1
|
Chiso K, Yamashino T, Suzuki R, Gans T, Trogu S, Hughes J, Aoki S. Light responses during early day phases of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR (PRR) homologous genes in the moss Physcomitrium patens. Photochem Photobiol 2025; 101:762-770. [PMID: 39727145 DOI: 10.1111/php.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light. Here we studied light responses of CCA1a/CCA1b and PRR2, homologous genes to CCA1/LHY and PRR9, respectively, in the moss Physcomitrium patens. We found that light of different wavelengths induced PRR2 while they repressed CCA1a/CCA1b. A disruption strain lacking all phytochrome genes lost PRR2 induction, but still maintained CCA1a/CCA1b repression. The remaining light repression of CCA1a/CCA1b was impaired by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Probably therefore, a phytochrome signaling induces PRR2, whereas a photosynthesis-mediated signaling represses CCA1a/CCA1b. Conservation and divergence in the clock gene responses between P. patens and A. thaliana are discussed.
Collapse
Affiliation(s)
- Katsuhiro Chiso
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Tu M, Guan W, Maodzeka A, Zhou H, Zhang Z, Yan T, Hua S, Jiang L. Deciphering the heterogeneous glucosinolates composition in leaves and seeds: strategies for developing Brassica napus genotypes with low seed glucosinolates content but high leaf glucosinolates content. MOLECULAR HORTICULTURE 2025; 5:23. [PMID: 40307885 PMCID: PMC12044725 DOI: 10.1186/s43897-025-00147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/15/2025] [Indexed: 05/02/2025]
Abstract
Rapeseed cakes with low glucosinolates content (GC) possess high feeding value. However, the pursuit of low-GC seeds has inadvertently resulted in a reduction of GC in leaves, making plants more susceptible to stress and lowering their nutritional quality. Therefore, it is imperative to disrupt the tight association between GC in these two tissues and ultimately develop genotypes with low-GC seeds but high-GC leaves. The distinct mechanisms underlying glucosinolate (GSL) synthesis in these two tissues remain unclear. Here, we discovered that aliphatic and aromatic GSLs, rather than indole GSLs, contribute to the positive correlation between GC in seeds and leaves. We performed selective-sweep analyses and identified the genomic footprints left after decades of intense selection for low-GC seeds. By conducting genome-wide association studies and analyzing differentially expressed genes in high- and low-GC seeds and leaves, we compiled lists of distinct genes involved in GSL synthesis in leaves and seeds separately. In particular, BnMYB28 plays a key role in regulating GC in both seeds and leaves. Selection and manipulation of BnaC09.MYB28 would affect GC in both tissues. However, downregulation of BnaA02.MYB28 and/or BnaC02.MYB28 would likely reduce GC in seeds without causing a concurrent reduction in GC in leaves.
Collapse
Affiliation(s)
- Mengxin Tu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Wenxuan Guan
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Antony Maodzeka
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Hongyu Zhou
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zi Zhang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Tao Yan
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Desheng Zhong Road 298, Hangzhou, 310022, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Supriya L, Dake D, Muthamilarasan M. Harmonizing time with survival: Circadian rhythm and autophagy in plants. Biochim Biophys Acta Gen Subj 2025; 1869:130807. [PMID: 40221107 DOI: 10.1016/j.bbagen.2025.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Circadian rhythm (CR) is a self-sustaining biological oscillation that synchronizes physiological processes with the Earth's 24-h light-dark cycle. In plants, it regulates crucial physiological functions. Autophagy, a conserved degradation mechanism, maintains cellular homeostasis by recycling damaged organelles and proteins. Emerging evidence suggests an interplay between CRs and autophagy, optimizing plant survival and productivity. SCOPE This review explores the molecular mechanisms underlying CR and autophagy, highlighting their roles in growth and stress adaptation. It further examines how circadian clock components regulate autophagy-related genes (ATGs) in response to external cues. MAJOR CONCLUSIONS CR fine-tune autophagy by temporally regulating ATG gene expression. Key transcription factors, including TOC1 and LUX, modulate autophagic activity, ensuring energy conservation. Autophagy reciprocally influences circadian signaling, adjusting metabolic balance under stress. GENERAL SIGNIFICANCE Despite extensive research on circadian regulation, a comprehensive understanding of how core clock components orchestrate ATG gene expression remains lacking. Understanding the crosstalk between CR and autophagy provides insights into plant resilience and productivity, potentially informing crop improvement strategies that enhance stress tolerance and resource efficiency. This review aims to bridge this gap by summarizing recent insights and proposing future research directions.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
Yadav C, Rawat N, Singla-Pareek SL, Pareek A. Knockdown of OsPHP1 Leads to Improved Yield Under Salinity and Drought in Rice via Regulating the Complex Set of TCS Members and Cytokinin Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:2769-2782. [PMID: 39696826 DOI: 10.1111/pce.15337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
Plant two-component system (TCS) is crucial for phytohormone signalling, stress response, and circadian rhythms, yet the precise role of most of the family members in rice remain poorly understood. In this study, we investigated the function of OsPHP1, a pseudo-histidine phosphotransfer protein in rice, using a functional genomics approach. OsPHP1 is localised in the nucleus and cytosol, and it exhibits strong interactions with all sensory histidine kinase proteins (OsHK1-6) and cytokinin catabolism genes. Our results demonstrate that OsPHP1 functions as a negative regulator of cytokinin signalling. Knockdown of OsPHP1 enhanced the expression of positive cytokinin signalling regulators, such as OsHKs and OsAHPs (authentic phosphotransfer proteins), while downregulating negative regulators, such as type-A response regulators (OsRRs) and cytokinin catabolism genes (CKXs). Furthermore, OsPHP1 negatively influences abiotic stress tolerance, as evidenced by the increased sensitivity of OsPHP1-OE (overexpression) lines to salinity and drought. In contrast, OsPHP1-KD (knockdown) lines showed enhanced stress resilience, with better photosynthesis, increased tiller and panicle production, higher spikelet fertility, and grain filling. The study demonstrates that OsPHP1 suppresses antioxidant and stress-responsive genes, exacerbating ion toxicity and reducing osmolyte accumulation, thereby impairing plant growth and yield under stress conditions. These findings highlight OsPHP1 as a critical modulator of plant responses to abiotic stress and suggest potential genetic targets for enhancing crop stress tolerance.
Collapse
Affiliation(s)
- Chhaya Yadav
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| |
Collapse
|
5
|
Su K, Ao W, Sun Z, Li J, Gao Y, Gan D, Yang J. Resequencing and Transcriptome Analyses Reveal Variations and Expression Patterns of the RR Gene Family in Cucumber. Genes (Basel) 2025; 16:409. [PMID: 40282369 PMCID: PMC12027353 DOI: 10.3390/genes16040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Cucumber (Cucumis sativus L.) is an important economic crop worldwide. Response regulators (RRs) play crucial roles in plant growth, development, and responses to both biotic and abiotic stresses. METHODS Combined analysis of 182 re-sequencing and transcriptome datasets was conducted to investigate CsRR variations, with subsequent RT-qPCR experiments confirming its functional significance. RESULTS In this study, 18 CsRR genes were identified and classified into three groups according to their protein structures: A-ARRs (3), B-ARRs (8), and PRRs (7). Resequencing uncovered critical mutations (non-synonymous SNPs, frameshift, and stop-gain variants) in CsRR genes. Transcriptome data revealed that five genes responded to abiotic stress and four responded to biotic stress. CsPRR1 was upregulated in both resistant and susceptible lines at five dpi, downregulated in resistant plants at nine dpi, and showed no significant difference at 11 dpi. CsPRR2 was consistently upregulated in both lines at 5, 9, and 11 dpi. CsPRR3 was upregulated in resistant lines at nine dpi but downregulated at 11 dpi. CsARR8 was significantly downregulated in both lines at 9 and 11 dpi. Notably, CsPRR2 demonstrated dual functionality related to (i) the regulation of immature fruit skin color via a stop-gain InDel and (ii) resistance to Foc, as the gene was upregulated in both resistant and susceptible lines after inoculation with the pathogen. CONCLUSIONS This study integrated resequencing and transcriptomic data to comprehensively characterize CsRR genes, establishing a foundation for further exploration of their functional mechanisms in cucumber.
