1
|
Xue J, Liu H, Jiang L, Yin Q, Chen L, Wang M. Limitations of nomogram models in predicting survival outcomes for glioma patients. Front Immunol 2025; 16:1547506. [PMID: 40170838 PMCID: PMC11959071 DOI: 10.3389/fimmu.2025.1547506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Purpose Glioma represents a prevalent and malignant tumor of the central nervous system (CNS), and it is essential to accurately predict the survival of glioma patients to optimize their subsequent treatment plans. This review outlines the most recent advancements and viewpoints regarding the application of nomograms in glioma prognosis research. Design With an emphasis on the precision and external applicability of predictive models, we carried out a comprehensive review of the literature on the application of nomograms in glioma and provided a step-by-step guide for developing and evaluating nomograms. Results A summary of thirty-nine articles was produced. The majority of nomogram-building research has used limited patient samples, disregarded the proportional hazards (PH) assumption in Cox regression models, and some of them have failed to incorporate external validation. Furthermore, the predictive capability of nomograms is influenced by the selection of incorporated risk factors. Overall, the current predictive accuracy of nomograms is moderately credible. Conclusion The development and validation of nomogram models ought to adhere to a standardized set of criteria, thereby augmenting their worth in clinical decision-making and clinician-patient communication. Prior to the clinical application of a nomogram, it is imperative to thoroughly scrutinize its statistical foundation, rigorously evaluate its accuracy, and, whenever feasible, assess its external applicability utilizing multicenter databases.
Collapse
Affiliation(s)
- Jihao Xue
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hang Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijia Yin
- Department of Urology or Nursing, Dazhou First People’s Hospital, Dazhou, Sichuan, China
- College of Nursing, Chongqing Medical University, Chongqing, Chongqing, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Wang SSY, Horstmann G, Renovanz M, van Eck A, Tatagiba M, Naros G. Sex-specific difference in treatment success/failure after vestibular schwannoma treatment. Neurooncol Adv 2025; 7:vdaf025. [PMID: 40296987 PMCID: PMC12035609 DOI: 10.1093/noajnl/vdaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Background Sex-related differences in patients with sporadic, unilateral vestibular schwannoma (VS) are poorly investigated so far, and it remains unclear whether biological sex affects treatment response to stereotactic radiosurgery (SRS) or microsurgical resection (SURGERY). This study elucidates sex-related differences in treatment outcome of VS. Methods This is a retrospective two-center cohort study. All consecutive patients treated for their VS between 2005 and 2012 were included. Previously treated VS and patients with neurofibromatosis were excluded. Clinical status and treatment-related complications were analyzed from both centers' prospective treatment registries. Recurrence/progression-free-survival was assessed radiographically by contrast-enhanced magnetic resonance imaging. Results Within the entire patient cohort of N = 1,118, the majority of VS patients (56%) was female. Sixty-two percent of patients were treated by SRS. Females with very small tumors (KOOS I) were significantly less likely to be assigned to SURGERY than males (P = .009). Mean follow-up time was 6 ± 4.3 years. In SURGERY, the rate of subtotal resection was significantly higher in women (7%) compared to men (2%) (P = .041). However, there was no difference in long-term tumor control after SURGERY between both sexes (P = .729). In SRS however, the incidence of recurrence was significantly higher in women (14%) compared to men (8%) (P = .004), which was also reflected in the Kaplan-Meier analysis (P = .031). Conclusions Female sex was a negative prognostic factor for treatment success (long-term tumor control) if treated with SRS-there was no sex-related differences in long-term tumor control after SURGERY. Additional research is needed to elucidate sex-related differences in tumor biology affecting the response to VS treatment.
Collapse
Affiliation(s)
- Sophie Shih-Yüng Wang
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | | | - Mirjam Renovanz
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | | | - Marcos Tatagiba
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | - Georgios Naros
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| |
Collapse
|
3
|
Frosina G, Casella C, Puppo A, Marani E, Campanella D, Boni L, Fontana V. Epidemiology of malignant brain tumors in Genova, Italy. 1993-2017. Sci Rep 2024; 14:27300. [PMID: 39516674 PMCID: PMC11549322 DOI: 10.1038/s41598-024-79170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
We present an updated analysis on the incidence of primary brain tumors in the Metropolitan Area of Genova, the capital of the northwestern Italian region Liguria.The number of cases and incidence rates for all malignant brain tumors, glioblastoma, malignant brain tumors other than glioblastoma, and brain tumors not otherwise specified were calculated for each of seven three-year and one-eighth four-year periods in which the quarter century 1993-2017 was divided. The rates were age-adjusted (AAR) using the 2013 European standard population, presented per 100,000 person-years and the average percentage change over the three-year period was calculated.The number of cases of all malignant brain tumors and glioblastoma was higher in males than in females in each three-year period and in the entire quarter century 1993-2017. During the latter, the average three-year percentage change in AARs for all brain tumors was minimal [0.6 (95% C.I. = -1.0/2.1) %] while for glioblastoma there was a change of 5.3 (95% C.I. = -0.4/11.3) %. The partially concurrent decline in the incidence rates of malignant brain tumors other than glioblastoma or not otherwise specified suggests that the observed increase in the incidence rate of glioblastoma during 1993-2017 may have been at least partially linked to the improvement during the same period in sensitivity and specificity of the diagnosis of glioblastoma, depleting the reservoirs of other malignant or unspecified brain tumors. Research into possibly increased environmental risk factors (e.g., population exposure to ionizing radiation) for glioblastoma in Genova remains warranted.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| | - Claudia Casella
- Clinical Epidemiology, Liguria Cancer Registry, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Antonella Puppo
- Clinical Epidemiology, Liguria Cancer Registry, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Enza Marani
- Clinical Epidemiology, Liguria Cancer Registry, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Dalila Campanella
- Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Luca Boni
- Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| |
Collapse
|
4
|
Yin J, Liu G, Zhang Y, Zhou Y, Pan Y, Zhang Q, Yu R, Gao S. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels. Cancer Lett 2024; 598:217114. [PMID: 38992488 DOI: 10.1016/j.canlet.2024.217114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.
Collapse
Affiliation(s)
- Jiale Yin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Gai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yu Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuchun Pan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiaoshan Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
5
|
Lv Y, Jiang G, Jiang Y, Peng C, Li W. TLR2-ERK signaling pathway regulates expression of galectin-3 in a murine model of OVA-induced allergic airway inflammation. Toxicol Lett 2024; 397:55-66. [PMID: 38754639 DOI: 10.1016/j.toxlet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Toll-like receptor 2 (TLR2) and galectin-3 (Gal-3) are involved in the pathological process of asthma, but the underlying mechanism is not fully understood. We hypothesized that TLR2 pathway may regulate expression of Gal-3 in allergic airway inflammation. Wild-type (WT) and TLR2-/- mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-21 to establish a model of allergic airway inflammation, and were treated with a specific ERK inhibitor U0126. Histological changes in the lungs were analyzed by hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining; cytokines and anti-OVA immunoglobulin E (IgE) were tested by ELISA; and related protein expression in lung tissues was measured by western blot. We found that the expression levels of TLR2 and Gal-3 markedly increased concomitantly with airway inflammation after OVA induction, while TLR2 deficiency significantly alleviated airway inflammation and reduced Gal-3 expression. Moreover, the expression levels of phosphorylated mitogen-activated protein kinases (p-MAPKs) were significantly elevated in OVA-challenged WT mice, while TLR2 deficiency only significantly decreased phosphorylated extracellular signal-regulated kinase (p-ERK) levels. Furthermore, we found that U0126 treatment significantly alleviated allergic airway inflammation and decreased Gal-3 levels in OVA-challenged WT mice, but had no further effect in OVA-challenged TLR2-/- mice. These above results suggested that TLR2 is an upstream signal molecule of ERK. We further demonstrated that TLR2 regulates Gal-3 expression through the ERK pathway in LTA-stimulated macrophages in vitro. Our findings showed that the TLR2-ERK signaling pathway regulates Gal-3 expression in a murine model of allergic airway inflammation.
