1
|
Maruta T, Tanaka Y, Yamamoto K, Ishida T, Hamada A, Ishikawa T. Evolutionary insights into strategy shifts for the safe and effective accumulation of ascorbate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2664-2681. [PMID: 38452239 DOI: 10.1093/jxb/erae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Plants accumulate high concentrations of ascorbate, commonly in their leaves, as a redox buffer. While ascorbate levels have increased during plant evolution, the mechanisms behind this phenomenon are unclear. Moreover, has the increase in ascorbate concentration been achieved without imposing any detrimental effects on the plants? In this review, we focus on potential transitions in two regulatory mechanisms related to ascorbate biosynthesis and the availability of cellular dehydroascorbate (DHA) during plant evolution. The first transition might be that the trigger for the transcriptional induction of VTC2, which encodes the rate-limiting enzyme in ascorbate biosynthesis, has shifted from oxidative stress (in green algae) to light/photosynthesis (in land plants), probably enabling the continuous accumulation of ascorbate under illumination. This could serve as a preventive system against the unpredictable occurrence of oxidative stress. The second transition might be that DHA-degrading enzymes, which protect cells from the highly reactive DHA in green algae and mosses, have been lost in ferns or flowering plants. Instead, flowering plants may have increased glutathione concentrations to reinforce the DHA reduction capacity, possibly allowing ascorbate accumulation and avoiding the toxicity of DHA. These potential transitions may have contributed to strategies for plants' safe and effective accumulation of ascorbate.
Collapse
Affiliation(s)
- Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yasuhiro Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Kojiro Yamamoto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tetsuya Ishida
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
2
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
3
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
4
|
Ren Y, Li M, Guo S, Sun H, Zhao J, Zhang J, Liu G, He H, Tian S, Yu Y, Gong G, Zhang H, Zhang X, Alseekh S, Fernie AR, Scheller HV, Xu Y. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. THE PLANT CELL 2021; 33:1554-1573. [PMID: 33570606 PMCID: PMC8254481 DOI: 10.1093/plcell/koab055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
How raffinose (Raf) family oligosaccharides, the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar watermelons but was backlogged in the fruit of wild ancestor species. Through a genome-wide association study, the alkaline alpha-galactosidase ClAGA2 was identified as the key factor controlling stachyose and Raf hydrolysis, and it was determined to be specifically expressed in the vascular bundle. Analysis of transgenic plants confirmed that ClAGA2 controls fruit Raf hydrolysis and reduces sugar content in fruits. Two single-nucleotide polymorphisms (SNPs) within the ClAGA2 promoter affect the recruitment of the transcription factor ClNF-YC2 (nuclear transcription factor Y subunit C) to regulate ClAGA2 expression. Moreover, this study demonstrates that C. lanatus Sugars Will Eventually Be Exported Transporter 3 (ClSWEET3) and Tonoplast Sugar Transporter (ClTST2) participate in plasma membrane sugar transport and sugar storage in fruit cell vacuoles, respectively. Knocking out ClAGA2, ClSWEET3, and ClTST2 affected fruit sugar accumulation. Genomic signatures indicate that the selection of ClAGA2, ClSWEET3, and ClTST2 for carbohydrate partitioning led to the derivation of modern sweet watermelon from non-sweet ancestors during domestication.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guangmin Liu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Hongju He
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
5
|
Geiger D. Plant glucose transporter structure and function. Pflugers Arch 2020; 472:1111-1128. [PMID: 32845347 PMCID: PMC8298354 DOI: 10.1007/s00424-020-02449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
The carbohydrate D-glucose is the main source of energy in living organisms. In contrast to animals, as well as most fungi, bacteria, and archaea, plants are capable to synthesize a surplus of sugars characterizing them as autothrophic organisms. Thus, plants are de facto the source of all food on earth, either directly or indirectly via feed to livestock. Glucose is stored as polymeric glucan, in animals as glycogen and in plants as starch. Despite serving a general source for metabolic energy and energy storage, glucose is the main building block for cellulose synthesis and represents the metabolic starting point of carboxylate- and amino acid synthesis. Finally yet importantly, glucose functions as signalling molecule conveying the plant metabolic status for adjustment of growth, development, and survival. Therefore, cell-to-cell and long-distance transport of photoassimilates/sugars throughout the plant body require the fine-tuned activity of sugar transporters facilitating the transport across membranes. The functional plant counterparts of the animal sodium/glucose transporters (SGLTs) are represented by the proton-coupled sugar transport proteins (STPs) of the plant monosaccharide transporter(-like) family (MST). In the framework of this special issue on “Glucose Transporters in Health and Disease,” this review gives an overview of the function and structure of plant STPs in comparison to the respective knowledge obtained with the animal Na+-coupled glucose transporters (SGLTs).