Collapse
Affiliation(s)
- Ke Su
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; (K.S.); (Z.S.); (J.L.)
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| | - Wenhong Ao
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| | - Zhaolong Sun
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; (K.S.); (Z.S.); (J.L.)
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| | - Jing Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; (K.S.); (Z.S.); (J.L.)
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| | - Yu Gao
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| | - Defang Gan
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; (K.S.); (Z.S.); (J.L.)
| | - Jingjing Yang
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (W.A.); (Y.G.)
| |
Collapse
|
6
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
7
|
Song Z, Liu J, Qian X, Xia Z, Wang B, Liu N, Yi Z, Li Z, Dong Z, Zhang C, Zhang B, Tadege M, Dong Y, Li Y. Functional Verification of the Soybean Pseudo-Response Factor GmPRR7b and Regulation of Its Rhythmic Expression. Int J Mol Sci 2025; 26:2446. [PMID: 40141089 PMCID: PMC11942516 DOI: 10.3390/ijms26062446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The pseudo response regulator (PRR) gene is an important component of the core oscillator involved in plant circadian rhythms and plays an important role in regulating plant growth and development and stress responses. In this study, we investigated the function of GmPRR7b by overexpression and gene editing approaches. It was found that GmPRR7b plays a role in delaying flowering. While GmPRR7b overexpressing plants showed significantly delayed flowering compared to untransformed WT, GmPRR7b edited plants flowered earlier than the control WT. On the basis of previous research results and bioinformatics analysis, we re-identified 14 soybean PRR genes and analysed their rhythmic expression. Based on the rhythmic expression pattern, we found that GmPRR5/9a and GmPRR5/9b interacted with GmPRR7b by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments. Combined with the expression regulatory networks of the GmPRR7b, we inferred a possible regulatory mechanism by which GmPRR7b affects flowering through quit rhythm expression. These research elements provide valuable references for understanding growth, development, and circadian regulation in soybean.
Collapse
Affiliation(s)
- Ziye Song
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Jia Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Xueyan Qian
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhengjun Xia
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Bo Wang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Nianxi Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhigang Yi
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhi Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhimin Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Chunbao Zhang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VI 24061, USA;
| | - Million Tadege
- Institute of Agricultural Biosciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yingshan Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Yuqiu Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| |
Collapse
|
8
|
Forgione I, Sirangelo TM, Godino G, Vendramin E, Salimonti A, Sunseri F, Carbone F. Circadian- and Light-Driven Rhythmicity of Interconnected Gene Networks in Olive Tree. Int J Mol Sci 2025; 26:361. [PMID: 39796216 PMCID: PMC11719796 DOI: 10.3390/ijms26010361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock. The olive tree (Olea europaea L.) is one of the most important crops in the Mediterranean area, and, so far, limited information is available on its CC gene network. Here, we studied the behavior of circadian rhythm genes under LD (light/darkness) and LL (light/light) conditions, the relationships in this network, and the ability of the treatments to modulate gene expression in the photoprotective pigment and lipid biosynthesis pathways. One month of LL conditions increased olive growth performance, but LL exposure also caused reductions in vegetative growth and chlorophyll accumulation. A panel was designed for a study of the transcription expression levels of the genes involved in light perception, the CC, and secondary metabolite and fatty acid biosynthesis. Our results revealed that the levels of 78% of the transcripts exhibited intraday differences under LD conditions, and most of them retained this rhythmicity after exposure to one and two months of LL conditions. Furthermore, co-regulation within a complex network among genes of photoreceptors, anthocyanidins, and fatty acids biosynthesis was orchestrated by the transcription factor HY5. This research enriches our knowledge on olive trees grown under prolonged irradiation, which may be attractive for the scientific community involved in breeding programs for the improvement of this species.
Collapse
Affiliation(s)
- Ivano Forgione
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Tiziana Maria Sirangelo
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Gianluca Godino
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Elisa Vendramin
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via di Fioranello 52, 00134 Roma, Italy
| | - Amelia Salimonti
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, Località Feo di Vito, 89124 Reggio Calabria, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy
| |
Collapse
|
9
|
Liu Z, Zhao J, Xiao Y, Li C, Miao R, Chen S, Zhang D, Zhou X, Li M. Comprehensive Analysis of the GiTCP Gene Family and Its Expression Under UV-B Radiation in Glycyrrhiza inflata Bat. Int J Mol Sci 2024; 26:159. [PMID: 39796017 PMCID: PMC11719519 DOI: 10.3390/ijms26010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the TCP gene family in Glycyrrhiza inflata Bat, and we analyzed the expression characteristics of GiTCP genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the TCP gene family were identified in G. inflata, evenly distributed on its 24 chromosomes. (2) The GiTCP genes contained 0-4 introns and 0-5 exons. (3) The GiTCP genes were phylogenetically divided into three subfamilies-PCF, CIN, and CYC/TB1, with 14, 9, and 1 GiTCP proteins, respectively. (4) A covariance analysis showed that two pairs of GiTCP genes underwent a fragmentary duplication event. (5) A cis-element analysis showed that the cis-responsive elements of the GiTCP genes' promoter regions were mainly comprised of light-responsive, stress-responsive, hormone-regulated, growth and development, and metabolic-regulated elements. (6) A protein network interaction analysis revealed a total of 14 functional molecules of TCPs and 8 potential interacting proteins directly related to GiTCP proteins. (7) GO annotation showed that the GiTCP genes were mainly enriched in BP, CC, and MF groups and had corresponding functions. (8) RNA-seq and qRT-PCR further indicated that GiTCP3, 6, 7, 8, 12, 14, 17, 23, and 24 were up- or down-regulated in G. inflata after UV-B radiation, demonstrating that these genes responded to UV-B radiation in G. inflata. (9) Subcellular localization analysis showed that the GiTCP8 protein was localized in the nucleus. The results of this study provide a basis for further exploration of the function of the GiTCP gene family in the growth and development of G. inflata.
Collapse
Affiliation(s)
- Ziliang Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Jiaang Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Ying Xiao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Caijuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Rong Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Sijin Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Cai L, Xiang R, Jiang Y, Li W, Yang Q, Gan G, Li W, Yu C, Wang Y. Genome-Wide Identification and Expression Profiling Analysis of the CCT Gene Family in Solanum lycopersicum and Solanum melongena. Genes (Basel) 2024; 15:1385. [PMID: 39596585 PMCID: PMC11593657 DOI: 10.3390/genes15111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
CCT family genes play crucial roles in photoperiodic flowering and environmental stress response; however, there are limited reports in Solanum species with considerable edible and medicinal value. In this study, we conducted genome-wide characterization and expression profiling analysis of the CCT gene family in two Solanum species: tomato (Solanum lycopersicum L.) and eggplant (Solanum melongena L.). A total of 27 SlCCT and 29 SmCCT genes were identified in the tomato and eggplant genomes, respectively. Phylogenetic analysis showed that the CCT gene family could be divided into six subgroups (COL I, COL II, COL III, PRR, CMF I, and CMF II) in Oryza sativa and Arabidopsis thaliana. The similarity in the distribution of exon-intron structures and conserved motifs within the same subgroup indicated the conservation of SlCCT and SmCCT genes during evolution. Intraspecies collinearity analysis revealed that six pairs of SlCCT genes and seven pairs of SmCCT genes showed collinear relationships, suggesting that segmental duplication played a vital role in the expansion of the SlCCT and SmCCT family genes. Cis-acting element prediction indicated that SlCCT and SmCCT were likely to be involved in multiple responses stimulated by light, phytohormones, and abiotic stress. RT-qPCR analysis revealed that SmCCT15, SlCCT6/SlCCT14, and SlCCT23/SmCCT9 responded significantly to salt, drought, and cold stress, respectively. Our comprehensive analysis of the CCT gene family in tomato and eggplant provides a basis for further studies on its molecular role in regulating flowering and resistance to abiotic stress, and provides valuable candidate gene resources for tomato and eggplant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (R.X.); (Y.J.); (W.L.); (Q.Y.); (G.G.); (W.L.); (C.Y.)