Collapse
Affiliation(s)
- Yunxiang Lv
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| | - Guiyun Jiang
- Department of Clinical laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Yanru Jiang
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Caiqiu Peng
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China
| | - Wei Li
- Molecular Diagnosis Center, Bengbu, Anhui 233000, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu, Anhui 233000, China.
| |
Collapse
|
6
|
Pei G, Sun K, Yang Y, Wang S, Li M, Ma X, Wang H, Chen L, Qin J, Cao S, Liu J, Huang Y. Classification of multiple primary lung cancer in patients with multifocal lung cancer: assessment of a machine learning approach using multidimensional genomic data. Front Oncol 2024; 14:1388575. [PMID: 38764572 PMCID: PMC11100425 DOI: 10.3389/fonc.2024.1388575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Multiple primary lung cancer (MPLC) is an increasingly well-known clinical phenomenon. However, its molecular characterizations are poorly understood, and still lacks of effective method to distinguish it from intrapulmonary metastasis (IM). Herein, we propose an identification model based on molecular multidimensional analysis in order to accurately optimize treatment. Methods A total of 112 Chinese lung cancers harboring at least two tumors (n = 270) were enrolled. We retrospectively selected 74 patients with 121 tumor pairs and randomly divided the tumor pairs into a training cohort and a test cohort in a 7:3 ratio. A novel model was established in training cohort, optimized for MPLC identification using comprehensive genomic profiling analyzed by a broad panel with 808 cancer-related genes, and evaluated in the test cohort and a prospective validation cohort of 38 patients with 112 tumors. Results We found differences in molecular characterizations between the two diseases and rigorously selected the characterizations to build an identification model. We evaluated the performance of the classifier using the test cohort data and observed an 89.5% percent agreement (PA) for MPLC and a 100.0% percent agreement for IM. The model showed an excellent area under the curve (AUC) of 0.947 and a 91.3% overall accuracy. Similarly, the assay achieved a considerable performance in the independent validation set with an AUC of 0.938 and an MPLC predictive value of 100%. More importantly, the MPLC predictive value of the classification achieved 100% in both the test set and validation cohort. Compared to our previous mutation-based method, the classifier showed better κ consistencies with clinical classification among all 112 patients (0.84 vs. 0.65, p <.01). Conclusion These data provide novel evidence of MPLC-specific genomic characteristics and demonstrate that our one-step molecular classifier can accurately classify multifocal lung tumors as MPLC or IM, which suggested that broad panel NGS may be a useful tool for assisting with differential diagnoses.
Collapse
Affiliation(s)
- Guotian Pei
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Yingshun Yang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Shuai Wang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Mingwei Li
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Xiaoxue Ma
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Huina Wang
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Libin Chen
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Jiayue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Shanbo Cao
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Beijing, China
| | - Jun Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third Hospital), Beijing, China
| |
Collapse
|
7
|
Liu W, Cheng H, Huang Z, Li Y, Zhang Y, Yang Y, Jin T, Sun Y, Deng Z, Zhang Q, Lou F, Cao S, Wang H, Niu X. The correlation between clinical outcomes and genomic analysis with high risk factors for the progression of osteosarcoma. Mol Oncol 2024; 18:939-955. [PMID: 37727135 PMCID: PMC10994228 DOI: 10.1002/1878-0261.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a rare but aggressive malignancy. Despite previous reports, molecular characterization of this disease is not well understood, and little is known regarding OS in Chinese patients. Herein, we analyzed the genomic signatures of 73 Chinese OS cases. TP53, NCOR1, LRP1B, ATRX, RB1, and TFE3 were the most frequently mutated gene in our OS cohort. In addition, the genomic analysis of Western OS patients was performed. Notably, there were remarkable disparities in mutational landscape, base substitution pattern, and tumor mutational burden between the Chinese and Western OS cohorts. Specific molecular mechanisms, including DNA damage repair (DDR) gene mutations, copy number variation (CNV) presence, aneuploidy, and intratumoral heterogeneity, were associated with disease progression. Additionally, 30.1% of OS patients carried clinically actionable alterations, which were mainly enriched in PI3K, MAPK, DDR, and RTK signaling pathways. A specific molecular subtype incorporating DDR alterations and CNVs was significantly correlated with distant metastasis-free survival and event-free survival, and this correlation was observed in all subgroups with different characteristics. These findings comprehensively elucidated the genomic profile and revealed novel prognostic factors in OS, which would contribute to understanding this disease and promoting precision medicine of this population.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | | | - Zhen Huang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Yaping Li
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | | | - Yongkun Yang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Tao Jin
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Zhiping Deng
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Qing Zhang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Xiaohui Niu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| |
Collapse
|
8
|
Jang B, Yoon D, Lee JY, Kim J, Hong J, Koo H, Sa JK. Integrative multi-omics characterization reveals sex differences in glioblastoma. Biol Sex Differ 2024; 15:23. [PMID: 38491408 PMCID: PMC10943869 DOI: 10.1186/s13293-024-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with limited treatment modalities and poor prognosis. Recent studies have highlighted the importance of considering sex differences in cancer incidence, prognosis, molecular disparities, and treatment outcomes across various tumor types, including colorectal adenocarcinoma, lung adenocarcinoma, and GBM. METHODS We performed comprehensive analyses of large-scale multi-omics data (genomic, transcriptomic, and proteomic data) from TCGA, GLASS, and CPTAC to investigate the genetic and molecular determinants that contribute to the unique clinical properties of male and female GBM patients. RESULTS Our results revealed several key differences, including enrichments of MGMT promoter methylation, which correlated with increased overall and post-recurrence survival and improved response to chemotherapy in female patients. Moreover, female GBM exhibited a higher degree of genomic instability, including aneuploidy and tumor mutational burden. Integrative proteomic and phosphor-proteomic characterization uncovered sex-specific protein abundance and phosphorylation activities, including EGFR activation in males and SPP1 hyperphosphorylation in female patients. Lastly, the identified sex-specific biomarkers demonstrated prognostic significance, suggesting their potential as therapeutic targets. CONCLUSIONS Collectively, our study provides unprecedented insights into the fundamental modulators of tumor progression and clinical outcomes between male and female GBM patients and facilitates sex-specific treatment interventions. Highlights Female GBM patients were characterized by increased MGMT promoter methylation and favorable clinical outcomes compared to male patients. Female GBMs exhibited higher levels of genomic instability, including aneuploidy and TMB. Each sex-specific GBM is characterized by unique pathway dysregulations and molecular subtypes. EGFR activation is prevalent in male patients, while female patients are marked by SPP1 hyperphosphorylation.
