1
|
Cai Y, Yang W, Yue J, Chen J, Xing J, Yang X, Ye D, Tang C, Liu H. Isolation and Functional Characterization of the MADS-Box Gene AGAMOUS-LIKE 24 in Rubber Dandelion ( Taraxacum kok-saghyz Rodin). Int J Mol Sci 2025; 26:2271. [PMID: 40076890 PMCID: PMC11901092 DOI: 10.3390/ijms26052271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Rubber dandelion (Taraxacum kok-saghyz Rodin, TKS), also referred to as Russian dandelion, is one of the most promising natural rubber (NR)-producing plants that produce high-quality NR comparable to that from the Pará rubber tree (Hevea brasiliensis, Hb), currently the only commercial source. It needs further breeding to improve the agricultural traits. However, little has been known about the genetic mechanisms underlying the regulation of floral induction and flower development in TKS, an important trait that remains to be improved for commercial production. The MADS-box gene AGAMOUS-LIKE 24 (AGL24) plays important roles in floral induction and flower development. As the first step in understanding its roles in TKS, this study isolated and characterized the AGL24-homologous gene TkAGL24 in TKS. The TkAGL24 gene had a 705 bp coding sequence (CDS) that encoded a protein of 234 amino acids containing the conserved classic MADS-box type II domain and K-box domain, sharing 55.32% protein sequence identity with the AtAGL24 protein from Arabidopsis. TkAGL24 was highly expressed in leaf, latex, root, and peduncle but rarely or not in mature flower. The TkAGL24 protein was located in the nucleus and cytoplasm and did not have transcription activation activity in yeast cells. The overexpression of TkAGL24 in Arabidopsis could promote flowering and cause the abnormal development of flowers, similar to other AGL24-homologous genes from other species. Furthermore, the overexpression of TkAGL24 in TKS also affected the development of ligulate flowers. These results suggested that the cloned TkAGL24 gene is functional and may play important roles in floral induction and flower development in TKS, providing an insight into the possibility for the further studies of its roles and application to breeding.
Collapse
Affiliation(s)
- Yijiao Cai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Wei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jin Yue
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jiaqi Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jianfeng Xing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Xue Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - De Ye
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Chaorong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Hui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Tian J, Gao L. Evolutionary Dynamics and Expression Divergence of the MADS-Box Gene Family During Recent Speciation of AA-Genome Oryza Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:379. [PMID: 39942941 PMCID: PMC11820988 DOI: 10.3390/plants14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
To investigate the evolutionary trajectory during the recent speciation of AA-genome Oryza species, we conducted a comprehensive analysis of the MADS-box gene family across eight Oryza species. We identified 1093 MADS-box genes in total and systematically examined their evolutionary history, gene family expansion, and expression divergence. Our results revealed that extensive lineage-specific expansions occurred in AA-genome Oryza species, which were primarily generated by proximal and tandem duplications, with a particularly notable episode in Type-I genes. Despite the significant expansion, Type-I genes were generally expressed at low levels or not expressed across various organs. In contrast, the expansion of Type-II genes was primarily observed in the AG, AGL12, SOC1, GGM13, and MIKC* subfamilies, which exhibited high levels of expression in reproductive organs such as panicles and stigmas. Additionally, we found species-specific gene expression in the two out-crossing wild rice species, Oryza rufipogon and Oryza longistaminata. Notably, a unique MADS-box gene in O. longistaminata exhibited high expression levels in rhizomes and stems, which may be associated with the species' distinctive rhizomatous growth habit.
Collapse
Affiliation(s)
- Jiaqi Tian
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China;
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Lizhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China;
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Yu X, Cao S, Wang J, Li D, He Y. Comprehensive genomic analysis of SmbHLH genes and the role of SmbHLH93 in eggplant anthocyanin biosynthesis. PLANT CELL REPORTS 2025; 44:36. [PMID: 39847148 DOI: 10.1007/s00299-025-03429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
KEY MESSAGE SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation. As an outstanding source of anthocyanins, eggplant (Solanum melongena L.) is extremely beneficial for human health. In the process of anthocyanin biosynthesis in eggplant, the basic helix-loop-helix (bHLH) transcription factor family plays a crucial role. However, the bHLH gene family is extensive, making it difficult to systematically screen and analyze their functions using conventional methods. We studied the phylogeny, gene structure, conserved motifs, promoter element, and chromosomal location of the 166 SmbHLH genes in the recently released eggplant genome. Through the analysis of transcriptomic data of eggplant peel treated with light, it was found that SmbHLH93 was the most responsive to light among those of unknown function. Additionally, it was discovered that SmbHLH93 plays a positive regulatory role in anthocyanin synthesis through dual-luciferase reporter assay(dual-LUC) and genetic transformation in Arabidopsis (Arabidopsis thaliana). Furthermore, experiments involving yeast two-hybrid (Y2H), luciferase complementation assay (Split-LUC), and tobacco transient transformation demonstrated that SmbHLH93 has the ability to interact with SmMYB1 in order to enhance anthocyanin accumulation. This study will serve as a foundation for exploring the role of SmbHLH transcription factors in anthocyanin biosynthesis in the future.
Collapse
Affiliation(s)
- XinJin Yu
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - SiYu Cao
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - JinDi Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - DaLu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - YongJun He
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Duan SF, Yu JC, Baldwin TC, Yuan Y, Xiang GS, Cui R, Zhao Y, Mo XC, Lu YC, Liang YL. Genome-wide identification of a MADS-box transcription factor family and their expression during floral development in Coptis teeta wall. BMC PLANT BIOLOGY 2024; 24:1023. [PMID: 39468440 PMCID: PMC11520390 DOI: 10.1186/s12870-024-05714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND MADS-box transcription factors have been shown to be involved in multiple developmental processes, including the regulation of floral organ formation and pollen maturation. However, the role of the MADS-box gene family in floral development of the alpine plant species Coptis teeta Wall, which is widely used in Traditional Chinese Medicine (TCM), is unknown. RESULTS Sixty-six MADS-box genes were identified in the C. teeta genome. These genes were shown to be unevenly distributed throughout the genome of C. teeta. The majority of which (49) were classified as type I MADS-box genes and were further subdivided into four groups (Mα, Mβ, Mγ and Mδ). The remainder were identified as belonging to the type II MADS-box gene category. It was observed that four pairs of segmental and tandem duplication had occurred in the C. teeta MADS-box gene family, and that the ratios of Ka/Ks were less than 1, suggesting that these genes may have experienced purifying selection during evolution. Gene expression profiling analysis revealed that 38 MADS-box genes displayed differential expression patterns between the M and F floral phenotypes. Sixteen of these MADS-box genes were further verified by RT-qPCR. The 3D structure of each subfamily gene was predicted, further indicating that MADS-box genes of the same type possess structural similarities to the known template. CONCLUSIONS These data provide new insights into the molecular mechanism of dichogamy and herkogamy formation in C. teeta and establish a solid foundation for future studies of the MADS-box genes family in this medicinal plant species.