| |
Collapse
|
11
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Zhang S, Ma J, Wang W, Zhang C, Sun F, Xi Y. The overexpression of the switchgrass (Panicum virgatum L.) genes PvTOC1-N or PvLHY-K affects circadian rhythm and hormone metabolism in transgenic Arabidopsis seedlings. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:126. [PMID: 39363306 PMCID: PMC11451149 DOI: 10.1186/s13068-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Switchgrass (Panicum virgatum L.) is a perennial C4 warm-season grass known for its high-biomass yield and wide environmental adaptability, making it an ideal bioenergy crop. Despite its potential, switchgrass seedlings grow slowly, often losing out to weeds in field conditions and producing limited biomass in the first year of planting. Furthermore, during the reproductive growth stage, the above-ground biomass rapidly increases in lignin content, creating a significant saccharification barrier. Previous studies have identified rhythm-related genes TOC1 and LHY as crucial to the slow seedling development in switchgrass, yet the precise regulatory functions of these genes remain largely unexplored. In this study, the genes TOC1 and LHY were characterized within the tetraploid genome of switchgrass. Gene expression analysis revealed that PvTOC1 and PvLHY exhibit circadian patterns under normal growth conditions, with opposing expression levels over time. PvTOC1 genes were predominantly expressed in florets, vascular bundles, and seeds, while PvLHY genes showed higher expression in stems, leaf sheaths, and nodes. Overexpression of PvTOC1 from the N chromosome group (PvTOC1-N) or PvLHY from the K chromosome group (PvLHY-K) in Arabidopsis thaliana led to alterations in circadian rhythm and hormone metabolism, resulting in shorter roots, delayed flowering, and decreased resistance to oxidative stress. These transgenic lines exhibited reduced sensitivity to hormones and hormone inhibitors, and displayed altered gene expression in the biosynthesis and signal transduction pathways of abscisic acid (ABA), gibberellin (GA), 3-indoleacetic acid (IAA), and strigolactone (SL). These findings highlight roles of PvTOC1-N and PvLHY-K in plant development and offer a theoretical foundation for genetic improvements in switchgrass and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiayang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Hu ZH, Huang T, Zhang N, Chen C, Yang KX, Sun MZ, Yang N, Chen Y, Tao JP, Liu H, Li XH, Chen X, You X, Xiong AS, Zhuang J. Interference of skeleton photoperiod in circadian clock and photosynthetic efficiency of tea plant: in-depth analysis of mathematical model. HORTICULTURE RESEARCH 2024; 11:uhae226. [PMID: 39415971 PMCID: PMC11480659 DOI: 10.1093/hr/uhae226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
The circadian system of plants is a complex physiological mechanism, a biological process in which plants can adjust themselves according to the day and night cycle. To understand the effects of different photoperiods on the biological clock of tea plants, we analyzed the expression levels of core clock genes (CCA1, PRR9, TOC1, ELF4) and photosynthesis-related genes (Lhcb, RbcS, atpA) under normal light (light/dark = 12 h/12 h, 12L12D) and took the cost function defined by cycle and phase errors as the basic model parameter. In the continuous light environment (24 h light, 24L), the peak activity and cycle of key genes that control the biological clock and photosynthesis were delayed by 1-2 h. Under a skeleton photoperiod (6L6D, 3L3D), the expression profiles of clock genes and photosynthesis-related genes in tea plants were changed and stomatal opening showed a circadian rhythm. These observations suggest that a skeleton photoperiod may have an effect on the circadian rhythm, photosynthetic efficiency and stomatal regulation of tea plants. Our study and model analyzed the components of circadian rhythms under different photoperiodic pathways, and also revealed the underlying mechanisms of circadian regulation of photosynthesis in tea plants.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kai-Xin Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Zhen Sun
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
14
|
Fu M, Liu S, Che Y, Cui D, Deng Z, Li Y, Zou X, Kong X, Chen G, Zhang M, Liu Y, Wang X, Liu W, Liu D, Geng S, Li A, Mao L. Genome-editing of a circadian clock gene TaPRR95 facilitates wheat peduncle growth and heading date. J Genet Genomics 2024; 51:1101-1110. [PMID: 38849110 DOI: 10.1016/j.jgg.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Plant height and heading date are important agronomic traits in wheat (Triticum aestivum L.) that affect final grain yield. In wheat, knowledge of pseudo-response regulator (PRR) genes on agronomic traits is limited. Here, we identify a wheat TaPRR95 gene by genome-wide association studies to be associated with plant height. Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height, particularly the peduncle, with an earlier heading date. The longer peduncle is mainly caused by the increased cell elongation at its upper section, whilst the early heading date is accompanied by elevated expression of flowering genes, such as TaFT and TaCO1. A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAA/Aux genes for auxin signaling in prr95aabbdd plants that may act as a regulatory mechanism to promote robust plant growth. A haplotype analysis identifies a TaPRR95-B haplotype (Hap2) to be closely associated with reduced plant height and increased thousand-grain weight. Moreover, the Hap2 frequency is higher in cultivars than that in landraces, suggesting the artificial selection on the allele during wheat breeding. These findings suggest that TaPRR95 is a regulator for plant height and heading date, thereby providing an important target for wheat yield improvement.
Collapse
Affiliation(s)
- Mingxue Fu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoshuai Liu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Che
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dada Cui
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Deng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyu Zou
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingchen Kong
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoliang Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Yifan Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuaifeng Geng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Aili Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Liu Z, Liu W, Wang Z, Xie Z, Qi K, Yue D, Li Y, Zhang S, Wu J, Wang P. Molecular characterization of PSEUDO RESPONSE REGULATOR family in Rosaceae and function of PbPRR59a and PbPRR59b in flowering regulation. BMC Genomics 2024; 25:794. [PMID: 39169310 PMCID: PMC11340073 DOI: 10.1186/s12864-024-10720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.
Collapse
Affiliation(s)
- Zhe Liu
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yue
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Xu Y, Yao H, Lan Y, Cao Y, Xu Q, Xu H, Qiao D, Cao Y. Genome-Wide Identification and Characterization of CCT Gene Family from Microalgae to Legumes. Genes (Basel) 2024; 15:941. [PMID: 39062720 PMCID: PMC11275407 DOI: 10.3390/genes15070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The CCT (CO, COL and TOC1) gene family has been elucidated to be involved in the functional differentiation of the products in various plant species, but their specific mechanisms are poorly understood. In the present investigation, we conducted a genome-wide identification and phylogenetic analysis of CCT genes from microalgae to legumes. A total of 700 non-redundant members of the CCT gene family from 30 species were identified through a homology search. Phylogenetic clustering with Arabidopsis and domain conservation analysis categorized the CCT genes into three families. Multiple sequence alignment showed that the CCT domain contains important amino acid residues, and each CCT protein contains 24 conserved motifs, as demonstrated by the motif analysis. Whole-genome/segment duplication, as well as tandem duplication, are considered to be the driving forces in the evolutionary trajectory of plant species. This comprehensive investigation into the proliferation of the CCT gene family unveils the evolutionary dynamics whereby WGD/segment duplication is the predominant mechanism contributing to the expansion of the CCT genes. Meanwhile, the examination of the gene expression patterns revealed that the expression patterns of CCT genes vary in different tissues and at different developmental stages of plants, with high expression in leaves, which is consistent with the molecular regulation of flowering in photosynthesis by CCT. Based on the protein-protein interaction analysis of CCT genes in model plants, we propose that the CCT gene family synergistically regulates plant development and flowering with light-signaling factors (PHYs and PIFs) and MYB family transcription factors. Understanding the CCT gene family's molecular evolution enables targeted gene manipulation for enhanced plant traits, including optimized flowering and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China (Y.C.)
