1
|
Chen H, Shi Z, Ji H, Ye S, Zhou X, Dan Z, Shen X. Investigating the role of endocytosis in the uptake of photoassimilates in Gracilariopsis lemaneiformis (Rhodophyta). BMC PLANT BIOLOGY 2025; 25:159. [PMID: 39915741 PMCID: PMC11803931 DOI: 10.1186/s12870-025-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND The translocation of photoassimilates is a critical process that links the source and sink in plants, playing an irreplaceable role in maintaining source-sink balance, ensuring plant growth and development, and the formation of yield. Nevertheless, the mechanisms underlying the translocation of photosynthetic products in macroalgae are yet to be fully understood. The purpose of this study is to reveal the role of endocytosis in the translocation of photosynthetic products in the marine red alga Gracilariopsis lemaneiformis by investigating the uptake of photosynthetic products by endocytosis and the impact of endocytic activity on cellular ultrastructure, photosynthesis, and growth. RESULTS This study discovered that the endocytic activity in non-epidermal cells (NEC, sink cells) of G. lemaneiformis is significantly higher than that in epidermal cells (EC, source cells). NEC is capable of internalizing a greater amount of extracellular carbohydrates, such as sucrose, via endocytosis compared to EC. Further inhibition of endocytic activity in G. lemaneiformis using EIPA resulted in a significant reduction in the content of floridean starch within NEC, whereas the decrease in floridean starch content in EC was not statistically significant. Inhibition of endocytic activity led to an initial decline in photosynthetic efficiency of algal thalli within a few hours, which was followed by an increase as inhibition duration extended, yet the growth rate of the thalli remained substantially suppressed. CONCLUSIONS These findings indicate that endocytosis in G. lemaneiformis plays a role in regulating the cellular uptake of extracellular photoassimilates, which in turn influences the storage substances in sink cells and the overall growth and development of the algae. This study sheds new light on the regulatory mechanisms governing photoassimilate translocation in macroalgae.
Collapse
Affiliation(s)
- Haihong Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Ziyan Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongxin Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shengqi Ye
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoqian Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhijie Dan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Wang Q, Sun X, Wu N, Chen Z, Wang H, Lv M, Ding J, Chen L. Removal of enrofloxacin as well as nutrients in mariculture water by Sesuvium portulacastrum system: Insights for biodegradation, ecotoxicity of enrofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176270. [PMID: 39278506 DOI: 10.1016/j.scitotenv.2024.176270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Antibiotic contamination and eutrophication in mariculture have become problems that cannot be ignored, and enrofloxacin (ENR), as an example, is especially widely used in mariculture. This study firstly revealed that Sesuvium portulacastrum, a plant with world-wide distribution in coastal zones, with its rhizosphere microorganisms, could remove ENR as well as nutrients. The S. portulacastrum system could degrade ENR to small-molecule products 1,2,3,4-tetrahydroquinolin-4-ol and (2,4-dihydroxyphenyl)-cyclopropylamine. And there were 81.3-39.2 % removals of ENR with 0.01-100 mg/L. Although ENR significantly influenced functions of rhizosphere microbial community, like decreasing nitrogen fixation, shifting trophic strategies from phototrophy to chemoheterotrophy, nutrients (NH4+-N, NO2--N, NO3--N and total dissolved phosphorus) removal of S. portulacastrum system was essentially unaffected at low ENR concentration (< 1 mg/L). The removal mechanism of S. portulacastrum system was explored. Neither of the isolated root exudates and rhizosphere bacteria could degrade ENR, however, without rhizosphere bacteria, ENR removal rate would decrease. Root proteins including oxidase, decarboxylase, dehydrogenase, such as laccase, isocitrate dehydrogenase, delta-1-pyrroline-5-carboxylate dehydrogenase were overexpressed. Additionally, endocytosis is a pathway for antibiotics to enter S. portulacastrum. This study demonstrated that S. portulacastrum system could be used for remediation of antibiotics-nutrients combined pollution, and deepened understanding the antibiotic removal mechanism of macrophytes in mariculture, moreover, provided new macroplant species and a theoretical basis for antibiotics removal in aquatic systems.
Collapse
Affiliation(s)
- Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; The Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Nan Wu
- School of Resources and Environmental Engineeringy, Ludong University, Yantai, China
| | - Zhangen Chen
- School of Resources and Environmental Engineeringy, Ludong University, Yantai, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
4
|
Fukuda R, Tani M, Shibukawa S, Nobeyama T, Nomura T, Kato Y, Murakami T. Effects of lipoprotein nanoparticles' composition and size on their internalization in plant and mammalian cells. Genes Cells 2023; 28:881-892. [PMID: 37850683 DOI: 10.1111/gtc.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The internalization of engineered high-density lipoprotein nanoparticles (engineered lipoproteins [eLPs]) with different lipid and protein compositions, zeta potentials, and/or sizes were analyzed in representative plant and mammalian cells. The impact of the addition of a cell-penetrating peptide to eLPs on the internalization was very small in Bright Yellow (BY)-2 protoplasts compared with HeLa cells. When eLPs were prepared with one of the abundant lipids in BY-2 cells, digalactosyldiacylglycerol (DGDG) (eLP4), its internalization was dramatically increased only in HeLa cells. Such an increase in HeLa cells was also obtained for liposomes containing DGDG in a DGDG content-dependent manner. Increasing the size and zeta potential of eLPs improved their internalization in both HeLa cells and in BY-2 protoplasts but to quite varying degrees. Although eLPs tended to stay at the plasma membrane (PM) in BY-2 protoplasts with much less internalization, the PM-bound eLPs somehow promoted the internalization of coexisting nanobeads in cell culture media. These results provide fundamental insight into the future design of lipid nanoparticles for drug delivery in mammalian and plant cells.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
| | - Misaki Tani
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Shiori Shibukawa
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Tomohiro Nobeyama
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Taiji Nomura
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yasuo Kato
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Tatsuya Murakami
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, Toyama, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
He JZ, Dorion S, Carmona-Rojas LM, Rivoal J. Carbon Fluxes in Potato ( Solanum tuberosum) Remain Stable in Cell Cultures Exposed to Nutritional Phosphate Deficiency. BIOLOGY 2023; 12:1190. [PMID: 37759596 PMCID: PMC10525292 DOI: 10.3390/biology12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Nutritional phosphate deficiency is a major limitation to plant growth. Here, we monitored fluxes in pathways supporting respiratory metabolism in potato (Solanum tuberosum) cell cultures growing in control or limiting phosphate conditions. Sugar uptake was quantified using [U-14C]sucrose as precursor. Carbohydrate degradation through glycolysis and respiratory pathways was estimated using the catabolism of [U-14C]sucrose to 14CO2. Anaplerotic carbon flux was assessed by labeling with NaH14CO3. The data showed that these metabolic fluxes displayed distinct patterns over culture time. However, phosphate depletion had relatively little impact on the various fluxes. Sucrose uptake was higher during the first six days of culture, followed by a decline, which was steeper in Pi-sufficient cells. Anaplerotic pathway flux was more important at day three and decreased thereafter. In contrast, the flux between sucrose and CO2 was at a maximum in the mid-log phase of the culture, with a peak at Day 6. Metabolization of [U-14C]sucrose into neutral, basic and acidic fractions was also unaffected by phosphate nutrition. Hence, the well-documented changes in central metabolism enzymes activities in response to Pi deficiency do not drastically modify metabolic fluxes, but rather result in the maintenance of the carbon fluxes that support respiration.
