1
|
Zhang L, Wei A, Chen J, Wu L, Li T, Qiao L. Identification of Ethylene Response Factors in Wheat Reveals That TaERF16-B Contributes to Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2025; 14:621. [PMID: 40006880 PMCID: PMC11859885 DOI: 10.3390/plants14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Soil salinization is a major abiotic stressor that significantly reduces wheat yield. Identifying novel salt-tolerance genes and integrating them into wheat breeding programs can enhance wheat productivity in saline soils. Ethylene response factor (ERF) plays an important role in plant response to salt stress, and thus far, four wheat ERF genes have been identified to be involved in salt stress response. To systematically identify salt tolerance-related ERF genes in wheat, in this study, 213 ERF sequences were isolated from the whole genome of common wheat and classified into 54 members based on subgenome homology, named TaERF1 to TaERF54. Transcriptome sequencing results showed different expression patterns of TaERF members in leaves after 1, 6, 24, and 48 h of NaCl treatment. Based on association analysis, nine TaERF genes were correlated with the leaf salt injury index. Among them, five SNPs of TaERF16-B formed two haplotypes: Hap1 and Hap2. RT-qPCR results showed that the expression level of TaERF16-B was significantly higher in Hap2-typed germplasms than that in Hap1-typed germplasms after 1 and 6 h of NaCl treatment. A Kompetitive Allele-Specific PCR marker K52 was developed for genotyping TaERF16-B haplotypes, which further confirmed the significant correlation between TaERF16-B and salt tolerance-related phenotypes in mapping population and wheat germplasms. This study provides new genes and molecular markers for improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China; (L.Z.)
| | - Jiating Chen
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Lijuan Wu
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Tian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050024, China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
2
|
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int J Mol Sci 2024; 25:11891. [PMID: 39595960 PMCID: PMC11594238 DOI: 10.3390/ijms252211891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens' adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes.
Collapse
Affiliation(s)
- Hongyi Zhang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Yingnan Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Binjie Ma
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiangqi Bu
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| |
Collapse
|
3
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
4
|
Hong MJ, Ko CS, Kim JB, Kim DY. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ 2024; 12:e17043. [PMID: 38464747 PMCID: PMC10924784 DOI: 10.7717/peerj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Salinity is a major abiotic stress that prevents normal plant growth and development, ultimately reducing crop productivity. This study investigated the effects of salinity stress on two wheat lines: PL1 (wild type) and PL6 (mutant line generated through gamma irradiation of PL1). Results The salinity treatment was carried out with a solution consisting of a total volume of 200 mL containing 150 mM NaCl. Salinity stress negatively impacted germination and plant growth in both lines, but PL6 exhibited higher tolerance. PL6 showed lower Na+ accumulation and higher K+ levels, indicating better ion homeostasis. Genome-wide transcriptomic analysis revealed distinct gene expression patterns between PL1 and PL6 under salt stress, resulting in notable phenotypic differences. Gene ontology analysis revealed positive correlations between salt stress and defense response, glutathione metabolism, peroxidase activity, and reactive oxygen species metabolic processes, highlighting the importance of antioxidant activities in salt tolerance. Additionally, hormone-related genes, transcription factors, and protein kinases showed differential expression, suggesting their roles in the differential salt stress response. Enrichment of pathways related to flavonoid biosynthesis and secondary metabolite biosynthesis in PL6 may contribute to its enhanced antioxidant activities. Furthermore, differentially expressed genes associated with the circadian clock system, cytoskeleton organization, and cell wall organization shed light on the plant's response to salt stress. Conclusions Understanding these mechanisms is crucial for developing stress-tolerant crop varieties, improving agricultural practices, and breeding salt-resistant crops to enhance global food production and address food security challenges.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Dae Yeon Kim
- Plant Resources, Kongju National University, Yesan-eup, Chungnam, South Korea
| |
Collapse
|
5
|
Aparna, Skarzyńska A, Pląder W, Pawełkowicz M. Impact of Climate Change on Regulation of Genes Involved in Sex Determination and Fruit Production in Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:2651. [PMID: 37514264 PMCID: PMC10385340 DOI: 10.3390/plants12142651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Environmental changes, both natural and anthropogenic, mainly related to rising temperatures and water scarcity, are clearly visible around the world. Climate change is important for crop production and is a major issue for the growth and productivity of cucumbers. Processes such as sex determination, flower morphogenesis and fruit development in cucumbers are highly sensitive to various forms of stress induced by climatic changes. It is noteworthy that many factors, including genetic factors, transcription factors, phytohormones and miRNAs, are crucial in regulating these processes and are themselves affected by climate change. Changes in the expression and activity of these factors have been observed as a consequence of climatic conditions. This review focuses primarily on exploring the effects of climate change and abiotic stresses, such as increasing temperature and drought, on the processes of sex determination, reproduction, and fruit development in cucumbers at the molecular level. In addition, it highlights the existing research gaps that need to be addressed in order to improve our understanding of the complex interactions between climate change and cucumber physiology. This, in turn, may lead to strategies to mitigate the adverse effects and enhance cucumber productivity in a changing climate.