Collapse
Affiliation(s)
- Byunghyun Jang
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dayoung Yoon
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Harim Koo
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
- Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Jovanovich N, Habib A, Chilukuri A, Hameed NUF, Deng H, Shanahan R, Head JR, Zinn PO. Sex-specific molecular differences in glioblastoma: assessing the clinical significance of genetic variants. Front Oncol 2024; 13:1340386. [PMID: 38322284 PMCID: PMC10844554 DOI: 10.3389/fonc.2023.1340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, and despite rigorous research, patient prognosis remains poor. The characterization of sex-specific differences in incidence and overall survival (OS) of these patients has led to an investigation of the molecular mechanisms that may underlie this dimorphism. Methods We reviewed the published literature describing the gender specific differences in GBM Biology reported in the last ten years and summarized the available information that may point towards a patient-tailored GBM therapy. Results Radiomics analyses have revealed that imaging parameters predict OS and treatment response of GBM patients in a sex-specific manner. Moreover, gender-based analysis of the transcriptome GBM tumors has found differential expression of various genes, potentially impacting the OS survival of patients in a sex-dependent manner. In addition to gene expression differences, the timing (subclonal or clonal) of the acquisition of common GBM-driver mutations, metabolism requirements, and immune landscape of these tumors has also been shown to be sex-specific, leading to a differential therapeutic response by sex. In male patients, transformed astrocytes are more sensitive to glutaminase 1 (GLS1) inhibition due to increased requirements for glutamine uptake. In female patients, GBM is more sensitive to anti-IL1β due to an increased population of circulating granulocytic myeloid-derived suppressor cells (gMDSC). Conclusion Moving forward, continued elucidation of GBM sexual dimorphism will be critical in improving the OS of GBM patients by ensuring that treatment plans are structured to exploit these sex-specific, molecular vulnerabilities in GBM tumors.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Akanksha Chilukuri
- Rangos Research Center, Children’s Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - N. U. Farrukh Hameed
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hansen Deng
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Regan Shanahan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffrey R. Head
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Yang K, Yu W, Liu H, Lou F, Cao S, Wang H, He Z. Mutational pattern off homologous recombination repair (HRR)-related genes in upper tract urothelial carcinoma. Cancer Med 2023; 12:15304-15316. [PMID: 37387466 PMCID: PMC10417099 DOI: 10.1002/cam4.6175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Homologous recombination (HR) repair (HRR) has been indicated to be a biomarker for immunotherapy, chemotherapy, and poly-ADP ribose polymerase inhibitors inhibitors (PARPis). Nonetheless, their molecular correlates in upper tract urothelial carcinoma (UTUC) have not been well studied. This study aimed to explore the molecular mechanism and tumor immune profile of HRR genes and the relevance of their prognostic value in patients with UTUC. MATERIALS AND METHODS One hundred and ninety-seven tumors and matched blood samples from Chinese UTUC were subjected to next-generation sequencing. A total of 186 patients from The Cancer Genome Atlas were included. Comprehensive analysis was performed. RESULTS In Chinese patients with UTUC, 5.01% harbored germline HRR gene mutations, and 1.01% had Lynch syndrome-related genes. A total of 37.6% (74/197) of patients carried somatic or germline HRR gene mutations. There was marked discrepancy in the mutation landscapes, genetic interactions, and driver genes between the HRR-mut cohorts and HRR-wt cohorts. Aristolochic acid signatures and defective DNA mismatch repair signatures only existed in individuals in the HRR-mut cohorts. Inversely, the unknown signature (signature A) and signature SBS55 only existed in patients in the HRR-wt cohorts. HRR gene mutations regulated immune activities by NKT cells, plasmacytoid dendritic cells, hematopoietic stem cell, and M1 macrophages. In patients with local recurrence, patients with HRR gene mutations had poorer DFS rates than patients with wild-type HRR genes. CONCLUSIONS Our results imply that the detection of HRR gene mutations can predict recurrence in patients with UC. In addition, this study provides a path to explore the role of HRR-directed therapies, including PARPis, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Kaiwei Yang
- Department of urologyPeking University First HospitalBeijingChina
| | - Wei Yu
- Department of urologyPeking University First HospitalBeijingChina
| | | | - Feng Lou
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Shanbo Cao
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Huina Wang
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Zhisong He
- Department of urologyPeking University First HospitalBeijingChina
| |
Collapse
|
12
|
Wu B, Zhou Y, Yang Y, Zhou D. Risk factors and a new nomogram for predicting brain metastasis from lung cancer: a retrospective study. Front Oncol 2023; 13:1092721. [PMID: 37404749 PMCID: PMC10316021 DOI: 10.3389/fonc.2023.1092721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Objective This study aims to establish and validate a new nomogram for predicting brain metastasis from lung cancer by integrating data. Methods 266 patients diagnosed as lung cancer between 2016 and 2018 were collected from Guangdong Academy of Medical Sciences. The first 70% of patients were designated as the primary cohort and the remaining patients were identified as the internal validation cohort. Univariate and multivariable logistics regression were applied to analyze the risk factors. Independent risk factors were used to construct nomogram. C-index was used to evaluate the prediction effect of nomogram.100 patients diagnosed as lung cancer between 2018 and 2019 were collected for external validation cohorts. The evaluation of nomogram was carried out through the distinction and calibration in the internal validation cohort and external validation cohort. Results 166 patients were diagnosed with brain metastasis among the 266 patients. The gender, pathological type (PAT), leukocyte count (LCC) and Fibrinogen stage (FibS) were independent risk factors of brain metastasis. A novel nomogram has been developed in this study showed an effective discriminative ability to predict the probability of lung cancer patients with brain metastasis, the C-index was 0.811. Conclusion Our research provides a novel model that can be used for predicting brain metastasis of lung cancer patients, thus providing more credible evidence for clinical decision-making.
Collapse
Affiliation(s)
- Bo Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yujun Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
14
|
Carlos-Escalante JA, Mejía-Pérez SI, Soto-Reyes E, Guerra-Calderas L, Cacho-Díaz B, Torres-Arciga K, Montalvo-Casimiro M, González-Barrios R, Reynoso-Noverón N, Ruiz-de la Cruz M, Díaz-Velásquez CE, Vidal-Millán S, Álvarez-Gómez RM, Sánchez-Correa TE, Pech-Cervantes CH, Soria-Lucio JA, Pérez-Castillo A, Salazar AM, Arriaga-Canon C, Vaca-Paniagua F, González-Arenas A, Ostrosky-Wegman P, Mohar-Betancourt A, Herrera LA, Corona T, Wegman-Ostrosky T. Deep DNA sequencing of MGMT, TP53 and AGT in Mexican astrocytoma patients identifies an excess of genetic variants in women and a predictive biomarker. J Neurooncol 2023; 161:165-174. [PMID: 36525166 DOI: 10.1007/s11060-022-04214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Astrocytomas are a type of malignant brain tumor with an unfavorable clinical course. The impact of AGT and MGMT somatic variants in the prognosis of astrocytoma is unknown, and it is controversial for TP53. Moreover, there is a lack of knowledge regarding the molecular characteristics of astrocytomas in Mexican patients. METHODS We studied 48 Mexican patients, men and women, with astrocytoma (discovery cohort). We performed DNA deep sequencing in tumor samples, targeting AGT, MGMT and TP53, and we studied MGMT gene promoter methylation status. Then we compared our findings to a cohort which included data from patients with astrocytoma from The Cancer Genome Atlas (validation cohort). RESULTS In the discovery cohort, we found a higher number of somatic variants in AGT and MGMT than in the validation cohort (10.4% vs < 1%, p < 0.001), and, in both cohorts, we observed only women carried variants AGT variants. We also found that the presence of either MGMT variant or promoter methylation was associated to better survival and response to chemotherapy, and, in conjunction with TP53 variants, to progression-free survival. CONCLUSIONS The occurrence of AGT variants only in women expands our knowledge about the molecular differences in astrocytoma between men and women. The increased prevalence of AGT and MGMT variants in the discovery cohort also points towards possible distinctions in the molecular landscape of astrocytoma among populations. Our findings warrant further study.
