1
|
Wu X, Yang Z, Zhu Y, Zhan Y, Li Y, Teng W, Han Y, Zhao X. Bioinformatics Identification and Expression Analysis of Acetyl-CoA Carboxylase Reveal Its Role in Isoflavone Accumulation during Soybean Seed Development. Int J Mol Sci 2024; 25:10221. [PMID: 39337707 PMCID: PMC11432495 DOI: 10.3390/ijms251810221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.
Collapse
Affiliation(s)
- Xu Wu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Zhang S, Wu S, Hou Q, Zhao J, Fang C, An X, Wan X. Fatty acid de novo biosynthesis in plastids: Key enzymes and their critical roles for male reproduction and other processes in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108654. [PMID: 38663264 DOI: 10.1016/j.plaphy.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Fatty acid de novo biosynthesis in plant plastids is initiated from acetyl-CoA and catalyzed by a series of enzymes, which is required for the vegetative growth, reproductive growth, seed development, stress response, chloroplast development and other biological processes. In this review, we systematically summarized the fatty acid de novo biosynthesis-related genes/enzymes and their critical roles in various plant developmental processes. Based on bioinformatic analysis, we identified fatty acid synthase encoding genes and predicted their potential functions in maize growth and development, especially in anther and pollen development. Finally, we highlighted the potential applications of these fatty acid synthases in male-sterility hybrid breeding, seed oil content improvement, herbicide and abiotic stress resistance, which provides new insights into future molecular crop breeding.
Collapse
Affiliation(s)
- Simiao Zhang
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China; Shandong Shouxin Seed Sci-Tech Co. Ltd., Zhucheng City, Shandong Province, 262200, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Junfeng Zhao
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chaowei Fang
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueli An
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
3
|
Gibbs NM, Su S, Lopez‐Nieves S, Mann S, Alban C, Maeda HA, Masson PH. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1283-1298. [PMID: 34250670 PMCID: PMC8518694 DOI: 10.1111/tpj.15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.
Collapse
Affiliation(s)
- Nicole M. Gibbs
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Present address:
Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCA92037USA
| | - Shih‐Heng Su
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Stéphane Mann
- Muséum National d'Histoire NaturelleUMR 7245CNRSMNHNMolécules de Communication et Adaptation des Micro‐organismesCP 5457 Rue CuvierParis75005France
| | - Claude Alban
- Université Grenoble AlpesINRAECEACNRSIRIGLPCVGrenoble38000France
| | - Hiroshi A. Maeda
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Patrick H. Masson
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
4
|
Shui L, Huo K, Chen Y, Zhang Z, Li Y, Niu J. Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves. PeerJ 2021; 9:e11239. [PMID: 33981500 PMCID: PMC8083182 DOI: 10.7717/peerj.11239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.
Collapse
Affiliation(s)
- Lanya Shui
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Kaisen Huo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yan Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zilin Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yanfang Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
5
|
Alexander LE, Gilbertson JS, Xie B, Song Z, Nikolau BJ. High spatial resolution imaging of the dynamics of cuticular lipid deposition during Arabidopsis flower development. PLANT DIRECT 2021; 5:e00322. [PMID: 33969255 PMCID: PMC8082717 DOI: 10.1002/pld3.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The extensive collection of glossy (gl) and eceriferum (cer) mutants of maize and Arabidopsis have proven invaluable in dissecting the branched metabolic pathways that support cuticular lipid deposition. This bifurcated pathway integrates a fatty acid elongation-decarbonylative branch and a fatty acid elongation-reductive branch, which collectively has the capacity to generate hundreds of cuticular lipid metabolites. In this study, a combined transgenic and biochemical strategy was implemented to explore and compare the physiological function of three homologous genes, Gl2, Gl2-like, and CER2, in the context of this branched pathway. These biochemical characterizations integrated new extraction chromatographic procedures with high spatial resolution mass spectrometric imaging methods to profile the cuticular lipids on developing floral tissues transgenically expressing these transgenes in wild-type or cer2 mutant lines of Arabidopsis. Collectively, these datasets establish that both the maize Gl2 and Gl2-like genes are functional homologs of the Arabidopsis CER2 gene. In addition, the dynamic distribution of cuticular lipid deposition follows distinct floral organ localization patterns indicating that the fatty acid elongation-decarbonylative branch of the pathway is differentially localized from the fatty acid elongation-reductive branch of the pathway.
Collapse
Affiliation(s)
- Liza E. Alexander
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Jena S. Gilbertson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
- Present address:
Illinois College of OptometryChicagoIL60616USA
| | - Bo Xie
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
- Present address:
Office of Intellectual Property and Technology TransferEconomic Development Core FacilityIowa State UniversityAmesIA50010USA
| | - Zhihong Song
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
- Present address:
Office of Pharmaceutical QualityCenter for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20993USA
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
6
|
Zhang M, Xie S, Zhao Y, Meng X, Song L, Feng H, Huang L. Hce2 domain-containing effectors contribute to the full virulence of Valsa mali in a redundant manner. MOLECULAR PLANT PATHOLOGY 2019; 20:843-856. [PMID: 30912612 PMCID: PMC6637899 DOI: 10.1111/mpp.12796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Valsa mali is the causal agent of apple Valsa canker, a destructive disease in East Asia. Effector proteins play important roles in the virulence of phytopathogenic fungi, and we identified five Hce2 domain-containing effectors (VmHEP1, VmHEP2, VmHEP3, VmHEP4 and VmHEP5) from the V. mali genome. Amongst these, VmHEP1 and VmHEP2 were found to be up-regulated during the early infection stage and VmHEP1 was also identified as a cell death inducer through its transient expression in Nicotiana benthamiana. Although the deletion of each single VmHEP gene did not lead to a reduction in virulence, the double-deletion of VmHEP1 and VmHEP2 notably attenuated V. mali virulence in both apple twigs and leaves. An evolutionary analysis revealed that VmHEP1 and VmHEP2 are two paralogues, under purifying selection. VmHEP1 and VmHEP2 are located next to each other on chromosome 11 as tandem genes with only a 604 bp physical distance. Interestingly, the deletion of VmHEP1 promoted the expression of VmHEP2 and, vice versa, the deletion of VmHEP2 promoted the expression of VmHEP1. The present results provide insights into the functions of Hce2 domain-containing effectors acting as virulence factors of V. mali, and provide a new perspective regarding the contribution of tandem genes to the virulence of phytopathogenic fungi.