Collapse
Affiliation(s)
- Shao-Feng Duan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ji-Chen Yu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Yuan Yuan
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Gui-Sheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xin-Chun Mo
- Department of Applied Technology, Lijiang Normal University, Lijiang, Yunnan, 674100, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- , Fengyuan Road, Panlong District, Kunming, 650201, China.
| |
Collapse
|
5
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
6
|
Nie C, Xu X, Zhang X, Xia W, Sun H, Li N, Ding Z, Lv Y. Genome-Wide Identified MADS-Box Genes in Prunus campanulata 'Plena' and Theirs Roles in Double-Flower Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3171. [PMID: 37687417 PMCID: PMC10490222 DOI: 10.3390/plants12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The MADS-box gene family plays key roles in flower induction, floral initiation, and floral morphogenesis in flowering plants. To understand their functions in the double-flower formation of Prunus campanulata 'Plena' (hereafter referred to as PCP), which is an excellent flowering cherry cultivar, we performed genome-wide identification of the MADS-box gene family. In this study, 71 MADS-box genes were identified and grouped into the Mα, Mβ, Mγ and MIKC subfamilies according to their structures and phylogenetic relationships. All 71 MADS-box genes were located on eight chromosomes of PCP. Analysis of the cis-acting elements in the promoter region of MADS-box genes indicated that they were associated mainly with auxin, abscisic acid, gibberellin, MeJA (methyl jasmonate), and salicylic acid responsiveness, which may be involved in floral development and differentiation. By observing the floral organ phenotype, we found that the double-flower phenotype of PCP originated from petaloid stamens. The analysis of MIKC-type MADS-box genes in PCP vegetative and floral organs by qRT-PCR revealed six upregulated genes involved in petal development and three downregulated genes participating in stamen identity. Comparative analysis of petaloid stamens and normal stamens also indicated that the expression level of the AG gene (PcMADS40) was significantly reduced. Thus, we speculated that these upregulated and downregulated genes, especially PcMADS40, may lead to petaloid stamen formation and thus double flowers. This study lays a theoretical foundation for MADS-box gene identification and classification and studying the molecular mechanism underlying double flowers in other ornamental plants.
Collapse
Affiliation(s)
- Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Xiaoguo Xu
- Wuhan Landscape Ecology Group Co., Ltd., Wuhan 430070, China;
| | - Xiaoqin Zhang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Wensheng Xia
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Hongbing Sun
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Na Li
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Zhaoquan Ding
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China; (C.N.); (X.Z.); (W.X.); (H.S.); (N.L.); (Z.D.)
| | - Yingmin Lv
- School of Landscape Architecture, Beijing Forestry of University, Beijing 100083, China
| |
Collapse
|
7
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Yang D, Yang J, Wan J, Xu Y, Li L, Rong J, Chen L, He T, Zheng Y. Genome-Wide Identification of MIKCc-Type MADS-Box Family Gene and Floral Organ Transcriptome Characterization in Ma Bamboo ( Dendrocalamus latiflorus Munro). Genes (Basel) 2022; 14:genes14010078. [PMID: 36672819 PMCID: PMC9859424 DOI: 10.3390/genes14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Most bamboos die after flowering, and the molecular mechanisms responsible for flowering is poorly understood. The MIKCc-type MADS-box family gene is involved in the flowering process. To explore the mechanism of the MIKCc-type MADS-box gene and phytohormone regulation in the flowering of Dendrocalamus latiflorus Munro (D. latiflorus), characterized by extremely rapid growth and widely cultivated woody bamboo, we initially did a genome-wide analysis of the MIKCc-type MADS-box gene in D. latiflorus. In the meantime, transcriptome analysis was performed using the floral organs. A total of 170 MIKCc-Type MADS-Box genes were identified and divided into 15 categories. The cis-acting element analysis in promoters regions revealed that MIKC-type MADS-box family genes were associated with hormones, including auxin, abscisic acid (ABA), gibberellin (GA) and jasmonic acid (JA), which was found at 79, 476, 96, 486 sites and cover 61, 103, 73, 128 genes. Genome synteny analysis showed subgenome AA and BB were better than CC and obtained 49, 40, 39 synteny genes compared with Oryza sativa (O. sativa). In transcriptome analysis of floral organs, the enriched pathway from DEGs included circadian, vernalization and gibberellin pathways associated with the flowering process. We found that the jasmonic acid synthesis gene is highly expressed in the pistil, which may be the cause of Ma bamboo pollen abortion. The expression profile showed that most MIKC-type MADS-box genes exhibited high expression in flower organs. The consequences of this study will provide insight into the irregular flowering and low pollen counts of Ma bamboo.
Collapse
Affiliation(s)
- Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayi Wan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanping Xu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyou He
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
9
|
Duan K, Fu H, Fang D, Wang K, Zhang W, Liu H, Sahu SK, Chen X. Genome-Wide Analysis of the MADS-Box Gene Family in Holoparasitic Plants ( Balanophora subcupularis and Balanophora fungosa var. globosa). FRONTIERS IN PLANT SCIENCE 2022; 13:846697. [PMID: 35712591 PMCID: PMC9197559 DOI: 10.3389/fpls.2022.846697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
MADS-box is an important transcription factor family that is involved in the regulation of various stages of plant growth and development, especially flowering regulation and flower development. Being a holoparasitic plant, the body structure of Balanophoraceae has changed dramatically over time, and its vegetative and reproductive organs have been extensively modified, with rudimentary flower organs. Meanwhile, extraordinary gene losses have been identified in holoparasitic plants compared with autotrophs. Our study reveals that the MADS-box gene family contracted sharply in Balanophora subcupularis and Balanophora fungosa var. globosa, and some subfamilies were lost, exhibiting reduced redundancy in both. The genes that functioned in the transition from the vegetative to floral production stages suffered a significant loss, but the ABCE model genes remained intact. We further investigated genes related to flowering regulation in B. subcupularis and B. fungosa var. globosa, vernalization and autonomous ways of regulating flowering time remained comparatively integrated, while genes in photoperiod and circadian clock pathways were almost lost. Convergent gene loss in flowering regulation occurred in Balanophora and another holoparasitic plant Sapria himalayana (Rafflesiaceae). The genome-wide analysis of the MADS-box gene family in Balanophora species provides valuable information for understanding the classification, gene loss pattern, and flowering regulation mechanism of MADS-box gene family in parasitic plants.
Collapse
Affiliation(s)
- Kunyu Duan
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Fu
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Kaimeng Wang
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhang
- China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Xiaoli Chen
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
10
|
Ma YY, Meng Q, Tan XM, Yang L, Zhang KL, Xu ZQ. Functional identification of the different regions in B-class floral homeotic MADS-box proteins IiAP3 and IiPI from Isatis indigotica. PHYSIOLOGIA PLANTARUM 2022; 174:e13713. [PMID: 35561122 DOI: 10.1111/ppl.13713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
APETALA3 (AP3) and PISTILLATA (PI) are B-class MADS-box floral homeotic genes of Arabidopsis and are involved in specifying the identity of petals and stamens. In the present work, IiAP3 and IiPI, the respective orthologous genes of AP3 and PI, were cloned from Isatis indigotica. By expressing in ap3-6 and pi-1 homozygous mutant and in wild-type Arabidopsis under the control of AP3 promoter or CaMV 35S promoter, we demonstrated that IiAP3 and IiPI were functionally equivalent to AP3 and PI of Arabidopsis. Referring to previous reports and the research results in the present work, expression patterns of AP3 and PI homologs are not the same in different angiosperms possessing diverse floral structures. It suggests that the alterations in expression may contribute to the changing morphology of flowers. To further determine the relationship between IiAP3 and IiPI, the coding sequences of the different structural regions in these two proteins were swapped with each other, and the data collected from transgenic Arabidopsis plants of the chimeric constructs suggested that MADS domain was irreplaceable for the function of IiAP3, K domain of IiAP3 was involved in specifying the identity of stamens, K domain of IiPI was mainly related to the formation of petals, and C-terminal region of IiPI was involved in characterization of stamens. In addition, a complete KC region of these two proteins was more effective in phenotypic complementation of the mutants.
