1
|
Zhang LX, Shen CC, Bai YX, Li HY, Zhu CL, Yang CG, Latif A, Sun Y, Pu CX. The receptor kinase OsANX limits precocious flowering and inflorescence over-branching and maintains pollen tube integrity in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112162. [PMID: 38901780 DOI: 10.1016/j.plantsci.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.
Collapse
Affiliation(s)
- Lan-Xin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying-Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Hao-Yue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Li Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Guang Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
2
|
Prusty A, Mehra P, Sharma S, Malik N, Agarwal P, Parida SK, Kapoor S, Tyagi AK. OsMED14_2, a tail module subunit of Mediator complex, controls rice development and involves jasmonic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112146. [PMID: 38848769 DOI: 10.1016/j.plantsci.2024.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size. Microscopic analysis revealed impact of overexpression on pollen maturation, reflected by reduced viability, irregular shapes, and aberrant intine development. OsMED14_2 was found to interact with proteins involved in pollen development, namely, OsMADS62, OsMADS63 and OsMADS68, and its overexpression negatively affected the expression of OsMADS68 and the expression of other genes involved in intine development, including OsCAP1, OsGCD1, OsRIP1, and OsCPK29. Additionally, we found that OsMED14_2 overexpression influences jasmonic acid (JA) homeostasis, affecting bioactive JA levels, and expression of OsJAZ genes. Our data suggest OsMED14_2 may act as a regulator of JA-responsive genes through its interactions with OsHDAC6 and OsJAZ repressors. These findings contribute to better understanding of the Mediator complex's role in plant traits regulation.
Collapse
Affiliation(s)
- Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Poonam Mehra
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India; Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research, New Delhi 110067, India; Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India.
| |
Collapse
|
3
|
Bao H, Cui Y, Ge L, Li Y, Xu X, Tang M, Yi Y, Chen L. OsGEX3 affects anther development and improves osmotic stress tolerance in rice. PLANTA 2024; 259:68. [PMID: 38337086 DOI: 10.1007/s00425-024-04342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
MAIN CONCLUSION Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.
Collapse
Affiliation(s)
- Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Zhang Z, Sun M, Xiong T, Ye F, Zhao Z. Development and genetic regulation of pollen intine in Arabidopsis and rice. Gene 2024; 893:147936. [PMID: 38381507 DOI: 10.1016/j.gene.2023.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Ziwei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
5
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
6
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
7
|
Zhang L, Liu Y, Wei G, Lei T, Wu J, Zheng L, Ma H, He G, Wang N. POLLEN WALL ABORTION 1 is essential for pollen wall development in rice. PLANT PHYSIOLOGY 2022; 190:2229-2245. [PMID: 36111856 PMCID: PMC9706457 DOI: 10.1093/plphys/kiac435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The integrity of pollen wall structures is essential for pollen development and maturity in rice (Oryza sativa L.). In this study, we isolated and characterized the rice male-sterile mutant pollen wall abortion 1 (pwa1), which exhibits a defective pollen wall (DPW) structure and has sterile pollen. Map-based cloning, genetic complementation, and gene knockout experiments revealed that PWA1 corresponds to the gene LOC_Os01g55094 encoding a coiled-coil domain-containing protein. PWA1 localized to the nucleus, and PWA1 was expressed in the tapetum and microspores. PWA1 interacted with the transcription factor TAPETUM DEGENERATION RETARDATION (TDR)-INTERACTING PROTEIN2 (TIP2, also named bHLH142) in vivo and in vitro. The tip2-1 mutant, which we obtained by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene editing, showed delayed tapetum degradation, sterile pollen, and DPWs. We determined that TIP2/bHLH142 regulates PWA1 expression by binding to its promoter. Analysis of the phenotype of the tip2-1 pwa1 double mutant indicated that TIP2/bHLH142 functions upstream of PWA1. Further studies suggested that PWA1 has transcriptional activation activity and participates in pollen intine development through the β-glucosidase Os12BGlu38. Therefore, we identified a sterility factor, PWA1, and uncovered a regulatory network underlying the formation of the pollen wall and mature pollen in rice.
Collapse
Affiliation(s)
- Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yang Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Gang Wei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ting Lei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jingwen Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lintao Zheng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Honglei Ma
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231911683. [PMID: 36232985 PMCID: PMC9570398 DOI: 10.3390/ijms231911683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089–like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.
Collapse
|
9
|
Ranjan R, Malik N, Sharma S, Agarwal P, Kapoor S, Tyagi AK. OsCPK29 interacts with MADS68 to regulate pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111297. [PMID: 35696904 DOI: 10.1016/j.plantsci.2022.111297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther. OsCPK29 exclusively localizes in the nucleus, and its N-terminal variable domain is responsible for retaining it in the nucleus. OsCPK29 knockdown rice plants exhibit reduced fertility, set fewer seeds, and produce collapsed non-viable pollen grains that do not germinate. Cytological analysis of anther semi-thin sections during different developmental stages suggested that pollen abnormalities appear after the vacuolated pollen stage. Detailed microscopic study of pollen grains further revealed that they were lacking the functional intine layer although exine layer was present. Consistent with that, downregulation of known intine development-related rice genes was also observed in OsCPK29 silenced anthers. Furthermore, it has been demonstrated that OsCPK29 interacts in vitro as well as in vivo with the MADS68 transcription factor which is a known regulator of pollen development. Therefore, phenotypic observations and molecular studies suggest that OsCPK29 is an important regulator of pollen development in rice.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India.
| |
Collapse
|
10
|
Mi L, Mo A, Yang J, Liu H, Ren D, Chen W, Long H, Jiang N, Zhang T, Lu P. Arabidopsis Novel Microgametophyte Defective Mutant 1 Is Required for Pollen Viability via Influencing Intine Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:814870. [PMID: 35498668 PMCID: PMC9039731 DOI: 10.3389/fpls.2022.814870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
The pollen intine layer is necessary for male fertility in flowering plants. However, the mechanisms behind the developmental regulation of intine formation still remain largely unknown. Here, we identified a positive regulator, Arabidopsis novel microgametophyte defective mutant 1 (AtNMDM1), which influences male fertility by regulating intine formation. The AtNMDM1, encoding a pollen nuclei-localized protein, was highly expressed in the pollens at the late anther stages, 10-12. Both the mutations and the knock-down of AtNMDM1 resulted in pollen defects and significantly lowered the seed-setting rates. Genetic transmission analysis indicated that AtNMDM1 is a microgametophyte lethal gene. Calcofluor white staining revealed that abnormal cellulose distribution was present in the aborted pollen. Ultrastructural analyses showed that the abnormal intine rather than the exine led to pollen abortion. We further found, using transcriptome analysis, that cell wall modification was the most highly enriched gene ontology (GO) term used in the category of biological processes. Notably, two categories of genes, Arabinogalactan proteins (AGPs) and pectin methylesterases (PMEs) were greatly reduced, which were associated with pollen intine formation. In addition, we also identified another regulator, AtNMDM2, which interacted with AtNMDM1 in the pollen nuclei. Taken together, we identified a novel regulator, AtNMDM1 that affected cellulose distribution in the intine by regulating intine-related gene expression; furthermore, these results provide insights into the molecular mechanisms of pollen intine development.