Collapse
Affiliation(s)
- Mian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shichang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuhuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Linlin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
7
|
Chen C, Li C, Wang Y, Renaud J, Tian G, Kambhampati S, Saatian B, Nguyen V, Hannoufa A, Marsolais F, Yuan ZC, Yu K, Austin RS, Liu J, Kohalmi SE, Wu K, Huang S, Cui Y. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis. NATURE PLANTS 2017; 3:814-824. [PMID: 28947800 DOI: 10.1038/s41477-017-0023-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/31/2017] [Indexed: 05/23/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on adenosine triphosphate (ATP)-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants demonstrate the dynamic changes in H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.
Collapse
Affiliation(s)
- Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Chenlong Li
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Justin Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Gang Tian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Shrikaar Kambhampati
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Kangfu Yu
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, Ontario, N0R 1G0, Canada
| | - Ryan S Austin
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Jun Liu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Susanne E Kohalmi
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada.
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
8
|
Haq S, Bachvaroff TR, Place AR. Characterization of Acetyl-CoA Carboxylases in the Basal Dinoflagellate Amphidinium carterae. Mar Drugs 2017; 15:md15060149. [PMID: 28587129 PMCID: PMC5484099 DOI: 10.3390/md15060149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022] Open
Abstract
Dinoflagellates make up a diverse array of fatty acids and polyketides. A necessary precursor for their synthesis is malonyl-CoA formed by carboxylating acetyl CoA using the enzyme acetyl-CoA carboxylase (ACC). To date, information on dinoflagellate ACC is limited. Through transcriptome analysis in Amphidinium carterae, we found three full-length homomeric type ACC sequences; no heteromeric type ACC sequences were found. We assigned the putative cellular location for these ACCs based on transit peptide predictions. Using streptavidin Western blotting along with mass spectrometry proteomics, we validated the presence of ACC proteins. Additional bands showing other biotinylated proteins were also observed. Transcript abundance for these ACCs follow the global pattern of expression for dinoflagellate mRNA messages over a diel cycle. This is one of the few descriptions at the transcriptomic and protein level of ACCs in dinoflagellates. This work provides insight into the enzymes which make the CoA precursors needed for fatty acid and toxin synthesis in dinoflagellates.
Collapse
Affiliation(s)
- Saddef Haq
- Graduate Program in Life Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21201, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Parker N, Wang Y, Meinke D. Analysis of Arabidopsis Accessions Hypersensitive to a Loss of Chloroplast Translation. PLANT PHYSIOLOGY 2016; 172:1862-1875. [PMID: 27707889 PMCID: PMC5100756 DOI: 10.1104/pp.16.01291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Natural accessions of Arabidopsis (Arabidopsis thaliana) differ in their ability to tolerate a loss of chloroplast translation. These differences can be attributed in part to variation in a duplicated nuclear gene (ACC2) that targets homomeric acetyl-coenzyme A carboxylase (ACCase) to plastids. This functional redundancy allows limited fatty acid biosynthesis to occur in the absence of heteromeric ACCase, which is encoded in part by the plastid genome. In the presence of functional ACC2, tolerant alleles of several nuclear genes, not yet identified, enhance the growth of seedlings and embryos disrupted in chloroplast translation. ACC2 knockout mutants, by contrast, are hypersensitive. Here we describe an expanded search for hypersensitive accessions of Arabidopsis, evaluate whether all of these accessions are defective in ACC2, and characterize genotype-to-phenotype relationships for homomeric ACCase variants identified among 855 accessions with sequenced genomes. Null alleles with ACC2 nonsense mutations, frameshift mutations, small deletions, genomic rearrangements, and defects in RNA splicing are included among the most sensitive accessions examined. By contrast, most missense mutations affecting highly conserved residues failed to eliminate ACC2 function. Several accessions were identified where sensitivity could not be attributed to a defect in either ACC2 or Tic20-IV, the chloroplast membrane channel required for ACC2 uptake. Overall, these results underscore the central role of ACC2 in mediating Arabidopsis response to a loss of chloroplast translation, highlight future applications of this system to analyzing chloroplast protein import, and provide valuable insights into the mutational landscape of an important metabolic enzyme that is highly conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Nicole Parker
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Yixing Wang
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - David Meinke
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
10
|
Guan X, Nikolau BJ. AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:581-93. [PMID: 26836315 DOI: 10.1111/tpj.13130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 05/19/2023]
Abstract
Malonyl-CoA is a key intermediate in a number of metabolic processes associated with its role as a substrate in acylation and condensation reactions. These types of reactions occur in plastids, the cytosol and mitochondria, and although carboxylation of acetyl-CoA is the known mechanism for generating the distinct plastidial and cytosolic pools, the metabolic origin of the mitochondrial malonyl-CoA pool is still unclear. In this study we demonstrate that malonyl-CoA synthetase encoded by the Arabidopsis AAE13 (AT3G16170) gene is localized in both the cytosol and the mitochondria. These isoforms are translated from two types of transcripts, one that contains and one that does not contain a mitochondrial-targeting pre-sequence. Whereas the cytosolic AAE13 protein is not essential, due to the presence of a redundant malonyl-CoA generating system provided by a cytosolic acetyl-CoA carboxylase, the mitochondrial AAE13 protein is essential for plant growth. Phenotypes of the aae13-1 mutant are transgenically reversed only if the mitochondrial pre-sequence is present in the ectopically expressed AAE13 proteins. The aae13-1 mutant exhibits typical metabolic phenotypes associated with a deficiency in the mitochondrial fatty acid synthase system, namely depleted lipoylation of the H subunit of the photorespiratory enzyme glycine decarboxylase, increased accumulation of glycine and glycolate and reduced levels of sucrose. Most of these metabolic alterations, and associated morphological changes, are reversed when the aae13-1 mutant is grown in a non-photorespiratory condition (i.e. a 1% CO2 atmosphere), demonstrating that they are a consequence of the deficiency in photorespiration due to the inability to generate lipoic acid from mitochondrially synthesized fatty acids.