Collapse
Affiliation(s)
| | - Sonia Iliana Mejía-Pérez
- Departamento de Enseñanza, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Lissania Guerra-Calderas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Bernardo Cacho-Díaz
- Unidad de Neuro-Oncología, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Miguel Ruiz-de la Cruz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénsis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Clara Estela Díaz-Velásquez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Thalía Estefanía Sánchez-Correa
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Claudio Hiram Pech-Cervantes
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - José Antonio Soria-Lucio
- Departamento de Traumatología y Ortopedia, Hospital General Regional #2, Instituto Mexicano del Seguro Social, 14310, Mexico City, Mexico
| | - Areli Pérez-Castillo
- Departamento de Cirugía, Hospital General Regional #1, Instituto Mexicano del Seguro Social, 61303, Charo, Mexico
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, 14080, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Mohar-Betancourt
- Unidad de Epidemiología e Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Luis A Herrera
- Dirección General, Instituto Nacional de Medicina Genómica (INMEGEN), 14610, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", 14269, Mexico City, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico.
| |
Collapse
|
15
|
Lan Y, Liu W, Hou X, Wang S, Wang H, Deng M, Wang G, Ping Y, Zhang X. Revealing the functions of clonal driver gene mutations in patients based on evolutionary dependencies. Hum Mutat 2022; 43:2187-2204. [PMID: 36218010 DOI: 10.1002/humu.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
The clonal mutations in driver genes enable cells to gradually acquire growth advantage in tumor development. Therefore, revealing the functions of clonal driver gene mutations is important. Here, we proposed the method FCMP that considered evolutionary dependencies to analyze the functions of clonal driver gene mutations in a single patient. Applying our method to five cancer types from The Cancer Genome Atlas, we identified specific functions and common functions of clonal driver gene mutations. We found that the clonal driver gene mutations in the same patient played multiple functions. We also found that clonal mutations in the same driver gene performed different functions in different patients. These findings suggested that the clonal driver gene mutations showed strong tumor heterogeneity. In the pan-cancer analysis, the immune-related functions for clonal driver gene mutations were shared by multiple cancer types. In addition, clonal mutations in some driver genes predicted the survival of patients in cancers.
Collapse
Affiliation(s)
- Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuai Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Menglan Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Mohamed E, Kumar A, Zhang Y, Wang AS, Chen K, Lim Y, Shai A, Taylor JW, Clarke J, Hilz S, Berger MS, Solomon DA, Costello JF, Molinaro AM, Phillips JJ. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro Oncol 2022; 24:1471-1481. [PMID: 35287169 PMCID: PMC9435510 DOI: 10.1093/neuonc/noac064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH-mutant diffuse gliomas are heterogeneous, and improved methods for optimal patient therapeutic stratification are needed. PI3K/AKT/mTOR signaling activity can drive disease progression and potential therapeutic inhibitors of the pathway are available. Yet, the prevalence of PI3K/AKT/mTOR signaling pathway activity in IDH-mutant glioma is unclear and few robust strategies to assess activity in clinical samples exist. METHODS PI3K/AKT/mTOR signaling pathway activity was evaluated in a retrospective cohort of 132 IDH-mutant diffuse glioma (91 astrocytoma and 41 oligodendroglioma, 1p/19q-codeleted) through quantitative multiplex immunoprofiling using phospho-specific antibodies for PI3K/AKT/mTOR pathway members, PRAS40, RPS6, and 4EBP1, and tumor-specific anti-IDH1 R132H. Expression levels were correlated with genomic evaluation of pathway intrinsic genes and univariate and multivariate Cox proportional hazard regression models were used to evaluate the relationship with outcome. RESULTS Tumor-specific expression of p-PRAS40, p-RPS6, and p-4EBP1 was common in IDH-mutant diffuse glioma and increased with CNS WHO grade from 2 to 3. Genomic analysis predicted pathway activity in 21.7% (13/60) while protein evaluation identified active PI3K/AKT/mTOR signaling in 56.6% (34/60). Comparison of expression in male versus female patients suggested sexual dimorphism. Of particular interest, when adjusting for clinical prognostic factors, the level of phosphorylation of RPS6 was strongly associated with PFS (P < .005). Phosphorylation levels of both PRAS40 and RPS6 showed an association with PFS in univariate analysis. CONCLUSIONS Our study emphasizes the value of proteomic assessment of signaling pathway activity in tumors as a means to identify relevant oncogenic pathways and potentially as a biomarker for identifying aggressive disease.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Albert S Wang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yunita Lim
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anny Shai
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - David A Solomon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
18
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Luo S, Zhang Y, Jia Y, Zhang X. Comprehensive analysis of intratumoural heterogeneity of somatic copy number alterations in diffuse glioma reveals clonality-dependent prognostic patterns. Neuropathol Appl Neurobiol 2022; 48:e12831. [PMID: 35767937 DOI: 10.1111/nan.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
AIMS Intratumoural heterogeneity (ITH) has been implicated in tumour growth and progression as well as therapy resistance. However, the extent of ITH of somatic copy number alterations (ITH-SCNAs) as a result of tumour evolution and its influence on clinical outcomes in diffuse glioma (DG) remain poorly understood. METHODS We used an integrated computational method to infer clonal and subclonal SCNAs in 760 untreated primary DGs from The Cancer Genome Atlas. ITH-SCNAs at the genome-wide, peak (region with recurrent SCNAs) and gene level were calculated. We used the Kaplan-Meier estimators and Cox proportional hazards models to examine the associations of ITH-SCNA with patient outcomes. An independent cohort of 243 patients with paired initial and recurrent tumours from the Glioma Longitudinal Analysis Consortium was used for validation. RESULTS DGs showed widespread ITH-SCNA, with a median of 25.5% of SCNAs identified as subclonal. We found that clonal SCNA burden had stronger prognostic power than total SCNAs in IDH-mutant astrocytoma. Coamplifications of receptor tyrosine kinases (RTKs) tended to be subclonal, and subclonal RTK amplification was significantly associated with high tumour proliferative potential and unfavourable clinical outcomes in IDH-wild-type glioblastoma. In addition, we found that the prognostic values of the peak-level SCNAs were related to their mutated clonal architecture, from which three clonality-dependent prognostic patterns of SCNAs were proposed, including clonal-dominant, subclonal-dominant and clonality-independent schemas. CONCLUSIONS The systematic analysis of ITH-SCNAs in large cohorts of DGs highlighted the importance of considering the clonality of SCNA in discovery of tumour prognostic markers.