Collapse
Affiliation(s)
- Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Laura Michell Carmona-Rojas
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
- Grupo de Biotecnologiía, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medelliín 050010, Colombia
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| |
Collapse
|
6
|
Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1063765. [PMID: 37469768 PMCID: PMC10352115 DOI: 10.3389/fpls.2023.1063765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
Pollen tubes of higher plants grow very rapidly until they reach the ovules to fertilize the female gametes. This growth process is energy demanding, however, the nutrition strategies of pollen are largely unexplored. Here, we studied the function of sucrose transporters and invertases during pollen germination and pollen tube growth. RT-PCR analyses, reporter lines and knockout mutants were used to study gene expression and protein function in pollen. The genome of Arabidopsis thaliana contains eight genes that encode functional sucrose/H+ symporters. Apart from AtSUC2, which is companion cell specific, all other AtSUC genes are expressed in pollen tubes. AtSUC1 is present in developing pollen and seems to be the most important sucrose transporter during the fertilization process. Pollen of an Atsuc1 knockout plant contain less sucrose and have defects in pollen germination and pollen tube growth. The loss of other sucrose carriers affects neither pollen germination nor pollen tube growth. A multiple knockout line Atsuc1Atsuc3Atsuc8Atsuc9 shows a phenotype that is comparable to the Atsuc1 mutant line. Loss of AtSUC1 can`t be complemented by AtSUC9, suggesting a special function of AtSUC1. Besides sucrose carriers, pollen tubes also synthesize monosaccharide carriers of the AtSTP family as well as invertases. We could show that AtcwINV2 and AtcwINV4 are expressed in pollen, AtcwINV1 in the transmitting tissue and AtcwINV5 in the funiculi of the ovary. The vacuolar invertase AtVI2 is also expressed in pollen, and a knockout of AtVI2 leads to a severe reduction in pollen germination. Our data indicate that AtSUC1 mediated sucrose accumulation during late stages of pollen development and cleavage of vacuolar sucrose into monosaccharides is important for the process of pollen germination.
Collapse
Affiliation(s)
- Jessica Seitz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin Fritz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Schröder
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johanna Knab
- Cell Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Walter Weber
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Chen L, Ganguly DR, Shafik SH, Danila F, Grof CPL, Sharwood RE, Furbank RT. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2968-2986. [PMID: 36883216 PMCID: PMC10560085 DOI: 10.1093/jxb/erad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Diep R Ganguly
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Florence Danila
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Osorio-Navarro C, Toledo J, Norambuena L. Sucrose targets clathrin-mediated endocytosis kinetics supporting cell elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:987191. [PMID: 36330253 PMCID: PMC9623095 DOI: 10.3389/fpls.2022.987191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sucrose is a central regulator of plant growth and development, coordinating cell division and cell elongation according to the energy status of plants. Sucrose is known to stimulate bulk endocytosis in cultured cells; however, its physiological role has not been described to date. Our work shows that sucrose supplementation induces root cell elongation and endocytosis. Sucrose targets clathrin-mediated endocytosis (CME) in epidermal cells. Its presence decreases the abundance of both the clathrin coating complex and phosphatidylinositol 4,5-biphosphate at the plasma membrane, while increasing clathrin complex abundance in intracellular spaces. Sucrose decreases the plasma membrane residence time of the clathrin complex, indicating that it controls the kinetics of endocytic vesicle formation and internalization. CME regulation by sucrose is inducible and reversible; this on/off mechanism reveals an endocytosis-mediated mechanism for sensing plant energy status and signaling root elongation. The sucrose monosaccharide fructose also induces CME, while glucose and mannitol have no effect, demonstrating the specificity of the process. Overall, our data show that sucrose can mediate CME, which demonstrates that sucrose signaling for plant growth and development is dependent on endomembrane trafficking.
Collapse
Affiliation(s)
- Claudio Osorio-Navarro
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Zhang H, Zhang C, Xiang X, Zhang Q, Zhao W, Wei G, Hu A. Uptake and transport of antibiotic kasugamycin in castor bean ( Ricinus communis L.) seedlings. Front Microbiol 2022; 13:948171. [PMID: 36033898 PMCID: PMC9399671 DOI: 10.3389/fmicb.2022.948171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic, has been widely used for the management of plant diseases, especially for the control of rice blast in Asia. However, its uptake mechanism and transport in plants are still obscure. The castor bean (Ricinus communis L.) seeding, a model plant for phloem transport, was used to study the mechanism of uptake and transport of KSM. Results showed that cotyledon-applied KSM could transport into the phloem and distributed in root and shoot of plant. The temperature, concentration, and pH had significant effects on the uptake of KSM, indicating that the uptake of KSM was mediated by an active carrier system. Compared with the control, competitive inhibitors of sugar transporters D-glucose, D-chiro-inositol, and phloridzin inhibited 71.03%, 67.95%, and 61.73% uptake of KSM, respectively. Energy inhibitor dinitrophenol (DNP) and carbonyl cyanide chlorophenylhydrazone (CCCP) also affected the uptake of KSM, and the inhibition rates were 34.23% and 48.06%. All the results showed that the uptake of KSM was mediated by a sugar transporter, and it could transport from shoot to root in plants via the phloem. The study preliminary elucidated the plant-microbe interactions in the context of the transport of microbial secondary metabolites in plants. It has certain significance for scientific application of antibiotics and biological control of plant diseases and provides theoretical basis for the development of bidirectional transport pesticides.
