado AP, Garcia J, Frozza RL, Bernardi A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr Cancer Drug Targets 2024; 24:579-594. [PMID: 38310461 DOI: 10.2174/0115680096265849231031101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.
Collapse
Affiliation(s)
| | - Rafael Sampaio Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Ana Paula Prado
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Jenifer Garcia
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| |
Collapse
|
38
|
Khakshour E, Bahreyni-Toossi MT, Anvari K, Shahram MA, Vaziri-Nezamdoust F, Azimian H. Evaluation of the effects of simulated hypoxia by CoCl 2 on radioresistance and change of hypoxia-inducible factors in human glioblastoma U87 tumor cell line. Mutat Res 2024; 828:111848. [PMID: 38154290 DOI: 10.1016/j.mrfmmm.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE Glioblastoma (GBM) is considered the most common and lethal type of brain tumor with a poor prognosis. GBM treatment has challenges due to its aggressive nature, which often causes treatment failure and recurrence. Hypoxia is one of the characteristics of glioblastoma tumors that contribute to radioresistance and malignant phenotypes of GBM. In this study, we aimed to determine the effects of hypoxia on the radiosensitivity of U87 GBM cells by the hypoxia-mimicking model. METHODS Following the treatment of cells with different concentrations of CoCl2, an MTT assay was used to evaluate the cytotoxicity of CoCl2. To understand the effects of Ionizing radiation on CoCl2-treated groups, cells were exposed to irradiation after pretreating with 100 μM CoCl2, and a clonogenic survival assay was performed to determine the radiosensitivity of U87 cells. Also, the intracellular Reactive oxygen level was measured by 2',7'-dichlorofluorescein diacetate (DCFDA) probe staining. Additionally, the expression of hypoxia-associated genes, including HIF-1α, HIF-2α, and their target genes (GLUT-1), was monitored by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Our study revealed that the cell viability of CoCl2-treated cells was decreased in a concentration-dependent manner. Also, CoCl2 did not cause any cytotoxicity on U87 cells at a concentration of 100 μM after treatment for 24 h. Colony formation assay showed that CoCl2 pretreatment induced radioresistance of tumor cells compared to non-treated cells. Also, CoCl2 can protect cells against irradiation by the clearance of ROS. Moreover, Real-time results showed that the mRNA expression of HIF-1α and GLUT-1 were significantly upregulated following hypoxia induction and/or irradiation condition. However, the level of HIF-2α mRNA did not change significantly in hypoxia or irradiation alone conditions, but it increased significantly only in hypoxia + irradiation conditions. CONCLUSION Taken together, our results indicated that simulating hypoxia by CoCl2 can effectively increase hypoxia-associated genes, specially HIF-1α and GLUT-1, but did not affect HIF-2α gene expression. Also, it can increase the clearance of ROS, respectively, and it leads to inducing radioresistance of U87 cells.
Collapse
Affiliation(s)
- Elham Khakshour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni-Toossi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Shahram
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Teran Pumar OY, Lathia JD, Watson DC, Bayik D. 'Slicing' glioblastoma drivers with the Swiss cheese model. Trends Cancer 2024; 10:15-27. [PMID: 37625928 PMCID: PMC10840711 DOI: 10.1016/j.trecan.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The Swiss cheese model is used to assess risks and explain accidents in a variety of industries. This model can be applied to dissect the homeostatic mechanisms whose cumulative dysregulation contributes to disease states, including cancer. Using glioblastoma (GBM) as an exemplar, we discuss how specific protumorigenic mechanisms collectively drive disease by affecting genomic integrity, epigenetic regulation, metabolic homeostasis, and antitumor immunity. We further highlight how host factors, such as hormonal differences and aging, impact this process, and the interplay between these 'system failures' that enable tumor progression and foster therapeutic resistance. Finally, we examine therapies that consider the interactions between these elements, which may comprise more effective approaches given the multifaceted protumorigenic mechanisms that drive GBM.