| |
Collapse
|
17
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Chen Z, Wang P, Bai W, Deng Y, Cheng Z, Su L, Nong L, Liu T, Yang W, Yang X, Liu Z. Quantitative Trait Loci Sequencing and Genetic Mapping Reveal Two Main Regulatory Genes for Stem Color in Wax Gourds. PLANTS (BASEL, SWITZERLAND) 2024; 13:1804. [PMID: 38999643 PMCID: PMC11244448 DOI: 10.3390/plants13131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Stem color is an important agronomic trait of wax gourds. However, its regulatory genes have not been identified. In this study, 105 inbred lines constructed from two parents (GX-71 and MY-1) were sequenced and quantitative trait loci sequencing was used to mine the genes that regulate stem color in wax gourds. The results identified two quantitative trait loci related to stem color, qSC5 and qSC12, located on Chr05 (11,134,567-16,459,268) and Chr12 (74,618,168-75,712,335), respectively. The qSC5 had a phenotypic variation rate of 36.9% and a maximum limit of detection of 16.9. And the qSC12 had a phenotypic variation rate of 20.9%, and a maximum limit of detection of 11.2. Bch05G003950 (named BchAPRR2) and Bch12G020400 were identified as candidate genes involved in stem color regulation in wax gourds. The chlorophyll content and expression of BchAPRR2 and Bch12G020400 were significantly higher in green-stemmed wax gourds than in white-stemmed ones. Therefore, BchAPRR2 and Bch12G020400 were considered the main and secondary regulatory genes for wax gourd stem color, respectively. Finally, InDel markers closely linked to BchAPRR2 were developed to validate the prediction of wax gourd stem color traits in 55 germplasm lines, with an accuracy of 81.8%. These findings lay the foundation for exploring the genetic regulation of wax gourd stem color and future research on wax gourd breeding.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Wenhui Bai
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Yan Deng
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Zhikui Cheng
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Liwen Su
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Lifeng Nong
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Ting Liu
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Wenrui Yang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Xiping Yang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning 530000, China
| |
Collapse
|
19
|
Zhang C, Li S, Wang Y, Long J, Li X, Ke L, Xu R, Wu Z, Pi Z. Vernalization promotes bolting in sugar beet by inhibiting the transcriptional repressors of BvGI. PLANT MOLECULAR BIOLOGY 2024; 114:67. [PMID: 38836995 DOI: 10.1007/s11103-024-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.
Collapse
Affiliation(s)
- Chunxue Zhang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Shengnan Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Yuguang Wang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Jiali Long
- College of Life Sciences, Heilongjiang University, 150080, Harbin, China
| | - Xinru Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Lixun Ke
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Rui Xu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Zedong Wu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| | - Zhi Pi
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| |
Collapse
|
20
|
Aoyama H, Arae T, Yamashita Y, Toyoda A, Naito S, Sotta N, Chiba Y. Impact of translational regulation on diel expression revealed by time-series ribosome profiling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1889-1906. [PMID: 38494830 DOI: 10.1111/tpj.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Plants have developed the ability to adjust to the day/night cycle through the expression of diel genes, which allow them to effectively respond to environmental changes and optimise their growth and development. Diel oscillations also have substantial implications in many physiological processes, including photosynthesis, floral development, and environmental stress responses. The expression of diel genes is regulated by a combination of the circadian clock and responses to environmental cues, such as light and temperature. A great deal of information is available on the transcriptional regulation of diel gene expression. However, the extent to which translational regulation is involved in controlling diel changes in expression is not yet clear. To investigate the impact of translational regulation on diel expression, we conducted Ribo-seq and RNA-seq analyses on a time-series sample of Arabidopsis shoots cultivated under a 12 h light/dark cycle. Our results showed that translational regulation is involved in about 71% of the genes exhibiting diel changes in mRNA abundance or translational activity, including clock genes, many of which are subject to both translational and transcriptional control. They also revealed that the diel expression of glycosylation and ion-transporter-related genes is mainly established through translational regulation. The expression of several diel genes likely subject to translational regulation through upstream open-reading frames was also determined.
Collapse
Affiliation(s)
- Haruka Aoyama
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toshihiro Arae
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
21
|
Leckie KM, Sawler J, Kapos P, MacKenzie JO, Giles I, Baynes K, Lo J, Baute GJ, Celedon JM. Loss of daylength sensitivity by splice site mutation in Cannabis pseudo-response regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2020-2036. [PMID: 38525679 DOI: 10.1111/tpj.16726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Photoperiod insensitivity (auto-flowering) in drug-type Cannabis sativa circumvents the need for short day (SD) flowering requirements making outdoor cultivation in high latitudes possible. However, the benefits of photoperiod insensitivity are counterbalanced by low cannabinoid content and poor flower quality in auto-flowering genotypes. Despite recent studies in cannabis flowering, a mechanistic understanding of photoperiod insensitivity is still lacking. We used a combination of genome-wide association study and genetic fine-mapping to identify the genetic cause of auto-flowering in cannabis. We then used gene expression analyses and transient transformation assays to characterize flowering time control. Herein, we identify a splice site mutation within circadian clock gene PSEUDO-RESPONSE REGULATOR 37 (CsPRR37) in auto-flowering cannabis. We show that CsPRR37 represses FT expression and its circadian oscillations transition to a less repressive state during SD as compared to long days (LD). We identify several key circadian clock genes whose expression is altered in auto-flowering cannabis, particularly under non-inductive LD. Research into the pervasiveness of this mutation and others affecting flowering time will help elucidate cannabis domestication history and advance cannabis breeding toward a more sustainable outdoor cultivation system.
Collapse
Affiliation(s)
- Keegan M Leckie
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jason Sawler
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Paul Kapos
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - John O MacKenzie
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Ingrid Giles
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Katherine Baynes
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jessica Lo
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Gregory J Baute
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| | - Jose M Celedon
- Breeding and Genetics Department, Aurora Cannabis, Inc., 1590 Galbraith Rd, Comox, British Columbia, V9M 4A1, Canada
| |
Collapse
|
22
|
Li H, Xue M, Zhang H, Zhao F, Li X, Yu S, Jiang D. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100833. [PMID: 38327058 PMCID: PMC11121753 DOI: 10.1016/j.xplc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Billah M, Renju L, Wei H, Qanmber G, Da Y, Lan Y, Qing-di Y, Fuguang L, Zhaoen Y. A cotton mitochondrial alternative electron transporter, GhD2HGDH, induces early flowering by modulating GA and photoperiodic pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14378. [PMID: 38887925 DOI: 10.1111/ppl.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Liu Renju
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Hu Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Da
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Lan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Yan Qing-di
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Li Fuguang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhaoen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Cosenza F, Shrestha A, Van Inghelandt D, Casale FA, Wu PY, Weisweiler M, Li J, Wespel F, Stich B. Genetic mapping reveals new loci and alleles for flowering time and plant height using the double round-robin population of barley. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2385-2402. [PMID: 38330219 PMCID: PMC11016846 DOI: 10.1093/jxb/erae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Flowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Despite their role in plant physiological regulation, a complete overview of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Using a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as to identify new genetic variants by single and multi-population QTL analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected new QTLs for flowering time and plant height. Finally, we identified a new functional allelic variant of the main regulatory gene Ppd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect, or low-frequency genetic variants underlie the control of these two traits.