Collapse
Affiliation(s)
- Hongzhen Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chenghua Zhang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaolong Xiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Forestry Bureau of Wuchuan County, Zunyi, Guizhou, China
| | - Qilun Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wei Zhao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Guoyu Wei
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Anlong Hu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS NANO 2022; 16:3506-3521. [PMID: 35195009 PMCID: PMC8945396 DOI: 10.1021/acsnano.1c07723] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Horii
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Maai Mori
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Misato Ohtani
- Department
of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (Ma.O.)
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (K.N.)
| |
Collapse
|
12
|
Sommer A, Hoeftberger M, Foissner I. Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. PROTOPLASMA 2021; 258:711-728. [PMID: 33704568 PMCID: PMC8211606 DOI: 10.1007/s00709-021-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.
Collapse
Affiliation(s)
- Aniela Sommer
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - Margit Hoeftberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
13
|
Flowers TJ, Glenn EP, Volkov V. Could vesicular transport of Na+ and Cl- be a feature of salt tolerance in halophytes? ANNALS OF BOTANY 2019; 123:1-18. [PMID: 30247507 PMCID: PMC6344095 DOI: 10.1093/aob/mcy164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
Background Halophytes tolerate external salt concentrations of 200 mm and more, accumulating salt concentrations of 500 mm and more in their shoots; some, recretohalophytes, excrete salt through glands on their leaves. Ions are accumulated in central vacuoles, but the pathway taken by these ions from the outside of the roots to the vacuoles inside the cells is poorly understood. Do the ions cross membranes through ion channels and transporters or move in vesicles, or both? Vesicular transport from the plasma membrane to the vacuole would explain how halophytes avoid the toxicity of high salt concentrations on metabolism. There is also a role for vesicles in the export of ions via salt glands. Scope and Methods We have collected data on the fluxes of sodium and chloride ions in halophytes, based on the weight of the transporting organs and on the membrane area across which the flux occurs; the latter range from 17 nmol m-2 s-1 to 4.2 μmol m-2 s-1 and values up to 1 μmol m-2 s-1 need to be consistent with whatever transport system is in operation. We have summarized the sizes and rates of turnover of vesicles in plants, where clathrin-independent vesicles are 100 nm or more in diameter and can merge with the plasma membrane at rates of 100 s-1. We gathered evidence for vesicular transport of ions in halophytes and evaluated whether vesicular transport could account for the observable fluxes. Conclusions There is strong evidence in favour of vesicular transport in plants and circumstantial evidence in favour of the movement of ions in vesicles. Estimated rates of vesicle turnover could account for ion transport at the lower reported fluxes (around 20 nmol m-2 s-1), but the higher fluxes may require vesicles of the order of 1 μm or more in diameter. The very high fluxes reported in some salt glands might be an artefact of the way they were measured.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Edward P Glenn
- Environmental Research Laboratory of the University of Arizona, 1601 East, Airport Drive, Tucson, AZ, USA
| | - Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan University, London N7, UK
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Dent D. Non-nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus. Symbiosis 2018. [DOI: 10.5772/intechopen.75813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 2018; 9:191. [PMID: 29662449 PMCID: PMC5890159 DOI: 10.3389/fphar.2018.00191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Collapse
Affiliation(s)
- Fenella Steyfkens
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| |
Collapse
|
16
|
Zhang X, Ren J, Wang J, Li S, Zou Q, Gao N. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property. J Cell Physiol 2018; 233:5908-5919. [PMID: 29243828 DOI: 10.1002/jcp.26400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Shixie Li
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
17
|
Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, Baldan B, Pasqua G. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. PLANT CELL REPORTS 2017; 36:1917-1928. [PMID: 28913707 DOI: 10.1007/s00299-017-2206-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.
Collapse
Affiliation(s)
- Cleofe Palocci
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Alessio Valletta
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Laura Chronopoulou
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Livia Donati
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Marco Bramosanti
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Elisa Brasili
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Barbara Baldan
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, University of Rome La Sapienza, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
18
|
Optimizing Cardiac Delivery of Modified mRNA. Mol Ther 2017; 25:1306-1315. [PMID: 28389322 DOI: 10.1016/j.ymthe.2017.03.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022] Open
Abstract
Modified mRNA (modRNA) is a new technology in the field of somatic gene transfer that has been used for the delivery of genes into different tissues, including the heart. Our group and others have shown that modRNAs injected into the heart are robustly translated into the encoded protein and can potentially improve outcome in heart injury models. However, the optimal compositions of the modRNA and the reagents necessary to achieve optimal expression in the heart have not been characterized yet. In this study, our aim was to elucidate those parameters by testing different nucleotide modifications, modRNA doses, and transfection reagents both in vitro and in vivo in cardiac cells and tissue. Our results indicate that optimal cardiac delivery of modRNA is with N1-Methylpseudouridine-5'-Triphosphate nucleotide modification and achieved using 0.013 μg modRNA/mm2/500 cardiomyocytes (CMs) transfected with positively charged transfection reagent in vitro and 100 μg/mouse heart (1.6 μg modRNA/μL in 60 μL total) sucrose-citrate buffer in vivo. We have optimized the conditions for cardiac delivery of modRNA in vitro and in vivo. Using the described methods and conditions may allow for successful gene delivery using modRNA in various models of cardiovascular disease.
Collapse
|
19
|
Cocking EC. The Challenge of Establishing Symbiotic Nitrogen Fixation in Cereals. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr52.c3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
20
|
Rigal A, Doyle SM, Robert S. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells. Methods Mol Biol 2015; 1242:93-103. [PMID: 25408447 DOI: 10.1007/978-1-4939-1902-4_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64.
Collapse
Affiliation(s)
- Adeline Rigal
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences (SLU), 901 83, Umeå, Sweden
| | | | | |
Collapse
|
21
|
Cardoso-Gustavson P, Davis AR. Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes? PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:134-46. [PMID: 24987788 DOI: 10.1111/plb.12208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/14/2014] [Indexed: 05/24/2023]
Abstract
Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations - which resemble Casparian strips - in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post-secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non-secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes.
Collapse
Affiliation(s)
- P Cardoso-Gustavson
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil; Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
22
|
Leprince AS, Magalhaes N, De Vos D, Bordenave M, Crilat E, Clément G, Meyer C, Munnik T, Savouré A. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:772. [PMID: 25628629 PMCID: PMC4290513 DOI: 10.3389/fpls.2014.00772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/15/2014] [Indexed: 05/03/2023]
Abstract
Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.