Collapse
Affiliation(s)
- Aparna
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
7
|
Wei N, Zhai Q, Li H, Zheng S, Zhang J, Liu W. Genome-Wide Identification of ERF Transcription Factor Family and Functional Analysis of the Drought Stress-Responsive Genes in Melilotus albus. Int J Mol Sci 2022; 23:ijms231912023. [PMID: 36233332 PMCID: PMC9570465 DOI: 10.3390/ijms231912023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
As an important forage legume with high values in feed and medicine, Melilotus albus has been widely cultivated. The AP2/ERF transcription factor has been shown to play an important regulatory role in plant drought resistance, but it has not been reported in the legume forage crop M. albus. To digger the genes of M. albus in response to drought stress, we identified and analyzed the ERF gene family of M. albus at the genome-wide level. A total of 100 MaERF genes containing a single AP2 domain sequence were identified in this study, named MaERF001 to MaERF100, and bioinformatics analysis was performed. Collinearity analysis indicated that segmental duplication may play a key role in the expansion of the M. albus ERF gene family. Cis-acting element predictions suggest that MaERF genes are involved in various hormonal responses and abiotic stresses. The expression patterns indicated that MaERFs responded to drought stress to varying degrees. Furthermore, four up-regulated ERFs (MaERF008, MaERF037, MaERF054 and MaERF058) under drought stress were overexpressed in yeast and indicated their biological functions to confer the tolerance to drought. This work will advance the understanding of the molecular mechanisms underlying the drought response in M. albus. Further study of the promising potential candidate genes identified in this study will provide a valuable resource as the next step in functional genomics studies and improve the possibility of improving drought tolerance in M. albus by transgenic approaches.
Collapse
|
8
|
Chen Y, Feng P, Tang B, Hu Z, Xie Q, Zhou S, Chen G. The AP2/ERF transcription factor SlERF.F5 functions in leaf senescence in tomato. PLANT CELL REPORTS 2022; 41:1181-1195. [PMID: 35238951 DOI: 10.1007/s00299-022-02846-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Our results confirmed that SlERF.F5 can directly regulate the promoter activity of ACS6 and interact with SlMYC2 to regulate tomato leaf senescence. The process of plant senescence is complex and highly coordinated, and is regulated by many endogenous and environmental signals. Ethylene and jasmonic acid are well-known senescence inducers, but their molecular mechanisms for inducing leaf senescence have not been fully elucidated. Here, we isolated an ETHYLENE RESPONSE FACTOR F5 (SlERF.F5) from tomato. Silencing of SlERF.F5 causes accelerated senescence induced by age, darkness, ethylene, and jasmonic acid. However, overexpression of SlERF.F5 would not promote senescence. Moreover, SlERF.F5 can regulate the promoter activity of ACS6 in vitro and in vivo. Suppression of SlERF.F5 resulted in increased sensitivity to ethylene and jasmonic acid, decreased accumulation of chlorophyll content, and inhibited the expression of chlorophyll- and light response-related genes. Compared with the wild type, the qRT-PCR analysis showed the expression levels of genes related to the ethylene biosynthesis pathway and the jasmonic acid signaling pathway in SlERF.F5-RNAi lines increased. Yeast two-hybrid experiments showed that SlERF.F5 and SlMYC2 (a transcription factor downstream of the JA receptor) can interact physically, thereby mediating the role of SlERF.F5 in jasmonic acid-induced leaf senescence. Collectively, our research provides new insights into how ethylene and jasmonic acid promote leaf senescence in tomato.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Shuang Zhou
- College of Agriculture/Mudan, Henan University of Science and Technology, No. 263 of Kaiyuan Avenue, Luolong District, Luoyang, 471000, Henan, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
9
|
Deng H, Chen Y, Liu Z, Liu Z, Shu P, Wang R, Hao Y, Su D, Pirrello J, Liu Y, Li Z, Grierson D, Giovannoni JJ, Bouzayen M, Liu M. SlERF.F12 modulates the transition to ripening in tomato fruit by recruiting the co-repressor TOPLESS and histone deacetylases to repress key ripening genes. THE PLANT CELL 2022; 34:1250-1272. [PMID: 35099538 PMCID: PMC8972228 DOI: 10.1093/plcell/koac025] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
Ethylene response factors (ERFs) are downstream components of ethylene-signaling pathways known to play critical roles in ethylene-controlled climacteric fruit ripening, yet little is known about the molecular mechanism underlying their mode of action. Here, we demonstrate that SlERF.F12, a member of the ERF.F subfamily containing Ethylene-responsive element-binding factor-associated Amphiphilic Repression (EAR) motifs, negatively regulates the onset of tomato (Solanum lycopersicum) fruit ripening by recruiting the co-repressor TOPLESS 2 (TPL2) and the histone deacetylases (HDAs) HDA1/HDA3 to repress the transcription of ripening-related genes. The SlERF.F12-mediated transcriptional repression of key ripening-related genes 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2), ACS4, POLYGALACTURONASE 2a, and PECTATE LYASE is dependent on the presence of its C-terminal EAR motif. We show that SlERF.F12 interacts with the co-repressor TPL2 via the C-terminal EAR motif and recruits HDAs SlHDA1 and SlHDA3 to form a tripartite complex in vivo that actively represses transcription of ripening genes by decreasing the level of the permissive histone acetylation marks H3K9Ac and H3K27Ac at their promoter regions. These findings provide new insights into the ripening regulatory network and uncover a direct link between repressor ERFs and histone modifiers in modulating the transition to ripening of climacteric fruit.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ziyu Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Julien Pirrello