Collapse
Affiliation(s)
- Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Franziska Wespel
- Saatzucht Josef Breun GmbH Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Su H, Cao L, Ren Z, Sun W, Zhu B, Ma S, Sun C, Zhang D, Liu Z, Zeng H, Yang W, Liu Y, Zheng L, Yang Y, Wu Z, Zhu Y, Ku L, Chong L, Chen Y. ZmELF6-ZmPRR37 module regulates maize flowering and salt response. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:929-945. [PMID: 38009862 PMCID: PMC10955496 DOI: 10.1111/pbi.14236] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.
Collapse
Affiliation(s)
- Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Liru Cao
- The Shennong LaboratoryZhengzhouHenanChina
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Wenhao Sun
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Bingqi Zhu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Chongyu Sun
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yingpeng Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Lingling Zheng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhendong Wu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Leelyn Chong
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
26
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
27
|
Wang X, Zhang J, Liu X, Kong Y, Han L. The Roles of the PSEUDO-RESPONSE REGULATORs in Circadian Clock and Flowering Time in Medicago truncatula. Int J Mol Sci 2023; 24:16834. [PMID: 38069157 PMCID: PMC10706769 DOI: 10.3390/ijms242316834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
PSEUDO-RESPONSE REGULATORs (PRRs) play key roles in the circadian rhythms and flowering in plants. Here, we identified the four members of the PRR family in Medicago truncatula, including MtPRR9a, MtPRR9b, MtPRR7 and MtPRR5, and isolated their Tnt1 retrotransposon-tagged mutants. They were expressed in different organs and were nuclear-localized. The four MtPRRs genes played important roles in normal clock rhythmicity maintenance by negatively regulating the expression of MtGI and MtLHY. Surprisingly, the four MtPRRs functioned redundantly in regulating flowering time under long-day conditions, and the quadruple mutant flowered earlier. Moreover, MtPRR can recruit the MtTPL/MtTPR corepressors and the other MtPRRs to form heterodimers to constitute the core mechanism of the circadian oscillator.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| | - Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (X.W.); (J.Z.); (X.L.); (Y.K.)
| |
Collapse
|
28
|
Gao G, Chen M, Mo R, Li N, Xu Y, Lu Y. Linking New Alleles at the Oscillator Loci to Flowering and Expansion of Asian Rice. Genes (Basel) 2023; 14:2027. [PMID: 38002970 PMCID: PMC10671530 DOI: 10.3390/genes14112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The central oscillator is believed to be the key mechanism by which plants adapt to new environments. However, impacts from hybridization, the natural environment, and human selection have rarely been assessed on the oscillator of a crop. Here, from clearly identified alleles at oscillator loci (OsCCA1/LHY, OsPRR95, OsPRR37, OsPRR59, and OsPRR1) in ten diverse genomes of Oryza sativa, additional accessions, and functional analysis, we show that rice's oscillator was rebuilt primarily by new alleles from recombining parental sequences and subsequent 5' or/and coding mutations. New alleles may exhibit altered transcript levels from that of a parental allele and are transcribed variably among genetic backgrounds and natural environments in RIL lines. Plants carrying more expressed OsCCA1_a and less transcribed OsPRR1_e flower early in the paddy field. 5' mutations are instrumental in varied transcription, as shown by EMSA tests on one deletion at the 5' region of highly transcribed OsPRR1_a. Compared to relatively balanced mutations at oscillator loci of Arabidopsis thaliana, 5' mutations of OsPRR37 (and OsCCA1 to a less degree) were under negative selection while those of OsPRR1 alleles were under strong positive selection. Together, range expansion of Asian rice can be elucidated by human selection on OsPRR1 alleles via local flowering time-yield relationships.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoxian Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Mo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Faehn C, Reichelt M, Mithöfer A, Hytönen T, Mølmann J, Jaakola L. Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods. BMC PLANT BIOLOGY 2023; 23:483. [PMID: 37817085 PMCID: PMC10563271 DOI: 10.1186/s12870-023-04491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Though many abiotic factors are constantly changing, the photoperiod is a predictable factor that enables plants to time many physiological responses. This timing is regulated by the circadian clock, yet little is known about how the clock adapts to the differences in photoperiod between mid-latitudes and high latitudes. The primary objective of this study was to compare how clock gene expression is modified in four woodland strawberry (Fragaria vesca L.) accessions originating from two different populations in Italy (IT1: Tenno, Italy, 45°N, IT4: Salorno, Italy, 46°N) and two in Northern Norway (NOR2: Alta, Norway, 69°N, NOR13: Indre Nordnes, Norway 69°N) when grown under simulated daylength conditions of an Arctic or mid-latitude photoperiod. The second objective was to investigate whether population origin or the difference in photoperiod influenced phytohormone accumulation. RESULTS The Arctic photoperiod induced lower expression in IT4 and NOR13 for six clock genes (FvLHY, FvRVE8, FvPRR9, FvPRR7, FvPRR5, and FvLUX), in IT1 for three genes (FvLHY, FvPRR9, and FvPRR5) and in NOR2 for one gene (FvPRR9). Free-running rhythms for FvLHY in IT1 and IT4 were higher after the Arctic photoperiod, while the free-running rhythm for FvLUX in IT4 was higher after the mid-latitude photoperiod. IT1 showed significantly higher expression of FvLHY and FvPRR9 than all other accessions, as well as significantly higher expression of the circadian regulated phytohormone, abscisic acid (ABA), but low levels of salicylic acid (SA). NOR13 had significantly higher expression of FvRVE8, FvTOC1, and FvLUX than all other accessions. NOR2 had extremely low levels of auxin (IAA) and high levels of the jasmonate catabolite, hydroxyjasmonic acid (OH-JA). CONCLUSIONS Our study shows that circadian rhythms in Fragaria vesca are driven by both the experienced photoperiod and genetic factors, while phytohormone levels are primarily determined by specific accessions' genetic factors rather than the experienced photoperiod.
Collapse
Affiliation(s)
- Corine Faehn
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790, Finland
| | - Jørgen Mølmann
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, 9037, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, Ås, 1431, Norway
| |
Collapse
|
30
|
Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 2023; 21:e3002344. [PMID: 37906610 PMCID: PMC10617704 DOI: 10.1371/journal.pbio.3002344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
Collapse
Affiliation(s)
- Christopher J. Brooks
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Hagop S. Atamian
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
31
|
Singh V, Singh V. Characterizing the circadian connectome of Ocimum tenuiflorum using an integrated network theoretic framework. Sci Rep 2023; 13:13108. [PMID: 37567911 PMCID: PMC10421869 DOI: 10.1038/s41598-023-40212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Across the three domains of life, circadian clock is known to regulate vital physiological processes, like, growth, development, defence etc. by anticipating environmental cues. In this work, we report an integrated network theoretic methodology comprising of random walk with restart and graphlet degree vectors to characterize genome wide core circadian clock and clock associated raw candidate proteins in a plant for which protein interaction information is available. As a case study, we have implemented this framework in Ocimum tenuiflorum (Tulsi); one of the most valuable medicinal plants that has been utilized since ancient times in the management of a large number of diseases. For that, 24 core clock (CC) proteins were mined in 56 template plant genomes to build their hidden Markov models (HMMs). These HMMs were then used to identify 24 core clock proteins in O. tenuiflorum. The local topology of the interologous Tulsi protein interaction network was explored to predict the CC associated raw candidate proteins. Statistical and biological significance of the raw candidates was determined using permutation and enrichment tests. A total of 66 putative CC associated proteins were identified and their functional annotation was performed.