Collapse
Affiliation(s)
- Shangyi Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, China
| | - Yajing Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, China.,Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Chlamydas S, Markouli M, Strepkos D, Piperi C. Epigenetic mechanisms regulate sex-specific bias in disease manifestations. J Mol Med (Berl) 2022; 100:1111-1123. [PMID: 35764820 PMCID: PMC9244100 DOI: 10.1007/s00109-022-02227-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022]
Abstract
Abstract Sex presents a vital determinant of a person’s physiology, anatomy, and development. Recent clinical studies indicate that sex is also involved in the differential manifestation of various diseases, affecting both clinical outcome as well as response to therapy. Genetic and epigenetic changes are implicated in sex bias and regulate disease onset, including the inactivation of the X chromosome as well as sex chromosome aneuploidy. The differential expression of X-linked genes, along with the presence of sex-specific hormones, exhibits a significant impact on immune system function. Several studies have revealed differences between the two sexes in response to infections, including respiratory diseases and COVID-19 infection, autoimmune disorders, liver fibrosis, neuropsychiatric diseases, and cancer susceptibility, which can be explained by sex-biased immune responses. In the present review, we explore the input of genetic and epigenetic interplay in the sex bias underlying disease manifestation and discuss their effects along with sex hormones on disease development and progression, aiming to reveal potential new therapeutic targets. Key messages Sex is involved in the differential manifestation of various diseases. Epigenetic modifications influence X-linked gene expression, affecting immune response to infections, including COVID-19. Epigenetic mechanisms are responsible for the sex bias observed in several respiratory and autoimmune disorders, liver fibrosis, neuropsychiatric diseases, and cancer.
Collapse
Affiliation(s)
- Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece.,Olink Proteomics, Uppsala, Sweden
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
21
|
Cheng P, Lan Y, Liao J, Zhao E, Yan H, Xu L, A S, Ping Y, Xu J. Systematic investigation of the prognostic impact of clonal status of somatic mutations across multiple cancer types. Genomics 2022; 114:110412. [PMID: 35714828 DOI: 10.1016/j.ygeno.2022.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Tumors are genetically heterogeneous and many mutations are actually present in subclonal populations. The clonal status of mutations is valuable for accurate prognosis, clinical management. The aim of this study was to identify the clonal status of somatic mutations and systematically evaluate their prognostic values across various cancer types. We totally identified 227 clonal and 432 subclonal mutations contributed to prognosis and demonstrated the importance of clonal status in improving mutation-related clinical guidance. We further developed a customized multi-step approach to identify gene-specific prognostic patterns of clonal status at pan-cancer level and found some cancer-specific prognostic patterns. The 'subclonal-dependent risk' subpattern was one of the most common subpatterns, it usually accompanied by high genomic in-stability and high extent of intra-tumor heterogeneity and could be used to improve the accuracy of prognostic analysis. Our results revealed the importance of clonal status, especially subclonal mutation in clinical survival.
Collapse
Affiliation(s)
- Peng Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jianlong Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Erjie Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haoteng Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Suru A
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
22
|
Łysiak M, Trybuła M, Mudaisi M, Bratthäll C, Strandeus M, Milos P, Hallbeck M, Malmström A. The sex-dependent role of the androgen receptor in glioblastoma: results of molecular analyses. Mol Oncol 2022; 16:3436-3451. [PMID: 35661403 PMCID: PMC9533693 DOI: 10.1002/1878-0261.13262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
We sought to analyse the androgen receptor (AR) in glioblastoma (GBM) due to the location of the AR gene on chromosome X, often reported with shorter survival and higher prevalence of GBM among males. Copy number (CN) and mRNA expression of AR were tested with droplet digital PCR in 91 fresh‐frozen GBM samples and 170 formalin‐fixed, paraffin‐embedded samples collected at Linköping University Hospital. The fresh‐frozen cohort was also subjected to pyrosequencing methylation analysis of 17 CpG sites in the AR promoter. Additionally, the gene expression of AR was analysed in the fresh‐frozen cohort and The Cancer Genome Atlas (TCGA) cohort of isocitrate dehydrogenase wild‐type primary GBM (135 females and 219 males). The association of AR expression and overall survival (OS) was tested with Kaplan–Meier log rank analysis after dichotomisation by maximally selected rank statistics. We found that AR CN alterations were more common in female GBM. AR gene expression correlated with methylation levels of different CpG sites in males and females but there was no difference in expression between sexes. Survival analysis of TCGA cohort revealed the opposite effect of AR overexpression on OS of males and females, with high AR expression correlating with shorter OS in females and longer OS in males. Additional gene set enrichment analysis showed that AR expression correlated with DNA repair response, especially in the male group. In summary, we found that high AR gene expression in GBM exhibits sex‐dependent effects on patient survival, which, for males, is linked to DNA repair response.
Collapse
Affiliation(s)
- Małgorzata Łysiak
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Małgorzata Trybuła
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Munila Mudaisi
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
| | | | | | - Peter Milos
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Neurosurgery, Linköping University Hospital, Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Pathology, Linköping University Hospital, Linköping, Sweden
| | - Annika Malmström
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Advanced Home Care, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Dissecting and analyzing the Subclonal Mutations Associated with Poor Prognosis in Diffuse Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4919111. [PMID: 35496054 PMCID: PMC9039777 DOI: 10.1155/2022/4919111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
The prognostic and therapeutic implications in diffuse gliomas are still challenging. In this study, we first performed an integrative framework to infer the clonal status of mutations in glioblastomas (GBMs) and low-grade gliomas (LGGs) by using exome sequencing data from TCGA and observed both clonal and subclonal mutations for most mutant genes. Based on the clonal status of a given gene, we systematically investigated its prognostic value in GBM and LGG, respectively. Focusing on the subclonal mutations, our results showed that they were more likely to contribute to the poor prognosis, which could be hardly figured out without considering clonal status. These risk subclonal mutations were associated with some specific genomic features, such as genomic instability and intratumor heterogeneity, and their accumulation could enhance the prognostic value. By analyzing the regulatory mechanisms underlying the risk subclonal mutations, we found that the subclonal mutations of AHNAK and AHNAK2 in GBM and those of NF1 and PTEN in LGG could influence some important molecules and functions associated with glioma progression. Furthermore, we dissected the role of risk subclonal mutations in tumor evolution and found that advanced subclonal mutations showed poorer overall survival. Our study revealed the importance of clonal status in prognosis analysis, highlighting the role of the subclonal mutation in glioma prognosis.
Collapse
|
24
|
Sex Differences in Glioblastoma—Findings from the Swedish National Quality Registry for Primary Brain Tumors between 1999–2018. J Clin Med 2022; 11:jcm11030486. [PMID: 35159938 PMCID: PMC8837060 DOI: 10.3390/jcm11030486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sex disparities in glioblastoma (GBM) have received increasing attention. Sex-related differences for several molecular markers have been reported, which could impact on clinical factors and outcomes. We therefore analyzed data on all patients with GBM reported to the Swedish National Quality Registry for Primary Brain Tumors, according to sex, with a focus on prognostic factors and survival. All glioma patients registered during 20 years, from 1 January 1999 until 31 December 2018, with SNOMED codes 94403, 94413, and 94423, were analyzed. Chi2-test, log-rank test, and Kaplan–Meier analyses were performed. We identified 5243 patients, of which 2083 were females and 3160 males, resulting in a ratio of 1:1.5. We found sex related differences, with women having diagnostic surgery at a significantly higher age (p = 0.001). Women were also reported to have a worse preoperative performance status (PPS) (<0.001). There was no gender difference for the type of surgery performed. For women with radical surgery, overall survival was slightly better than for men (p = 0.045). The time period did not influence survival, neither for 1999–2005 nor 2006–2018, after temozolomide treatment was introduced (p = 0.35 and 0.10, respectively). In the multivariate analysis including sex, age, surgery, and PPS, a survival advantage was noted for women, but this was not clinically relevant (HR = 0.92, p = 0.006). For patients with GBM; sex-related differences in clinical factors could be identified in a population-based cohort. In this dataset, for survival, the only advantage noted was for women who had undergone radical surgery, although this was clinically almost negligible.