Collapse
Affiliation(s)
- Anne-Sophie Leprince
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| | - Nelly Magalhaes
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Delphine De Vos
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Marianne Bordenave
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Emilie Crilat
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Gilles Clément
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Christian Meyer
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Arnould Savouré
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| |
Collapse
|
23
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
24
|
Michalko J, Socha P, Mészáros P, Blehová A, Libantová J, Moravčíková J, Matušíková I. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. PLANTA 2013; 238:715-725. [PMID: 23832529 DOI: 10.1007/s00425-013-1925-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic,
| | | | | | | | | | | | | |
Collapse
|
25
|
Takáč T, Pechan T, Samajová O, Samaj J. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J Proteome Res 2013; 12:4435-48. [PMID: 23931732 DOI: 10.1021/pr400466x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LY294002 is a synthetic quercetin-like compound, which, unlike wortmannin, is more specific inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated, while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabeling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K-mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K, which are reflected at the proteome level. Compared with wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins, as suggested by gene ontology functional annotation.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
26
|
Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 2013; 32:87-106. [PMID: 23827783 DOI: 10.1016/j.biotechadv.2013.06.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/08/2023]
Abstract
Structurally composed of the glucose homopolymers amylose and amylopectin, starch is the main storage carbohydrate in vascular plants, and is synthesized in the plastids of both photosynthetic and non-photosynthetic cells. Its abundance as a naturally occurring organic compound is surpassed only by cellulose, and represents both a cornerstone for human and animal nutrition and a feedstock for many non-food industrial applications including production of adhesives, biodegradable materials, and first-generation bioethanol. This review provides an update on the different proposed pathways of starch biosynthesis occurring in both autotrophic and heterotrophic organs, and provides emerging information about the networks regulating them and their interactions with the environment. Special emphasis is given to recent findings showing that volatile compounds emitted by microorganisms promote both growth and the accumulation of exceptionally high levels of starch in mono- and dicotyledonous plants. We also review how plant biotechnologists have attempted to use basic knowledge on starch metabolism for the rational design of genetic engineering traits aimed at increasing starch in annual crop species. Finally we present some potential biotechnological strategies for enhancing starch content.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacky University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Mutiloako etorbidea z/g, 31192 Mutiloabeti, Nafarroa, Spain.
| |
Collapse
|
27
|
Etxeberria E, Gonzalez P, Pozueta-Romero J. Architectural remodeling of the tonoplast during fluid-phase endocytosis. PLANT SIGNALING & BEHAVIOR 2013; 8:e24793. [PMID: 23656870 PMCID: PMC3908939 DOI: 10.4161/psb.24793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During fluid phase endocytosis (FPE) in plant storage cells, the vacuole receives a considerable amount of membrane and fluid contents. If allowed to accumulate over a period of time, the enlarging tonoplast and increase in fluids would invariably disrupt the structural equilibrium of the mature cells. Therefore, a membrane retrieval process must exist that will guarantee membrane homeostasis in light of tonoplast expansion by membrane addition during FPE. We examined the morphological changes to the vacuolar structure during endocytosis in red beet hypocotyl tissue using scanning laser confocal microscopy and immunohistochemistry. The heavily pigmented storage vacuole allowed us to visualize all architectural transformations during treatment. When red beet tissue was incubated in 200 mM sucrose, a portion of the sucrose accumulated entered the cell by means of FPE. The accumulation process was accompanied by the development of vacuole-derived vesicles which transiently counterbalanced the addition of surplus endocytic membrane during rapid rates of endocytosis. Topographic fluorescent confocal micrographs showed an ensuing reduction in the size of the vacuole-derived vesicles and further suggest their reincorporation into the vacuole to maintain vacuolar unity and solute concentration.
Collapse
Affiliation(s)
- Ed Etxeberria
- Department of Horticultural Sciences; University of Florida; Institute of Food and Agricultural Sciences; Citrus Research and Education Center; Lake Alfred, FL USA
- Correspondence to: Ed Etxeberria,
| | - Pedro Gonzalez
- Department of Horticultural Sciences; University of Florida; Institute of Food and Agricultural Sciences; Citrus Research and Education Center; Lake Alfred, FL USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnologia; Universidad Publica de Navarra/Consejo de Investigaciones Cientificas/Gobierno de Navarra; Nafarroa, Spain
| |
Collapse
|
28
|
Cardoso-Gustavson P, Robazzi Bignelli Valente Aguiar JM, Ricardo Pansarin E, de Barros F. A light in the shadow: the use of Lucifer Yellow technique to demonstrate nectar reabsorption. PLANT METHODS 2013; 9:20. [PMID: 23783170 PMCID: PMC3701517 DOI: 10.1186/1746-4811-9-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Nectar reabsorption is a widely known phenomenon, related to the strategy of resource-recovery and also to maintain the nectar homeostasis at the nectary. The method currently performed to demonstrate nectar being reabsorbed involves the use of radioactive tracers applied to the nectary. Although this method works perfectly, it is complex and requires specific supplies and equipment. Therefore, here we propose an efficient method to obtain a visual demonstration of nectar reabsorption, adapting the use of Lucifer Yellow CH (LYCH), a fluorescent membrane-impermeable dye that can enter the vacuole by endocytosis. RESULTS We applied a LYCH solution to the floral nectary (FN) of Cucurbita pepo L., which is a species known for its ability of nectar reabsorption, and to the extrafloral nectary (EFN) of Passiflora edulis Sims which does not reabsorb the secreted nectar. In all tests performed, we observed that LYCH stained the nectary tissues differentially according to the reabsorption ability of the nectary. The treated FN of C. pepo presented a concentrated fluorescence at the epidermis that decreased at the deeper nectary parenchyma, until reaching the vascular bundles, indicating nectar reabsorption in the flowers of the species. In contrast, treated EFN of P. edulis presented fluorescence only at the cuticle surface, indicating that nectar is not reabsorbed by that particular tissue. CONCLUSION LYCH is an efficient marker to demonstrate nectar reabsorption.