Collapse
Affiliation(s)
- Oriana Y Teran Pumar
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Justin D Lathia
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dionysios C Watson
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Medical Oncology Division, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Ramar V, Guo S, Hudson B, Liu M. Progress in Glioma Stem Cell Research. Cancers (Basel) 2023; 16:102. [PMID: 38201528 PMCID: PMC10778204 DOI: 10.3390/cancers16010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents a diverse spectrum of primary tumors notorious for their resistance to established therapeutic modalities. Despite aggressive interventions like surgery, radiation, and chemotherapy, these tumors, due to factors such as the blood-brain barrier, tumor heterogeneity, glioma stem cells (GSCs), drug efflux pumps, and DNA damage repair mechanisms, persist beyond complete isolation, resulting in dismal outcomes for glioma patients. Presently, the standard initial approach comprises surgical excision followed by concurrent chemotherapy, where temozolomide (TMZ) serves as the foremost option in managing GBM patients. Subsequent adjuvant chemotherapy follows this regimen. Emerging therapeutic approaches encompass immunotherapy, including checkpoint inhibitors, and targeted treatments, such as bevacizumab, aiming to exploit vulnerabilities within GBM cells. Nevertheless, there exists a pressing imperative to devise innovative strategies for both diagnosing and treating GBM. This review emphasizes the current knowledge of GSC biology, molecular mechanisms, and associations with various signals and/or pathways, such as the epidermal growth factor receptor, PI3K/AKT/mTOR, HGFR/c-MET, NF-κB, Wnt, Notch, and STAT3 pathways. Metabolic reprogramming in GSCs has also been reported with the prominent activation of the glycolytic pathway, comprising aldehyde dehydrogenase family genes. We also discuss potential therapeutic approaches to GSC targets and currently used inhibitors, as well as their mode of action on GSC targets.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr., New Orleans, LA 70125, USA;
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| |
Collapse
|
41
|
Nemr CR, Sklavounos AA, Wheeler AR, Kelley SO. WITHDRAWN: Digital microfluidics as an emerging tool for bacterial protocols. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100133. [PMID: 38101571 DOI: 10.1016/j.slasd.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slast.2022.10.001. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Carine R Nemr
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA, 91711, USA; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
42
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
43
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
44
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Bednarczyk M, Muc-Wierzgoń M, Dzięgielewska-Gęsiak S, Waniczek D. Relationship between the Ubiquitin-Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines 2023; 11:3011. [PMID: 38002011 PMCID: PMC10669458 DOI: 10.3390/biomedicines11113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Dysregulation of the autophagy process via ubiquitin is associated with the occurrence of a number of diseases, including cancer. The present study analyzed the changes in the transcriptional activity of autophagy-related genes and the ubiquitination process (UPS) in colorectal cancer tissue. (2) Methods: The process of measuring the transcriptional activity of autophagy-related genes was analyzed by comparing colorectal cancer samples from four clinical stages I-IV (CS I-IV) of adenocarcinoma to the control (C). The transcriptional activity of genes associated with the UPS pathway was determined via the microarray technique (HG-U133A, Affymetrix). (3) Results: Of the selected genes, only PTEN-induced kinase 1 (PINK1) indicated statistical significance for all groups of colon cancer tissue transcriptome compared to the control. The transcriptional activity of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene increased in all stages of the cancer, but the p-value was only less than 0.05 in CSIV vs. C. Forkhead box O1 (FOXO 1) and ubiquitin B (UBB) are statistically overexpressed in CSI. (4) Conclusions: The pathological expression changes in the studied proteins observed especially in the early stages of colorectal cancer suggest that the dysregulation of ubiquitination and autophagy processes occur during early neoplastic transformation. Stopping or slowing down the processes of removal of damaged proteins and their accumulation may contribute to tumor progression and poor prognosis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Preventive Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | | | - Dariusz Waniczek
- Department of Surgical Nursing and Propaedeutics of Surgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
46
|
Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal 2023; 39:904-922. [PMID: 37166370 PMCID: PMC10654996 DOI: 10.1089/ars.2022.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Significance: Glioblastoma (GBM), the most common and lethal primary brain tumor with a median survival rate of only 15 months and a 5-year survival rate of only 6.8%, remains largely incurable despite the intensive multimodal treatment of surgical resection and radiochemotherapy. Developing effective new therapies is an unmet need for patients with GBM. Recent Advances: Targeted therapies, such as antiangiogenesis therapy and immunotherapy, show great promise in treating GBM based upon increasing knowledge about brain tumor biology. Single-cell transcriptomics reveals the plasticity, heterogeneity, and dynamics of tumor cells during GBM development and progression. Critical Issues: While antiangiogenesis therapy and immunotherapy have been highly effective in some types of cancer, the disappointing results from clinical trials represent continued challenges in applying these treatments to GBM. Molecular and cellular heterogeneity of GBM is developed temporally and spatially, which profoundly contributes to therapeutic resistance and tumor recurrence. Future Directions: Deciphering mechanisms of tumor heterogeneity and mapping tumor niche trajectories and functions will provide a foundation for the development of more effective therapies for GBM patients. In this review, we discuss five different tumor niches and the intercellular and intracellular communications among these niches, including the perivascular, hypoxic, invasive, immunosuppressive, and glioma-stem cell niches. We also highlight the cellular and molecular biology of these niches and discuss potential strategies to target these tumor niches for GBM therapy. Antioxid. Redox Signal. 39, 904-922.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Shang E, Sun S, Zhang R, Cao Z, Chen Q, Shi L, Wu J, Wu S, Liu Y, Zheng Y. Overexpression of CD99 is associated with tumor adaptiveness and indicates the tumor recurrence and therapeutic responses in gliomas. Transl Oncol 2023; 37:101759. [PMID: 37579711 PMCID: PMC10440586 DOI: 10.1016/j.tranon.2023.101759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Glioma undergoes adaptive changes, leading to poor prognosis and resistance to treatment. CD99 influences the migration and invasion of glioma cells and plays an oncogene role. However, whether CD99 can affect the adaptiveness of gliomas is still lacking in research, making its clinical value underestimated. Here, we enrolled our in-house and public multiomics datasets for bioinformatic analysis and conducted immunohistochemistry staining to investigate the role of CD99 in glioma adaptive response and its clinical implications. CD99 is expressed in more adaptative glioma subtypes and cell states. Under hypoxic conditions, CD99 is upregulated in glioma cells and is associated with angiogenesis and metabolic adaptations. Gliomas with over-expressed CD99 also increased the immunosuppressive tumor-associated macrophages. The relevance with tumor adaptiveness of CD99 presented clinical significance. We discovered that CD99 overexpression is associated with short-time recurrence and validated its prognostic value. Additionally, Glioma patients with high expression of CD99 were resistant to chemotherapy and radiotherapy. The CD99 expression was also related to anti-angiogenic and immune checkpoint inhibitor therapy response. Inhibitors of the PI3K-AKT pathway have therapeutic potential against CD99-overexpressing gliomas. Our study identified CD99 as a biomarker characterizing the adaptive response in glioma. Gliomas with high CD99 expression are highly tolerant to stress conditions such as hypoxia and antitumor immunity, making treatment responses dimmer and tumor progression. Therefore, for patients with CD99-overexpressing gliomas, tumor adaptiveness should be fully considered during treatment to avoid drug resistance, and closer clinical monitoring should be carried out to improve the prognosis.
Collapse
Affiliation(s)
- Erfei Shang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shanyue Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruolan Zhang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Zehui Cao
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingwang Chen
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Leming Shi
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China; Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Wu
- Glioma Surgery Division, Neurologic Surgery Department of Huashan Hospital, Fudan University, Shanghai, China.
| | - Yingchao Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yuanting Zheng
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Zhao S, Wang Q, Liu Y, Zhang P, Ji W, Xie J, Cheng C. Interaction, immune infiltration characteristics and prognostic modeling of efferocytosis-related subtypes in glioblastoma. BMC Med Genomics 2023; 16:248. [PMID: 37853449 PMCID: PMC10583324 DOI: 10.1186/s12920-023-01688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. This process is initiated by the release of inflammatory mediators from apoptotic cells and plays a crucial role in resolving inflammation. The signals associated with efferocytosis have been found to regulate the inflammatory response and the tumor microenvironment (TME), which promotes the immune escape of tumor cells. However, the role of efferocytosis in glioblastoma multiforme (GBM) is not well understood and requires further investigation. METHODS In this study, we conducted a comprehensive analysis of 22 efferocytosis-related genes (ERGs) by searching for studies related to efferocytosis. Using bulk RNA-Seq and single-cell sequencing data, we analyzed the expression and mutational characteristics of these ERGs. By using an unsupervised clustering algorithm, we obtained ERG clusters from 549 GBM patients and evaluated the immune infiltration characteristics