Collapse
Affiliation(s)
- Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082, Wuerzburg, Germany.
| |
Collapse
|
6
|
Rabbani N, Al-Motawa M, Thornalley PJ. Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover. Int J Mol Sci 2020; 21:ijms21113942. [PMID: 32486308 PMCID: PMC7312737 DOI: 10.3390/ijms21113942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is Nε-fructosyl-lysine (FL). Saccharide-derived reactive dicarbonyls are arginine residue-directed glycating agents, forming advanced glycation endproducts (AGEs). A dominant dicarbonyl is methylglyoxal—formed mainly by the trace-level degradation of triosephosphates, including through the Calvin cycle of photosynthesis. Methylglyoxal forms the major quantitative AGE, hydroimidazolone MG-H1. Glucose and methylglyoxal concentrations in plants change with the developmental stage, senescence, light and dark cycles and also likely biotic and abiotic stresses. Proteomics analysis indicates that there is an enrichment of the amino acid residue targets of glycation, arginine and lysine residues, in predicted functional sites of the plant proteome, suggesting the susceptibility of proteins to functional inactivation by glycation. In this review, we give a brief introduction to glycation, glycating agents and glycation adducts in plants. We consider dicarbonyl stress, the functional vulnerability of the plant proteome to arginine-directed glycation and the likely role of methylglyoxal-mediated glycation in the activation of the unfolded protein response in plants. The latter is linked to the recent suggestion of protein glycation in sugar signaling in plant metabolism. The overexpression of glyoxalase 1, which suppresses glycation by methylglyoxal and glyoxal, produced plants resistant to high salinity, drought, extreme temperature and other stresses. Further research to decrease protein glycation in plants may lead to improved plant growth and assist the breeding of plant varieties resistant to environmental stress and senescence—including plants of commercial ornamental and crop cultivation value.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Maryam Al-Motawa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
7
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, Demidchik V, Van den Ende W, Frolov A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int J Mol Sci 2019; 20:E2366. [PMID: 31086058 PMCID: PMC6539852 DOI: 10.3390/ijms20092366] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.
Collapse
Affiliation(s)
- Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alena Kusnetsova
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Biotechnology, St. Petersburg Chemical Pharmaceutical University, Saint Petersburg 197022, Russia.
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | | | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Belarusian State University, 220030 Minsk, Belarus.
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
8
|
Chaplin AK, Chernukhin I, Bechtold U. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:653-670. [PMID: 30395279 PMCID: PMC6322573 DOI: 10.1093/jxb/ery389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.
Collapse
Affiliation(s)
- Amanda K Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
9
|
Paudel G, Bilova T, Schmidt R, Greifenhagen U, Berger R, Tarakhovskaya E, Stöckhardt S, Balcke GU, Humbeck K, Brandt W, Sinz A, Vogt T, Birkemeyer C, Wessjohann L, Frolov A. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6283-6295. [PMID: 27856706 PMCID: PMC5181577 DOI: 10.1093/jxb/erw395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Collapse
Affiliation(s)
- Gagan Paudel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Robert Berger
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Stefanie Stöckhardt
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Ulrich Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Vogt
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT, Schuessele C, Lang D, Nitschke R, Igloi GL, Schlosser A, Reski R. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Mol Cell Proteomics 2016; 15:1808-22. [PMID: 27067052 DOI: 10.1074/mcp.m115.057190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J Mueller
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Kathrin Fiedler
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marc Schuelke
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Jens T Vanselow
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christian Schuessele
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roland Nitschke
- ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Gabor L Igloi
- ‖Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas Schlosser
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Ralf Reski
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; **FRIAS - Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Bilova T, Lukasheva E, Brauch D, Greifenhagen U, Paudel G, Tarakhovskaya E, Frolova N, Mittasch J, Balcke GU, Tissier A, Osmolovskaya N, Vogt T, Wessjohann LA, Birkemeyer C, Milkowski C, Frolov A. A Snapshot of the Plant Glycated Proteome: STRUCTURAL, FUNCTIONAL, AND MECHANISTIC ASPECTS. J Biol Chem 2016; 291:7621-36. [PMID: 26786108 PMCID: PMC4817189 DOI: 10.1074/jbc.m115.678581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome ofBrassica napusand characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made withArabidopsis thaliana The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.