Collapse
Affiliation(s)
- Poliana Cardoso-Gustavson
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, C. Postal 68041, São Paulo, SP, Brazil
| | - João Marcelo Robazzi Bignelli Valente Aguiar
- Programa de Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Emerson Ricardo Pansarin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Fábio de Barros
- Núcleo de Pesquisa Orquidário do Estado, Instituto de Botânica, C. Postal 68041, 04045-972, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Schmidt S, Raven JA, Paungfoo-Lonhienne C. The mixotrophic nature of photosynthetic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:425-438. [PMID: 32481119 DOI: 10.1071/fp13061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 06/11/2023]
Abstract
Plants typically have photosynthetically competent green shoots. To complement resources derived from the atmospheric environment, plants also acquire essential elements from soil. Inorganic ions and molecules are generally considered to be the sources of soil-derived nutrients, and plants tested in this respect can grow with only inorganic nutrients and so can live as autotrophs. However, mycorrhizal symbionts are known to access nutrients from organic matter. Furthermore, specialist lineages of terrestrial photosynthetically competent plants are mixotrophic, including species that obtain organic nutrition from animal prey (carnivores), fungal partners (mycoheterotrophs) or plant hosts (hemi-parasites). Although mixotrophy is deemed the exception in terrestrial plants, it is a common mode of nutrition in aquatic algae. There is mounting evidence that non-specialist plants acquire organic compounds as sources of nutrients, taking up and metabolising a range of organic monomers, oligomers, polymers and even microbes as sources of nitrogen and phosphorus. Plasma-membrane located transporter proteins facilitate the uptake of low-molecular mass organic compounds, endo- and phagocytosis may enable the acquisition of larger compounds, although this has not been confirmed. Identifying the mechanisms involved in the acquisition of organic nutrients will provide understanding of the ecological significance of mixotrophy. Here, we discuss mixotrophy in the context of nitrogen and phosphorus nutrition drawing parallels between algae and plants.
Collapse
Affiliation(s)
- Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
30
|
Polit JT, Nazarski RB. Sucrose transport is inhibited by okadaic acid during regeneration of sugar-starved Vicia faba root meristem cells. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:397-405. [PMID: 23244775 DOI: 10.1016/j.jplph.2012.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
The sucrose-induced resumption of cell cycle in the Vicia faba root meristem cells, blocked in two principal control points PCP1/2 by carbohydrate starvation, occurs after 12 h of metabolic regeneration comprising increased activity of sucrose synthase (SuSy) and hexokinase (HK) as well as starch grain and cell wall matrix polysaccharide biosynthesis. Okadaic acid (OA), the specific protein phosphatase 1/2A inhibitor, supplied at the beginning of the recovery period (0-3 h) completely blocks these processes, making cell cycle resumption impossible. On the other hand, when added at the end (9-12 h), OA has a weak inhibitory effect. The aim of these studies was: (1) to establish how sucrose is transported into the cells and whether the above-mentioned effects are correlated with the intensity of its uptake at the beginning and at the end of the metabolic regeneration; and (2) to determine whether OA, blocking sucrose metabolism, also interferes with the process of sucrose uptake and distribution. The level of [(3)H]sucrose uptake was measured by liquid scintillation counting while sugar distribution was analyzed using microautoradiography and electron microscopy. The results showed that sucrose entered the meristematic cells along symplastic or apoplastic pathways and, to a lesser extent, through endocytosis. The cytoplasmic compartments (endoplasmic reticulum, vacuoles, plastids) and the nucleus were labeled. The intensity of [(3)H]sucrose uptake was nearly 2-fold lower during the initial than during the final period of metabolic regeneration. OA inhibited the apoplastic pathway of radioactive molecule uptake and its distribution between cell compartments, implicating PP1/2A involvement in the regulation of this transport.
Collapse
Affiliation(s)
- Justyna T Polit
- Department of Cytophysiology, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland.
| | | |
Collapse
|
31
|
Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK. Endocytotic uptake of nutrients in carnivorous plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:303-13. [PMID: 22417315 DOI: 10.1111/j.1365-313x.2012.04997.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident.
Collapse
Affiliation(s)
- Wolfram Adlassnig
- University of Vienna, Core Facility of Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
32
|
Etxeberria E, Pozueta-Romero J, Gonzalez P. In and out of the plant storage vacuole. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:52-61. [PMID: 22608519 DOI: 10.1016/j.plantsci.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 05/08/2023]
Abstract
The plant storage vacuole is involved in a wide variety of metabolic functions a great many of which necessitate the transport of substances across the tonoplast. Some solutes, depending on the origin, have to cross the plasma membrane as well. The cell is equipped with a complex web of transport systems, cellular routes, and unique intracellular environments that support their transport and accumulation against a concentration gradient. These are capable of processing a diverse nature of substances of distinct sizes, chemical properties, and origins. In this review we describe the various mechanism involved in solute transport into the vacuole of storage cells with special emphasis placed on solutes arriving through the apoplast. Transport of solutes from the cytosol to the vacuole is carried out by tonoplast-bound ABC transporters, solute/H(+) antiporters, and ion channels whereas transport from the apoplast requires additional plasma membrane-bound solute/H(+) symporters and fluid-phase endocytosis. In addition, and based on new evidence accumulated within the last decade, we re-evaluate the current notion of extracellular solute uptake as partially based on facilitated diffusion, and offer an alternative interpretation that involves membrane bound transporters and fluid-phase endocytosis. Finally, we make several assertions in regards to solute export from the vacuole as predicted by the limited available data suggesting that both membrane-bound carriers and vesicle mediated exocytosis are involved during solute mobilization.
Collapse
Affiliation(s)
- Ed Etxeberria
- University of Florida/IFAS, Department of Horticultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| | | | | |
Collapse
|
33
|
Bandmann V, Homann U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:578-84. [PMID: 22211449 DOI: 10.1111/j.1365-313x.2011.04892.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.
Collapse
Affiliation(s)
- Vera Bandmann
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstraße 3-5, Darmstadt, Germany
| | | |
Collapse
|
34
|
|
35
|
Payyavula RS, Tay KHC, Tsai CJ, Harding SA. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:757-70. [PMID: 21261761 DOI: 10.1111/j.1365-313x.2010.04463.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plasma membrane, proton-coupled Group II sucrose symporters (SUT) mediate apoplastic phloem loading and sucrose efflux from source leaves in Arabidopsis and agricultural crop species that have been studied to date. We now report that the most abundantly expressed SUT isoform in Populus tremula×alba, PtaSUT4, is a tonoplast (Group IV) symporter. PtaSUT4 transcripts were readily detected in conducting as well as mesophyll cells in stems and source leaves. In comparison, Group II orthologs PtaSUT1 and PtaSUT3 were very weakly expressed in leaves. Both Group II and Group IV SUT genes were expressed in secondary stem xylem of Populus. Transgenic poplars with RNAi-suppressed PtaSUT4 exhibited increased leaf-to-stem biomass ratios, elevated sucrose content in source leaves and stems, and altered phenylpropanoid metabolism. Transcript abundance of several carbohydrate-active enzymes and phenylalanine ammonia-lyases was also altered in transgenic source leaves. Nitrogen-limitation led to a down-regulation of vacuolar invertases in all plants, which resulted in an augmentation of sucrose pooling and hexose depletion in source leaves and secondary xylem of the transgenic plants. These results are consistent with a major role for PtaSUT4 in orchestrating the intracellular partitioning, and consequently, the efflux of sucrose from source leaves and the utilization of sucrose by lateral and terminal sinks. Our findings also support the idea that PtaSUT4 modulates sucrose efflux and utilization in concert with plant N-status.