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, 50011, USA
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- The NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Liu D, Yang L, Zheng Q, Wang Y, Wang M, Zhuang X, Wu Q, Liu C, Liu S, Liu Y. Analysis of cuticular wax constituents and genes that contribute to the formation of 'glossy Newhall', a spontaneous bud mutant from the wild-type 'Newhall' navel orange. PLANT MOLECULAR BIOLOGY 2015; 88:573-90. [PMID: 26177912 DOI: 10.1007/s11103-015-0343-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/06/2015] [Indexed: 05/19/2023]
Abstract
Navel orange (Citrus sinensis [L.] Osbeck) fruit surfaces contain substantial quantities of cuticular waxes, which have important eco-physiological roles, such as water retention and pathogen defense. The wax constituents of ripe navel orange have been studied in various reports, while the wax changes occurring during fruit development and the molecular mechanism underlying their biosynthesis/export have not been investigated. Recently, we reported a spontaneous bud mutant from the wild-type (WT) 'Newhall' Navel orange. This mutant displayed unusual glossy fruit peels and was named 'glossy Newhall' (MT). In this study, we compared the developmental profiles of the epicuticular and intracuticular waxes on the WT and MT fruit surfaces. The formation of epicuticular wax crystals on the navel orange surface was shown to be dependent on the accumulation of high amounts of aliphatic wax components with trace amounts of terpenoids. In sharp contrast, the underlying intracuticular wax layers have relatively low concentrations of aliphatic wax components but high concentrations of cyclic wax compounds, especially terpenoids at the late fruit developmental stages. Our work also showed that many genes that are involved in wax biosynthesis and export pathways were down-regulated in MT fruit peels, leading to a decrease in aliphatic wax component amounts and the loss of epicuticular wax crystals, ultimately causing the glossy phenotype of MT fruits.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Parker N, Wang Y, Meinke D. Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:2013-27. [PMID: 25336520 PMCID: PMC4256881 DOI: 10.1104/pp.114.249052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mutations that eliminate chloroplast translation in Arabidopsis (Arabidopsis thaliana) result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on spectinomycin, an inhibitor of chloroplast translation, and crossed the most tolerant accessions with embryo-defective mutants disrupted in chloroplast ribosomal proteins generated in a sensitive background. The results indicate that tolerance is mediated by ACC2, a duplicated nuclear gene that targets homomeric acetyl-coenzyme A carboxylase to plastids, where the multidomain protein can participate in fatty acid biosynthesis. In the presence of functional ACC2, tolerance is enhanced by a second locus that maps to chromosome 5 and heightened by additional genetic modifiers present in the most tolerant accessions. Notably, some of the most sensitive accessions contain nonsense mutations in ACC2, including the "Nossen" line used to generate several of the mutants studied here. Functional ACC2 protein is therefore not required for survival in natural environments, where heteromeric acetyl-coenzyme A carboxylase encoded in part by the chloroplast genome can function instead. This work highlights an interesting example of a tandem gene duplication in Arabidopsis, helps to explain the range of embryo phenotypes found in Arabidopsis mutants disrupted in essential chloroplast functions, addresses the nature of essential proteins encoded by the chloroplast genome, and underscores the value of using natural variation to study the relationship between chloroplast translation, plant metabolism, protein import, and plant development.
Collapse
Affiliation(s)
- Nicole Parker
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Yixing Wang
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
13
|
Lindquist E, Alezzawi M, Aronsson H. Bioinformatic indications that COPI- and clathrin-based transport systems are not present in chloroplasts: an Arabidopsis model. PLoS One 2014; 9:e104423. [PMID: 25137124 PMCID: PMC4138088 DOI: 10.1371/journal.pone.0104423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
Coated vesicle transport occurs in the cytosol of yeast, mammals and plants. It consists of three different transport systems, the COPI, COPII and clathrin coated vesicles (CCV), all of which participate in the transfer of proteins and lipids between different cytosolic compartments. There are also indications that chloroplasts have a vesicle transport system. Several putative chloroplast-localized proteins, including CPSAR1 and CPRabA5e with similarities to cytosolic COPII transport-related proteins, were detected in previous experimental and bioinformatics studies. These indications raised the hypothesis that a COPI- and/or CCV-related system may be present in chloroplasts, in addition to a COPII-related system. To test this hypothesis we bioinformatically searched for chloroplast proteins that may have similar functions to known cytosolic COPI and CCV components in the model plants Arabidopsis thaliana and Oryza sativa (subsp. japonica) (rice). We found 29 such proteins, based on domain similarity, in Arabidopsis, and 14 in rice. However, many components could not be identified and among the identified most have assigned roles that are not related to either COPI or CCV transport. We conclude that COPII is probably the only active vesicle system in chloroplasts, at least in the model plants. The evolutionary implications of the findings are discussed.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mohamed Alezzawi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rousseau-Gueutin M, Huang X, Higginson E, Ayliffe M, Day A, Timmis JN. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. PLANT PHYSIOLOGY 2013; 161:1918-29. [PMID: 23435694 PMCID: PMC3613465 DOI: 10.1104/pp.113.214528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution.
Collapse
Affiliation(s)
- Mathieu Rousseau-Gueutin
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Amid A, Lytovchenko A, Fernie AR, Warren G, Thorlby GJ. The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5289-99. [PMID: 22791831 PMCID: PMC3431002 DOI: 10.1093/jxb/ers191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The sfr3 mutation causes freezing sensitivity in Arabidopsis thaliana. Mapping, sequencing, and transgenic complementation showed sfr3 to be a missense mutation in ACC1, an essential gene encoding homomeric (multifunctional) acetyl-CoA carboxylase. Cuticle permeability was compromised in the sfr3 mutant when plants were grown in the cold but not in the warm. Wax deposition on the inflorescence stem of cold-grown sfr3 plants was inhibited and the long-chain components of their leaf cuticular wax were reduced compared with wild-type plants. Thus, freezing sensitivity of sfr3 appears, from these results, to be due to cuticular deficiencies that develop during cold acclimation. These observations demonstrated the essential role of the cuticle in tolerance to freezing and drought.