Collapse
Affiliation(s)
- Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiange Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haifei Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Kim EJ, Hong WJ, Kim YJ, Jung KH. Transcriptome Analysis of Triple Mutant for OsMADS62, OsMADS63, and OsMADS68 Reveals the Downstream Regulatory Mechanism for Pollen Germination in Rice ( Oryza sativa). Int J Mol Sci 2021; 23:ijms23010239. [PMID: 35008665 PMCID: PMC8745200 DOI: 10.3390/ijms23010239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
The MADS (MCM1-AGAMOUS-DEFFICIENS-SRF) gene family has a preserved domain called MADS-box that regulates downstream gene expression as a transcriptional factor. Reports have revealed three MADS genes in rice, OsMADS62, OsMADS63, and OsMADS68, which exhibits preferential expression in mature rice pollen grains. To better understand the transcriptional regulation of pollen germination and tube growth in rice, we generated the loss-of-function homozygous mutant of these three OsMADS genes using the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system in wild-type backgrounds. Results showed that the triple knockout (KO) mutant showed a complete sterile phenotype without pollen germination. Next, to determine downstream candidate genes that are transcriptionally regulated by the three OsMADS genes during pollen development, we proceeded with RNA-seq analysis by sampling the mature anther of the mutant and wild-type. Two hundred and seventy-four upregulated and 658 downregulated genes with preferential expressions in the anthers were selected. Furthermore, downregulated genes possessed cell wall modification, clathrin coat assembly, and cellular cell wall organization features. We also selected downregulated genes predicted to be directly regulated by three OsMADS genes through the analyses for promoter sequences. Thus, this study provides a molecular background for understanding pollen germination and tube growth mediated by OsMADS62, OsMADS63, and OsMADS68 with mature pollen preferred expression.
Collapse
Affiliation(s)
- Eui-Jung Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang-si 50463, Korea
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| |
Collapse
|
12
|
Sun Y, Wang X, Chen Z, Qin L, Li B, Ouyang L, Peng X, He H. Quantitative Proteomics and Transcriptomics Reveals Differences in Proteins During Anthers Development in Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2021; 12:744792. [PMID: 34868129 PMCID: PMC8640343 DOI: 10.3389/fpls.2021.744792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 06/07/2023]
Abstract
Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, we used I2-KI staining and TTC staining to investigate pollen viability. Aniline-blue-stained semithin sections were used to investigate important stages of pollen development. Tandem mass tags (TMT)-based quantitative analysis was used to investigate the profiles of proteins related to lipid and carbohydrate metabolism in 4-, 6-, and 8.5-mm O. longistaminata spikelets before flowering. Pollen was found to germinate normally in vitro and in vivo. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. A total of 31,987 RNA transcripts and 8,753 proteins were identified, and 6,842 of the proteins could be quantified. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. The abundance of proteins involved in pollen energy metabolism was further confirmed by combining quantitative real-time PCR with parallel reaction monitoring (PRM) analyses. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the proteome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Collapse
|
13
|
Chen Y, Zhu W, Shi S, Wu L, Du S, Jin L, Yang K, Zhao W, Yang J, Guo L, Wang Z, Zhang Y. Use of RNAi With OsMYB76R as a Reporter for Candidate Genes Can Efficiently Create and Verify Gametophytic Male Sterility in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:728193. [PMID: 34552609 PMCID: PMC8451479 DOI: 10.3389/fpls.2021.728193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Gametophytic male sterility (GMS) plays an important role in the study of pollen development and seed propagation of recessive nuclear male sterile lines insensitive to the environmental conditions in hybrid rice breeding. Since the inherent phenotypic and genetic characteristics of GMS, it is very difficult to find and identify the GMS mutants. However, due to the abundance of gene transcription data, a large number of pollen-specific genes have been found, and most of them may be associated with GMS. To promote the study of these genes in pollen development and heterosis utilization, in this study, an easy and efficient method of creating and identifying GMS was established using RNAi and OsMYB76R as a reporter. First, the OsC1/OsMYB76 gene involved in anthocyanin synthesis was modified, and we have validated that the modified OsMYB76R is workable as the same as the pre-modified OsMYB76 gene. Then, the ascorbic acid oxidase gene OsPTD1 was downregulated using RNAi, driven by its own promoter that resulted in abnormal pollen tube growth. Finally, the RNAi elements were linked with OsMYB76R and transformed into an osmyb76 mutant, and the distortion of purple color segregation was found in T1 and F1 generations. This indicates that the OsPTD1 GMS was prepared successfully. Compared to current methods, there are several advantages to this method. First, time is saved in material preparation, as one generation less needs to be compared than in the conventional method, and mutation screening can be avoided. In addition, for identification, the cost is lower; PCR, electrophoresis, and other processes are not needed; and no expensive chemicals or instruments are required. Finally, the results are more accurate, with much lower background effects, and no damage to the plant. The result is an easy, efficient, low-cost, and accurate method of preparing and identifying GMS genes.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Wenping Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Shudan Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Lina Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shuanglin Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Liangshen Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Kuan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Wenjia Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Jiaxin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Lv X, Ding Y, Long M, Liang W, Gu X, Liu Y, Wen X. Effect of Foliar Application of Various Nitrogen Forms on Starch Accumulation and Grain Filling of Wheat ( Triticum aestivum L.) Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:645379. [PMID: 33841473 PMCID: PMC8030621 DOI: 10.3389/fpls.2021.645379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Foliar nitrogen (N) fertilizer application at later stages of wheat (Triticum aestivum L.) growth is an effective method of attenuating drought stress and improving grain filling. The influences or modes of action of foliar application of various nitrogen forms on wheat growth and grain filling need further research. The objective of this study was to examine the regulatory effects of various forms of foliar nitrogen [NO3 -, NH4 +, and CO(NH2)2] on wheat grain filling under drought stress and to elucidate their underlying mechanisms. The relative effects of each nitrogen source differed in promoting grain filling. Foliar NH4 +-N application notably prolonged the grain filling period. In contrast, foliar application of CO(NH2)2 and NO3 --N accelerated the grain filling rate and regulated levels of abscisic acid (ABA), z-riboside (ZR), and ethylene (ETH) in wheat grains. Analysis of gene expression revealed that CO(NH2)2 and NO3 --N upregulated the genes involved in the sucrose-starch conversion pathway, promoting the remobilization of carbohydrates and starch synthesis in the grains. Besides, activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased, whereas the content of malondialdehyde (MDA) declined under foliar nitrogen application (especially NH4 +-N). Under drought stress, enhancement of carbohydrate remobilization and sink strength became key factors in grain filling, and the relative differences in the effects of three N forms became more evident. In conclusion, NH4 +-N application improved the antioxidant enzyme system and delayed photoassimilate transportation. On the other hand, foliar applications of NO3 --N and CO(NH2)2 enhanced sink capacity and alleviated drought stress injury in wheat.