Collapse
Affiliation(s)
- Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India.
| |
Collapse
|
32
|
Li J, Qiu JX, Zeng QH, Zhang N, Xu SX, Jin J, Dong ZC, Chen L, Huang W. OsTOC1 plays dual roles in the regulation of plant circadian clock by functioning as a direct transcription activator or repressor. Cell Rep 2023; 42:112765. [PMID: 37421622 DOI: 10.1016/j.celrep.2023.112765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Plant clock function relies on precise timing of gene expression through complex regulatory networks consisting of activators and repressors at the core of oscillators. Although TIMING OF CAB EXPRESSION 1 (TOC1) has been recognized as a repressor involved in shaping oscillations and regulating clock-driven processes, its potential to directly activate gene expression remains unclear. In this study, we find that OsTOC1 primarily acts as a transcriptional repressor for core clock components, including OsLHY and OsGI. Here, we show that OsTOC1 possesses the ability to directly activate the expression of circadian target genes. Through binding to the promoters of OsTGAL3a/b, transient activation of OsTOC1 induces the expression of OsTGAL3a/b, indicating its role as an activator contributing to pathogen resistance. Moreover, TOC1 participates in regulating multiple yield-related traits in rice. These findings suggest that TOC1's function as a transcriptional repressor is not inherent, providing flexibility to circadian regulations, particularly in outputs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jia-Xin Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qing-Hua Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ning Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Zhi-Cheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Liu Z, Liu W, Wang Z, Qi K, Xie Z, Zhang S, Wu J, Wang P. Diurnal transcriptome dynamics reveal the photoperiod response of Pyrus. PHYSIOLOGIA PLANTARUM 2023; 175:e13893. [PMID: 36929905 DOI: 10.1111/ppl.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Photoperiod provides a key environmental signal that controls plant growth. Plants have evolved an integrated mechanism for sensing photoperiods with internal clocks to orchestrate physiological events. This mechanism has been identified to enable timely plant growth and improve fitness. Although the components and pathways underlying photoperiod regulation have been described in many species, diurnal patterns of gene expression at the genome-wide level under different photoperiods are rarely reported in perennial fruit trees. To explore the global gene expression in response to photoperiod, pear plants were cultured under long-day (LD) and short-day (SD) conditions. A time-series transcriptomic study was implemented using LD and SD samples collected at 4 h intervals over 2 days. We identified 13,677 rhythmic genes, of which 7639 were identified under LD and 10,557 under SD conditions. Additionally, 4674 genes were differentially expressed in response to photoperiod change. We also characterized the candidate homologs of clock-associated genes in pear. Clock genes were involved in the regulation of many processes throughout the day, including photosynthesis, stress response, hormone dynamics, and secondary metabolism. Strikingly, genes within photosynthesis-related pathways were enriched in both the rhythmic and differential expression analyses. Several key candidate genes were identified to be associated with regulating photosynthesis and improving productivity under different photoperiods. The results suggest that temporal variation in gene expression should not be ignored in pear gene function research. Overall, our work expands the understanding of photoperiod regulation of plant growth, particularly by extending the research to non-model trees.
Collapse
Affiliation(s)
- Zhe Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
34
|
Padgitt-Cobb LK, Pitra NJ, Matthews PD, Henning JA, Hendrix DA. An improved assembly of the "Cascade" hop ( Humulus lupulus) genome uncovers signatures of molecular evolution and refines time of divergence estimates for the Cannabaceae family. HORTICULTURE RESEARCH 2023; 10:uhac281. [PMID: 36818366 PMCID: PMC9930403 DOI: 10.1093/hr/uhac281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/22/2022] [Indexed: 06/16/2023]
Abstract
We present a chromosome-level assembly of the Cascade hop (Humulus lupulus L. var. lupulus) genome. The hop genome is large (2.8 Gb) and complex, and early attempts at assembly were fragmented. Recent advances have made assembly of the hop genome more tractable, transforming the extent of investigation that can occur. The chromosome-level assembly of Cascade was developed by scaffolding the previously reported Cascade assembly generated with PacBio long-read sequencing and polishing with Illumina short-read DNA sequencing. We developed gene models and repeat annotations and used a controlled bi-parental mapping population to identify significant sex-associated markers. We assessed molecular evolution in gene sequences, gene family expansion and contraction, and time of divergence from Cannabis sativa and other closely related plant species using Bayesian inference. We identified the putative sex chromosome in the female genome based on significant sex-associated markers from the bi-parental mapping population. While the estimate of repeat content (~64%) is similar to the estimate for the hemp genome, syntenic blocks in hop contain a greater percentage of LTRs. Hop is enriched for disease resistance-associated genes in syntenic gene blocks and expanded gene families. The Cascade chromosome-level assembly will inform cultivation strategies and serve to deepen our understanding of the hop genomic landscape, benefiting hop researchers and the Cannabaceae genomics community.
Collapse
Affiliation(s)
- Lillian K Padgitt-Cobb
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Nicholi J Pitra
- Department of Research and Development, Hopsteiner, S.S. Steiner, Inc., 1 West Washington Avenue, Yakima, Washington 98903, USA
| | - Paul D Matthews
- Department of Research and Development, Hopsteiner, S.S. Steiner, Inc., 1 West Washington Avenue, Yakima, Washington 98903, USA
| | | | | |
Collapse
|
35
|
Shomodder A, Imaizumi T, Nagata M, Kasai E, Shiina T, Tsuta M, Thammawong M, Nakano K. Existence of circadian rhythm and its response behavior under different storage conditions of soybean sprouts. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153906. [PMID: 36621022 DOI: 10.1016/j.jplph.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The circadian system plays an essential role in plant cells, and numerous physiological events are generally modulated by circadian clock genes. To further improve postharvest handling of fresh produce, it is vital to understanding the behavior of clock gene expression and its underlying interactions with changes in quality. In this study, the effect of temperature and controlled atmosphere storage on the expression of clock genes (GmLCL1, GmPRR7, GmGI, GmTOC1, and GmLUX), postharvest quality characteristics and their related genes in soybean sprouts were investigated. By fitting the obtained gene expression level using the qPCR method with the cosine curve equation, it was successfully found that the circadian rhythm existed under constant dark storage conditions of soybean sprouts. A significant rhythm in clock gene expression was observed in control soybean sprouts. In contrast, low temperature storage diminished the cyclic expression of GmLCL1, GmPRR7, and GmTOC1, which also affected GmGI and GmLUX expression. Additionally, high CO2 concentrations during storage disturbed the circadian clock by affecting the phase and amplitude of each gene; for low O2 concentrations, it was only affected by amplitude. Interestingly, low temperature, low O2, and high CO2 maintained postharvest quality, including reduced respiration, weight loss and browning incidence. The expression behaviors of postharvest quality attribute-related genes (GmFUM1, GmCS, Gm2-OGDH, GmPPO1, GmPAL) were also influenced by the storage treatments. Overall, the findings first suggest a possible link between clock disruption and postharvest quality maintenance of soybean sprouts.
Collapse
Affiliation(s)
- Anupama Shomodder
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Teppei Imaizumi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masayasu Nagata
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eri Kasai
- Faculty of Home Economics, Gifu Women's University, 80 Taroumaru, Gifu City, Gifu, 501-2592, Japan
| | - Takeo Shiina
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Mizuki Tsuta
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Manasikan Thammawong
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Kohei Nakano
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
36
|
Gombos M, Hapek N, Kozma-Bognár L, Grezal G, Zombori Z, Kiss E, Györgyey J. Limited water stress modulates expression of circadian clock genes in Brachypodium distachyon roots. Sci Rep 2023; 13:1241. [PMID: 36690685 PMCID: PMC9870971 DOI: 10.1038/s41598-022-27287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Organisms have evolved a circadian clock for the precise timing of their biological processes. Studies primarily on model dicots have shown the complexity of the inner timekeeper responsible for maintaining circadian oscillation in plants and have highlighted that circadian regulation is more than relevant to a wide range of biological processes, especially organ development and timing of flowering. Contribution of the circadian clock to overall plant fitness and yield has also long been known. Nevertheless, the organ- and species-specific functions of the circadian clock and its relation to stress adaptation have only recently been identified. Here we report transcriptional changes of core clock genes of the model monocot Brachypodium distachyon under three different light regimes (18:6 light:dark, 24:0 light and 0:24 dark) in response to mild drought stress in roots and green plant parts. Comparative monitoring of core clock gene expression in roots and green plant parts has shown that both phase and amplitude of expression in the roots of Brachypodium plants differ markedly from those in the green plant parts, even under well-watered conditions. Moreover, circadian clock genes responded to water depletion differently in root and shoot. These results suggest an organ-specific form and functions of the circadian clock in Brachypodium roots.