Collapse
Affiliation(s)
- Azura Amid
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX UK
| | | | | | | | | |
Collapse
|
17
|
Abstract
Lipids from microalgae have become an important commodity in the last 20 years, biodiesel and supplementing human diets with ω-3 fatty acids are just two of the many applications. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the lipid synthesis pathway. In general, ACCases consist of four functional domains: the biotin carboxylase (BC), the biotin carboxyl binding protein (BCCP), and α-and β-carboxyltransferases (α-and β-CT). In algae, like in plants, lipid synthesis is another function of the chloroplast. Despite being well researched in plants and animals, there is a distinct lack of information about this enzyme in the taxonomically diverse algae. In plastid-containing organisms, ACCases are present in the cytosol and the plastid (chloroplasts) and two different forms exist, the heteromeric (prokaryotic) and homomeric (eukaryotic) form. Despite recognition of the existence of the two ACCase forms, generalized published statements still list the heteromeric form as the one present in algal plastids. In this study, the authors show this is not the case for all algae. The presence of heteromeric or homomeric ACCase is dependent on the origin of plastid. The authors used ACCase amino acid sequence comparisons to show that green (Chlorophyta) and red (Rhodophyta) algae, with the exception of the green algal class Prasinophyceae, contain heteromeric ACCase in their plastids, which are of primary symbiotic origin and surrounded by two envelope membranes. In contrast, algal plastids surrounded by three to four membranes were derived through secondary endosymbiosis (Heterokontophyta and Haptophyta), as well as apicoplast containing Apicomplexa, contain homomeric ACCase in their plastids. Distinctive differences in the substrate binding regions of heteromeric and homomeric α-CT and β-CT were discovered, which can be used to distinguish between the two ACCase types. Furthermore, the acetyl-CoA binding region of homomeric α-CT can be used to distinguish between cytosolic and plastidial ACCase. The information provided here will be of fundamental importance in ACCase expression and activity research to unravel impacts of environmental and physicochemical parameters on lipid content and productivity.
Collapse
Affiliation(s)
- Roger Huerlimann
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
18
|
Bryant N, Lloyd J, Sweeney C, Myouga F, Meinke D. Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1678-89. [PMID: 21139083 PMCID: PMC3091104 DOI: 10.1104/pp.110.168120] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/29/2010] [Indexed: 05/18/2023]
Abstract
We describe here the diversity of chloroplast proteins required for embryo development in Arabidopsis (Arabidopsis thaliana). Interfering with certain chloroplast functions has long been known to result in embryo lethality. What has not been reported before is a comprehensive screen for embryo-defective (emb) mutants altered in chloroplast proteins. From a collection of transposon and T-DNA insertion lines at the RIKEN chloroplast function database (http://rarge.psc.riken.jp/chloroplast/) that initially appeared to lack homozygotes and segregate for defective seeds, we identified 23 additional examples of EMB genes that likely encode chloroplast-localized proteins. Fourteen gene identities were confirmed with allelism tests involving duplicate mutant alleles. We then queried journal publications and the SeedGenes database (www.seedgenes.org) to establish a comprehensive dataset of 381 nuclear genes encoding chloroplast proteins of Arabidopsis associated with embryo-defective (119 genes), plant pigment (121 genes), gametophyte (three genes), and alternate (138 genes) phenotypes. Loci were ranked based on the level of certainty that the gene responsible for the phenotype had been identified and the protein product localized to chloroplasts. Embryo development is frequently arrested when amino acid, vitamin, or nucleotide biosynthesis is disrupted but proceeds when photosynthesis is compromised and when levels of chlorophyll, carotenoids, or terpenoids are reduced. Chloroplast translation is also required for embryo development, with genes encoding chloroplast ribosomal and pentatricopeptide repeat proteins well represented among EMB datasets. The chloroplast accD locus, which is necessary for fatty acid biosynthesis, is essential in Arabidopsis but not in Brassica napus or maize (Zea mays), where duplicated nuclear genes compensate for its absence or loss of function.
Collapse
|
19
|
Gu K, Chiam H, Tian D, Yin Z. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:642-9. [PMID: 21421413 DOI: 10.1016/j.plantsci.2011.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/08/2011] [Accepted: 01/11/2011] [Indexed: 05/08/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors.
Collapse
Affiliation(s)
- Keyu Gu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | | | | | | |
Collapse
|
20
|
Li X, Ilarslan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ. Reverse-genetic analysis of the two biotin-containing subunit genes of the heteromeric acetyl-coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy. PLANT PHYSIOLOGY 2011; 155:293-314. [PMID: 21030508 PMCID: PMC3075786 DOI: 10.1104/pp.110.165910] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/26/2010] [Indexed: 05/19/2023]
Abstract
The heteromeric acetyl-coenzyme A carboxylase catalyzes the first and committed reaction of de novo fatty acid biosynthesis in plastids. This enzyme is composed of four subunits: biotin carboxyl-carrier protein (BCCP), biotin carboxylase, α-carboxyltransferase, and β-carboxyltransferase. With the exception of BCCP, single-copy genes encode these subunits in Arabidopsis (Arabidopsis thaliana). Reverse-genetic approaches were used to individually investigate the physiological significance of the two paralogous BCCP-coding genes, CAC1A (At5g16390, codes for BCCP1) and CAC1B (At5g15530, codes for BCCP2). Transfer DNA insertional alleles that completely eliminate the accumulation of BCCP2 have no perceptible effect on plant growth, development, and fatty acid accumulation. In contrast, transfer DNA insertional null allele of the CAC1A gene is embryo lethal and deleteriously affects pollen development and germination. During seed development the effect of the cac1a null allele first becomes apparent at 3-d after flowering, when the synchronous development of the endosperm and embryo is disrupted. Characterization of CAC1A antisense plants showed that reducing BCCP1 accumulation to 35% of wild-type levels, decreases fatty acid accumulation and severely affects normal vegetative plant growth. Detailed expression analysis by a suite of approaches including in situ RNA hybridization, promoter:reporter transgene expression, and quantitative western blotting reveal that the expression of CAC1B is limited to a subset of the CAC1A-expressing tissues, and CAC1B expression levels are only about one-fifth of CAC1A expression levels. Therefore, a likely explanation for the observed unidirectional redundancy between these two paralogous genes is that whereas the BCCP1 protein can compensate for the lack of BCCP2, the absence of BCCP1 cannot be tolerated as BCCP2 levels are not sufficient to support heteromeric acetyl-coenzyme A carboxylase activity at a level that is required for normal growth and development.