Collapse
|
15
|
Panigrahi S, Panigrahy M, Kariali E, Dash SK, Sahu BB, Sahu SK, Mohapatra PK, Panigrahi KCS. MicroRNAs modulate ethylene induced retrograde signal for rice endosperm starch biosynthesis by default expression of transcriptome. Sci Rep 2021; 11:5573. [PMID: 33692374 PMCID: PMC7946924 DOI: 10.1038/s41598-021-84663-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Control of stage specific spike in ethylene production at anthesis has been a vauable route to potentially enhance genetic ceiling for grain filling of rice spikelet. A number of genes controlling ethylene homeostasis and starch synthesis have been identified so long, but lack of credible information on master modulation of gene expression by miRNAs and their target genes associated with hormonal dynamics obfuscate mechanisms controlling genotype difference in quantum of grain filling. The confusion accounts for consequent shrinkage of options for yield manipulation. In a two by two factorial design, miRNA regulation of spikelet specific grain development in low against high sterile recombinant inbred lines of rice Oryza sativa L. namely CR 3856-62-11-3-1-1-1-1-1-1 (SR 157) and CR 3856-63-1-1-1-1-1-1-1 (SR 159) respectively, and inferior verses superior spikelets were compared during first 10 days after anthesis. Grain filling was poorer in SR159 than SR157 and inferior spikelets in the former were most vulnerable. Between the cultivars, overall expression of unique miRNAs with targets on ethylene pathway genes was higher in SR159 than SR157 and the situation was opposite for auxin pathway genes. Precision analysis in psTarget server database identified up-regulation of MIR2877 and MIR530-5p having Os11t0141000-02 and Os07t0239400-01 (PP2A regulatory subunit-like protein and ethylene-responsive small GTP-binding proteins) and MIR396h having Os01t0643300-02 (an auxin efflux carrier protein) and Os01t0643300-01 (a PIN1-like auxin transport protein), as targets with highest probability at anthesis and 5 days after anthesis respectively, in the inferior spikelet and the fold change values of DGE matched with pattern of gene expression (relative transcript level) in the qRT-PCR studies conducted for relevant miRNAs and protein factors for ethylene and auxin signalling. In conclusion, epigenetic regulation of both auxin and ethylene homeostasis control grain filling of rice spikelet was established, but evidences were more robust for the latter.
Collapse
Affiliation(s)
- Sonam Panigrahi
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | | | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | | | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Sushil Kumar Sahu
- School of Life Sciences, Ravenshaw University, Cuttack, 753003, India
| | | | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research, Khordha, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Wang A, Jiang Y, Shu X, Zha Z, Yin D, Liu Y, Zhang D, Xu D, Jiao C, Jia X, Ye X, Li S, Deng Q, Wang S, Zhu J, Liang Y, Zou T, Liu H, Wang L, Zhu J, Li P, Zhang Z, Zheng A. Genome-wide association study-based identification genes influencing agronomic traits in rice (Oryza sativa L.). Genomics 2021; 113:1396-1406. [PMID: 33711454 DOI: 10.1016/j.ygeno.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/19/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China; Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China; Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China; Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Zhongping Zha
- Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Desuo Yin
- Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yao Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Deze Xu
- Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chengzhi Jiao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xiaomei Jia
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Ye
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ting Zou
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Zaijun Zhang
- Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China; Rice Research Institute of Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
17
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
18
|
Xiao S, Zang J, Pei Y, Liu J, Liu J, Song W, Shi Z, Su A, Zhao J, Chen H. Activation of Mitochondrial orf355 Gene Expression by a Nuclear-Encoded DREB Transcription Factor Causes Cytoplasmic Male Sterility in Maize. MOLECULAR PLANT 2020; 13:1270-1283. [PMID: 32629120 DOI: 10.1016/j.molp.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 05/25/2023]
Abstract
Coordination between mitochondria and the nucleus is crucial for fertility determination in plants with cytoplasmic male sterility (CMS). Using yeast one-hybrid screening, we identified a transcription factor, ZmDREB1.7, that is highly expressed in sterile microspores at the large vacuole stage and activates the expression of mitochondria-encoded CMS gene orf355. Δpro, a weak allele of ZmDREB1.7 with the loss of a key unfolded protein response (UPR) motif in the promoter, partially restores male fertility of CMS-S maize. ZmDREB1.7 expression increases rapidly in response to antimycin A treatment, but this response is attenuated in the Δpro allele. Furthermore, we found that expression of orf355 in mitochondria activates mitochondrial retrograde signaling, which in turn induces ZmDREB1.7 expression. Taken together, these findings demonstrate that positive-feedback transcriptional regulation between a nuclear regulator and a mitochondrial CMS gene determines male sterility in maize, providing new insights into nucleus-mitochondria communication in plants.
Collapse
Affiliation(s)
- Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Wang M, Yan W, Peng X, Chen Z, Xu C, Wu J, Deng XW, Tang X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1246-1263. [PMID: 31965735 DOI: 10.1111/jipb.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.
Collapse
Affiliation(s)
- Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
20
|
The Genome-Wide Analysis of RALF-Like Genes in Strawberry (Wild and Cultivated) and Five Other Plant Species (Rosaceae). Genes (Basel) 2020; 11:genes11020174. [PMID: 32041308 PMCID: PMC7073784 DOI: 10.3390/genes11020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
Abstract
The rapid alkalinization factor (RALF) gene family is essential for the plant growth and development. However, there is little known about these genes among Rosaceae species. Here, we identify 124 RALF-like genes from seven Rosaceae species, and 39 genes from Arabidopsis, totally 163 genes, divided into four clades according to the phylogenetic analysis, which includes 45 mature RALF genes from Rosaceae species. The YISY motif and RRXL cleavage site are typical features of true RALF genes, but some variants were detected in our study, such as YISP, YIST, NISY, YINY, YIGY, YVGY, FIGY, YIAY, and RRVM. Motif1 is widely distributed among all the clades. According to screening of cis-regulatory elements, GO annotation, expression sequence tags (EST), RNA-seq, and RT-qPCR, we reported that 24 RALF genes coding mature proteins related to tissue development, fungal infection, and hormone response. Purifying selection may play an important role in the evolutionary process of RALF-like genes among Rosaceae species according to the result from ka/ks. The tandem duplication event just occurs in four gene pairs (Fv-RALF9 and Fv-RALF10, Md-RALF7 and Md-RALF8, Pm-RALF2 and Pm-RALF8, and Pp-RALF11 and Pp-RALF14) from four Rosaceae species. Our research provides a wide overview of RALF-like genes in seven Rosaceae species involved in identification, classification, structure, expression, and evolution analysis.