of each cluster. We then identified differential genes (DEGs) in the two ERG clusters and classified GBM patients into different gene clusters using univariate cox analysis and unsupervised clustering algorithms. Finally, we utilized the Boruta algorithm to screen for prognostic genes and reduce dimensionality, and the PCA algorithm was applied to create a novel efferocytosis-related scoring system. RESULTS Differential expression of ERGs in glioma cell lines and normal cells was analyzed by rt-PCR. Cell function experiments, on the other hand, validated TIMD4 as a tumor risk factor in GBM. We found that different ERG clusters and gene clusters have distinct prognostic and immune infiltration profiles. The ERG signature we developed provides insight into the tumor microenvironment of GBM. Patients with lower ERG scores have a better survival rate and a higher likelihood of benefiting from immunotherapy. CONCLUSIONS Our novel efferocytosis-related signature has the potential to be used in clinical practice for risk stratification of GBM patients and for selecting individuals who are likely to respond to immunotherapy. This can help clinicians design appropriate targeted therapies before initiating clinical treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuankun Liu
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Cheng
- Department of Neurosurgery, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
49
|
Berzero G, Pieri V, Mortini P, Filippi M, Finocchiaro G. The coming of age of liquid biopsy in neuro-oncology. Brain 2023; 146:4015-4024. [PMID: 37289981 PMCID: PMC10545511 DOI: 10.1093/brain/awad195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical role of liquid biopsy in oncology is growing significantly. In gliomas and other brain tumours, targeted sequencing of cell-free DNA (cfDNA) from CSF may help differential diagnosis when surgery is not recommended and be more representative of tumour heterogeneity than surgical specimens, unveiling targetable genetic alterations. Given the invasive nature of lumbar puncture to obtain CSF, the quantitative analysis of cfDNA in plasma is a lively option for patient follow-up. Confounding factors may be represented by cfDNA variations due to concomitant pathologies (inflammatory diseases, seizures) or clonal haematopoiesis. Pilot studies suggest that methylome analysis of cfDNA from plasma and temporary opening of the blood-brain barrier by ultrasound have the potential to overcome some of these limitations. Together with this, an increased understanding of mechanisms modulating the shedding of cfDNA by the tumour may help to decrypt the meaning of cfDNA kinetics in blood or CSF.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit; Neurophysiology Unit; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | |
Collapse
|
50
|
Tora MS, Neill SG, Lakhina Y, Assed H, Zhang M, Nagarajan PP, Federici T, Gutierrez J, Hoang KB, Du Y, Lei K, Boulis NM. Tumor microenvironment in a minipig model of spinal cord glioma. J Transl Med 2023; 21:667. [PMID: 37752585 PMCID: PMC10523785 DOI: 10.1186/s12967-023-04531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Spinal cord glioma (SCG) is considered an orphan disease that lacks effective treatment options with margins that are surgically inaccessible and an overall paucity of literature on the topic. The tumor microenvironment is a critical factor to consider in treatment and modeling design, especially with respect to the unresectable tumor edge. Recently, our group developed a high-grade spinal cord glioma (SCG) model in Göttingen minipigs. METHODS Immunofluorescence and ELISA were performed to explore the microenvironmental features and inflammation cytokines in this minipig SCG model. Protein carbonyl assay and GSH/GSSG assay were analyzed in the core and edge lesions in the minipig SCG model. The primary core and edge cells proliferation rate were shown in vitro, and the xenograft model in vivo. RESULTS We identified an elevated Ki-67 proliferative index, vascular and pericyte markers, CD31 and desmin in the tumor edge as compared to the tumor core. In addition, we found that the tumor edge demonstrated increased pro-inflammatory and gliomagenic cytokines including TNF-α, IL-1β, and IL-6. Furthermore, the mediation of oxidative stress is upregulated in the tumor edge. Hypoxic markers had statistically significant increased staining in the tumor core, but were notably still present in the tumor edge. The edge cells cultures derived from SCG biopsy also demonstrated an increased proliferative rate compared to core cell cultures in a xenotransplantation model. CONCLUSIONS Our study demonstrates heterogeneity in microenvironmental features in our minipig model of high-grade SCG, with a phenotype at the edge showing increased oxidative stress, proliferation, inflammatory cytokines, neovascularization, and decreased but present staining for hypoxic markers. These findings support the utility of this model as a means for investigating therapeutic approaches targeting the more aggressive and surgically unresectable tumor border.
Collapse
Affiliation(s)
- Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Hemza Assed
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Michelle Zhang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Purva P Nagarajan
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Juanmarco Gutierrez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|