Collapse
MESH Headings
- Acetyl-CoA Carboxylase/genetics
- Acetyl-CoA Carboxylase/metabolism
- Alleles
- Arabidopsis/embryology
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biotin/metabolism
- DNA, Bacterial
- Endosperm/enzymology
- Endosperm/growth & development
- Endosperm/ultrastructure
- Fatty Acid Synthase, Type II/genetics
- Fatty Acid Synthase, Type II/metabolism
- Fatty Acids/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Gene Knockout Techniques
- Genes, Plant/genetics
- Genes, Recessive/genetics
- Genetic Complementation Test
- Genetic Techniques
- Germination
- Mutation/genetics
- Pollen Tube/enzymology
- Pollen Tube/growth & development
- Pollen Tube/ultrastructure
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
|
21
|
Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye ML. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. THE NEW PHYTOLOGIST 2010; 186:843-855. [PMID: 20345632 PMCID: PMC4169659 DOI: 10.1111/j.1469-8137.2010.03231.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*In Arabidopsis thaliana, the amino acid sequences of membrane-associated acyl-CoA-binding proteins ACBP1 and ACBP2 are highly conserved. We have shown previously that, in developing seeds, ACBP1 accumulates in the cotyledonary cells of embryos and ACBP1 is proposed to be involved in lipid transfer. We show here by immunolocalization, using ACBP2-specific antibodies, that ACBP2 is also expressed in the embryos at various stages of seed development in Arabidopsis. *Phenotypic analyses of acbp1 and acbp2 single mutants revealed that knockout of either ACBP1 or ACBP2 alone did not affect their life cycle as both single mutants exhibited normal growth and development similar to the wild-type. However, the acbp1acbp2 double mutant was embryo lethal and was also defective in callus induction. *On lipid and acyl-CoA analyses, the siliques, but not the leaves, of the acbp1 mutant accumulated galactolipid monogalactosyldiacylglycerol and 18:0-CoA, but the levels of most polyunsaturated species of phospholipid, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, declined. *As recombinant ACBP1 and ACBP2 bind unsaturated phosphatidylcholine and acyl-CoA esters in vitro, we propose that ACBP1 and ACBP2 are essential in lipid transfer during early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mee-Len Chye
- Author for correspondence: Mee-Len Chye, Tel: +852-22990319, Fax: +852-28583477,
| |
Collapse
|
22
|
Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:448-55. [PMID: 19136270 DOI: 10.1016/j.plaphy.2008.12.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 05/21/2023]
Abstract
As a Brassicaceae, Arabidopsis thaliana constitutes an excellent model system to investigate oil biosynthesis in seeds. Extensive tools for the genetic and molecular dissection of this model species are now available. Together with analytical procedures adapted to its tiny seeds, these tools have allowed major advances in isolating and characterising the factors that participate in the metabolic and developmental control of seed filling. Once the biochemical pathways producing storage lipids, namely triacylglycerols, were elucidated, the question of the regulation of this metabolic network has arisen. The coordinated up regulation of genes encoding enzymes of the fatty acid biosynthetic pathway observed at the onset of seed maturation suggests that the pathway may be subjected to a system of global transcriptional regulation. This has been further established by the study of master regulators of the maturation program like LEAFY COTYLEDON2 and the characterisation of the WRINKLED1 transcription factor. These factors have been shown to participate in a regulatory cascade controlling the induction of the genes involved in fatty acid biosynthesis at the onset of the maturation phase. Although much remains to be elucidated, the framework of the regulatory system controlling fatty acid biosynthesis in Arabidopsis seeds is coming into focus.
Collapse
Affiliation(s)
- Sébastien Baud
- INRA, AgroParisTech, Laboratoire de Biologie des semences, Institut Jean-Pierre Bourgin, UMR204, Versailles, France.
| | | |
Collapse
|
23
|
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. THE ARABIDOPSIS BOOK 2008; 6:e0113. [PMID: 22303238 PMCID: PMC3243342 DOI: 10.1199/tab.0113] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus.
Collapse
Affiliation(s)
- Sébastien Baud
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Bertrand Dubreucq
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Martine Miquel
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Christine Rochat
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Loïc Lepiniec
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| |
Collapse
|
24
|
Puyaubert J, Denis L, Alban C. Dual targeting of Arabidopsis holocarboxylase synthetase1: a small upstream open reading frame regulates translation initiation and protein targeting. PLANT PHYSIOLOGY 2008; 146:478-91. [PMID: 18156294 PMCID: PMC2245827 DOI: 10.1104/pp.107.111534] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 05/24/2023]
Abstract
Protein biotinylation is an original and very specific posttranslational modification, compartmented in plants, between mitochondria, plastids, and the cytosol. This reaction modifies and activates few carboxylases committed in key metabolisms and is catalyzed by holocarboxylase synthetase (HCS). The molecular bases of this complex compartmentalization and the relative function of each of the HCS genes, HCS1 and HCS2, identified in Arabidopsis (Arabidopsis thaliana) are mainly unknown. Here, we showed by reverse genetics that the HCS1 gene is essential for plant viability, whereas disruption of the HCS2 gene in Arabidopsis does not lead to any obvious phenotype when plants are grown under standard conditions. These findings strongly suggest that HCS1 is the only protein responsible for HCS activity in Arabidopsis cells, including the cytosolic, mitochondrial, and plastidial compartments. A closer study of HCS1 gene expression enabled us to propose an original mechanism to account for this multiplicity of localizations. Located in the HCS1 messenger RNA 5'-untranslated region, an upstream open reading frame regulates the translation initiation of HCS1 and the subsequent targeting of HCS1 protein. Moreover, an exquisitely precise alternative splicing of HCS1 messenger RNA can regulate the presence and absence of this upstream open reading frame. The existence of these complex and interdependent mechanisms creates a rich molecular platform where different parameters and factors could control HCS targeting and hence biotin metabolism.