Collapse
Affiliation(s)
- Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Kai-Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Fritsche S, Rippel Salgado L, Boron AK, Hanning KR, Donaldson LA, Thorlby G. Transcriptional Regulation of Pine Male and Female Cone Initiation and Development: Key Players Identified Through Comparative Transcriptomics. Front Genet 2022; 13:815093. [PMID: 35368695 PMCID: PMC8971679 DOI: 10.3389/fgene.2022.815093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
With long reproductive timescales, large complex genomes, and a lack of reliable reference genomes, understanding gene function in conifers is extremely challenging. Consequently, our understanding of which genetic factors influence the development of reproductive structures (cones) in monoecious conifers remains limited. Genes with inferred roles in conifer reproduction have mostly been identified through homology and phylogenetic reconstruction with their angiosperm counterparts. We used RNA-sequencing to generate transcriptomes of the early morphological stages of cone development in the conifer species Pinus densiflora and used these to gain a deeper insight into the transcriptional changes during male and female cone development. Paired-end Illumina sequencing was used to generate transcriptomes from non-reproductive tissue and male and female cones at four time points with a total of 382.82 Gbp of data generated. After assembly and stringent filtering, a total of 37,164 transcripts were retrieved, of which a third were functionally annotated using the Mercator plant pipeline. Differentially expressed gene (DEG) analysis resulted in the identification of 172,092 DEGs in the nine tissue types. This, alongside GO gene enrichment analyses, pinpointed transcripts putatively involved in conifer reproductive structure development, including co-orthologs of several angiosperm flowering genes and several that have not been previously reported in conifers. This study provides a comprehensive transcriptome resource for male and early female cone development in the gymnosperm species Pinus densiflora. Characterisation of this resource has allowed the identification of potential key players and thus provides valuable insights into the molecular regulation of reproductive structure development in monoecious conifers.
Collapse
Affiliation(s)
- Steffi Fritsche
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
| | - Leonardo Rippel Salgado
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- Molecular and Digital Breeding, The New Zealand Institute for Plant and Food Research, Te Puke, New Zealand
| | | | | | | | - Glenn Thorlby
- Forest Genetics and Biotechnology, Scion, Rotorua, New Zealand
- *Correspondence: Glenn Thorlby,
| |
Collapse
|
12
|
Shen G, Wang WL. Circlize package in R and Analytic Hierarchy Process (AHP): Contribution values of ABCDE and AGL6 genes in the context of floral organ development. PLoS One 2022; 17:e0261232. [PMID: 35061694 PMCID: PMC8782415 DOI: 10.1371/journal.pone.0261232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The morphological diversity of floral organs can largely be attributed to functional divergence in the MADS-box gene family. Nonetheless, research based on the ABCDE model has yet to conclusively determine whether the AGAMOUS-LIKE 6 (AGL6) subgroup has a direct influence on floral organ development. In the current study, the ABCDE model was used to quantify the contributions of ABCDE and AGL6 genes in the emergence of floral organs. We determined that the flower formation contribution values of the ABCDE and AGL6 genes were as follows: A gene, 0.192; B gene, 0.231; CD gene, 0.192; E gene, 0.385; and AGL6, 0.077. As AGL6 does not directly influence floral structure formation, the contribution value of AGL6 to flower formation was low. Furthermore, the gradient values of the floral organs were as follows: sepals, 0.572; petals, 1.606; stamens, 2.409; and carpels, 2.288. We also performed detailed analysis of the ABCDE and AGL6 genes using the Circlize package in R. Our results suggest that these genes likely emerged in one of two orders: 1) B genes→CD genes→AGL6→E genes→A genes; or 2) B genes→CD genes→AGL6/E genes→A genes. We use the analytic hierarchy process (AHP) to prove the contribution values and gradient values of floral organs. This is the first study to understand the contribution values of ABCDE and AGL6 genes using the AHP and the Circlize package in R.
Collapse
Affiliation(s)
- Gangxu Shen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
13
|
Kim SH, Ji SD, Lee HS, Jeon YA, Shim KC, Adeva C, Luong NH, Yuan P, Kim HJ, Tai TH, Ahn SN. A Novel Embryo Phenotype Associated With Interspecific Hybrid Weakness in Rice Is Controlled by the MADS-Domain Transcription Factor OsMADS8. FRONTIERS IN PLANT SCIENCE 2022; 12:778008. [PMID: 35069634 PMCID: PMC8769243 DOI: 10.3389/fpls.2021.778008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 05/27/2023]
Abstract
A novel hybrid weakness gene, DTE9, associated with a dark tip embryo (DTE) trait, was observed in CR6078, an introgression line derived from a cross between the Oryza sativa spp. japonica "Hwayeong" (HY) and the wild relative Oryza rufipogon. CR6078 seeds exhibit protruding embryos and flowers have altered inner floral organs. DTE9 was also associated with several hybrid weakness symptoms including decreased grain weight. Map-based cloning and transgenic approaches revealed that DTE9 is an allele of OsMADS8, a MADS-domain transcription factor. Genetic analysis indicated that two recessive complementary genes were responsible for the expression of the DTE trait. No sequence differences were observed between the two parental lines in the OsMADS8 coding region; however, numerous single nucleotide polymorphisms were detected in the promoter and intronic regions. We generated overexpression (OX) and RNA interference (RNAi) transgenic lines of OsMADS8 in HY and CR6078, respectively. The OsMADS8-OX lines showed the dark tip embryo phenotype, whereas OsMADS8-RNAi recovered the normal embryo phenotype. Changes in gene expression, including of ABCDE floral homeotic genes, were observed in the OsMADS8-OX and OsMADS8-RNAi lines. Overexpression of OsMADS8 led to decreased expression of OsEMF2b and ABA signaling-related genes including OsVP1/ABI3. HY seeds showed higher ABA content than CR6078 seeds, consistent with OsMADS8/DTE9 regulating the expression of genes related ABA catabolism in CR6078. Our results suggest that OsMADS8 is critical for floral organ determination and seed germination and that these effects are the result of regulation of the expression of OsEMF2b and its role in ABA signaling and catabolism.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Shi-Dong Ji
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Pingrong Yuan
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | | | - Thomas H. Tai
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
14
|
D’Apice G, Moschin S, Araniti F, Nigris S, Di Marzo M, Muto A, Banfi C, Bruno L, Colombo L, Baldan B. The role of pollination in controlling Ginkgo biloba ovule development. THE NEW PHYTOLOGIST 2021; 232:2353-2368. [PMID: 34558676 PMCID: PMC9292720 DOI: 10.1111/nph.17753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 05/20/2023]
Abstract
Generally, in gymnosperms, pollination and fertilization events are temporally separated and the developmental processes leading the switch from ovule integument into seed coat are still unknown. The single ovule integument of Ginkgo biloba acquires the typical characteristics of the seed coat long before the fertilization event. In this study, we investigated whether pollination triggers the transformation of the ovule integument into the seed coat. Transcriptomics and metabolomics analyses performed on ovules just prior and after pollination lead to the identification of changes occurring in Ginkgo ovules during this specific time. A morphological atlas describing the developmental stages of ovule development is presented. The metabolic pathways involved in the lignin biosynthesis and in the production of fatty acids are activated upon pollination, suggesting that the ovule integument starts its differentiation into a seed coat before the fertilization. Omics analyses allowed an accurate description of the main changes that occur in Ginkgo ovules during the pollination time frame, suggesting the crucial role of the pollen arrival on the progression of ovule development.