Collapse
Affiliation(s)
- Tatiana Bilova
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Elena Lukasheva
- Departments of Biochemistry and Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dominic Brauch
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, Germany, and
| | - Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Gagan Paudel
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Elena Tarakhovskaya
- Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Juliane Mittasch
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Gerd Ulrich Balcke
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Alain Tissier
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | - Natalia Osmolovskaya
- Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Thomas Vogt
- Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle (Saale), Germany
| | | | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany
| | - Carsten Milkowski
- Interdisciplinary Center for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale),Germany
| | - Andrej Frolov
- From the Departments of Bioorganic Chemistry and Faculty of Chemistry and Mineralogy, Universität Leipzig, D-04103 Leipzig, Germany,
| |
Collapse
|
12
|
|
13
|
Nakai A, Yamauchi Y, Sumi S, Tanaka K. Role of acylamino acid-releasing enzyme/oxidized protein hydrolase in sustaining homeostasis of the cytoplasmic antioxidative system. PLANTA 2012; 236:427-36. [PMID: 22398639 DOI: 10.1007/s00425-012-1614-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
Acylamino acid-releasing enzyme/oxidized protein hydrolase (AARE/OPH) has been biochemically demonstrated to be a bifunctional protease that has exopeptidase activity against Nα-acylated peptides and endopeptidase activity against oxidized and glycated proteins; however, its physiological role remains unknown. In this study, to determine its physiological significance, we produced AARE/OPH-overexpressing and -suppressed plants and assessed the biological impacts of AARE/OPH. The subcellular localization of Arabidopsis AARE/OPH was found to be cytoplasmic and nuclear by transient expression analysis of tdTomato-fused Arabidopsis AARE/OPH. Overexpression of AARE/OPH exhibited no apparent effect on the level of oxidized proteins because wild types probably have inherently high AARE/OPH activity. Through RNAi gene suppressing, we successfully produced AARE/OPH-suppressed Arabidopsis plants (aare) that exhibited almost no AARE activity. In the aare plant, electrolyte leakage by methyl viologen treatment was enhanced compared to that of non-transformant plants, suggesting that the plasma membranes of aare easily suffered oxidative damage, probably as a result of deterioration of the cytoplasmic antioxidative system. Correspondingly, proteomic analysis revealed that the aare plant accumulated a number of oxidized proteins including cytoplasmic antioxidant enzymes. On the basis of these results, we concluded that AARE/OPH plays a homeostatic role in sustaining the cytoplasmic antioxidative system.
Collapse
Affiliation(s)
- Atsushi Nakai
- Faculty of Agriculture, Tottori University, Koyama-cho Minami 4-101, Tottori, 680-8553, Japan
| | | | | | | |
Collapse
|
14
|
Liu DD, Chao WM, Turgeon R. Transport of sucrose, not hexose, in the phloem. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4315-20. [PMID: 22553289 PMCID: PMC3398456 DOI: 10.1093/jxb/ers127] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 05/17/2023]
Abstract
Several lines of evidence indicate that glucose and fructose are essentially absent in mobile phloem sap. However, this paradigm has been called into question, especially but not entirely, with respect to species in the Ranunculaceae and Papaveraceae. In the experiments in question, phloem sap was obtained by detaching leaves and placing the cut ends of the petioles in an EDTA solution. More hexose than sucrose was detected. In the present study, these results were confirmed for four species. However, almost identical results were obtained when the leaf blades were removed and only petiole stubs were immersed. This suggests that the sugars in the EDTA solution represent compounds extracted from the petioles, rather than sugars in transit in the phloem. In further experiments, the leaf blades were exposed to (14)CO(2) and, following a chase period, radiolabelled sugars in the petioles and EDTA exudate were identified. Almost all the radiolabel was in the form of [(14)C]sucrose, with little radiolabelled hexose. The data support the long-held contention that sucrose is a ubiquitous transport sugar, but hexoses are essentially absent in the phloem stream.