Collapse
Affiliation(s)
- Magdolna Gombos
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary
| | - Nóra Hapek
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary
- Institute of Biochemistry, BRC-Biological Research Centre, Szeged, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Grezal
- Institute of Biochemistry, BRC-Biological Research Centre, Szeged, Hungary
| | - Zoltán Zombori
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary
| | - Edina Kiss
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary
| | - János Györgyey
- Institute of Plant Biology, BRC-Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
37
|
Michael TP. Time of Day Analysis over a Field Grown Developmental Time Course in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 12:166. [PMID: 36616295 PMCID: PMC9823482 DOI: 10.3390/plants12010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Li Y, Yu S, Zhang Q, Wang Z, Liu M, Zhang A, Dong X, Fan J, Zhu Y, Ruan Y, Li C. Genome-Wide Identification and Characterization of the CCT Gene Family in Foxtail Millet ( Setaria italica) Response to Diurnal Rhythm and Abiotic Stress. Genes (Basel) 2022; 13:1829. [PMID: 36292714 PMCID: PMC9601966 DOI: 10.3390/genes13101829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 10/07/2023] Open
Abstract
The CCT gene family plays important roles in diurnal rhythm and abiotic stress response, affecting crop growth and development, and thus yield. However, little information is available on the CCT family in foxtail millet (Setaria italica). In the present study, we identified 37 putative SiCCT genes from the foxtail millet genome. A phylogenetic tree was constructed from the predicted full-length SiCCT amino acid sequences, together with CCT proteins from rice and Arabidopsis as representatives of monocotyledonous and dicotyledonous plants, respectively. Based on the conserved structure and phylogenetic relationships, 13, 5, and 19 SiCCT proteins were classified in the COL, PRR, and CMF subfamilies, respectively. The gene structure and protein conserved motifs analysis exhibited highly similar compositions within the same subfamily. Whole-genome duplication analysis indicated that segmental duplication events played an important role in the expansion of the CCT gene family in foxtail millet. Analysis of transcriptome data showed that 16 SiCCT genes had significant diurnal rhythm oscillations. Under abiotic stress and exogenous hormonal treatment, the expression of many CMF subfamily genes was significantly changed. Especially after drought treatment, the expression of CMF subfamily genes except SiCCT32 was significantly up-regulated. This work provides valuable information for further study of the molecular mechanism of diurnal rhythm regulation, abiotic stress responses, and the identification of candidate genes for foxtail millet molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
39
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
40
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
41
|
Oravec MW, Greenham K. The adaptive nature of the plant circadian clock in natural environments. PLANT PHYSIOLOGY 2022; 190:968-980. [PMID: 35894658 PMCID: PMC9516730 DOI: 10.1093/plphys/kiac337] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
The plant circadian clock coordinates developmental, physiological, and metabolic processes with diel changes in light and temperature throughout the year. The balance between the persistence and plasticity of the clock in response to predictable and unpredictable environmental changes may be key to the clock's adaptive nature across temporal and spatial scales. Studies under controlled conditions have uncovered critical signaling pathways involved in light and temperature perception by the clock; however, they don't account for the natural lag of temperature behind photoperiod. Studies in natural environments provide key insights into the clock's adaptive advantage under more complex natural settings. Here, we discuss the role of the circadian clock in light and temperature perception and signaling, how the clock integrates these signals for a coordinated and adaptive response, and the adaptive advantage conferred by the clock across time and space in natural environments.
Collapse
Affiliation(s)
- Madeline W Oravec
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
42
|
Hotta CT. The evolution and function of the PSEUDO RESPONSE REGULATOR gene family in the plant circadian clock. Genet Mol Biol 2022; 45:e20220137. [PMID: 36125163 PMCID: PMC9486492 DOI: 10.1590/1678-4685-gmb-2022-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
PSEUDO-RESPONSE PROTEINS (PRRs) are a gene
family vital for the generation of rhythms by the circadian clock. Plants have
circadian clocks, or circadian oscillators, to adapt to a rhythmic environment.
The circadian clock system can be divided into three parts: the core oscillator,
the input pathways, and the output pathways. The PRRs have a role in all three
parts. These nuclear proteins have an N-terminal pseudo receiver domain and a
C-terminal CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) domain. The PRRs can be
identified from green algae to monocots, ranging from one to >5 genes per
species. Arabidopsis thaliana, for example, has five genes:
PRR9, PRR7, PRR5,
PRR3 and TOC1/PRR1. The
PRR genes can be divided into three clades using protein
homology: TOC1/PRR1, PRR7/3, and PRR9/5 expanded independently in eudicots and
monocots. The PRRs can make protein complexes and bind to DNA, and the wide
variety of protein-protein interactions are essential for the multiple roles in
the circadian clock. In this review, the history of PRR research is briefly
recapitulated, and the diversity of PRR genes in green and recent works about
their role in the circadian clock are discussed.
Collapse
Affiliation(s)
- Carlos Takeshi Hotta
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Wang P, Wang L, Zhang L, Wu T, Sun B, Zhang J, Sapey E, Yuan S, Jiang B, Chen F, Wu C, Hou W, Sun S, Bai J, Han T. Genomic Dissection and Diurnal Expression Analysis Reveal the Essential Roles of the PRR Gene Family in Geographical Adaptation of Soybean. Int J Mol Sci 2022; 23:ijms23179970. [PMID: 36077363 PMCID: PMC9456279 DOI: 10.3390/ijms23179970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.
Collapse
Affiliation(s)
- Peiguo Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwei Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Lixin Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Baiquan Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Junquan Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Enoch Sapey
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Council for Scientific and Industrial Research (CSIR)-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jiangping Bai
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (J.B.); (T.H.)
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Correspondence: (J.B.); (T.H.)
| |
Collapse
|
44
|
Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism in Portulaca oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4867-4885. [PMID: 35439821 DOI: 10.1093/jxb/erac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Aline Bastos Kawabata
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| |
Collapse
|
45
|
Ishihara H, Alseekh S, Feil R, Perera P, George GM, Niedźwiecki P, Arrivault S, Zeeman SC, Fernie AR, Lunn JE, Smith AM, Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. PLANT PHYSIOLOGY 2022; 189:1976-2000. [PMID: 35486376 PMCID: PMC9342969 DOI: 10.1093/plphys/kiac162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Pumi Perera
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gavin M George
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Piotr Niedźwiecki
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Stephanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
46
|
Alexandre Moraes T, Mengin V, Peixoto B, Encke B, Krohn N, Höhne M, Krause U, Stitt M. The circadian clock mutant lhy cca1 elf3 paces starch mobilization to dawn despite severely disrupted circadian clock function. PLANT PHYSIOLOGY 2022; 189:2332-2356. [PMID: 35567528 PMCID: PMC9348821 DOI: 10.1093/plphys/kiac226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the daytime and remobilize it to support maintenance and growth at night. Starch accumulation is increased when carbon is in short supply, for example, in short photoperiods. Mobilization is paced to exhaust starch around dawn, as anticipated by the circadian clock. This diel pattern of turnover is largely robust against loss of day, dawn, dusk, or evening clock components. Here, we investigated diel starch turnover in the triple circadian clock mutant lhy cca1 elf3, which lacks the LATE ELONGATED HYPOCOTYL and the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) dawn components and the EARLY FLOWERING3 (ELF3) evening components of the circadian clock. The diel oscillations of transcripts for the remaining clock components and related genes like REVEILLE and PHYTOCHROME-INTERACING FACTOR family members exhibited attenuated amplitudes and altered peak time, weakened dawn dominance, and decreased robustness against changes in the external light-dark cycle. The triple mutant was unable to increase starch accumulation in short photoperiods. However, it was still able to pace starch mobilization to around dawn in different photoperiods and growth irradiances and to around 24 h after the previous dawn in T17 and T28 cycles. The triple mutant was able to slow down starch mobilization after a sudden low-light day or a sudden early dusk, although in the latter case it did not fully compensate for the lengthened night. Overall, there was a slight trend to less linear mobilization of starch. Thus, starch mobilization can be paced rather robustly to dawn despite a major disruption of the transcriptional clock. It is proposed that temporal information can be delivered from clock components or a semi-autonomous oscillator.