Collapse
Affiliation(s)
- Juliette Puyaubert
- CNRS (UMR 5168)/CEA/Université Joseph Fourier/INRA (UMR 1200), CEA-Grenoble, Institut de Recherche en Technologies et Sciences pour le Vivant, Grenoble cedex 9, France
| | | | | |
Collapse
|
25
|
Lucas KA, Filley JR, Erb JM, Graybill ER, Hawes JW. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J Biol Chem 2007; 282:24980-9. [PMID: 17580301 DOI: 10.1074/jbc.m701028200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The subcellular sites of branched-chain amino acid metabolism in plants have been controversial, particularly with respect to valine catabolism. Potential enzymes for some steps in the valine catabolic pathway are clearly present in both mitochondria and peroxisomes, but the metabolic functions of these isoforms are not clear. The present study examined the possible function of these enzymes in metabolism of isobutyryl-CoA and propionyl-CoA, intermediates in the metabolism of valine and of odd-chain and branched-chain fatty acids. Using (13)C NMR, accumulation of beta-hydroxypropionate from [2-(13)C]propionate was observed in seedlings of Arabidopsis thaliana and a range of other plants, including both monocots and dicots. Examination of coding sequences and subcellular targeting elements indicated that the completed genome of A. thaliana likely codes for all the enzymes necessary to convert valine to propionyl-CoA in mitochondria. However, Arabidopsis mitochondria may lack some of the key enzymes for metabolism of propionyl-CoA. Known peroxisomal enzymes may convert propionyl-CoA to beta-hydroxypropionate by a modified beta-oxidation pathway. The chy1-3 mutation, creating a defect in a peroxisomal hydroxyacyl-CoA hydrolase, abolished the accumulation of beta-hydroxyisobutyrate from exogenous isobutyrate, but not the accumulation of beta-hydroxypropionate from exogenous propionate. The chy1-3 mutant also displayed a dramatically increased sensitivity to the toxic effects of excess propionate and isobutyrate but not of valine. (13)C NMR analysis of Arabidopsis seedlings exposed to [U-(13)C]valine did not show an accumulation of beta-hydroxypropionate. No evidence was observed for a modified beta-oxidation of valine. (13)C NMR analysis showed that valine was converted to leucine through the production of alpha-ketoisovalerate and isopropylmalate. These data suggest that peroxisomal enzymes for a modified beta-oxidation of isobutyryl-CoA and propionyl-CoA could function for metabolism of substrates other than valine.
Collapse
Affiliation(s)
- Kerry A Lucas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
26
|
Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 2005; 68:1175-84. [PMID: 15215578 DOI: 10.1271/bbb.68.1175] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.
Collapse
Affiliation(s)
- Yukiko Sasaki
- Genesis Research Institute, Inc., Nishi-ku, Nagoya, Japan.
| | | |
Collapse
|
27
|
Kajiwara T, Furutani M, Hibara KI, Tasaka M. The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis. PLANT & CELL PHYSIOLOGY 2004; 45:1122-1128. [PMID: 15509834 DOI: 10.1093/pcp/pch148] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Arabidopsis, three major regions, which ultimately develop into the two cotyledons, the cotyledon boundaries and the shoot apical meristem (SAM), are formed at the apex of the globular stage embryo. To reveal the molecular mechanism underlying this pattern formation, we isolated a cotyledon-defective mutant from EMS mutagenized lines. This mutant completely lacks cotyledons in the most severe cases, and is allelic to gurke (gk), which was previously reported as a mutant defective in apical patterning of the embryo. To evaluate the morphological effects of the mutation in the GK gene, we investigated the expression patterns in gk embryos of SHOOT MERISTEMLESS (STM), AINTEGUMENTA (ANT) and CUP-SHAPED COTYLEDON1 (CUC1), which are markers of the SAM, cotyledons and cotyledon boundaries, respectively. Expression of all these genes largely overlapped in gk, suggesting a failure to partition the apex of the embryo into the three subregions. Enlargement of the CUC1 expression domain was also observed and may explain the inhibition of cotyledon development in gk. Moreover, we cloned the GK gene, and confirmed that it encodes ACC1, an acetyl-CoA carboxylase which catalyzes malonyl-CoA synthesis. Our results suggest that metabolites derived from malonyl-CoA are required for partitioning of the apical part of the embryo.
Collapse
Affiliation(s)
- Takahito Kajiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101 Japan
| | | | | | | |
Collapse
|
28
|
Ginzberg I, Perl A, Genser M, Wininger S, Nemas C, Kapulnik Y. Expression of streptavidin in tomato resulted in abnormal plant development that could be restored by biotin application. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:611-620. [PMID: 15202718 DOI: 10.1078/0176-1617-01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biotin is an essential cofactor for a variety of carboxylase and decarboxylase reactions and is involved in diverse metabolic pathways of all organisms. In the present study we tested the hypothesis that controlling biotin availability by the expression of Streptomyces avidinii streptavidin, would impede plant development. Transient expression of streptavidin fused to plant signal peptide, bacterial signal peptide or both, in tomato (Lycopersicon esculentum cv. VF36) plants resulted in various levels of tissue impairment, exhibited as lesion development on 1-week-old tomato seedlings. The least toxic construct was introduced to tomato (stable transformation) under the constitutive CaMV 35S promoter, and lesions appeared on stems, flower morphologies were modified and numbers and sizes of fruits were altered. Furthermore, tissue-specific expression of the streptavidin, by means of the beta-phaseolin or TobRB7 promoters, resulted in localised effects, i.e., impaired seed formation or seedless fruits, respectively, with no alteration in the morphology of the other plant organs. External application of biotin on streptavidin-expressing tomato plants prevented the degeneration symptoms and facilitated normal plant development. It can be concluded that expression of streptavidin in the plant cell can lead to local and temporal deficiencies in biotin availability, impairing developmental processes while biotin application restores plant growth cycle.
Collapse
Affiliation(s)
- Idit Ginzberg
- Department of Field and Garden Crops, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel.
| | | | | | | | | | | |
Collapse
|
29
|
Volkmuth W, Turk S, Shapiro A, Fang Y, Kiegle E, van Haaren M, Donson J. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 7:143-59. [PMID: 14506844 DOI: 10.1089/153623103322246548] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
cDNA-AFLP, a technology historically used to identify small numbers of differentially expressed genes, was adapted as a genome-wide transcript profiling method. mRNA levels were assayed in a diverse range of tissues from Arabidopsis thaliana plants grown under a variety of environmental conditions. The resulting cDNA-AFLP fragments were sequenced. By linking cDNA-AFLP fragments to their corresponding mRNAs via these sequences, a database was generated that contained quantitative expression information for up to two-thirds of gene loci in A. thaliana, ecotype Ws. Using this resource, the expression levels of genes, including those with high nucleotide sequence similarity, could be determined in a high-throughput manner merely by comparing cDNA-AFLP profiles with the database. The lengths of cDNA-AFLP fragments inferred from their electrophoretic mobilities correlated well with actual fragment lengths determined by sequencing. In addition, the concentrations of AFLP fragments from single cDNAs were highly correlated, illustrating the validity of cDNA-AFLP as a quantitative, genome-wide, transcript profiling method. cDNA-AFLP profiles were also qualitatively consistent with mRNA profiles obtained from parallel microarray analysis, and with data from previous studies.