Collapse
|
15
|
|
16
|
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. MOLECULAR PLANT 2011; 4:641-62. [PMID: 21746702 DOI: 10.1093/mp/ssr051] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J Biol Chem 2010; 286:6999-7009. [PMID: 21169366 DOI: 10.1074/jbc.m110.202226] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive carbonyls, especially α,β-unsaturated carbonyls produced through lipid peroxidation, damage biomolecules such as proteins and nucleotides; elimination of these carbonyls is therefore essential for maintaining cellular homeostasis. In this study, we focused on an NADPH-dependent detoxification of reactive carbonyls in plants and explored the enzyme system involved in this detoxification process. Using acrolein (CH(2) = CHCHO) as a model α,β-unsaturated carbonyl, we purified a predominant NADPH-dependent acrolein-reducing enzyme from cucumber leaves, and we identified the enzyme as an alkenal/one oxidoreductase (AOR) catalyzing reduction of an α,β-unsaturated bond. Cloning of cDNA encoding AORs revealed that cucumber contains two distinct AORs, chloroplastic AOR and cytosolic AOR. Homologs of cucumber AORs were found among various plant species, including Arabidopsis, and we confirmed that a homolog of Arabidopsis (At1g23740) also had AOR activity. Phylogenetic analysis showed that these AORs belong to a novel class of AORs. They preferentially reduced α,β-unsaturated ketones rather than α,β-unsaturated aldehydes. Furthermore, we selected candidates of other classes of enzymes involved in NADPH-dependent reduction of carbonyls based on the bioinformatic information, and we found that an aldo-keto reductase (At2g37770) and aldehyde reductases (At1g54870 and At3g04000) were implicated in the reduction of an aldehyde group of saturated aldehydes and methylglyoxal as well as α,β-unsaturated aldehydes in chloroplasts. These results suggest that different classes of NADPH-dependent reductases cooperatively contribute to the detoxification of reactive carbonyls.
Collapse
Affiliation(s)
- Yasuo Yamauchi
- Laboratory of Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
18
|
Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:661-71. [PMID: 19392687 DOI: 10.1111/j.1365-313x.2009.03898.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Higher plants are continually exposed to reactive oxygen and nitrogen species during their lives. Together with glucose and reactive dicarbonyls, these can modify proteins spontaneously, leading to protein oxidation, nitration and glycation. These reactions have the potential to damage proteins and have an impact on physiological processes. The levels of protein oxidation, nitration and glycation adducts were assayed, using liquid chromatography coupled with tandem mass spectrometry, in total leaf extracts over a diurnal cycle and when exposed to conditions that promote oxidative stress. Changes in the levels of oxidation, glycation and nitration adducts were found between the light and dark phases under non-stress conditions. A comparison between wild-type plants and a mutant lacking peptide methionine sulfoxide reductase (pmsr2-1) showed increased protein oxidation, nitration and glycation of specific amino acid residues during darkness in pmsr2-1. Short-term excess light exposure, which promoted oxidative stress, led to increased protein glycation, specifically by glyoxal. This suggested that any increased oxidative damage to proteins was within the repair capacity of the plant. The methods developed here provide the means to simultaneously detect a range of protein oxidation, nitration and glycation adducts within a single sample. Thus, these methods identify a range of biomarkers to monitor a number of distinct biochemical processes that have an impact on the proteome and therefore the physiological state of the plant.