Collapse
Affiliation(s)
- Greta D’Apice
- Botanical GardenUniversity of PadovaPadua25123Italy
- Department of BiologyUniversity of PadovaPadua35121Italy
| | - Silvia Moschin
- Botanical GardenUniversity of PadovaPadua25123Italy
- Department of BiologyUniversity of PadovaPadua35121Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental SciencesUniversity of MilanoMilan20133Italy
| | - Sebastiano Nigris
- Botanical GardenUniversity of PadovaPadua25123Italy
- Department of BiologyUniversity of PadovaPadua35121Italy
| | | | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences (DiBEST)University of CalabriaArcavacata of RendeCS87036Italy
| | - Camilla Banfi
- Department of BiosciencesUniversity of MilanoMilan20133Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST)University of CalabriaArcavacata of RendeCS87036Italy
| | - Lucia Colombo
- Department of BiosciencesUniversity of MilanoMilan20133Italy
| | - Barbara Baldan
- Botanical GardenUniversity of PadovaPadua25123Italy
- Department of BiologyUniversity of PadovaPadua35121Italy
| |
Collapse
|
15
|
Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut ( Cyclocarya paliurus). Int J Mol Sci 2021; 22:ijms221810128. [PMID: 34576289 PMCID: PMC8471257 DOI: 10.3390/ijms221810128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus.
Collapse
|
16
|
Hou C, Tian Y, Wang Y, Lian H, Liang D, Shi S, Deng N, He B. Revealing the developmental dynamics in male strobilus transcriptome of Gnetum luofuense using nanopore sequencing technology. Sci Rep 2021; 11:10516. [PMID: 34006996 PMCID: PMC8131605 DOI: 10.1038/s41598-021-90082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/29/2021] [Indexed: 02/03/2023] Open
Abstract
Gnetum is a pantropical distributed gymnosperm genus. As being dioecious, Gnetum species apply female and male strobili to attract and provide nutrition to insect pollinators. Due to its unique gross morphology, a Gnetum male strobilus receives much attention in previous taxonomic and evolutionary studies. However, underlying molecular mechanisms that control male strobilus development and pollination adaptation have not been well studied. In the present study, nine full-length transcriptomes were sequenced from three developmental stages of the G. luofuense male strobili using Oxford Nanopore Technologies. In addition, weighted gene co-expression network analysis (WGCNA), and RT-qPCR analysis were performed. Our results show that a total of 3138 transcription factors and 466 long non-coding RNAs (lncRNAs) were identified, and differentially expressed lncRNAs and TFs reveal a dynamic pattern during the male strobilus development. Our results show that MADS-box and Aux/IAA TFs were differentially expressed at the three developmental stages, suggesting their important roles in the regulation of male strobilus development of G. luofuense. Results of WGCNA analysis and annotation of differentially expressed transcripts corroborate that the male strobilus development of G. luofuense is closely linked to plant hormone changes, photosynthesis, pollination drop secretion and reproductive organ defense. Our results provide a valuable resource for understanding the molecular mechanisms that drive organ evolution and pollination biology in Gnetum.
Collapse
Affiliation(s)
- Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, Hunan, No. 658 Shaoshan Road, Tianxin District, Changsha, 410004, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, Hunan, Changsha, 410004, China
| | - Yingli Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Huiming Lian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Nan Deng
- Hunan Academy of Forestry, Changsha, Hunan, No. 658 Shaoshan Road, Tianxin District, Changsha, 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili, Hunan, Changsha, 410004, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
- Guangdong Academy of Forestry, Guangshanyilu No. 233, Longdong District, Guangzhou, 510520, China.
| |
Collapse
|
17
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
18
|
Liao Q, Du R, Gou J, Guo L, Shen H, Liu H, Nguyen JK, Ming R, Yin T, Huang S, Yan J. The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgobiloba. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1399-1409. [PMID: 33015884 DOI: 10.1111/tpj.15009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Sex differences and evolutionary differences are critical biological issues. Ginkgo is an ancient lineage of dioecious gymnosperms with special value for studying the mechanism of sex determination in plants. However, the major genetic basic underlying sex chromosomes remains to be uncovered. In this study, we identify the sex-determining region of Ginkgo and locate it to the area from megabases 48 to 75 on chromosome 2. We find that the male sex-determining region of Ginkgo contains more than 200 genes, including four MADS-box genes, demonstrating that the Ginkgo sex determination system is of the XY type. We also find that genetic sex differences result in specialized flavonoid metabolism and regulation in each sex. These findings establish a foundation for revealing the molecular mechanism of sexual dimorphism and promoting the development of the Ginkgo industry.