Collapse
Affiliation(s)
- Raja S Payyavula
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
36
|
Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Díaz de Cerio J, Hidalgo M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J. A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis. PLANT SIGNALING & BEHAVIOR 2010; 5:1638-1641. [PMID: 21150257 PMCID: PMC3115121 DOI: 10.4161/psb.5.12.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 05/29/2023]
Abstract
We have recently found that microbial species ranging from Gram-negative and Gram-positive bacteria to different fungi emit volatiles that strongly promote starch accumulation in leaves of both mono- and di-cotyledonous plants. Transcriptome and enzyme activity analyses of potato leaves exposed to volatiles emitted by Alternaria alternata revealed that starch over-accumulation was accompanied by enhanced 3-phosphoglycerate to Pi ratio, and changes in functions involved in both central carbohydrate and amino acid metabolism. Exposure to microbial volatiles also promoted changes in the expression of genes that code for enzymes involved in endocytic uptake and traffic of solutes. With the overall data we propose a metabolic model wherein important determinants of accumulation of exceptionally high levels of starch include (a) upregulation of ADPglucose-producing SuSy, starch synthase III and IV, proteins involved in the endocytic uptake and traffic of sucrose, (b) down-regulation of acid invertase, starch breakdown enzymes and proteins involved in internal amino acid provision, and (c) 3-phosphoglycerate-mediated allosteric activation of ADPglucose pyrophosphorylase.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Institute of Botany; Slovak Academy of Sciences; Bratislava, Slovakia
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | | | - Maite Hidalgo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - María Teresa Sesma
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
- Iden Biotechnology S.L.; Nafarroa, Spain
| | - Ed Etxeberria
- University of Florida; IFAS; Citrus Research and Education Center; Lake Alfred, FL USA
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra); Mutiloako etorbidea z/g; Nafarroa, Spain
| |
Collapse
|
37
|
Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1514-31. [PMID: 20876338 PMCID: PMC2971625 DOI: 10.1104/pp.110.161869] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/25/2010] [Indexed: 05/18/2023]
Abstract
Anthocyanin accumulation is regulated negatively by ethylene signaling and positively by sugar and light signaling. However, the antagonistic interactions underlying these signalings remain to be elucidated fully. We show that ethylene inhibits anthocyanin accumulation induced by sucrose (Suc) and light by suppressing the expression of transcription factors that positively regulate anthocyanin biosynthesis, including GLABRA3, TRANSPARENT TESTA8, and PRODUCTION OF ANTHOCYANIN PIGMENT1, while stimulating the concomitant expression of the negative R3-MYB regulator MYBL2. Genetic analyses show that the ethylene-mediated suppression of anthocyanin accumulation is dependent upon ethylene signaling components responsible for the triple response. Furthermore, these positive and negative signaling pathways appear to be under photosynthetic control. Suc and light induction of anthocyanin accumulation was almost fully inhibited in wild-type Arabidopsis (Arabidopsis thaliana) ecotype Columbia and ethylene (ethylene response1 [etr1-1]) and light (long hypocotyl1 [hy1], cryptochrome1/2, and hy5) signaling mutants treated with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The transcript level of the sugar transporter gene SUC1 was enhanced in ecotype Columbia treated with the ethylene-binding inhibitor silver and in etr1-1, ethylene insensitive2 (ein2-1), and ein3 ein3-like1 mutants. In contrast, 3-(3,4-dichlorophenyl)-1,1-dimethylurea treatment reduced SUC1 expression, which indicates strongly that SUC1 represents an integrator for signals provided by sugar, light, and ethylene. SUC1 mutations lowered accumulations of anthocyanin pigment, soluble sugar content, and ethylene production in response to Suc and light signals. These data demonstrate that the suppression of SUC1 expression by ethylene inhibits Suc-induced anthocyanin accumulation in the presence of light and, hence, fine-tunes anthocyanin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Youn-Il Park
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305–764, Korea (S.-W.J., P.K.D., J.-Y.S., H.K.L., Y.-I.P.); Division of Advanced Technology, Korea Research Institute of Standards and Science, Daejeon 305–340, Korea (S.-W.J., S.C.J.); GreenGene Biotech (Y.-K.K.) and Division of Bioscience and Bioinformatics (S.-B.C.), Myongji University, Yongin 449–728, Korea; Division of Biotechnology, Catholic University, Bucheon 420–743, Korea (W.J.K., Y.I.P.); Department of Biological Science, Sungkyunkwan University, Suwon 440–764, Korea (S.-D.Y.); Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305–701, Korea (G.C.)
| |
Collapse
|
38
|
Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 2010; 22:519-27. [DOI: 10.1016/j.ceb.2010.04.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 01/31/2023]
|
39
|
Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 2010; 107:12883-8. [PMID: 20566852 DOI: 10.1073/pnas.1001085107] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocytosis is a process by which extracellular material such as macromolecules can be incorporated into cells via a membrane-trafficking system. Although universal among eukaryotes, endocytosis has not been identified in Bacteria or Archaea. However, intracellular membranes are known to compartmentalize cells of bacteria in the phylum Planctomycetes, suggesting the potential for endocytosis and membrane trafficking in members of this phylum. Here we show that cells of the planctomycete Gemmata obscuriglobus have the ability to uptake proteins present in the external milieu in an energy-dependent process analogous to eukaryotic endocytosis, and that internalized proteins are associated with vesicle membranes. Occurrence of such ability in a bacterium is consistent with autogenous evolution of endocytosis and the endomembrane system in an ancestral noneukaryote cell.