Collapse
Affiliation(s)
- Ulrike Bechtold
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | | | | |
Collapse
|
19
|
Humpert PM, Lukic IK, Thorpe SR, Hofer S, Awad EM, Andrassy M, Deemer EK, Kasper M, Schleicher E, Schwaninger M, Weigand MA, Nawroth PP, Bierhaus A. AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis. J Leukoc Biol 2009; 86:589-97. [PMID: 19401390 DOI: 10.1189/jlb.1008646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HSA preparations for i.v. use are administered in critically ill patients. Although increasing intravascular osmotic pressure seems to be a pathophysiologically orientated treatment, clinical trials do not indicate a benefit for mortality in HSA-treated patients. Instead, there is evidence for inflammatory reactions upon infusion of different HSA batches. A neglected issue concerning the safety and quality of these therapeutics is processing-related post-transcriptional protein modifications, such as AGEs. We therefore tested the hypothesis that commercially available infusion solutions contain AGEs and studied whether these protein modifications influence outcome and inflammation in a murine model of sepsis induced by CLP. Screening of different HSA and Ig preparations in this study revealed an up to approximate tenfold difference in the amount of AGE modifications. Application of clinically relevant concentrations of CML-modified HSA in CLP led to increased inflammation and enhanced mortality in wild-type mice but not in mice lacking the RAGE. Lethality was paralleled by increased activation of the proinflammatory transcription factor NF-kappaB, NF-kappaB-dependent gene expression, and infiltration of inflammatory cells in the peritoneal cavity. This study implies that infusion solutions containing a high load of the AGE-modified protein have the potential to activate RAGE/NF-kappaB-mediated inflammatory reactions, causing increased mortality in experimental peritonitis.
Collapse
Affiliation(s)
- Per M Humpert
- Department of Medicine I and Clinical Chemistry, Anesthesiology and Institute of Neuropharmacology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y. Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:786-93. [PMID: 18538576 DOI: 10.1016/j.plaphy.2008.04.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Indexed: 05/19/2023]
Abstract
When polyunsaturated fatty acids (PUFAs) in biomembrane are peroxidized, a great diversity of aldehydes is formed, and some of which are highly reactive. Thus they are thought to have biological impacts in stressed plants; however, the detailed mechanism of generation and biochemical effects are unknown. In this study, we show that chloroplasts are major organelles in which malondialdehyde (MDA) generated from peroxidized linolenic acid modifies proteins in heat-stressed plants. First, to clarify the biochemical process of MDA generation from PUFAs and its attachment to proteins, we carried out in vitro experiments using model proteins (BSA and Rubisco) and methylesters of C18 PUFAs that are major components of plant biomembrane. Protein modification was detected by Western blotting using monoclonal antibodies that recognize MDA binding to proteins. Results showed that peroxidation of linolenic acid methylester by reactive oxygen species was essential for protein modification by MDA, and the MDA modification was highly dependent on temperature, leading to a loss of Rubisco activity. When isolated spinach thylakoid membrane was peroxidized at 37 degrees C, oxygen-evolving complex 33kDa protein (OEC33) was modified by MDA. These model experiments suggest that protein modification by MDA preferentially occurs under higher temperatures and oxidative conditions, thus we examined protein modification in heat-stressed plants. Spinach plants were heat-stressed at 40 degrees C under illumination, and modification of OEC33 protein by MDA was detected. In heat-stressed Arabidopsis plants, light-harvesting complex protein was modified by MDA under illumination. This modification was not observed in linolenic acid-deficient mutants (fad3fad7fad8 triple mutant), suggesting that linolenic acid is a major source of protein modification by MDA in heat-stressed plants.