Collapse
|
21
|
Nie Z, Zhao T, Liu M, Dai J, He T, Lyu D, Zhao J, Yang S, Gai J. Molecular mapping of a novel male-sterile gene ms NJ in soybean [Glycine max (L.) Merr.]. PLANT REPRODUCTION 2019; 32:371-380. [PMID: 31620875 DOI: 10.1007/s00497-019-00377-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 10/04/2019] [Indexed: 05/13/2023]
Abstract
Nuclear male sterility (NMS) is a potential characteristic in crop recurrent selection and hybrid breeding. Mapping of nuclear male-sterile genes is key to utilizing NMS. Previously, we discovered a spontaneous soybean (Glycine max [L.] Merr.) male-sterile female-fertile mutant NJS-13H, which was conferred by a single recessive gene, designated msNJ. In this study, the msNJ was mapped to Chromosome 10 (LG O), and narrowed down between two SSR (simple sequence repeats) markers, BARCSOYSSR_10_794 and BARCSOYSSR_10_819 using three heterozygote-derived segregating populations, i.e., (NJS-13H × NN1138-2)F2, (NJS-13H × N2899)F2 and (NJS-13H)SPAG (segregating populations in advanced generations). This region spans approximately 1.32 Mb, where 27 genes were annotated according to the soybean reference genome sequence (Wm82.a2.v1). Among them, four genes were recognized as candidate genes for msNJ. Comparing to the physical locations of all the known male-sterile loci, msNJ is demonstrated to be a new male-sterile locus. This result may help the utilization and cloning of the gene.
Collapse
Affiliation(s)
- Zhixing Nie
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tuanjie Zhao
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meifeng Liu
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinying Dai
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Duo Lyu
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinming Zhao
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MARA Key Laboratory for Biology and Genetic Improvement of Soybean (General), National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Huang X, Run M, Sun MX. OsGCD1, a novel player in rice intine construction. J Genet Genomics 2019; 46:359-362. [DOI: 10.1016/j.jgg.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 11/27/2022]
|
23
|
Zheng H, Wang Z, Tian Y, Liu L, Lv F, Kong W, Bai W, Wang P, Wang C, Yu X, Liu X, Jiang L, Zhao Z, Wan J. Rice albino 1, encoding a glycyl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:495-503. [PMID: 31015088 DOI: 10.1016/j.plaphy.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast is an important organelle that performs photosynthesis as well as biosynthesis and storage of many metabolites. Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in protein synthesis. However, the relationship between chloroplast development and aaRSs still remains unclear. In this study, we isolated a rice albino 1 (ra1) mutant through methane sulfonate (EMS) mutagenesis of rice japonica cultivar Ningjing 4 (Oryza sativa L.), which displayed albinic leaves in seedling stage due to abnormal chloroplast development. Compared with wild type (WT), ra1 showed significantly decreased levels of chlorophylls (Chl) and carotenoids (Car) in 2-week-old seedlings, which also showed obvious plastidic structural defects including abnormal thylakoid membrane structures and more osmiophilic particles. These defects caused albino phenotypes in seedlings. Map-based cloning revealed that RA1 gene encodes a glycyl-tRNA synthetase (GlyRS), which was confirmed by genetic complementation and knockout by Crispr/Cas9 technology. Sequence analysis showed that a single base mutation (T to A) occurred in the sixth exon of RA1 and resulted in a change from Isoleucine (Ile) to Lysine (Lys). Real-time PCR analyses showed that RA1 expression levels were constitutive in most tissues, but most abundant in the leaves and stems. By transient expression in Nicotiana benthamiana, we found that RA1 protein was localized in the chloroplast. Expression levels of chlorophyll biosynthesis and plastid development related genes were disordered in the ra1 mutant. RNA analysis revealed biogenesis of chloroplast rRNAs was abnormal in ra1. Meanwhile, western blotting showed that synthesis of proteins associated with plastid development was significantly repressed. These results suggest that RA1 is involved in early chloroplast development and establishment of the plastidic ribosome system in rice.
Collapse
Affiliation(s)
- Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuoran Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - LingLong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lv
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenting Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiran Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| |
Collapse
|
24
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
25
|
Kappara S, Neelamraju S, Ramanan R. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:208-219. [PMID: 30348320 DOI: 10.1016/j.plantsci.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 05/07/2023]
Abstract
Biofortification of rice (Oryza sativa L.) would alleviate iron and zinc deficiencies in the target populations. We identified two alleles 261 and 284 of a Gramineae-specific heavy metal transporter gene OsHMA7 by analyzing expression patterns and sequences of genes within QTLs for high Fe & Zn, in Madhukar x Swarna recombinant inbred lines (RILs) with high (HL) or low (LL) grain Fe & Zn. Overexpression of 261 allele increased grain Fe and Zn but most of the transgenic plants either did not survive or did not yield enough seeds and could not be further characterized. Knocking down expression of OsHMA7 by RNAi silencing of endogenous gene resulted in plants with altered domestication traits such as plant height, tiller number, panicle size and architecture, grain color, shape, size, grain shattering, heading date and increased sensitivity to Fe and Zn deficiency. However, overexpression of 284 allele resulted in transgenic lines with either high grain Fe & Zn content (HL-ox) and tolerance to Fe and Zn deficiency or low grain Fe & Zn content (LL-ox) and phenotype similar to RNAi-lines. OsHMA7 transcript levels were five-fold higher in the HL-ox plants whereas LL-ox and RNAi plants showed 2-3 fold reduced levels compared to Kitaake control. Spraying LL-ox and RNAi lines with Fe & Zn at grain filling stage resulted in increased grain yield, significant increase in Fe & Zn content and brown pericarp. Altered expression of OsHMA7 influenced transcript levels of iron-responsive genes indicating cellular Fe-Zn homeostasis and also several domestication-related genes in rice. Our study shows that a novel heavy metal transporter gene influences yield and grain Fe & Zn content and has potential to improve rice production and biofortification.
Collapse
Affiliation(s)
| | - Sarla Neelamraju
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India.
| | | |
Collapse
|
26
|
Zhang C, Lu W, Yang Y, Shen Z, Ma JF, Zheng L. OsYSL16 is Required for Preferential Cu Distribution to Floral Organs in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:2039-2051. [PMID: 29939322 DOI: 10.1093/pcp/pcy124] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/21/2018] [Indexed: 05/21/2023]
Abstract
Deficiency of copper (Cu) causes low fertility in many plant species, but the molecular mechanisms underlying distribution of Cu to the floral organs are poorly understood. Here, we found that a member of yellow-stripe like (YSL) family, YSL16 encoding the Cu-nicotianamine (Cu-NA) transporter, was highly expressed in the rachilla, with less expression in the palea and lemma of rice (Oryza sativa). β-Glucuronidase (GUS) staining of transgenic rice carrying the OsYSL16 promoter-GUS showed that OsYSL16 was mainly expressed in vascular bundles of the rachilla as well as the palea and lemma. Knockout of OsYSL16 resulted in decreased Cu distribution to the stamens, but increased distribution to the palea and lemma. A short-term (24 h) 65Cu labeling experiment confirmed increased Cu concentration of palea and lemma in the mutant. Furthermore, we found that redistribution of Cu from the palea and lemma was impaired in the osysl16 mutant after exposure to Cu-free solution. The osysl16 mutant showed low pollen germination, but this was rescued by addition of Cu in the medium. Our results indicate that OsYSL16 expressed in the vascular bundles of the rachilla is important for preferential distribution of Cu to the stamens, while OsYSL16 in vascular bundles of the palea and lemma is involved in Cu redistribution under Cu-limited conditions in rice.
Collapse
Affiliation(s)
- Chang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhui Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Moin M, Bakshi A, Saha A, Dutta M, Kirti PB. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity. Brief Funct Genomics 2018; 16:238-247. [PMID: 28137760 DOI: 10.1093/bfgp/elw041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice.