Collapse
MESH Headings
- Arabidopsis/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Databases, Nucleic Acid
- Gene Expression Profiling/methods
- Gene Expression Regulation, Plant
- Genome, Plant
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Random Amplified Polymorphic DNA Technique/methods
- Reproducibility of Results
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
|
30
|
Abstract
Biotin-containing proteins are found in all forms of life, and they catalyze carboxylation, decarboxylation, or transcarboxylation reactions that are central to metabolism. In plants, five biotin-containing proteins have been characterized. Of these, four are catalysts, namely the two structurally distinct acetyl-CoA carboxylases (heteromeric and homomeric), 3-methylcrotonyl-CoA carboxylase and geranoyl-CoA carboxylase. In addition, plants contain a noncatalytic biotin protein that accumulates in seeds and is thought to play a role in storing biotin. Acetyl-CoA carboxylases generate two pools of malonyl-CoA, one in plastids that is the precursor for de novo fatty acid biosynthesis and the other in the cytosol that is the precursor for fatty acid elongation and a large number of secondary metabolites. 3-Methylcrotonyl-CoA carboxylase catalyzes a reaction in the mitochondrial pathway for leucine catabolism. The exact metabolic function of geranoyl-CoA carboxylase is as yet unknown, but it may be involved in isoprenoid metabolism. This minireview summarizes the recent developments in our understanding of the structure, regulation, and metabolic functions of these proteins in plants.
Collapse
|
31
|
Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:75-86. [PMID: 12943542 DOI: 10.1046/j.1365-313x.2003.016010.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyses the carboxylation of acetyl-CoA, forming malonyl-CoA, which is used in the plastid for fatty acid synthesis and in the cytosol in various biosynthetic pathways including fatty acid elongation. In Arabidopsis thaliana, ACC1 and ACC2, two genes located in a tandem repeat within a 25-kbp genomic region near the centromere of chromosome 1, encode two multifunctional ACCase isoforms. Both genes, ACC1 and ACC2, appear to be ubiquitously expressed, but little is known about their respective function and importance. Here, we report the isolation and characterisation of two allelic mutants disrupted in the ACC1 gene. Both acc1-1 and acc1-2 mutations are recessive and embryo lethal. Embryo morphogenesis is impaired and both alleles lead to cucumber-like structures lacking in cotyledons, while the shortened hypocotyl and root exhibit a normal radial pattern organisation of the body axis. In this abnormal embryo, the maturation process still occurs. Storage proteins accumulate normally, while triacylglycerides (TAG) are synthesised at a lower concentration than in the wild-type seed. However, these TAG are totally devoid of very long chain fatty acids (VLCFA) and consequently enriched in C18:1, like all lipid fractions analysed in the mutant seed. These data demonstrate, in planta, the role of ACCase 1 in VLCFA elongation. Furthermore, this multifunctional enzyme also plays an unexpected and central function in embryo morphogenesis, especially in apical meristem development.
Collapse
Affiliation(s)
- Sébastien Baud
- Unité de Biologie des Semences, INRA, RD 10, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Denis L, Grossemy M, Douce R, Alban C. Molecular characterization of a second copy of holocarboxylase synthetase gene (hcs2) in Arabidopsis thaliana. J Biol Chem 2002; 277:10435-44. [PMID: 11784724 DOI: 10.1074/jbc.m111110200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Holocarboxylase synthetase (HCS), catalyzing the covalent attachment of biotin, is ubiquitously represented in living organisms. Indeed, the biotinylation is a post-translational modification that allows the transformation of inactive biotin-dependent carboxylases, which are committed in fundamental metabolisms such as fatty acid synthesis, into their active holo form. Among other living organisms, plants present a peculiarly complex situation. In pea, HCS activity has been detected in three subcellular compartments and the systematic sequencing of the Arabidopsis genome revealed the occurrence of two hcs genes (hcs1 and hcs2). Hcs1 gene product had been previously characterized at molecular and biochemical levels. Here, by PCR amplification, we cloned an hcs2 cDNA from Arabidopsis thaliana (Ws ecotype) mRNA. We observed the occurrence of multiple cDNA forms which resulted from the alternative splicing of hcs2 mRNA. Furthermore, we evidenced a nucleotide polymorphism at the hcs2 gene within the Ws ecotype, which affected splicing of hcs2 mRNA. This contrasted sharply with the situation at hcs1 locus. However, this polymorphism had no apparent effect on total HCS activity in planta. Finally, hcs2 mRNAs were found 4-fold less abundant than hcs1 mRNA and the most abundant hcs2 mRNA spliced variant should code for a truncated protein. We discuss the possible role of such a multiplicity of putative HCS proteins in plants and discuss the involvement of each of hcs genes in the correct realization of biotinylation.
Collapse
MESH Headings
- Alleles
- Alternative Splicing
- Amino Acid Sequence
- Arabidopsis/enzymology
- Base Sequence
- Biotinylation
- Carbon-Nitrogen Ligases/chemistry
- Carbon-Nitrogen Ligases/genetics
- Cloning, Molecular
- DNA Primers/metabolism
- DNA, Complementary/metabolism
- Exons
- Genetic Variation
- Introns
- Models, Chemical
- Models, Genetic
- Molecular Sequence Data
- Open Reading Frames
- Pisum sativum
- Poly A
- Polymorphism, Genetic
- Protein Isoforms
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Temperature
- Transcription, Genetic
Collapse
Affiliation(s)
- Laurence Denis
- Laboratoire mixte CNRS/INRA/Aventis (UMR 1932), Aventis cropscience, 14-20 rue Pierre Baizet, 69263 Lyon CEDEX 9, France
| | | | | | | |
Collapse
|
33
|
Ke J, Wen TN, Nikolau BJ, Wurtele ES. Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase. PLANT PHYSIOLOGY 2000; 122:1057-71. [PMID: 10759501 PMCID: PMC58940 DOI: 10.1104/pp.122.4.1057] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1999] [Accepted: 12/17/1999] [Indexed: 05/20/2023]
Abstract
Plastidic acetyl-coenzyme A (CoA) carboxylase (ACCase) catalyzes the first committed reaction of de novo fatty acid biosynthesis. This heteromeric enzyme is composed of one plastid-coded subunit (beta-carboxyltransferase) and three nuclear-coded subunits (biotin carboxy-carrier, biotin carboxylase, and alpha-carboxyltransferase). We report the primary structure of the Arabidopsis alpha-carboxyltransferase and beta-carboxyltransferase subunits deduced from nucleotide sequences of the respective genes and/or cDNA. Co-immunoprecipitation experiments confirm that the alpha-carboxyltransferase and beta-carboxyltransferase subunits are physically associated. The plant alpha-carboxyltransferases have gained a C-terminal domain relative to eubacteria, possibly via the evolutionary acquisition of a single exon. This C-terminal domain is divergent among plants and may have a structural function rather than being essential for catalysis. The four ACCase subunit mRNAs accumulate to the highest levels in tissues and cells that are actively synthesizing fatty acids, which are used either for membrane biogenesis in rapidly growing tissues or for oil accumulation in developing embryos. Development coordinately affects changes in the accumulation of the ACCase subunit mRNAs so that these four mRNAs maintain a constant molar stoichiometric ratio. These data indicate that the long-term, developmentally regulated expression of the heteromeric ACCase is in part controlled by a mechanism(s) that coordinately affects the steady-state concentrations of each subunit mRNA.