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Yongsheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - James J Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
10
|
High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity (Edinb) 2022; 128:460-472. [PMID: 35173311 PMCID: PMC8852949 DOI: 10.1038/s41437-022-00500-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create 'high-value farms' to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for 'resilient high-value food production' for the 21st century.
Collapse
|
11
|
Borràs D, Barchi L, Schulz K, Moglia A, Acquadro A, Kamranfar I, Balazadeh S, Lanteri S. Transcriptome-Based Identification and Functional Characterization of NAC Transcription Factors Responsive to Drought Stress in Capsicum annuum L. Front Genet 2021; 12:743902. [PMID: 34745217 PMCID: PMC8570119 DOI: 10.3389/fgene.2021.743902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Capsicum annuum L. is one of the most cultivated Solanaceae species, and in the open field, water limitation leading to drought stress affects its fruit quality, fruit setting, fruit size and ultimately yield. We identified stage-specific and a common core set of differentially expressed genes, following RNA-seq transcriptome analyses of a breeding line subjected to acute drought stress followed by recovery (rewatering), at three stages of plant development. Among them, two NAC transcription factor (TF) genes, i.e., CaNAC072 and CaNAC104, were always upregulated after drought stress and downregulated after recovery. The two TF proteins were observed to be localized in the nucleus following their transient expression in Nicotiana benthamiana leaves. The expression of the two NACs was also induced by NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, suggesting that CaNAC072 is an early, while CaNAC104 is a late abiotic stress-responsive gene. Virus-induced gene silencing (VIGS) of CaNAC104 did not affect the pepper plantlet’s tolerance to drought stress, while VIGS of CaNAC072 increased drought tolerance. Heterologous expression of CaNAC072 in Arabidopsis thaliana as well as in plants mutated for its homolog ANAC072 did not increase drought stress tolerance. This highlights a different role of the two NAC homologs in the two species. Here, we discuss the complex role of NACs as transcriptional switches in the response to drought stress in bell pepper.
Collapse
Affiliation(s)
- Dionis Borràs
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| | - Iman Kamranfar
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Plant Sciences and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Sergio Lanteri
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Turin, Italy
| |
Collapse
|
12
|
Trujillo-Montenegro JH, Rodríguez Cubillos MJ, Loaiza CD, Quintero M, Espitia-Navarro HF, Salazar Villareal FA, Viveros Valens CA, González Barrios AF, De Vega J, Duitama J, Riascos JJ. Unraveling the Genome of a High Yielding Colombian Sugarcane Hybrid. FRONTIERS IN PLANT SCIENCE 2021; 12:694859. [PMID: 34484261 PMCID: PMC8414525 DOI: 10.3389/fpls.2021.694859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
Recent developments in High Throughput Sequencing (HTS) technologies and bioinformatics, including improved read lengths and genome assemblers allow the reconstruction of complex genomes with unprecedented quality and contiguity. Sugarcane has one of the most complicated genomes among grassess with a haploid length of 1Gbp and a ploidies between 8 and 12. In this work, we present a genome assembly of the Colombian sugarcane hybrid CC 01-1940. Three types of sequencing technologies were combined for this assembly: PacBio long reads, Illumina paired short reads, and Hi-C reads. We achieved a median contig length of 34.94 Mbp and a total genome assembly of 903.2 Mbp. We annotated a total of 63,724 protein coding genes and performed a reconstruction and comparative analysis of the sucrose metabolism pathway. Nucleotide evolution measurements between orthologs with close species suggest that divergence between Saccharum officinarum and Saccharum spontaneum occurred <2 million years ago. Synteny analysis between CC 01-1940 and the S. spontaneum genome confirms the presence of translocation events between the species and a random contribution throughout the entire genome in current sugarcane hybrids. Analysis of RNA-Seq data from leaf and root tissue of contrasting sugarcane genotypes subjected to water stress treatments revealed 17,490 differentially expressed genes, from which 3,633 correspond to genes expressed exclusively in tolerant genotypes. We expect the resources presented here to serve as a source of information to improve the selection processes of new varieties of the breeding programs of sugarcane.