Collapse
|
28
|
Li C, Liu Y, Shen WH, Yu Y, Dong A. Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:144-159. [PMID: 29045007 DOI: 10.1111/jipb.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 05/07/2023]
Abstract
The phytohormone gibberellin (GA) plays essential roles in plant growth and development. Here, we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice (Oryza sativa), functions in both GA biosynthesis and diverse biological processes. OsINO80-knockdown mutants, derived from either T-DNA insertion or RNA interference, display typical GA-deficient phenotypes, including dwarfism, reduced cell length, late flowering, retarded seed germination and impaired reproductive development. Consistently, transcriptome analyses reveal that OsINO80 knockdown results in downregulation by more than two-fold of over 1,000 genes, including the GA biosynthesis genes CPS1 and GA3ox2, and the dwarf phenotype of OsINO80-knockdown mutants can be rescued by the application of exogenous GA3. Chromatin immunoprecipitation (ChIP) experiments show that OsINO80 directly binds to the chromatin of CPS1 and GA3ox2 loci. Biochemical assays establish that OsINO80 specially interacts with histone variant H2A.Z and the H2A.Z enrichments at CPS1 and GA3ox2 are decreased in OsINO80-knockdown mutants. Thus, our study identified a rice chromatin-remodeling factor, OsINO80, and demonstrated that OsINO80 is involved in regulation of the GA biosynthesis pathway and plays critical functions for many aspects of rice plant growth and development.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. PLANT MOLECULAR BIOLOGY 2018; 96:35-51. [PMID: 29090429 DOI: 10.1007/s11103-017-0678-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.
Collapse
Affiliation(s)
| | - Priyanka Deveshwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Malini Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
30
|
Gao Y, Wang ZY, Kumar V, Xu XF, Yuan DP, Zhu XF, Li TY, Jia B, Xuan YH. Genome-wide identification of the SWEET gene family in wheat. Gene 2017; 642:284-292. [PMID: 29155326 DOI: 10.1016/j.gene.2017.11.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022]
Abstract
The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes.
Collapse
Affiliation(s)
- Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Zi Yuan Wang
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Xiao Feng Xu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Baolei Jia
- School of Bioengineering, Qilu University of Technology, Jinan 250353, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China.
| |
Collapse
|
31
|
Li T, Liao K, Xu X, Gao Y, Wang Z, Zhu X, Jia B, Xuan Y. Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust. FRONTIERS IN PLANT SCIENCE 2017; 8:1637. [PMID: 28979288 PMCID: PMC5611643 DOI: 10.3389/fpls.2017.01637] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/06/2017] [Indexed: 05/03/2023]
Abstract
Ammonium transporter (AMT) proteins have been reported in many plants, but no comprehensive analysis was performed in wheat. In this study, we identified 23 AMT members (hereafter TaAMTs) using a protein homology search in wheat genome. Tissue-specific expression analysis showed that TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a were relatively more highly expressed in comparison with other TaAMTs. TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a-GFP were localized in the plasma membrane in tobacco leaves, and TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a successfully complemented a yeast 31019b strain in which ammonium uptake was deficient. In addition, the expression of TaAMT1;1b in an Arabidopsis AMT quadruple mutant (qko) successfully restored [Formula: see text] uptake ability. Resupply of [Formula: see text] rapidly increased cellular [Formula: see text] contents and suppressed expression of TaAMT1;3a, but not of TaAMT;1;1a and TaAMT1;1b expressions. Expression of TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a was not changed in leaves after [Formula: see text] resupply. In contrast, nitrogen (N) deprivation induced TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a gene expressions in the roots and leaves. Expression analysis in the leaves of the stem rust-susceptible wheat line "Little Club" and the rust-tolerant strain "Mini 2761" revealed that TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a were specifically induced in the former but not in the latter. Rust-susceptible wheat plants grown under N-free conditions exhibited a lower disease index than plants grown with [Formula: see text] as the sole N source in the medium after infection with Puccinia graminis f. sp. tritici, suggesting that [Formula: see text] and its transport may facilitate the infection of wheat stem rust disease. Our findings may be important for understanding the potential function TaAMTs in wheat plants.
Collapse
Affiliation(s)
- Tianya Li
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Kai Liao
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Xiaofeng Xu
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Ziyuan Wang
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| | - Baolei Jia
- Department of Life Sciences, Chung-Ang UniversitySeoul, South Korea
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural UniversityShenyang, China
| |
Collapse
|
32
|
Liu Y, Xu Y, Ling S, Liu S, Yao J. Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice. PLANT CELL REPORTS 2017; 36:919-931. [PMID: 28299429 DOI: 10.1007/s00299-017-2123-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/22/2017] [Indexed: 05/26/2023]
Abstract
Phenotype identification, expression examination, and function prediction declared that the anther-preferential expressing gene PMR may participate in regulation of male gametophyte development in rice. Male germline development in flowering plants produces the pair of sperm cells for double fertilization and the pollen mitosis is a key process of it. Although the structural features of male gametophyte have been defined, the molecular mechanisms regulating the mitotic cell cycle are not well elucidated in rice. Here, we reported an anther-preferential expressing gene in rice, PMR (Pollen Mitosis Relative), playing an essential role in male gametogenesis. When PMR gene was suppressed via RNAi, the mitosis of microspore was severely damaged, and the plants formed unmatured pollens containing only one or two nucleuses at the anthesis, ultimately leading to serious reduction of pollen fertility and seed-setting. The CRISPR mutants, pmr-1 and pmr-2, both showed the similar defects as the PMR-RNAi lines. Further analysis revealed that PMR together with its co-expressing genes were liable to participate in the regulation of DNA metabolism in the nucleus, and affected the activities of some enzymes related to the cell cycle. We finally discussed that unknown protein PMR contained the PHD, SWIB and Plus-3 domains and they might have coordinating functions in regulation pathway of the pollen mitosis in rice.
Collapse
Affiliation(s)
- Yaqin Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shasha Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Rao GS, Tyagi AK, Rao KV. Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:139-147. [PMID: 28167027 DOI: 10.1016/j.plantsci.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
In the present investigation, an inducible male-sterility system has been developed in the rice. In order to introduce inducible male-sterility, the coding region of l-ornithinase (argE) gene of E. coli was fused to the Oryza sativa indica pollen allergen (OSIPA) promoter sequence which is known to function specifically in the pollen grains. Transgenic plants were obtained with argE gene and the transgenic status of plants was confirmed by PCR and Southern blot analyses. RT-PCR analysis confirmed the tissue-specific expression of argE in the anthers of transgenic rice plants. Transgenic rice plants expressing argE, after application of N-acetyl-phosphinothricin (N-ac-PPT), became completely male-sterile owing to the pollen-specific expression of argE. However, argE-transgenic plants were found to be self fertile when N-ac-PPT was not applied. Normal fertile seeds were obtained from the cross pollination between male-sterile argE transgenics and untransformed control plants, indicating that the female fertility is not affected by the N-ac-PPT treatment. These results clearly suggest that the expression of argE gene affects only the male gametophyte but not the gynoecium development. Induction of complete male-sterility in the rice is a first of its kind, and moreover this male- sterility system does not require the deployment of any specific restorer line.