Collapse
Affiliation(s)
| | - Virginie Mengin
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras 2780-156,Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras 2780-157,Portugal
| | - Beatrice Encke
- Systematic Botany and Biodiversity, Humboldt University of Berlin, Berlin D-10115, Germany
| | - Nicole Krohn
- Abteilung für Parodontologie und Synoptische Zahnmedizin, Charité Universitätsmedizin, Berlin 14197, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
47
|
Jalal A, Sun J, Chen Y, Fan C, Liu J, Wang C. Evolutionary Analysis and Functional Identification of Clock-Associated PSEUDO-RESPONSE REGULATOR (PRRs) Genes in the Flowering Regulation of Roses. Int J Mol Sci 2022; 23:ijms23137335. [PMID: 35806340 PMCID: PMC9266954 DOI: 10.3390/ijms23137335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudo-response regulators (PRRs) are the important genes for flowering in roses. In this work, clock PRRs were genome-wide identified using Arabidopsis protein sequences as queries, and their evolutionary analyses were deliberated intensively in Rosaceae in correspondence with angiosperms species. To draw a comparative network and flow of clock PRRs in roses, a co-expression network of flowering pathway genes was drawn using a string database, and their functional analysis was studied by silencing using VIGS and protein-to-protein interaction. We revealed that the clock PRRs were significantly expanded in Rosaceae and were divided into three major clades, i.e., PRR5/9 (clade 1), PRR3/7 (clade 2), and TOC1/PRR1 (clade 3), based on their phylogeny. Within the clades, five clock PRRs were identified in Rosa chinensis. Clock PRRs had conserved RR domain and shared similar features, suggesting the duplication occurred during evolution. Divergence analysis indicated the role of duplication events in the expansion of clock PRRs. The diverse cis elements and interaction of clock PRRs with miRNAs suggested their role in plant development. Co-expression network analysis showed that the clock PRRs from Rosa chinensis had a strong association with flowering controlling genes. Further silencing of RcPRR1b and RcPRR5 in Rosa chinensis using VIGS led to earlier flowering, confirming them as negative flowering regulators. The protein-to-protein interactions between RcPRR1a/RcPRR5 and RcCO suggested that RcPRR1a/RcPRR5 may suppress flowering by interfering with the binding of RcCO to the promoter of RcFT. Collectively, these results provided an understanding of the evolutionary profiles as well as the functional role of clock PRRs in controlling flowering in roses.
Collapse
|
48
|
Kim NS, Yu J, Bae S, Kim HS, Park S, Lee K, Lee SI, Kim JA. Identification and Characterization of PSEUDO-RESPONSE REGULATOR (PRR) 1a and 1b Genes by CRISPR/Cas9-Targeted Mutagenesis in Chinese Cabbage (Brassica rapa L.). Int J Mol Sci 2022; 23:ijms23136963. [PMID: 35806003 PMCID: PMC9266808 DOI: 10.3390/ijms23136963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9–16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2–4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea;
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Hyang Suk Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
| | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (N.-S.K.); (H.S.K.); (S.P.); (K.L.); (S.I.L.)
- Correspondence: ; Tel.: +82-63-238-4619
| |
Collapse
|
49
|
Li C, Ma J, Wang G, Li H, Wang H, Wang G, Jiang Y, Liu Y, Liu G, Liu G, Cheng R, Wang H, Wei J, Yao L. Exploring the SiCCT Gene Family and Its Role in Heading Date in Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2022; 13:863298. [PMID: 35755676 PMCID: PMC9218912 DOI: 10.3389/fpls.2022.863298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
CCT transcription factors are involved in the regulation of photoperiod and abiotic stress in Arabidopsis and rice. It is not clear that how CCT gene family expand and regulate heading date in foxtail millet. In this study, we conducted a systematic analysis of the CCT gene family in foxtail millet. Thirty-nine CCT genes were identified and divided into four subfamilies based on functional motifs. Analysis showed that dispersed duplication played a predominant role in the expansion of CCT genes during evolution. Nucleotide diversity analysis suggested that genes in CONSTANS (COL)-like, CCT MOTIF FAMILY (CMF)-like, and pseudoresponse response regulator (PRR)-like subfamilies were subjected to selection. Fifteen CCT genes were colocalized with previous heading date quantitative trait loci (QTL) and genome-wide association analysis (GWAS) signals. Transgenic plants were then employed to confirm that overexpression of the CCT gene SiPRR37 delayed the heading date and increased plant height. Our study first investigated the characterization and expansion of the CCT family in foxtail millet and demonstrated the role of SiPRR37. These results lay a significant foundation for further research on the function of CCT genes and provide a cue for the regulation of heading date.
Collapse
Affiliation(s)
- Congcong Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Vegetable Research, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hailong Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Guoliang Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Lei Yao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Biotechnology Research, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| |
Collapse
|
50
|
Zheng Z, Hu H, Gao S, Zhou H, Luo W, Kage U, Liu C, Jia J. Leaf thickness of barley: genetic dissection, candidate genes prediction and its relationship with yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1843-1854. [PMID: 35348823 DOI: 10.1007/s00122-022-04076-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this first genetic study on assessing leaf thickness directly in cereals, major and environmentally stable QTL were detected in barley and candidate genes underlying a major locus were identified. Leaf thickness (LT) is an important characteristic affecting leaf functions which have been intensively studied. However, as LT has a small dimension in many plant species and technically difficult to measure, previous studies on this characteristic are often based on indirect estimations. In the first study of detecting QTL controlling LT by directly measuring the characteristic in barley, large and stable loci were detected from both field and glasshouse trials conducted in different cropping seasons by assessing a population of 201 recombinant inbred lines. Four loci (locating on chromosome arms 2H, 3H, 5H and 6H, respectively) were consistently detected for flag leaf thickness (FLT) in each of these trials. The one on 6H had the largest effect, with a maximum LOD 9.8 explaining up to 20.9% of phenotypic variance. FLT does not only show strong interactions with flag leaf width and flag leaf area but has also strong correlations with fertile tiller number, spike row types, kernel number per spike and heading date. Though with reduced efficiency, these loci were also detectable from assessing second last leaf of fully grown plants or even from assessing the third leaves of seedlings. Taking advantage of the high-quality genome assemblies for both parents of the mapping population used in this study, three candidate genes underlying the 6H QTL were predicted based on orthologous analysis. These results do not only broaden our understanding on genetic basis of LT and its relationship with other traits in cereal crops but also form the bases for cloning and functional analysis of genes regulating LT in barley.
Collapse
Affiliation(s)
- Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Haiyan Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Shang Gao
- School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Hong Zhou
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Wei Luo
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Udaykumar Kage
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|