Collapse
|
40
|
Abdel-Basset R, Ozuka S, Demiral T, Furuichi T, Sawatani I, Baskin TI, Matsumoto H, Yamamoto Y. Aluminium reduces sugar uptake in tobacco cell cultures: a potential cause of inhibited elongation but not of toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1597-610. [PMID: 20219776 PMCID: PMC2852655 DOI: 10.1093/jxb/erq027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/04/2010] [Accepted: 01/25/2010] [Indexed: 05/10/2023]
Abstract
Aluminium is well known to inhibit plant elongation, but the role in this inhibition played by water relations remains unclear. To investigate this, tobacco (Nicotiana tabacum L.) suspension-cultured cells (line SL) was used, treating them with aluminium (50 microM) in a medium containing calcium, sucrose, and MES (pH 5.0). Over an 18 h treatment period, aluminium inhibited the increase in fresh weight almost completely and decreased cellular osmolality and internal soluble sugar content substantially; however, aluminium did not affect the concentrations of major inorganic ions. In aluminium-treated cultures, fresh weight, soluble sugar content, and osmolality decreased over the first 6 h and remained constant thereafter, contrasting with their continued increases in the untreated cultures. The rate of sucrose uptake, measured by radio-tracer, was reduced by approximately 60% within 3 h of treatment. Aluminium also inhibited glucose uptake. In an aluminium-tolerant cell line (ALT301) isogenic to SL, all of the above-mentioned changes in water relations occurred and tolerance emerged only after 6 h and appeared to involve the suppression of reactive oxygen species. Further separating the effects of aluminium on elongation and cell survival, sucrose starvation for 18 h inhibited elongation and caused similar changes in cellular osmolality but stimulated the production of neither reactive oxygen species nor callose and did not cause cell death. We propose that the inhibition of sucrose uptake is a mechanism whereby aluminium inhibits elongation, but does not account for the induction of cell death.
Collapse
Affiliation(s)
- Refat Abdel-Basset
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Shotaro Ozuka
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Tijen Demiral
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
- Department of Biology, Science Faculty, Ege University, Bornova 35100, Izmir, Turkey
| | - Takuya Furuichi
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Ikuo Sawatani
- Glycoscience Institute, Research Center, Hayashibara Biochemical Laboratories, Inc., 675-1 Fujisaki, Okayama 702-8006, Japan
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts, 611 N Pleasant St, Amherst, MA 01003, USA
| | - Hideaki Matsumoto
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Yoko Yamamoto
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
41
|
Falchi R, Cipriani G, Marrazzo T, Nonis A, Vizzotto G, Ruperti B. Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2829-42. [PMID: 20501747 PMCID: PMC2882273 DOI: 10.1093/jxb/erq116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
The function of monomeric GTPases of the RAS superfamily in fruit development and ripening has been partially characterized. Here the identification of peach (Prunus persica) small GTPases of the RAS superfamily expressed in fruit and the characterization of their expression profiles during fruit development are described. Extensive searches on expressed sequence tag (EST) databases led to the selection of a total of 24 genes from peach encoding proteins with significant similarity to Arabidopsis small GTPases. Sequence similarity analyses and identification of conserved motifs, diagnostic of specific RAS families and subfamilies, enabled bona fide assignment of fourteen PpRAB, seven PpARF/ARL/SAR, two PpROP and one PpRAN GTPases. Transcriptional expression profiles of peach monomeric GTPases, analysed by real-time quantitative reverse transcription-PCR, were obtained for mesocarp samples, collected in two consecutive years. Reproducible patterns of expression could be identified for five peach RAB-encoding genes (PpRABA1-1, PpRABA2, PpRABD2-1, PpRABD2-2, and PpRABC2), two ARFs (PpARFA1-1 and PpARLB1), and two ROPs (PpROP3 and PpROP4). Interestingly, the transient transcriptional up-regulation of PpARF genes and of PpRAB genes of the A and D clades, putatively controlling the exocytic delivery of cell wall components and modifying enzymes, appeared to coincide with peaks of growth speed and sugar accumulation and with the final phases of ripening. To our knowledge, this is the first description of the co-ordinated differential expression of a set of genes encoding small GTPases of the ARF and RAB families which takes place during key moments of fruit development and maturation.
Collapse
Affiliation(s)
- Rachele Falchi
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
| | - Guido Cipriani
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
| | - Teresa Marrazzo
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
| | - Alberto Nonis
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
- Present address: Università di Padova, Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giannina Vizzotto
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
| | - Benedetto Ruperti
- Università di Udine, Dipartimento di Scienze Agrarie e Ambientali, Via delle Scienze 208, 33100 Udine, Italy
- Present address: Università di Padova, Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Viale dell'Università 16, 35020 Legnaro (PD), Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Hatanaka R, Sugawara Y. Development of desiccation tolerance and vitrification by preculture treatment in suspension-cultured cells of the liverwort Marchantia polymorpha. PLANTA 2010; 231:965-976. [PMID: 20101410 DOI: 10.1007/s00425-010-1101-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/07/2010] [Indexed: 05/28/2023]
Abstract
Some cultured plant cells are able to acquire tolerance to various stresses when they are cultured under suitably controlled conditions. Induction of a high level of desiccation tolerance in suspension-cultured cells of the liverwort Marchantia polymorpha was examined for studying the mechanisms of desiccation tolerance and vitrification at the cellular level. Desiccation tolerance level of cells was very low and the survival rate was less than 10% after exposure to drying below 0.1 g H(2)O g(-1) dry weight (DW). Preculture treatment in 0.5 M sucrose medium was the most effective method for inducing a high level of desiccation tolerance in cells and the survival rate was 87% even after being desiccated to below 0.1 g H(2)O g(-1) DW. Preculture treatment caused alteration of cell structures and accumulation of a large amount of sucrose and newly synthesized proteins in cells. Abundant sucrose and preculture-induced proteins were necessary for full development of desiccation tolerance in the cells. When water content decreased to below 0.1 g H(2)O g(-1) DW, desiccation-tolerant cells that had been precultured were vitrified above 0 degrees C and maintained stable viability. We have succeeded in the induction of desiccation tolerance that allows formation of intracellular glass with cell viability at ambient temperatures by controlling culture conditions, and our results suggest that suspension-cultured cells of M. polymorpha are useful for studying cellular mechanisms for the development of desiccation tolerance and the stabilization of vitrified cells.
Collapse
Affiliation(s)
- Rie Hatanaka
- Graduate School of Science and Engineering, Department of Regulation-Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | | |
Collapse
|
43
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
44
|
Yamaki S. Metabolism and Accumulation of Sugars Translocated to Fruit and Their Regulation. ACTA ACUST UNITED AC 2010. [DOI: 10.2503/jjshs1.79.1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Kierszniowska S, Walther D, Schulze WX. Ratio-dependent significance thresholds in reciprocal 15N-labeling experiments as a robust tool in detection of candidate proteins responding to biological treatment. Proteomics 2009; 9:1916-24. [PMID: 19260003 DOI: 10.1002/pmic.200800443] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metabolic labeling of plant tissues with (15)N has become widely used in plant proteomics. Here, we describe a robust experimental design and data analysis workflow implementing two parallel biological replicate experiments with reciprocal labeling and series of 1:1 control mixtures. Thereby, we are able to unambiguously distinguish (i) inherent biological variation between cultures and (ii) specific responses to a biological treatment. The data analysis workflow is based on first determining the variation between cultures based on (15)N/(14)N ratios in independent 1:1 mixtures before biological treatment is applied. In a second step, ratio-dependent SD is used to define p-values for significant deviation of protein ratios in the biological experiment from the distribution of protein ratios in the 1:1 mixture. This approach allows defining those proteins showing significant biological response superimposed on the biological variation before treatment. The proposed workflow was applied to a series of experiments, in which changes in composition of detergent resistant membrane domains was analyzed in response to sucrose resupply after carbon starvation. Especially in experiments involving cell culture treatment (starvation) prior to the actual biological stimulus of interest (resupply), a clear distinction between culture to culture variations and biological response is of utmost importance.