Collapse
Affiliation(s)
| | - Akhilesh Kumar Tyagi
- Department of Plant Molecular Biology, Delhi University, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
34
|
Carrizo García C, Nepi M, Pacini E. It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms-a review. PROTOPLASMA 2017; 254:57-73. [PMID: 26872476 DOI: 10.1007/s00709-016-0950-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Functional pollen is needed to successfully complete fertilization. Pollen is formed inside the anthers following a specific sequence of developmental stages, from microsporocyte meiosis to pollen release, that concerns microsporocytes/microspores and anther wall tissues. The processes involved may not be synchronous within a flower, an anther, and even a microsporangium. Asynchrony has been barely analyzed, and its biological consequences have not been yet assessed. In this review, different processes of pollen development and lifetime, stressing on the possible consequences of their differential timing on pollen performance, are summarized. Development is usually synchronized until microsporocyte meiosis I (occasionally until meiosis II). Afterwards, a period of mostly asynchronous events extends up to anther opening as regards: (1) meiosis II (sometimes); (2) microspore vacuolization and later reduction of vacuoles; (3) amylogenesis, amylolysis, and carbohydrate inter-conversion; (4) the first haploid mitosis; and (5) intine formation. Asynchrony would promote metabolic differences among developing microspores and therefore physiologically heterogeneous pollen grains within a single microsporangium. Asynchrony would increase the effect of competition for resources during development and pollen tube growth and also for water during (re)hydration on the stigma. The differences generated by developmental asynchronies may have an adaptive role since more efficient pollen grains would be selected with regard to homeostasis, desiccation tolerance, resilience, speed of (re)hydration, and germination. The performance of each pollen grain which landed onto the stigma will be the result of a series of selective steps determined by its development, physiological state at maturity, and successive environmental constrains.
Collapse
Affiliation(s)
| | - Massimo Nepi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| | - Ettore Pacini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
35
|
Nguyen TD, Moon S, Oo MM, Tayade R, Soh MS, Song JT, Oh SA, Jung KH, Park SK. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. PLANT REPRODUCTION 2016; 29:291-300. [PMID: 27796586 DOI: 10.1007/s00497-016-0293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Rice microspore-promoters. Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
36
|
Nguyen TD, Moon S, Nguyen VNT, Gho Y, Chandran AKN, Soh MS, Song JT, An G, Oh SA, Park SK, Jung KH. Genome-wide identification and analysis of rice genes preferentially expressed in pollen at an early developmental stage. PLANT MOLECULAR BIOLOGY 2016; 92:71-88. [PMID: 27356912 DOI: 10.1007/s11103-016-0496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Microspore production using endogenous developmental programs has not been well studied. The main limitation is the difficulty in identifying genes preferentially expressed in pollen grains at early stages. To overcome this limitation, we collected transcriptome data from anthers and microspore/pollen and performed meta-expression analysis. Subsequently, we identified 410 genes showing preferential expression patterns in early developing pollen samples of both japonica and indica cultivars. The expression patterns of these genes are distinguishable from genes showing pollen mother cell or tapetum-preferred expression patterns. Gene Ontology enrichment and MapMan analyses indicated that microspores in rice are closely linked with protein degradation, nucleotide metabolism, and DNA biosynthesis and regulation, while the pollen mother cell or tapetum are strongly associated with cell wall metabolism, lipid metabolism, secondary metabolism, and RNA biosynthesis and regulation. We also generated transgenic lines under the control of the promoters of eight microspore-preferred genes and confirmed the preferred expression patterns in plants using the GUS reporting system. Furthermore, cis-regulatory element analysis revealed that pollen specific elements such as POLLEN1LELAT52, and 5659BOXLELAT5659 were commonly identified in the promoter regions of eight rice genes with more frequency than estimation. Our study will provide new sights on early pollen development in rice, a model crop plant.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Van Ngoc Tuyet Nguyen
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Yunsil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Anil Kumar Nalini Chandran
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
37
|
Li Q, Deng Z, Gong C, Wang T. The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogenesis. FRONTIERS IN PLANT SCIENCE 2016; 7:532. [PMID: 27200010 PMCID: PMC4844609 DOI: 10.3389/fpls.2016.00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/04/2016] [Indexed: 05/13/2023]
Abstract
Microgametogenesis is the post-meiotic pollen developmental phase when unicellular microspores develop into mature tricellular pollen. In rice, microgametogenesis can influence grain yields to a great degree because pollen abortion occurs more easily during microgametogenesis than during other stages of pollen development. However, our knowledge of the genes involved in microgametogenesis in rice remains limited. Due to the dependence of pollen development on the regulatory mechanisms of protein expression, we identified the encoding gene of the eukaryotic translation initiation factor 3, subunit f in Oryza sativa (OseIF3f). Immunoprecipitation combined with mass spectrometry confirmed that OseIF3f was a subunit of rice eIF3, which consisted of at least 12 subunits including eIF3a, eIF3b, eIF3c, eIF3d, eIF3e, eIF3f, eIF3g, eIF3h, eIF3i, eIF3k, eIF3l, and eIF3m. OseIF3f showed high mRNA levels in immature florets and is highly abundant in developing anthers. Subcellular localization analysis showed that OseIF3f was localized to the cytosol and the endoplasmic reticulum in rice root cells. We further analyzed the biological function of OseIF3f using the double-stranded RNA-mediated interference (RNAi) approach. The OseIF3f-RNAi lines grew normally at the vegetative stage but displayed a large reduction in seed production and pollen viability, which is associated with the down-regulation of OseIF3f. Further cytological observations of pollen development revealed that the OseIF3f-RNAi lines showed no obvious abnormalities at the male meiotic stage and the unicellular microspore stage. However, compared to the wild-type, OseIF3f-RNAi lines contained a higher percentage of arrested unicellular pollen at the bicellular stage and a higher percentage of arrested unicellular and bicellular pollen, and aborted pollen at the tricellular stage. These results indicate that OseIF3f plays a role in microgametogenesis.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhuyun Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Tai Wang,
| |
Collapse
|
38
|
Jeong HJ, Jung KH. Rice tissue-specific promoters and condition-dependent promoters for effective translational application. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:913-24. [PMID: 25882130 DOI: 10.1111/jipb.12362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/15/2015] [Indexed: 05/10/2023]
Abstract
Rice (Oryza sativa) is one of the most important staple food crops for more than half of the world's population. The demand is increasing for food security because of population growth and environmental challenges triggered by climate changes. This scenario has led to more interest in developing crops with greater productivity and sustainability. The process of genetic transformation, a major tool for crop improvement, utilizes promoters as one of its key elements. Those promoters are generally divided into three types: constitutive, spatiotemporal, and condition-dependent. Transcriptional control of a constitutive promoter often leads to reduced plant growth, due to a negative effect of accumulated molecules during cellular functions or energy consumption. To maximize the effect of a transgene on transgenic plants, it is better to use condition-dependent or tissue-specific promoters. However, until now, those types have not been as widely applied in crop biotechnology. In this review, we introduce and discuss four groups of tissue-specific promoters (50 promoters in total) and six groups of condition-dependent promoters (27 promoters). These promoters can be utilized to fine-tune desirable agronomic traits and develop crops with tolerance to various stresses, enhanced nutritional value, and advanced productivity.