Collapse
Affiliation(s)
- Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junbo Gou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lvjun Guo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hailin Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Julie K Nguyen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tongming Yin
- Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
19
|
Liu J, Ren M, Chen H, Wu S, Yan H, Jalal A, Wang C. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. THE PLANT GENOME 2020; 13:e20053. [PMID: 33217197 DOI: 10.1002/tpg2.20053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
MADS-box genes that are homologous to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been shown to play key roles in the regulation of bud dormancy in perennial species, particularly in the deciduous fruit trees of Rosaceae. However, their evolutionary profiles in Rosaceae have not yet been analyzed systematically. Here, The SVP genes were found to be significantly expanded in Rosaceae when compared with annual species from Brassicaceae. Phylogenetic analysis showed that Rosaceae SVP genes could be classified into five clades, namely, SVP1, SVP2-R1, SVP2-R2, SVP2-R3 and SVP3. The SVP1 clade genes were retained in most of the species, whereas the SVP2-R2 and SVP2-R3 clades were found to be Maleae- and Amygdaleae-specific (Both of the lineages belong to Amygdaloideae), respectively, and SVP2-R1 was Rosoideae-specific in Rosaceae. Furthermore, 10 lineage-specific gene duplication (GD) events (GD1-10) were proposed for the expansion of SVP genes, suggesting that the expansion and divergence of Rosaceae SVP genes were mainly derived by lineage-specific manner during evolution. Moreover, tandem and segmental duplications were the major reasons for the expansion of SVP genes, and interestingly, tandem duplications, a well-known evolutionary feature of SVP genes, were found to be mainly Amygdaloideae-specific. Sequence alignment, selection pressure, and cis-acting element analysis suggested large functional innovations and diversification of SVP genes in different lineages of Rosaceae. Finally, the different growth cycle of Rosa multiflora and their novel expression patterns of RmSVP genes provided new insights into the functional diversification of SVP genes in terms of their roles in processes other than bud dormancy.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Shanghai Forestry Station, Shanghai, 200072, China
| | - Hui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huijun Yan
- Yunnan Academy of Agricultural Sciences, Flower Research Institute, Kunming, Yunnan, 650200, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
20
|
Lyu J, Cai Z, Li Y, Suo H, Yi R, Zhang S, Nian H. The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. Int J Mol Sci 2020; 21:E1322. [PMID: 32075331 PMCID: PMC7072909 DOI: 10.3390/ijms21041322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Soybean is an important crop that is grown worldwide. Flowering time is a critical agricultural trait determining successful reproduction and yields. For plants, light and temperature are important environmental factors that regulate flowering time. Soybean is a typical short-day (SD) plant, and many studies have elucidated the fine-scale mechanisms of how soybean responds to photoperiod. Low temperature can delay the flowering time of soybean, but little is known about the detailed mechanism of how temperature affects soybean flowering. In this study, we isolated GmFLC-like from soybean, which belongs to the FLOWERING LOCUS C clade of the MADS-box family and is intensely expressed in soybean leaves. Heterologous expression of GmFLC-like results in a delayed-flowering phenotype in Arabidopsis. Additional experiments revealed that GmFLC-like is involved in long-term low temperature-triggered late flowering by inhibiting FT gene expression. In addition, yeast one-hybrid, dual-luciferase reporter assay, and electrophoretic mobility shift assay revealed that the GmFLC-like protein could directly repress the expression of FT2a by physically interacting with its promoter region. Taken together, our results revealed that GmFLC-like functions as a floral repressor involved in flowering time during treatments with various low temperature durations. As the only the FLC gene in soybean, GmFLC-like was meaningfully retained in the soybean genome over the course of evolution, and this gene may play an important role in delaying flowering time and providing protective mechanisms against sporadic and extremely low temperatures.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Zhandong Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Haicui Suo
- Crop Research Institute, Guangdong Academy of Agriculture, Guangzhou 510642, China;
| | - Rong Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Z.C.); (R.Y.)
- Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Hou C, Saunders RMK, Deng N, Wan T, Su Y. Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation. Genes (Basel) 2019; 10:E800. [PMID: 31614866 PMCID: PMC6826882 DOI: 10.3390/genes10100800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms.
Collapse
Affiliation(s)
- Chen Hou
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| | - Richard M K Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Nan Deng
- Institute of Ecology, Hunan Academy of Forestry, Shaoshannan Road, No. 6581, Changsha 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili 427200, China.
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Liantangxianhu Road, No. 160, Shenzhen 518004, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Moshan, Wuhan 430074, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| |
Collapse
|
22
|
Bai G, Yang DH, Cao P, Yao H, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H. Genome-Wide Identification, Gene Structure and Expression Analysis of the MADS-Box Gene Family Indicate Their Function in the Development of Tobacco ( Nicotiana tabacum L.). Int J Mol Sci 2019; 20:E5043. [PMID: 31614589 PMCID: PMC6829366 DOI: 10.3390/ijms20205043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
MADS-box genes play a pivotal role in various processes, including floral and seed development, controlling flowering time, regulation of fruits ripening, and respond to abiotic and biotic stressors in planta. Tobacco (Nicotiana tabacum) has been widely used as a model plant for analyzing the gene function, however, there has been less information on the regulation of flowering, and the associated genes. In the present study, a total of 168 NtMADS-box genes were identified from tobacco, and their phylogenetic relationship, chromosome locations, and gene structures were further analyzed. NtMADS-box genes can be clustered into four sub-families of Mα, Mγ, MIKC*, and MIKCC. A total of 111 NtMADS-box genes were distributed on 20 chromosomes, and 57 NtMADS-box genes were located on the unanchored scaffolds due to the complex and incomplete assembly of the tobacco genome. Expression profiles of NtMADS-box genes by microarray from 23 different tissues indicated that members in different NtMADS-box gene subfamilies might play specific roles in the growth and flower development, and the transcript levels of 24 NtMADS-box genes were confirmed by quantitative real-time PCR. Importantly, overexpressed NtSOC1/NtMADS133 could promote early flowering and dwarfism in transgenic tobacco plants. Therefore, our findings provide insights on the characterization of NtMADS-box genes to further study their functions in plant development.
Collapse
Affiliation(s)
- Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Peijian Cao
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Heng Yao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Yihan Zhang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Xuejun Chen
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Bingguang Xiao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| | - Feng Li
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Jun Yang
- China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
- Key Laboratory of Tobacco Biotechnological Breeding, Kunming, 650021, China.
- National Tobacco Genetic Engineering Research Center, Kunming, 650021, China.
| |
Collapse
|
23
|
Wang P, Wang S, Chen Y, Xu X, Guang X, Zhang Y. Genome-wide Analysis of the MADS-Box Gene Family in Watermelon. Comput Biol Chem 2019; 80:341-350. [PMID: 31082717 DOI: 10.1016/j.compbiolchem.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
MADS-box genes comprise a family of transcription factors that function in the growth and development of plants. To obtain insights into their evolution in watermelon (Citrullus lanatus), we carried out a genome-wide analysis and identified 39 MADS-box genes. These genes were classified into MIKCc (25), MIKC*(3), Mα (5), Mβ (3), and Mγ (3) clades according to their phylogenetic relationship with Arabidopsis thaliana and Cucumis sativus; moreover, these 25 genes in the MIKC clade could be classified into 13 subfamilies, and the Flowering Locus C (FLC) subfamily is absent in watermelon. Analysis of the conserved gene motifs showed similar motifs among clades. Continuing chromosomal localizations analysis indicated that MADS-box genes were distributed across 11 chromosomes in watermelon, and these genes were conditioned to be differentially expressed during plant growth and development. This research provides information that will aid further investigations into the evolution of the MADS-box gene family in plants.
Collapse
Affiliation(s)
- Ping Wang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China
| | - Songbo Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410000, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing 100045, China
| | - Xiaomin Xu
- Department of Mathematics, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xuanmin Guang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youhua Zhang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Shen G, Yang CH, Shen CY, Huang KS. Origination and selection of ABCDE and AGL6 subfamily MADS-box genes in gymnosperms and angiosperms. Biol Res 2019; 52:25. [PMID: 31018872 PMCID: PMC6480507 DOI: 10.1186/s40659-019-0233-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.