Collapse
Affiliation(s)
- J Ke
- Department of Botany, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
34
|
McKean AL, Ke J, Song J, Che P, Achenbach S, Nikolau BJ, Wurtele ES. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. J Biol Chem 2000; 275:5582-90. [PMID: 10681539 DOI: 10.1074/jbc.275.8.5582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1. 4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene of Arabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-B mRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of the Arabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.
Collapse
Affiliation(s)
- A L McKean
- Department of Biochemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Reverdatto S, Beilinson V, Nielsen NC. A multisubunit acetyl coenzyme A carboxylase from soybean. PLANT PHYSIOLOGY 1999; 119:961-78. [PMID: 10069834 PMCID: PMC32110 DOI: 10.1104/pp.119.3.961] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 11/11/1998] [Indexed: 05/18/2023]
Abstract
A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the alpha- and beta-subunits of carboxyltransferase (alpha- and beta-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode alpha-CT. Whereas BC, BCCP, and alpha-CT are products of nuclear genes, the DNA that encodes soybean beta-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and alpha-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 M KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained alpha- and beta-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.
Collapse
Affiliation(s)
- S Reverdatto
- United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907-1150, USA
| | | | | |
Collapse
|
36
|
Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K. High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:707-20. [PMID: 9778851 DOI: 10.1046/j.1365-313x.1998.00237.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Full-length cDNAs are essential for functional analysis of plant genes. We constructed high-content, full-length cDNA libraries from Arabidopsis thaliana plants based on chemical introduction of a biotin group into the diol residue of the CAP structure of eukaryotic mRNA, followed by RNase I treatment, to select full-length cDNA. More than 90% of the total clones obtained were of full length; recombinant clones were obtained with high efficiency (2.2 x 10(6)/9 micrograms starting mRNA). Sequence analysis of 111 randomly picked clones indicated that 32 isolated cDNA groups were derived from novel genes in the A. thaliana genome.
Collapse
Affiliation(s)
- M Seki
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Japan
| | | | | | | | | |
Collapse
|
37
|
Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci U S A 1997; 94:14179-84. [PMID: 9391173 PMCID: PMC28453 DOI: 10.1073/pnas.94.25.14179] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5'-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80-84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5'-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130-170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.
Collapse
Affiliation(s)
- P Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sasaki Y, Kozaki A, Hatano M. Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci U S A 1997; 94:11096-101. [PMID: 9380765 PMCID: PMC23628 DOI: 10.1073/pnas.94.20.11096] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1997] [Accepted: 07/09/1997] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthesis in chloroplasts is regulated by light. The synthesis of malonyl-CoA, which is catalyzed by acetyl-CoA carboxylase (ACCase) and is the first committed step, is modulated by light/dark. Plants have ACCase in plastids and the cytosol. To determine the possible involvement of a redox cascade in light/dark modulation of ACCase, the effect of DTT, a known reductant of S-S bonds, was examined in vitro for the partially purified ACCase from pea plant. Only the plastidic ACCase was activated by DTT. This enzyme was activated in vitro more efficiently by reduced thioredoxin, which is a transducer of redox potential during illumination, than by DTT alone. Chloroplast thioredoxin-f activated the enzyme more efficiently than thioredoxin-m. The ACCase also was activated by thioredoxin reduced enzymatically with NADPH and NADP-thioredoxin reductase. These findings suggest that the reduction of ACCase is needed for activation of the enzyme, and a redox potential generated by photosynthesis is involved in its activation through thioredoxin as for enzymes of the reductive pentose phosphate cycle. The catalytic activity of ACCase was maximum at pH 8 and 2-5 mM Mg2+, indicating that light-produced changes in stromal pH and Mg2+ concentration modulate ACCase activity. These results suggest that light directly modulates a regulatory site of plastidic prokaryotic form of ACCase via a signal transduction pathway of a redox cascade and indirectly modulates its catalytic activity via stromal pH and Mg2+ concentration. A redox cascade is likely to link between light and fatty acid synthesis, resulting in coordination of fatty acid synthesis with photosynthesis.
Collapse
Affiliation(s)
- Y Sasaki
- Laboratory of Plant Molecular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-01, Japan.
| | | | | |
Collapse
|
39
|
Schulte W, Töpfer R, Stracke R, Schell J, Martini N. Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: indication for plastidic localization of at least one isoform. Proc Natl Acad Sci U S A 1997; 94:3465-70. [PMID: 9096417 PMCID: PMC20393 DOI: 10.1073/pnas.94.7.3465] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.
Collapse
Affiliation(s)
- W Schulte
- Max-Planck-Institut für Zuchtungsforschung, Cologne, Germany
| | | | | | | | | |
Collapse
|
40
|
Podkowinski J, Sroga GE, Haselkorn R, Gornicki P. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proc Natl Acad Sci U S A 1996; 93:1870-4. [PMID: 8700851 PMCID: PMC39874 DOI: 10.1073/pnas.93.5.1870] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.
Collapse
Affiliation(s)
- J Podkowinski
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|