Collapse
|
46
|
José Muñoz F, Teresa Morán Zorzano M, Alonso-Casajús N, Baroja-Fernández E, Etxeberria E, Pozueta-Romero J. New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500518839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Kasprowicz A, Szuba A, Volkmann D, Baluška F, Wojtaszek P. Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1605-17. [PMID: 19261922 PMCID: PMC2671617 DOI: 10.1093/jxb/erp033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/30/2008] [Accepted: 01/26/2009] [Indexed: 05/18/2023]
Abstract
NO is an important regulatory molecule in eukaryotes. Much of its effect is ascribed to the action of NO as a signalling molecule. However, NO can also directly modify proteins thus affecting their activities. Although the signalling functions of NO are relatively well recognized in plants, very little is known about its potential influence on the structural integrity of plant cells. In this study, the reorganization of the actin cytoskeleton, and the recycling of wall polysaccharides in plants via the endocytic pathway in the presence of NO or NO-modulating substances were analysed. The actin cytoskeleton and endocytosis in maize (Zea mays) root apices were visualized with fluorescence immunocytochemistry. The organization of the actin cytoskeleton is modulated via NO levels and the extent of such modulation is cell-type specific. In endodermis cells, actin cables change their orientation from longitudinal to oblique and cellular cross-wall domains become actin-depleted/depolymerized. The reaction is reversible and depends on the type of NO donor. Actin-dependent vesicle trafficking is also affected. This was demonstrated through the analysis of recycled wall material transported to newly-formed cell plates and BFA compartments. Therefore, it is concluded that, in plant cells, NO affects the functioning of the actin cytoskeleton and actin-dependent processes. Mechanisms for the reorganization of the actin cytoskeleton are cell-type specific, and such rearrangements might selectively impinge on the functioning of various cellular domains. Thus, the dynamic actin cytoskeleton could be considered as a downstream effector of NO signalling in cells of root apices.
Collapse
Affiliation(s)
- Anna Kasprowicz
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Agnieszka Szuba
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
48
|
Valluru R, Lammens W, Claupein W, Van den Ende W. Freezing tolerance by vesicle-mediated fructan transport. TRENDS IN PLANT SCIENCE 2008; 13:409-14. [PMID: 18619894 DOI: 10.1016/j.tplants.2008.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/28/2008] [Accepted: 05/30/2008] [Indexed: 05/04/2023]
Abstract
Fructans are fructose-based polymers associated with freezing tolerance. They might act directly via membrane stabilization or indirectly by stimulating alternative cryoprotectants. Fructans and fructan biosynthetic enzymes, in general, are believed to be present in the vacuole. This paper draws particular attention to the surprising presence of fructans and fructan exohydrolase activity in the apoplast of cold-stressed plants. This observation raises questions concerning the origin of apoplastic fructans and suggests that fructans are transported to the apoplast by post-synthesis mechanisms, perhaps induced by cold. We propose a conceptual vesicle-mediated transport model for the movement of vacuolar fructans to the apoplast, where they could assist in stabilizing the plasma membrane.
Collapse
Affiliation(s)
- Ravi Valluru
- Institute for Crop Production and Grassland Research, University of Hohenheim, D-70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
49
|
Goué N, Lesage-Descauses MC, Mellerowicz EJ, Magel E, Label P, Sundberg B. Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus. THE NEW PHYTOLOGIST 2008; 180:45-56. [PMID: 18631289 DOI: 10.1111/j.1469-8137.2008.02556.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The vascular cambium is the meristem in trees that produce wood. This meristem consists of two types of neighbouring initials: fusiform cambial cells (FCCs), which give rise to the axial cell system (i.e. fibres and vessel elements), and ray cambial cells (RCCs), which give rise to rays. There is little molecular information on the mechanisms whereby the differing characteristics of these neighbouring cells are maintained. A microgenomic approach was adopted in which the transcriptomes of FCCs and RCCs dissected out from the cambial meristem of poplar (Populus trichocarpa x Populus deltoïdes var. Boelare) were analysed, and a transcriptional database for these two cell types established. Photosynthesis genes were overrepresented in RCCs, providing molecular support for the presence of photosynthetic systems in rays. Genes that putatively encode transporters (vesicle, lipid and metal ion transporters and aquaporins) in RCCs were also identified. In addition, many cell wall-related genes showed cell type-specific expression patterns. Notably, genes involved in pectin metabolism and xyloglucan metabolism were overrepresented in RCCs and FCCs, respectively. The results demonstrate the use of microgenomics to reveal differences in biological processes in neighbouring meristematic cells, and to identify key genes involved in these processes.
Collapse
Affiliation(s)
- Nadia Goué
- Institut National de la Recherche Agronomique, UAGPF, 2163 Avenue de la Pomme de Pin, BP 20619-Ardon, 45166 Olivet Cedex, France
| | - Marie-Claude Lesage-Descauses
- Institut National de la Recherche Agronomique, UAGPF, 2163 Avenue de la Pomme de Pin, BP 20619-Ardon, 45166 Olivet Cedex, France
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Elisabeth Magel
- Universität Hamburg, Zentrum Holzwirtschaft, Abteilung Holzbiologie, Leuschnerstr. 91, 21031 Hamburg, Germany
| | - Philippe Label
- Institut National de la Recherche Agronomique, UAGPF, 2163 Avenue de la Pomme de Pin, BP 20619-Ardon, 45166 Olivet Cedex, France
| | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
50
|
Collings DA, Gebbie LK, Howles PA, Hurley UA, Birch RJ, Cork AH, Hocart CH, Arioli T, Williamson RE. Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:361-76. [PMID: 18256049 DOI: 10.1093/jxb/erm324] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.
Collapse
Affiliation(s)
- David A Collings
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|