Collapse
Affiliation(s)
- Gangxu Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yen Shen
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Meng D, Cao Y, Chen T, Abdullah M, Jin Q, Fan H, Lin Y, Cai Y. Evolution and functional divergence of MADS-box genes in Pyrus. Sci Rep 2019; 9:1266. [PMID: 30718750 PMCID: PMC6362034 DOI: 10.1038/s41598-018-37897-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
MADS-box transcription factors widely regulate all aspects of plant growth including development and reproduction. Although the MADS-box gene family genes have been extensively characterized in many plants, they have not been studied in closely related species. In this study, 73 and 74 MADS-box genes were identified in European pear (Pyrus communis) and Chinese pear (Pyrus bretschneideri), respectively. Based on the phylogenetic relationship, these genes could be clustered into five groups (Mα, Mβ, Mr, MIKCC, MIKC*) and the MIKCC group was further categorized into 10 subfamilies. The distribution of MADS-box genes on each chromosome was significantly nonrandom. Thirty-seven orthologs, twenty-five PcpMADS (P. communis MADS-box) paralogs and nineteen PbrMADS (P. bretschneideri MADS-box) paralogs were predicted. Among these paralogous genes, two pairs arose from tandem duplications (TD), nineteen from segmental duplication (SD) events and twenty-three from whole genome duplication (WGD) events, indicating SD/WGD events led to the expansion of MADS-box gene family. The MADS-box genes expression profiles in pear fruits indicated functional divergence and neo-functionalization or sub-functionalization of some orthologous genes originated from a common ancestor. This study provided a useful reference for further analysis the mechanisms of species differentiation and biodiversity formation among closely related species.
Collapse
Affiliation(s)
- Dandan Meng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunpeng Cao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tianzhe Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Fan
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Lin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
26
|
Filyushin MA, Slugina MA, Shchennikova AV, Kochieva EZ. Identification and Expression Analysis of the YABBY1 Gene in Wild Tomato Species. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418050022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Liu J, Fu X, Dong Y, Lu J, Ren M, Zhou N, Wang C. MIKC C-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. HORTICULTURE RESEARCH 2018; 5:25. [PMID: 29736250 PMCID: PMC5928068 DOI: 10.1038/s41438-018-0031-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 05/04/2023]
Abstract
MIKCC-type MADS-box (MIKCC) genes encode transcription factors that have crucial roles in controlling floral organogenesis and flowering time in plants. Although this gene family has been well characterized in many plant species, its evolutionary and comprehensive functional analysis in rose is lacking. In this study, 58 non-redundant MIKCC uni-transcripts were extensively identified from rose transcriptomes. Phylogenetic analysis placed these genes into 12 clades with their Arabidopsis and strawberry counterparts, and revealed that ABCDE model (including AP1/FUL, AP3/PI, AG, and SEP clades), and SOC1 and AGL6 clade genes have remarkably expanded in Rosa chinensis, whereas genes from the FLC and AGL17 clades were undetectable. Sequence alignments suggest that the AP3/PI clade may contribute to more specific functions in rose due to a high variation of amino acid residues within its MADS-box domains. A comparative analysis of gene expression in specific floral organ differentiation stages and floral organs between R. chinensis cv. Old Blush and the closely related mutant genotype R. chinensis cv. Viridiflora (floral organs mutated into leaf-like structures) further revealed the roles of ABCDE model genes during floral organogenesis in rose. Analysis of co-expression networks provided an overview of the regulatory mechanisms of rose MIKCC genes and shed light on both the prominent roles of AP3/PI clade genes in floral organogenesis and the roles of RcAGL19, RcAGL24, and RcSOC1 in regulating floral transition in rose. Our analyses provide an overall insight of MIKCC genes in rose and their potential roles in floral organogenesis.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Xiaodong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yuwei Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Ningning Zhou
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200 China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
28
|
Chen F, Zhang X, Liu X, Zhang L. Evolutionary Analysis of MIKC c-Type MADS-Box Genes in Gymnosperms and Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:895. [PMID: 28611810 PMCID: PMC5447709 DOI: 10.3389/fpls.2017.00895] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Abstract
MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower.
Collapse
|
29
|
Ren Z, Yu D, Yang Z, Li C, Qanmber G, Li Y, Li J, Liu Z, Lu L, Wang L, Zhang H, Chen Q, Li F, Yang Z. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. FRONTIERS IN PLANT SCIENCE 2017; 8:384. [PMID: 28382045 PMCID: PMC5360754 DOI: 10.3389/fpls.2017.00384] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigated, in cotton. Here, we performed a comprehensive analysis of MIKC-type MADS genes in the tetraploid Gossypium hirsutum L., which is the most widely cultivated cotton species. In total, 110 GhMIKC genes were identified and phylogenetically classified into 13 subfamilies. The Flowering locus C (FLC) subfamily was absent in the Gossypium hirsutum L. genome but is found in Arabidopsis and Vitis vinifera L. Among the genes, 108 were distributed across the 13 A and 12 of the D genome's chromosomes, while two were located in scaffolds. GhMIKCs within subfamilies displayed similar exon/intron characteristics and conserved motif compositions. According to RNA-sequencing, most MIKC genes exhibited high flowering-associated expression profiles. A quantitative real-time PCR analysis revealed that some crucial MIKC genes determined the identities of the five flower organs. Furthermore, the overexpression of GhAGL17.9 in Arabidopsis caused an early flowering phenotype. Meanwhile, the expression levels of the flowering-related genes CONSTANS (CO), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were significantly increased in these lines. These results provide useful information for future studies of GhMIKCs' regulation of cotton flowering.
Collapse
Affiliation(s)
- Zhongying Ren
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Daoqian Yu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhaoen Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Changfeng Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Cotton Research Institute, Anhui Academy of Agricultural SciencesHefei, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Yi Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Jie Li
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhao Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Lili Lu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Wang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Hua Zhang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
| | - Fuguang Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Zuoren Yang
| | - Zuoren Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agriculture UniversityUrumqi, China
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Fuguang Li
| |
Collapse
|
30
|
Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana. PLoS One 2016; 11:e0165075. [PMID: 27776173 PMCID: PMC5077141 DOI: 10.1371/journal.pone.0165075] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.
Collapse
Affiliation(s)
- Katrin Ehlers
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Amey S. Bhide
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Dawit G. Tekleyohans
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Benjamin Wittkop
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Rod J. Snowdon
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Annette Becker
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| |
Collapse
|
31
|
Niu S, Yuan H, Sun X, Porth I, Li Y, El-Kassaby YA, Li W. A transcriptomics investigation into pine reproductive organ development. THE NEW PHYTOLOGIST 2016; 209:1278-1289. [PMID: 26406997 DOI: 10.1111/nph.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed using RNA-seq. The results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to that of male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous. This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinrui Sun
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
32
|
Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:284-98. [PMID: 25917508 PMCID: PMC11389087 DOI: 10.1111/pbi.12383] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 05/04/2023]
Abstract
Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
33
|
Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 2015; 24:1017-27. [PMID: 26338266 DOI: 10.1007/s11248-015-9902-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023]
Abstract
Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.