Collapse
|
25
|
Zhang W, Qin T, Yang Z, Yin L, Zhao C, Feng L, Lin S, Liu B, Cheng S, Zhang K. Telomerase-positive circulating tumor cells are associated with poor prognosis via a neutrophil-mediated inflammatory immune environment in glioma. BMC Med 2021; 19:277. [PMID: 34763698 PMCID: PMC8588721 DOI: 10.1186/s12916-021-02138-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiancheng Qin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing, 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
Dhabhai B, Sharma A, Maciaczyk J, Dakal TC. X-Linked Tumor Suppressor Genes Act as Presumed Contributors in the Sex Chromosome-Autosome Crosstalk in Cancers. Cancer Invest 2021; 40:103-110. [PMID: 34519229 DOI: 10.1080/07357907.2021.1981364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the human genome contains about 6% of tumor suppressor genes (TSGs) and the X chromosome alone holds a substantial share (2%), herein, we have discussed exclusively the relative contribution of X-linked human TSGs that appear to be primarily involved in 32 different cancer types. Our analysis showed that, (a) the majority of X-linked TSGs are primarily involved in the dysregulation of breast cancer, followed by prostate cancer, (b) Despite being escaped from X chromosome inactivation (XCI), a clear pattern of altered promoter methylation linked to the mutational burden was observed among them. (c) X-linked TSGs (mainly on the q-arm) maintain spatial and genetic interactions with certain autosomal loci. Corroborating our previous findings that loss/gain of entire sex chromosomes (in XO and XXY syndromes) can profoundly affect the epigenetic status of autosomes we herein suggest that X-linked TSGs alone can also contribute significantly in the dynamics this sex chromosome-autosome crosstalk to restructure the cancer genome.
Collapse
Affiliation(s)
- Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Amit Sharma
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Jarek Maciaczyk
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of Bonn, Bonn, Germany.,Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
27
|
Banerjee S, Zhang X, Kuang S, Wang J, Li L, Fan G, Luo Y, Sun S, Han P, Wu Q, Yang S, Ji X, Li Y, Deng L, Tian X, Wang Z, Zhang Y, Wu K, Zhu S, Bolund L, Yang H, Xu X, Liu J, Lu Y, Liu X. Comparative analysis of clonal evolution among patients with right- and left-sided colon and rectal cancer. iScience 2021; 24:102718. [PMID: 34258553 PMCID: PMC8254024 DOI: 10.1016/j.isci.2021.102718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor multiregion sequencing reveals intratumor heterogeneity (ITH) and clonal evolution playing a key role in tumor progression and metastases. Large-scale high-depth multiregional sequencing of colorectal cancer, comparative analysis among patients with right-sided colon cancer (RCC), left-sided colon cancer (LCC), and rectal cancer (RC), as well as the study of lymph node metastasis (LN) with extranodal tumor deposits (ENTDs) from evolutionary perspective remain weakly explored. Here, we recruited 68 patients with RCC (18), LCC (20), and RC (30). We performed high-depth whole-exome sequencing of 206 tumor regions including 176 primary tumors, 19 LN, and 11 ENTD samples. Our results showed ITH with a Darwinian pattern of evolution and the evolution pattern of LCC and RC was more complex and divergent than RCC. Genetic and evolutionary evidences found that both LN and ENTD originated from different clones. Moreover, ENTD was a distinct entity from LN and evolved later.
Collapse
Affiliation(s)
- Santasree Banerjee
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xianxiang Zhang
- Department of Gastroenterology, General Surgery Center, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Shan Kuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Lei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yonglun Luo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Peng Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qingyao Wu
- Department of Gastroenterology, General Surgery Center, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Shujian Yang
- Department of Gastroenterology, General Surgery Center, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaobin Ji
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Yong Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Li Deng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaofen Tian
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhiwei Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lars Bolund
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, Zhejiang, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Junnian Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yun Lu
- Department of Gastroenterology, General Surgery Center, The Affiliated Hospital of Qingdao University, Qingdao 266555, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao University, Qingdao, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
28
|
Yang K, Yu W, Liu H, Ding F, Zhang Y, Zhang Y, Wang W, Lou F, Cao S, Wang H, He Z. Comparison of Genomic Characterization in Upper Tract Urothelial Carcinoma and Urothelial Carcinoma of the Bladder. Oncologist 2021; 26:e1395-e1405. [PMID: 34050578 DOI: 10.1002/onco.13839] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Different genomic characterization in urothelial carcinoma (UC) by site of origin may imply contrasting therapeutic opportunities and pathogenetic mechanisms. The aim of this study was to investigate whether differences between upper tract UC (UTUC) and UC of the bladder (UCB) result from intrinsic biological diversity. MATERIALS AND METHODS We prospectively sequenced 118 tumors and matched blood DNA from Chinese patients with UC using next-generation sequencing techniques, including 45 UTUC and 73 UCB. Two hundred twenty-six patients with UTUC and 350 patients with UCB for The Cancer Genome Atlas were acquired from the cbioportal. RESULTS There were marked disparities in the mutational landscape for UC according to race and site of origin. Signature 22 for exposure to aristolochic acid was only observed in the UTUC cohort. Conversely, signature 6 for defective DNA mismatch repair only existed in the UCB cohort. Compared with UCB, UTUC had higher clonal and subclonal mutation numbers. TP53, PIK3CA, and FGFR3 mutations may be the driver genes for UTUC, whereas for UCB, the driver gene may be BRCA1. Patients with UTUC had lower PD-L1 than those with UCB. There was no significant difference in the number of DDR mutations, copy number variation counts, and tumor mutational burden between UTUC and UCB. CONCLUSION UTUC and UCB exhibit significant differences in the prevalence of genomic landscape and carcinogenesis. Consequently, molecular subtypes differ according to location, and these results may imply the site-specific management of patients with urothelial carcinoma. Mutational signature may be used as a screening tool to assist clinical differential diagnosis between UTUC and UCB. IMPLICATIONS FOR PRACTICE This study's findings lay the foundation for a deeper understanding of distinct molecular mechanisms and similar treatment opportunities between upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) and had important implications for the site-specific management of patients with urothelial carcinoma. A comprehensive understanding of the biology of UTUC and UCB is needed to identify new drug targets in order to improve clinical outcomes.
Collapse
Affiliation(s)
- Kaiwei Yang
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Feng Ding
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Yanrui Zhang
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Yun Zhang
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Wang Wang
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, People's Republic of China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
29
|
Łysiak M, Smits A, Roodakker KR, Sandberg E, Dimberg A, Mudaisi M, Bratthäll C, Strandeus M, Milos P, Hallbeck M, Söderkvist P, Malmström A. Deletions on Chromosome Y and Downregulation of the SRY Gene in Tumor Tissue Are Associated with Worse Survival of Glioblastoma Patients. Cancers (Basel) 2021; 13:cancers13071619. [PMID: 33807423 PMCID: PMC8036637 DOI: 10.3390/cancers13071619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Biological causes of sex disparity seen in the prevalence of cancer, including glioblastoma (GBM), remain poorly understood. One of the considered aspects is the involvement of the sex chromosomes, especially loss of chromosome Y (LOY). METHODS Tumors from 105 isocitrate dehydrogenase (IDH) wild type male GBM patients were tested with droplet digital PCR for copy number changes of ten genes on chromosome Y. Decreased gene expression, a proxy of gene loss, was then analyzed in 225 IDH wild type GBM derived from TCGA and overall survival in both cohorts was tested with Kaplan-Meier log-rank analysis and maximally selected rank statistics for cut-off determination. RESULTS LOY was associated with significantly shorter overall survival (7 vs. 14.6 months, p = 0.0016), and among investigated individual genes survival correlated most prominently with loss of the sex-determining region Y gene (SRY) (10.8 vs. 14.8 months, p = 0.0031). Gene set enrichment analysis revealed that epidermal growth factor receptor, platelet-derived growth factor receptor, and MYC proto-oncogene signaling pathways are associated with low SRY expression. CONCLUSION Our data show that deletions and reduced gene expression of chromosome Y genes, especially SRY, are associated with reduced survival of male GBM patients and connected to major susceptibility pathways of gliomagenesis.