Collapse
Affiliation(s)
- Hee-Jeong Jeong
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
39
|
Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 2015; 6:226. [PMID: 26191072 PMCID: PMC4490251 DOI: 10.3389/fgene.2015.00226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023] Open
Abstract
Enhancer trap systems have been demonstrated to increase the effectiveness of gene identification in rice. In this study, a chlorophyll-deficient mutant, named oscdm1, was screened and characterized in detail from a T-DNA enhancer-tagged population. The oscdm1 plants were different from other chlorophyll-deficient mutants; they produced chlorotic leaves at the third leaf stage, which gradually died with further growth of the plants. However, the oscdm1 plants were able to survive exposure to elevated CO2 levels, similar to photorespiratory mutants. An analysis of the T-DNA flanking sequence in the oscdm1 plants showed that the T-DNA was inserted into the promoter region of a serine hydroxymethyltransferase (SHMT) gene. OsSHMT1 is a key enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for the interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Full-length OsSHMT1 complemented the oscdm1 phenotype, and the downregulation of OsSHMT1 in wild-type plants by RNA interference (RNAi) produced plants that mimicked the oscdm1 phenotype. GUS assays and quantitative PCR revealed the preferential expression of OsSHMT1 in young leaves. TEM revealed serious damage to the thylakoid membrane in oscdm1 chloroplasts. The oscdm1 plants showed more extensive damage than wild type using an IMAGING-PAM fluorometer, especially under high light intensities. OsSHMT1-GFP localized exclusively to mitochondria. Further analysis revealed that the H2O2 content in the oscdm1 plants was twice that in wild type at the fourth leaf stage. This suggests that the thylakoid membrane damage observed in the oscdm1 plants was caused by excessive H2O2. Interestingly, OsSHMT1-overexpressing plants exhibited increased photosynthetic efficiency and improved plant productivity. These results lay the foundation for further study of the OsSHMT1 gene and will help illuminate the functional role of OsSHMT1 in photorespiration in rice.
Collapse
Affiliation(s)
- Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Qian Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
40
|
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS One 2015; 10:e0127831. [PMID: 26035591 PMCID: PMC4452794 DOI: 10.1371/journal.pone.0127831] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.
Collapse
Affiliation(s)
- V. Jisha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Jena, Germany
| | | | | |
Collapse
|
41
|
Li S, Pan XX, Berry JO, Wang Y, Ma S, Tan S, Xiao W, Zhao WZ, Sheng XY, Yin LP. OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H(+) secretion mediated by PM-H(+)-ATPase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:61-71. [PMID: 25711814 DOI: 10.1016/j.plantsci.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 05/16/2023]
Abstract
Iron is abundant in the soil, but its low solubility in neutral or alkaline soils limits its uptake. Plants can rely on rhizosphere acidification to increase iron solubility. OsSEC27p was previously found to be a highly up-regulated gene in iron-deficient rice roots. Here, pH-dependent complementation assays using yeast mutants sec24Δ/SEC24 and sec27Δ/SEC27 showed that OsSEC27 could functionally complement SEC24 but not SEC27 in yeast; thus, it was renamed as OsSEC24. We found that OsSEC24-transgenic tobacco plants increased the length and number of roots under iron deficiency at pH 8.0. To explore how OsSEC24 confers tolerance to iron deficiency, we utilized transgenic tobacco, rice and rice protoplasts. H(+) flux measurements using Non-invasive Micro-test Technology (NMT) indicated that the transgenic OsSEC24 tobacco and rice enhanced H(+) efflux under iron deficiency. Conversely, the application of plasma membrane PM-H(+)-ATPase inhibitor vanadate elucidated that H(+) secretion increased by OsSEC24 was mediated by PM-H(+)-ATPase. OsPMA2 was used as a representative of iron deficiency-responsive PM-H(+)-ATPases in rice root via RT-PCR analysis. In transgenic rice protoplasts OsPMA2 was packaged into OsSEC24 vesicles after export from the ER through confocal-microscopy observation. Together, OsSEC24 vesicles, along with PM-H(+)-ATPases stimulate roots formation under iron deficiency by enhancing rhizosphere acidification.
Collapse
Affiliation(s)
- Shuang Li
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Xiao-Xi Pan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Shuang Ma
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Song Tan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Xian-Yong Sheng
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Li-Ping Yin
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China.
| |
Collapse
|
42
|
Yu GH, Jiang LL, Ma XF, Xu ZS, Liu MM, Shan SG, Cheng XG. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis. PLoS One 2014; 9:e109399. [PMID: 25286048 PMCID: PMC4186855 DOI: 10.1371/journal.pone.0109399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis.
Collapse
Affiliation(s)
- Guo-Hong Yu
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin-Lin Jiang
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Feng Ma
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Meng-Meng Liu
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Guang Shan
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xian-Guo Cheng
- Key Lab. of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Byun MY, Kim WT. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:256-269. [PMID: 24840804 DOI: 10.1111/tpj.12558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/14/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two-hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss-of-function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro-nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi-OsRAD51D RNAi-knock-down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi-OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | | |
Collapse
|
44
|
Agarwal S, Tripura Venkata VGN, Kotla A, Mangrauthia SK, Neelamraju S. Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene 2014; 546:430-6. [PMID: 24887487 DOI: 10.1016/j.gene.2014.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/17/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Identifying QTLs/genes for iron and zinc in rice grains can help in biofortification programs. Genome wide mapping showed 14 QTLs for iron and zinc concentration in unpolished rice grains of F7 RILs derived from Madhukar × Swarna. One line (HL) with high Fe and Zn and one line (LL) with low Fe and Zn in unpolished rice were compared with each other for gene expression using qPCR. 7 day old seedlings were grown in Fe+ and Fe- medium for 10 days and RNA extracted from roots and shoots to determine the response of 15 genes in Fe- conditions. RESULTS HL showed higher upregulation than LL in shoots but LL showed higher upregulation than HL in roots. YSL2 was upregulated only in HL roots and YSL15 only in HL shoots and both up to 60 fold under Fe- condition. IRT2 and DMAS1 were upregulated 100 fold and NAS2 1000 fold in HL shoot. NAS2, IRT1, IRT2 and DMAS1 were upregulated 40 to 100 fold in LL roots. OsZIP8, OsNAS3, OsYSL1 and OsNRAMP1 which underlie major Fe QTL showed clear allelic differences between HL and LL for markers flanking QTL. The presence of iron increasing QTL allele in HL was clearly correlated with high expression of the underlying gene. OsZIP8 and OsNAS3 which were within major QTL with increasing effect from Madhukar were 8 fold and 4 fold more expressed in HL shoot than in LL shoot. OsNAS1, OsNAS2, OsNAS3, OsYSL2 and OsYSL15 showed 1.5 to 2.5 fold upregulation in flag leaf of HL when compared with flag leaf of Swarna. CONCLUSION HL and LL differed in root length, Fe concentration and expression of several genes under Fe deficiency. The major distinguishing genes were NAS2, IRT2, DMAS1, and YSL15 in shoot and NAS2, IRT1, IRT2, YSL2, and ZIP8 in roots. The presence of iron increasing QTL allele in HL at marker locus close to genes also increased upregulation in HL.