Collapse
Affiliation(s)
| | - Xianggan Li
- Syngenta Biotechnology China Co. Ltd, Beijing, People's Republic of China
| | | | - Yoshimi Barron
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Anna Prairie
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - David Bradley
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Michele Doyle
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
35
|
Li X, Ning G, Han X, Liu C, Bao M. The identification of novel PMADS3 interacting proteins indicates a role in post-transcriptional control. Gene 2015; 564:87-95. [PMID: 25827715 DOI: 10.1016/j.gene.2015.03.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
PMADS3, a known MADS-box transcriptional factor and a C-class gene for floral development, plays dual roles in controlling the identity of inner floral organs and the termination of flower meristems in petunia. In this study, it was confirmed by bimolecular fluorescence complementation (BiFC) assays that the PMADS3 protein can interact individually with E-class proteins FBP2, FBP5, FBP9 and PMADS12. A yeast two-hybrid cDNA library was screened using the entire PMADS3 as bait, and this identified further potential interaction candidates. Two novel genes, PheIF3f and PhAGO10, were isolated, and suggested to regulate mRNA and translational processes according to the analysis of protein functional domains and subcellular localization predictions. Notably, the PhAGO10 protein belongs to the Argonaute family, members of which are major players in small-RNA-guided gene silencing processes via mRNA cleavage or translational inhibition. The results of yeast two-hybrid and BiFC assays indicated that PheIF3f and PhAGO10 could interact with PMADS3. Our findings indicate that the C-class gene PMADS3 potentially participates in post-transcriptional control, as well as transcriptional regulation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueping Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caixian Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
36
|
Theißen G. My favourite flowering image: a cob of pod corn. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6751-6754. [PMID: 24980907 DOI: 10.1093/jxb/ert461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For good reasons scientists usually do not report the personal circumstances of their work when publishing their results. This means, however, that the scientific facts being reported may not accurately reflect the personal importance of the respective work for the individual scientists. Pictures of pod corn (or Tunicate maize) have been on my mind for much of my life, through good and through bad times. This is why...
Collapse
Affiliation(s)
- Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
37
|
Gramzow L, Weilandt L, Theißen G. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. ANNALS OF BOTANY 2014; 114:1407-29. [PMID: 24854168 PMCID: PMC4204780 DOI: 10.1093/aob/mcu066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/10/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. METHODS The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. KEY RESULTS Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. CONCLUSIONS The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Lisa Weilandt
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
38
|
Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. THE PLANT CELL 2014; 26:3603-15. [PMID: 25228343 PMCID: PMC4213154 DOI: 10.1105/tpc.114.127910] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 08/29/2014] [Indexed: 05/19/2023]
Abstract
In plants, MADS domain transcription factors act as central regulators of diverse developmental pathways. In Arabidopsis thaliana, one of the most central members of this family is SEPALLATA3 (SEP3), which is involved in many aspects of plant reproduction, including floral meristem and floral organ development. SEP3 has been shown to form homo and heterooligomeric complexes with other MADS domain transcription factors through its intervening (I) and keratin-like (K) domains. SEP3 function depends on its ability to form specific protein-protein complexes; however, the atomic level determinants of oligomerization are poorly understood. Here, we report the 2.5-Å crystal structure of a small portion of the intervening and the complete keratin-like domain of SEP3. The domains form two amphipathic alpha helices separated by a rigid kink, which prevents intramolecular association and presents separate dimerization and tetramerization interfaces comprising predominantly hydrophobic patches. Mutations to the tetramerization interface demonstrate the importance of highly conserved hydrophobic residues for tetramer stability. Atomic force microscopy was used to show SEP3-DNA interactions and the role of oligomerization in DNA binding and conformation. Based on these data, the oligomerization patterns of the larger family of MADS domain transcription factors can be predicted and manipulated based on the primary sequence.
Collapse
Affiliation(s)
- Sriharsha Puranik
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Samira Acajjaoui
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Simon Conn
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Luca Costa
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Vanessa Conn
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Anthony Vial
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Romain Marcellin
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France Faculté des Sciences de Montpellier, place Eugène Bataillon, 34095 Montpellier, France
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University, 07737 Jena, Germany
| | - Elizabeth Brown
- European Synchrotron Radiation Facility, Structural Biology Group, 38042 Grenoble, France
| | - Darren Hart
- Université Grenoble Alpes, CNRS, Integrated Structural Biology Grenoble, Unit of Virus Host Cell Interactions, Unité Mixte Internationale 3265 (CNRS-EMBL-UJF), UMS 3518 (CNRS-CEA-UJF-EMBL), 38042 Grenoble, France
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University, 07737 Jena, Germany
| | - Catarina S Silva
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - François Parcy
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - Renaud Dumas
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| | - Max Nanao
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 38042 Grenoble, France
| | - Chloe Zubieta
- CNRS, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble, France INRA, Laboratoire de Physiologie Cellulaire et Végétale, USC1359, F-38054 Grenoble, France
| |
Collapse
|
39
|
Sharma N, Bhalla PL, Singh MB. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha. BMC Genomics 2013; 14:915. [PMID: 24365221 PMCID: PMC3880041 DOI: 10.1186/1471-2164-14-915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. RESULTS In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. CONCLUSIONS The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants.
Collapse
Affiliation(s)
- Niharika Sharma
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
40
|
Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engström P. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. THE NEW PHYTOLOGIST 2013; 200:261-275. [PMID: 0 DOI: 10.1111/nph.12360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers.
Collapse
Affiliation(s)
- Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Jens F Sundström
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Marie Englund
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Daniel Uddenberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Liz Izquierdo
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and The Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Francisco Vergara-Silva
- Laboratorio de Sistemática Molecular (Jardín Botánico), Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF, 04510, Mexico
| | - Peter Engström
- Department of Organismal Biology, Physiological Botany, Uppsala University, and The Linnean Center for Plant Biology, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| |
Collapse
|
41
|
Acajjaoui S, Zubieta C. Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:997-1000. [PMID: 23989147 PMCID: PMC3758147 DOI: 10.1107/s174430911302006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/19/2013] [Indexed: 11/10/2022]
Abstract
In higher plants, the MADS-box genes encode a large family of transcription factors (TFs) involved in key developmental processes, most notably plant reproduction, flowering and floral organ development. SEPALLATA 3 (SEP3) is a member of the MADS TF family and plays a role in the development of the floral organs through the formation of multiprotein complexes with other MADS-family TFs. SEP3 is divided into four domains: the M (MADS) domain, involved in DNA binding and dimerization, the I (intervening) domain, a short domain involved in dimerization, the K (keratin-like) domain important for multimeric MADS complex formation and the C (C-terminal) domain, a largely unstructured region putatively important for higher-order complex formation. The entire K domain along with a portion of the I and C domains of SEP3 was crystallized using high-throughput robotic screening followed by optimization. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 123.44, b = 143.07, c = 49.83 Å, and a complete data set was collected to 2.53 Å resolution.
Collapse
Affiliation(s)
- Samira Acajjaoui
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Chloe Zubieta
- Structural Biology, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France
| |
Collapse
|
42
|
Yockteng R, Almeida AMR, Morioka K, Alvarez-Buylla ER, Specht CD. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol Biol Evol 2013; 30:2401-22. [PMID: 23938867 DOI: 10.1093/molbev/mst137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.
Collapse
Affiliation(s)
- Roxana Yockteng
- Department of Plant and Microbial Biology, Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley
| | | | | | | | | |
Collapse
|
43
|
Shu Y, Yu D, Wang D, Guo D, Guo C. Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 2013; 40:3901-11. [PMID: 23559340 DOI: 10.1007/s11033-012-2438-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
MADS-box genes encode important transcription factors in plants that are involved in many processes during plant growth and development. An investigation of the soybean genome revealed 106 putative MADS-box genes. These genes were classified into two classes, type I and type II, based on phylogenetic analysis. The soybean type II group has 72 members, which is higher than that of Arabidopsis, indicating that soybean type II genes have undergone a higher rate of duplication and/or a lower rate of gene loss after duplication. Soybean MADS-box genes are present on all chromosomes. Like Arabidopsis and rice MADS-box genes, soybean MADS-box genes expanded through tandem gene duplication and segmental duplication events. There are many duplicate genes distributed across the soybean genome, with two genomic regions, i.e., MADS-box gene hotspots, where MADS-box genes with high degrees of similarity are clustered. Analysis of high-throughput sequencing data from soybean at different developmental stages and in different tissues revealed that MADS-box genes are expressed in embryos of various stages and in floral buds. This expression pattern suggests that soybean MADS-box genes play an important role in soybean growth and floral development.