Collapse
Affiliation(s)
- Małgorzata Łysiak
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Anja Smits
- Department of Neuroscience and Physiology, Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Elisabeth Sandberg
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, 75185 Uppsala, Sweden; (K.R.R.); (E.S.)
| | - Anna Dimberg
- Institute of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden;
| | - Munila Mudaisi
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Oncology in Linköping, Linköping University, 58185 Linköping, Sweden
| | | | | | - Peter Milos
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Neurosurgery in Linköping, Linköping University, 58185 Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Clinical Pathology, Linköping University, 58185 Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Correspondence: (M.Ł.); (P.S.)
| | - Annika Malmström
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (M.M.); (P.M.); (M.H.); (A.M.)
- Department of Advanced Home Care, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
30
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Roessler K, Hervey-Jumper S, Penninger JM, Berger MS, Widhalm G, Erhart F. Heme Biosynthesis mRNA Expression Signature: Towards a Novel Prognostic Biomarker in Patients with Diffusely Infiltrating Gliomas. Cancers (Basel) 2021; 13:cancers13040662. [PMID: 33562253 PMCID: PMC7916021 DOI: 10.3390/cancers13040662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Diffusely infiltrating gliomas are frequent brain tumors with variable prognosis. In addition to the blood pigment’s role of oxygen transportation, the metabolic pathway synthesizing heme has been shown to play a role in the biochemistry of various tumors. In this study we thus investigated the impact of heme biosynthesis factors mRNA expression on the survival in glioma patients and observed a progressive decrease in survival time with increasing mRNA expression signature. This association was present for overall as well as progression-free survival and remained statistically significant after correction for established prognostic factors such as patient age and tumor grade. Abstract Diffusely infiltrating gliomas are characterized by a variable clinical course, and thus novel prognostic biomarkers are needed. The heme biosynthesis cycle constitutes a fundamental metabolic pathway and might play a crucial role in glioma biology. The aim of this study was thus to investigate the role of the heme biosynthesis mRNA expression signature on prognosis in a large glioma patient cohort. Glioma patients with available sequencing data on heme biosynthesis expression were retrieved from The Cancer Genome Atlas (TCGA). In each patient, the heme biosynthesis mRNA expression signature was calculated and categorized into low, medium, and high expression subgroups. Differences in progression-free and overall survival between these subgroups were investigated including a multivariate analysis correcting for WHO grade, tumor subtype, and patient age and sex. In a total of 693 patients, progression-free and overall survival showed a strictly monotonical decrease with increasing mRNA expression signature subgroups. In detail, median overall survival was 134.2 months in the low, 79.9 months in the intermediate, and 16.5 months in the high mRNA expression signature subgroups, respectively. The impact of mRNA expression signature on progression-free and overall survival was independent of the other analyzed prognostic factors. Our data indicate that the heme biosynthesis mRNA expression signature might serve as an additional novel prognostic marker in patients with diffusely infiltrating gliomas to optimize postoperative management.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Thomas Roetzer
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria;
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, C201–4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Correspondence:
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (K.R.); (F.E.)
- Comprehensive Cancer Center—Central Nervous System Tumours Unit, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| |
Collapse
|
31
|
Zhang L, Liu F, Weygant N, Zhang J, Hu P, Qin Z, Yang J, Cheng Q, Fan F, Zeng Y, Tang Y, Li Y, Tang A, He F, Peng J, Liao W, Hu Z, Li M, Liu Z. A novel integrated system using patient-derived glioma cerebral organoids and xenografts for disease modeling and drug screening. Cancer Lett 2020; 500:87-97. [PMID: 33309780 DOI: 10.1016/j.canlet.2020.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
A physiologically relevant glioma tumor model is important to the study of disease progression and screening drug candidates. However, current preclinical glioma models lack the brain microenvironment, and the established tumor cell lines do not represent glioma biology and cannot be used to evaluate the therapeutic effect. Here, we reported a real-time integrated system by generating 3D ex vivo cerebral organoids and in vivo xenograft tumors based on glioma patient-derived tissues and cells. Our system faithfully recapitulated the histological features, response to chemotherapy drugs, and clinical progression of their corresponding parental tumors. Additionally, our model successfully identified a case from a grade II astrocytoma patient with typical grade IV GBM features in both organoids and xenograft models, which mimicked the disease progression of this patient. Further genomic and transcriptomic characterization was associated with individual clinical features. We have demonstrated the "GBM-&Normal-like" signature to predict prognosis. In conclusion, we developed an integrated system of parallel models from patient-derived glioma cerebral organoids and xenografts for understanding the glioma biology and prediction of response to chemotherapy drugs, which might lead to a new strategy for personalized treatment for this deadly disease.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China.
| | - Junxia Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China.
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China.
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China.
| | - Weihua Liao
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Zhongliang Hu
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1262A, Oklahoma City, OK, 73104, USA.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
32
|
Zhang Y, Xie A, Quan F, Hou X, Liao J, Zhu S, Pang L, Liang X, Zhu X, Cheng P, Li X, Xiao Y. Identifying bifurcated paths with differential function impact in glioblastomas evolution. Int J Cancer 2020; 147:3139-3151. [PMID: 32875565 DOI: 10.1002/ijc.33276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022]
Abstract
The evolutionary dynamics of human cancers has been investigated popularly and several bifurcated paths in cancer evolutionary trajectories are revealed to be with differential outcomes and phenotypes. However, whether such bifurcated paths exist in glioblastoma (GBM) remains unclear. In 385 GBM samples, through determining the clonal status of cancer driver events and inferring their temporal order, we constructed a temporal map of evolutionary trajectories at the patient population level. By investigating the differential impact on clinical outcome, we identified four key bifurcated paths, namely, "chromosome 10 copy number loss (ie, 10 loss) → chromosome 19 copy number gain (ie, 19 gain): 10 loss → 13q loss"; "10 loss → 19 gain: 10 loss → 15q loss"; "10 loss → 19 gain: 10 loss → 6q loss" and "10 loss → 19 gain: 10 loss → 16q loss". They formed a core multibranches path, with 10 loss being regarded as the common earliest event followed by 19 gain and four other departure events (13q loss, 15q loss, 6q loss and 16q loss), which may account for their difference in genome instability and patient survival time. Compared to "10 loss → 19 gain", the patients with "10 loss → 13q loss" had higher telomerase activity. Notably, there were obvious discrepancies in immune activity and immune cell infiltration level between patients with "10 loss → 13q/16q loss" and "10 loss → 19 gain", highlighting the bifurcated paths' effect on tumor immune microenvironment. In summary, our study identifies four key bifurcated paths in GBM for the first time, suggesting the feasibility of patient stratification and prognosis prediction based on key bifurcated paths.