Collapse
|
45
|
Tan C, Han Z, Yu H, Zhan W, Xie W, Chen X, Zhao H, Zhou F, Xing Y. QTL scanning for rice yield using a whole genome SNP array. J Genet Genomics 2013; 40:629-38. [PMID: 24377869 DOI: 10.1016/j.jgg.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
High-throughput SNP genotyping is widely used for plant genetic studies. Recently, a RICE6K SNP array has been developed based on the Illumina Bead Array platform and Infinium SNP assay technology for genome-wide evaluation of allelic variations and breeding applications. In this study, the RICE6K SNP array was used to genotype a recombinant inbred line (RIL) population derived from the cross between the indica variety, Zhenshan 97, and the japonica variety, Xizang 2. A total of 3324 SNP markers of high quality were identified and were grouped into 1495 recombination bins in the RIL population. A high-density linkage map, consisting of the 1495 bins, was developed, covering 1591.2 cM and with average length of 1.1 cM per bin. Segregation distortions were observed in 24 regions of the 11 chromosomes in the RILs. One half of the distorted regions contained fertility genes that had been previously reported. A total of 23 QTLs were identified for yield. Seven QTLs were firstly detected in this study. The positive alleles from about half of the identified QTLs came from Zhenshan 97 and they had lower phenotypic values than Xizang 2. This indicated that favorable alleles for breeding were dispersed in both parents and pyramiding favorable alleles could develop elite lines. The size of the mapping population for QTL analysis using high throughput SNP genotyping platform is also discussed.
Collapse
Affiliation(s)
- Cong Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Yu
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fasong Zhou
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC PLANT BIOLOGY 2013; 13:114. [PMID: 23924433 PMCID: PMC3751942 DOI: 10.1186/1471-2229-13-114] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 08/01/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth and development, their deficiency or excess severely impaired physiological and biochemical reactions of plants. Therefore, a tightly controlled zinc and iron uptake and homeostasis network has been evolved in plants. The Zinc-regulated transporters, Iron-regulated transporter-like Proteins (ZIP) are capable of uptaking and transporting divalent metal ion and are suggested to play critical roles in balancing metal uptake and homeostasis, though a detailed analysis of ZIP gene family in maize is still lacking. RESULTS Nine ZIP-coding genes were identified in maize genome. It was revealed that the ZmZIP proteins share a conserved transmembrane domain and a variable region between TM-3 and TM-4. Transiently expression in onion epidermal cells revealed that all ZmZIP proteins were localized to the endoplasmic reticulum and plasma membrane. The yeast complementation analysis was performed to test the Zn or Fe transporter activity of ZmZIP proteins. Expression analysis showed that the ZmIRT1 transcripts were dramatically induced in response to Zn- and Fe-deficiency, though the expression profiles of other ZmZIP changed variously. The expression patterns of ZmZIP genes were observed in different stages of embryo and endosperm development. The accumulations of ZmIRT1 and ZmZIP6 were increased in the late developmental stages of embryo, while ZmZIP4 was up-regulated during the early development of embryo. In addition, the expression of ZmZIP5 was dramatically induced associated with middle stage development of embryo and endosperm. CONCLUSIONS These results suggest that ZmZIP genes encode functional Zn or Fe transporters that may be responsible for the uptake, translocation, detoxification and storage of divalent metal ion in plant cells. The various expression patterns of ZmZIP genes in embryo and endosperm indicates that they may be essential for ion translocation and storage during differential stages of embryo and endosperm development. The present study provides new insights into the evolutionary relationship and putative functional divergence of the ZmZIP gene family during the growth and development of maize.
Collapse
Affiliation(s)
- Suzhen Li
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojin Zhou
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqun Huang
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
| | - Liying Zhu
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
| | - Shaojun Zhang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongfeng Zhao
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
| | - Jinjie Guo
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
| | - Jingtang Chen
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, Baoding 071001, China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
47
|
Kumar S, Jordan MC, Datla R, Cloutier S. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.). PLoS One 2013; 8:e69124. [PMID: 23935935 PMCID: PMC3728291 DOI: 10.1371/journal.pone.0069124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 01/22/2023] Open
Abstract
As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Mark C. Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Raju Datla
- National Research Council, Saskatoon, Saskatchewan, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
Kim SR, An G. Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:854-63. [PMID: 23394789 DOI: 10.1016/j.jplph.2013.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 05/20/2023]
Abstract
Heat is a primary abiotic stress that reduces crop yields. At the seedling stage, we identified heat-sensitive mutants that carried T-DNA inserted into a heat shock protein 70 gene, OsHsp70CP1. When grown under a constant high temperature (40°C), the seedling leaves developed severe chlorosis whereas plants grown at a constant 27°C showed a normal phenotype. This indicated that OsHsp70CP1 is essential for chloroplast differentiation from the proplastids under high temperatures. Transient expression analyses revealed that OsHsp70CP1 was localized to the stroma. OsHsp70CP1 was dominantly expressed in photosynthetic tissues; transcripts were greatly increased by heat stress. Some transcripts for plastid RNA metabolism were impaired in the mutant while others were not, demonstrating that a subset of nuclear-encoded proteins are substrates of OsHsp70CP1.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Crop Biotech Institute & Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | |
Collapse
|
49
|
Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura KI, Wabiko H. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice. PLANT PHYSIOLOGY 2013; 162:858-71. [PMID: 23629836 PMCID: PMC3668075 DOI: 10.1104/pp.113.216523] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Kim SR, Yang JI, An G. OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL. Mol Cells 2013; 35:402-9. [PMID: 23620301 PMCID: PMC3887859 DOI: 10.1007/s10059-013-2337-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023] Open
Abstract
Chaperonins are involved in protein-folding. The rice genome encodes six plastid chaperonin subunits (Cpn60) - three α and three β. Our study showed that they were differentially expressed during normal plant development. Moreover, five were induced by heat stress (42°C) but not by cold (10°C). The oscpn60α1 mutant had a pale-green phenotype at the seedling stage and development ceased after the fourth leaf appeared. Transiently expressed OsCpn60α1:GFP fusion protein was localized to the chloroplast stroma. Immuno-blot analysis indicated that the level of Rubisco large subunit (rbcL) was severely reduced in the mutant while levels were unchanged for some imported proteins, e.g., stromal heat shock protein 70 (Hsp70) and chlorophyll a/b binding protein 1 (Lhcb1). This demonstrated that OsCpn60α1 is required for the folding of rbcL and that failure of that process is seedling-lethal.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Crop Biotech Institute and Department of Genetic Engineering, Kyung Hee University, Yongin 446-701,
Korea
| | - Jung-Il Yang
- Crop Biotech Institute and Department of Genetic Engineering, Kyung Hee University, Yongin 446-701,
Korea
| | - Gynheung An
- Crop Biotech Institute and Department of Genetic Engineering, Kyung Hee University, Yongin 446-701,
Korea
| |
Collapse
|