Collapse
Affiliation(s)
- Yasuo Yamauchi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Kato Y, Yamamoto Y, Murakami S, Sato F. Post-translational regulation of CND41 protease activity in senescent tobacco leaves. PLANTA 2005; 222:643-51. [PMID: 16021504 DOI: 10.1007/s00425-005-0011-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/23/2005] [Indexed: 05/03/2023]
Abstract
The degradation of chloroplast proteins is an important occurrence in the mobilization of nutrients from senescing leaves to reproductive organs during senescence. Recently, we proved that tobacco CND41 protease is involved in Rubisco degradation and the translocation of nitrogen during senescence. In this study, we show the post-translational regulation of CND41 protease. Using very specific antibodies that were prepared against CND41-specific peptide (anti-Val 186 to Ser 206), immunoblot analysis clearly indicated a change in the accumulation and processing of CND41 during the maturation of leaves in whole plants. The developmental modification of CND41 was also observed in transgenic tobacco with constitutive expression of CND41 under cauliflower mosaic virus 35S promoter. Further studies of seedlings under senescence induced by combined treatment with nitrogen-starvation and high sucrose confirmed that the processing of CND41 was important for protease activity and senescence. A possible mechanism for the regulation of CND41 activity is discussed.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
22
|
VERKROOST AWM, WASSEN MJ. A simple model for nitrogen-limited plant growth and nitrogen allocation. ANNALS OF BOTANY 2005; 96:871-6. [PMID: 16100225 PMCID: PMC4247053 DOI: 10.1093/aob/mci239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/16/2005] [Accepted: 06/17/2005] [Indexed: 05/04/2023]
Abstract
BACKGROUND and Aims In many studies of nitrogen-limited plant growth a linear relationship has been found between relative growth rate and plant nitrogen concentration, showing a negative intercept at a plant nitrogen concentration of zero. This relationship forms the basis of the nitrogen productivity theory. On the basis of empirical findings, several authors have suggested that there is also a distinctive relationship between allocation and plant nitrogen concentration. The primary aim of this paper is to develop a simple plant growth model that quantifies this relationship in mathematical terms. The model was focused on nitrogen allocation to avoid the complexity of differences in nitrogen concentrations in the different plant compartments. The secondary aim is to use the model for examining the processes that underlie the empirically based nitrogen productivity theory. METHODS In the construction of the model we focused on the formation and degradation of biologically active nitrogen in enzymes involved in the photosynthetic process (photosynthetic nitrogen). It was assumed that, in nitrogen-limiting conditions, the formation of photosynthetic nitrogen is proportional to nitrogen uptake. Furthermore it was assumed that the degradation of photosynthetic nitrogen is governed by first-order kinetics. Model predictions of nitrogen allocation were compared with data from literature describing four studies of growth. Model predictions of whole plant growth were compared with the above-mentioned nitrogen productivity theory. KEY RESULTS Allocation predictions agreed well with the investigated empirical data. The ratio of leaf nitrogen and plant nitrogen declines linearly with the inverse of plant nitrogen concentration. Nitrogen productivity is proportional to this ratio. Predictions for whole-plant growth were in accordance with the nitrogen productivity theory. CONCLUSIONS The agreement between model predictions and empirical findings suggests that the derived equation for nitrogen allocation and its relationship to plant nitrogen concentration might be generally applicable. The negative intercept in the linear relationship between relative growth rate and plant nitrogen concentration is interpreted as being equal to the degradation constant of photosynthetic nitrogen.
Collapse
Affiliation(s)
- A. W. M. VERKROOST
- Department of Environmental Sciences, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, PO Box 80.115, 3508 TC Utrecht, The Netherlands
| | - M. J. WASSEN
- Department of Environmental Sciences, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, PO Box 80.115, 3508 TC Utrecht, The Netherlands
| |
Collapse
|
23
|
Houtz RL, Portis AR. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase--posttranslational facts and mysteries. Arch Biochem Biophys 2003; 414:150-8. [PMID: 12781766 DOI: 10.1016/s0003-9861(03)00122-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The life of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), from gene to protein to irreplaceable component of photosynthetic CO2 assimilation, has successfully served as a model for a number of essential cellular processes centered on protein chemistry and amino acid modifications. Once translated, the two subunits of Rubisco undergo a myriad of co- and posttranslational modifications accompanied by constant interactions with structurally modifying enzymes. Even after final assembly, the essential role played by Rubisco in photosynthetic CO2 assimilation is dependent on continuous conformation modifications by Rubisco activase. Rubisco is also continuously assaulted by various environmental factors, resulting in its turnover and degradation by processes that appear to be enhanced during plant senescence.
Collapse
Affiliation(s)
- Robert L Houtz
- Department of Horticulture, Plant Physiology/Biochemistry/Molecular Biology Program, N322D Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | | |
Collapse
|