Collapse
Affiliation(s)
- Yong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianlong Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shiwei Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaojing Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Le Rhun E, Weller M. Sex-specific aspects of epidemiology, molecular genetics and outcome: primary brain tumours. ESMO Open 2020; 5:e001034. [PMID: 33234601 PMCID: PMC7689067 DOI: 10.1136/esmoopen-2020-001034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Recent years have seen a great interest in sex-specific aspects of many diseases, including cancer, in part because of the assumption that females have often not been adequately represented in early drug development and determination of safety, tolerability and efficacy in clinical trials. Brain tumours represent a highly heterogeneous group of neoplastic diseases with strong variation of incidence by age, but partly also by sex. Most gliomas are more common in men whereas meningiomas, the most common primary intracranial tumours, are more common in females. Potential sex-specific genetic risk factors and specific sex biology have been reported in a tumour-specific manner. Several small studies have indicated differences in tolerability and safety of, as well as benefit from, treatment by sex, but no conclusive data have been generated. Exploring sex-specific aspects of neuro-oncology should be studied more systematically and in more depth in order to uncover the biological reasons for known sex differences in this disease.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Clinical Neuroscience Center and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland.
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Credendino SC, Neumayer C, Cantone I. Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends Genet 2020; 36:650-663. [PMID: 32736810 DOI: 10.1016/j.tig.2020.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
High-throughput sequencing and genome-wide association studies have revealed a sex bias in human diseases. The underlying molecular mechanisms remain, however, unknown. Here, we cover recent advances in cancer and autoimmunity focusing on intrinsic genetic and epigenetic differences underlying sex biases in human disease. These studies reveal a central role of genome regulatory mechanisms including genome repair, chromosome folding, and epigenetic regulation in dictating the sex bias. These highlight the importance of considering sex as a variable in both basic science and clinical investigations. Understanding the molecular mechanisms underlying sex bias in human diseases will be instrumental in making a first step forwards into the era of personalized medicine.
Collapse
Affiliation(s)
- Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Christoph Neumayer
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cantone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
35
|
Zhou X, Niu X, Li J, Zhang S, Yang W, Yang Y, Mao Q, Liu Y. Risk Factors for Early Mortality in Patients with Primary Central Nervous System Lymphoma: A Large-Cohort Retrospective Study. World Neurosurg 2020; 138:e905-e912. [PMID: 32251807 DOI: 10.1016/j.wneu.2020.03.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study assessed early mortality (within 1 and 3 months) in patients with primary central nervous system lymphoma (PCNSL) and identified the risk factors associated with early mortality. METHODS We extracted the data for patients with PCNSL from the Surveillance, Epidemiology, and End Results dataset using the SEER∗Stat, version 8.3.5, software. RESULTS A total of 8091 patients with PCNSL were enrolled in the present study. Of the 8091 patients, 57.94% were men and 42.06% were women. The mean age was 59.50 ± 16.11 years. The rate of death within 1 and 3 months was 10.67% and 29.16%, respectively. During the past 20 years, early mortality declined significantly. The common causes of early death were non-Hodgkin lymphoma and other infectious and parasitic diseases, including human immunodeficiency virus. Our results showed that gender, age at diagnosis, ethnicity, histological subtype, marital status, tumor location, surgery, radiotherapy, and chemotherapy were associated with early mortality within 1 or 3 months. CONCLUSION The rate of early mortality has declined significantly during the past 20 years. The risk factors for early mortality within 1 or 3 months after a PCNSL diagnosis included advanced age, male gender, black race, frontal lobe location, unmarried, diffuse large B-cell lymphoma, no surgery, no chemotherapy, and no radiotherapy.
Collapse
Affiliation(s)
- Xingwang Zhou
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Xiaodong Niu
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Junhong Li
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
36
|
Liu C, Ma T, Jiang T, Jia G, Yang C, Peng Y, Qian Y, Wang R, Wang S. Abnormal increase of miR-4262 promotes cell proliferation and migration by targeting large tumor suppressor 1 in gliomas. Pathol Res Pract 2019; 216:152778. [PMID: 31831299 DOI: 10.1016/j.prp.2019.152778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/20/2019] [Accepted: 12/01/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND miRNA was recently detected as tumor suppressor or inducer in various cancers including gliomas. Due to the abnormal expression of miR-4262 in glioma cancer, we supposed that miR-4262 made efforts in proliferation and migration in glioma cancer. METHODS CCK-8, Transwell migration Assay and Wound-healing assay were appraisal assays for cell proliferation and migration. qRT-PCR and western blot were performed to test the expression of miR-4262, MMP2, MMP13 and LATS1 in glioma cancers tissues and cancer cells. The targeting detection between miR-4262 and LATS1 was detected by luciferase reporter assay. RESULTS miR-4262 expression was dramatically higher in glioma tumor tissues than in para-tumor control. Inhibition of miR-4262 in glioma cancer cells prominently inhibited cell proliferation and migration. Mechanically, downregulation of miR-4262 inhibited expression of matrix metalloproteinase (MMP) -2, -13. In addition, miR-4262 directly and negatively modulated expression of large tumor suppressor 1 (LATS1). Moreover, we discovered that overexpression of LATS1 could reverse the effects of miR-4262 on cell proliferation and migration, as well as the production of MMP-2, -13. CONCLUSIONS In glioma cancer, miR-4262 regulated cell proliferation and migration mediated by LATS1. This indicated that miR-4262 is a tumor inducer in glioma cancer and may be a feasible target for glioma therapy.
Collapse
Affiliation(s)
- Chunbo Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Tao Ma
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Geng Jia
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Changchun Yang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Yitao Qian
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Rong Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China
| | - Suinuan Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou First Peoples' Hospital, Changzhou City, 213003, Jiangsu Province, China.
| |
Collapse
|
37
|
Lan Y, Zhao E, Luo S, Xiao Y, Li X, Cheng S. Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer. Breast Cancer Res Treat 2019; 175:91-104. [PMID: 30739230 DOI: 10.1007/s10549-019-05153-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Genomic studies have revealed that genomic aberrations play important roles in the progression of this disease. The aim of this study was to evaluate the associations between clinical survival outcomes of the clonality and subclonality status of driver genes in breast cancer. METHODS We performed an integrated analysis to infer the clonal status of 55 driver genes in breast cancer data from TCGA. We used the chi-squared test to assess the relations between clonality of driver gene mutations and clinicopathological factors. The Kaplan-Meier method was performed for the visualization and the differences between survival curves were calculated by log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors. RESULTS We identified a high proportion of clonal mutations in these driver genes. Among them, there were 17 genes showing significant associations between their clonality and multiple clinicopathologic factors. Performing survival analysis on BRCA patients with clonal or subclonal driver gene mutations, we found that clonal ERBB2, FOXA1, and KMT2C mutations and subclonal GATA3 and RB1 mutations predicted shorter overall survival compared with those with wild type. Furthermore, clonal ERBB2 and FOXA1 mutations and subclonal GATA3 and RB1 mutations independently predicted for shorter overall survival after adjusting for clinicopathological factors. By longitudinal analysis, the clonality of ERBB2, FOXA1, GATA3, and RB1 significantly predicted patients' outcome within some specific BRCA tumor stages and histological subtypes. CONCLUSIONS In summary, these clonal or subclonal mutations of driver genes have implications for diagnosis, prognosis, and treatment with BRCA patients.
Collapse
Affiliation(s)
- Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Erjie Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Shangyi Luo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Shujun Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, Heilongjiang, China.
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|