Collapse
Affiliation(s)
- Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Ha J, Lestari P, Lee SH. Nucleotide diversity of the upstream region of the putative MADS-box gene controlling soybean maturity. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Zhao Y, Thammannagowda S, Staton M, Tang S, Xia X, Yin W, Liang H. An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. PLANTA 2013; 237:755-770. [PMID: 23117391 DOI: 10.1007/s00425-012-1783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
The "living fossil" Metasequoia glyptostroboides Hu et Cheng, commonly known as dawn redwood or Chinese redwood, is the only living species in the genus and is valued for its essential oil and crude extracts that have great potential for anti-fungal activity. Despite its paleontological significance and economical value as a rare relict species, genomic resources of Metasequoia are very limited. In order to gain insight into the molecular mechanisms behind the formation of reproductive buds and the transition from vegetative phase to reproductive phase in Metasequoia, we performed sequencing of expressed sequence tags from Metasequoia vegetative buds and female buds. By using the 454 pyrosequencing technology, a total of 1,571,764 high-quality reads were generated, among which 733,128 were from vegetative buds and 775,636 were from female buds. These EST reads were clustered and assembled into 114,124 putative unique transcripts (PUTs) with an average length of 536 bp. The 97,565 PUTs that were at least 100 bp in length were functionally annotated by a similarity search against public databases and assigned with Gene Ontology (GO) terms. A total of 59 known floral gene families and 190 isotigs involved in hormone regulation were captured in the dataset. Furthermore, a set of PUTs differentially expressed in vegetative and reproductive buds, as well as SSR motifs and high confidence SNPs, were identified. This is the first large-scale expressed sequence tags ever generated in Metasequoia and the first evidence for floral genes in this critically endangered deciduous conifer species.
Collapse
Affiliation(s)
- Ying Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Tsinghua Eastern Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Yang X, Wu F, Lin X, Du X, Chong K, Gramzow L, Schilling S, Becker A, Theißen G, Meng Z. Live and let die - the B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One 2012; 7:e51435. [PMID: 23251532 PMCID: PMC3520895 DOI: 10.1371/journal.pone.0051435] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Bsister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that Bsister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of Bsister genes in eudicots is masked by redundancy with other genes and little is known about the function of Bsister genes in monocots, and about the evolution of Bsister gene functions. Here we characterize OsMADS29, one of three MADS-box Bsister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi) results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP) indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of Bsister genes.
Collapse
Affiliation(s)
- Xuelian Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Susanne Schilling
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Annette Becker
- Plant Evo-Devo Group, The Institute of Botany, Justus-Liebig-University Gießen, Gießen, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (GT); (ZM)
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (GT); (ZM)
| |
Collapse
|
47
|
Gramzow L, Barker E, Schulz C, Ambrose B, Ashton N, Theißen G, Litt A. Selaginella Genome Analysis - Entering the "Homoplasy Heaven" of the MADS World. FRONTIERS IN PLANT SCIENCE 2012; 3:214. [PMID: 23049534 PMCID: PMC3442193 DOI: 10.3389/fpls.2012.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 05/05/2023]
Abstract
In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKC(C) and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in sporophytes (MIKC(C)); and male gametophytes (MIKC*), but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKC(C), and 3 MIKC*). Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKC(C) genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKC(C) genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKC(C) genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University JenaJena, Germany
| | | | - Christian Schulz
- Department of Evolution and Biodiversity of Plants, Ruhr-University BochumBochum, Germany
| | | | - Neil Ashton
- Department of Biology, University of ReginaRegina, Canada
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University JenaJena, Germany
| | - Amy Litt
- The New York Botanical GardenBronx, NY, USA
| |
Collapse
|
48
|
Kakinuma M, Inoue M, Morita T, Tominaga H, Maegawa M, Coury DA, Amano H. Isolation and characterization of a SEPALLATA-like gene, ZjMADS1, from marine angiosperm Zostera japonica. MARINE ENVIRONMENTAL RESEARCH 2012; 76:128-137. [PMID: 22014762 DOI: 10.1016/j.marenvres.2011.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
In flowering plants, floral homeotic MADS-box genes, which constitute a large multigene family, play important roles in the specification of floral organs as defined by the ABCDE model. In this study, a MADS-box gene, ZjMADS1, was isolated and characterized from the marine angiosperm Zostera japonica. The predicted length of the ZjMADS1 protein was 246 amino acids (AA), and the AA sequence was most similar to those of the SEPALLATA (SEP) subfamily, corresponding to E-function genes. Southern blot analysis suggested the presence of two SEP3-like genes in the Z. japonica genome. ZjMADS1 mRNA levels were extremely high in the spadices, regardless of the developmental stage, compared to other organs from the reproductive and vegetative shoots. These results suggest that the ZjMADS1 gene may be involved in spadix development in Z. japonica and act as an E-function gene in floral organ development in marine angiosperms.
Collapse
Affiliation(s)
- Makoto Kakinuma
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:94-116. [PMID: 21443626 DOI: 10.1111/j.1365-313x.2010.04459.x] [Citation(s) in RCA: 766] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expansion of gene families encoding regulatory proteins is typically associated with the increase in complexity characteristic of multi-cellular organisms. The MYB and basic helix-loop-helix (bHLH) families provide excellent examples of how gene duplication and divergence within particular groups of transcription factors are associated with, if not driven by, the morphological and metabolic diversity that characterize the higher plants. These gene families expanded dramatically in higher plants; for example, there are approximately 339 and 162 MYB and bHLH genes, respectively, in Arabidopsis, and approximately 230 and 111, respectively, in rice. In contrast, the Chlamydomonas genome has only 38 MYB genes and eight bHLH genes. In this review, we compare the MYB and bHLH gene families from structural, evolutionary and functional perspectives. The knowledge acquired on the role of many of these factors in Arabidopsis provides an excellent reference to explore sequence-function relationships in crops and other plants. The physical interaction and regulatory synergy between particular sub-classes of MYB and bHLH factors is perhaps one of the best examples of combinatorial plant gene regulation. However, members of the MYB and bHLH families also interact with a number of other regulatory proteins, forming complexes that either activate or repress the expression of sets of target genes that are increasingly being identified through a diversity of high-throughput genomic approaches. The next few years are likely to witness an increasing understanding of the extent to which conserved transcription factors participate at similar positions in gene regulatory networks across plant species.
Collapse
Affiliation(s)
- Antje Feller
- Plant Biotechnology Center and Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
50
|
Shchennikova AV, Shul’ga OA, Sizeneva ES, Perkovskaya NI, Skryabin KG. Diversification of functional activity of the chrysanthemum homeotic MADS-box gene CDM37. DOKL BIOCHEM BIOPHYS 2011; 436:29-31. [DOI: 10.1134/s1607672911010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 11/23/2022]
|