Collapse
Affiliation(s)
- Jhon Henry Trujillo-Montenegro
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
- Research Group in Bioinformatics, Department of Computer Science, Faculty of Engineering, Universidad Del Valle,Cali, Colombia
| | - María Juliana Rodríguez Cubillos
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Faculty of Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Manuel Quintero
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | | | | | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Faculty of Engineering, Universidad de los Andes, Bogotá, Colombia
| | - José De Vega
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - John J. Riascos
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| |
Collapse
|
13
|
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. PLANTS 2021; 10:plants10020259. [PMID: 33525688 PMCID: PMC7911879 DOI: 10.3390/plants10020259] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Collapse
|
14
|
Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 2020; 242:126626. [PMID: 33189069 DOI: 10.1016/j.micres.2020.126626] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
In many regions of the world, the incidence and extent of drought spells are predicted to increase which will create considerable pressure on global agricultural yields. Most likely among all the abiotic stresses, drought has the strongest effect on soil biota and plants along with complex environmental effects on other ecological systems. Plants being sessile appears the least resilient where drought creates osmotic stress, limits nutrient mobility due to soil heterogeneity, and reduces nutrient access to plant roots. Drought tolerance is a complex quantitative trait controlled by many genes and is one of the difficult traits to study and characterize. Nevertheless, existing studies on drought have indicated the mechanisms of drought resistance in plants on the morphological, physiological, and molecular basis and strategies have been devised to cope with the drought stress such as mass screening, breeding, marker-assisted selection, exogenous application of hormones or osmoprotectants and or engineering for drought resistance. These strategies have largely ignored the role of the rhizosphere in the plant's drought response. Studies have shown that soil microbes have a substantial role in modulation of plant response towards biotic and abiotic stress including drought. This response is complex and involves alteration in host root system architecture through hormones, osmoregulation, signaling through reactive oxygen species (ROS), induction of systemic tolerance (IST), production of large chain extracellular polysaccharides (EPS), and transcriptional regulation of host stress response genes. This review focuses on the integrated rhizosphere management strategy for drought stress mitigation in plants with a special focus on rhizosphere management. This combinatorial approach may include rhizosphere engineering by addition of drought-tolerant bacteria, nanoparticles, liquid nano clay (LNC), nutrients, organic matter, along with plant-modification with next-generation genome editing tool (e.g., CRISPR/Cas9) for quickly addressing emerging challenges in agriculture. Furthermore, large volumes of rainwater and wastewater generated daily can be smartly recycled and reused for agriculture. Farmers and other stakeholders will get a proper knowledge-exchange and an ideal road map to utilize available technologies effectively and to translate the measures into successful plant-water stress management. The proposed approach is cost-effective, eco-friendly, user-friendly, and will impart long-lasting benefits on agriculture and ecosystem and reduce vulnerability to climate change.
Collapse
Affiliation(s)
- Rabisa Zia
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Jawad Siddique
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
15
|
Negi P, Pandey M, Dorn KM, Nikam AA, Devarumath RM, Srivastava AK, Suprasanna P. Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6159-6173. [PMID: 32687570 DOI: 10.1093/jxb/eraa339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane (Saccharum officinarum) is a globally cultivated cash crop whose yield is negatively affected by soil salinity. In this study, we investigated the molecular basis of inducible salt tolerance in M4209, a sugarcane mutant line generated through radiation-induced mutagenesis. Under salt-contaminated field conditions, M4209 exhibited 32% higher cane yield as compared with its salt-sensitive parent, Co86032. In pot experiments, post-sprouting phenotyping indicated that M4209 had significantly greater leaf biomass compared with Co86032 under treatment with 50 mM and 200 mM NaCl. This was concomitant with M4209 having 1.9-fold and 1.6-fold higher K+/Na+ ratios, and 4-fold and 40-fold higher glutathione reductase activities in 50 mM and 200 mM NaCl, respectively, which suggested that it had better ionic and redox homeostasis than Co86032. Transcriptome profiling using RNA-seq indicated an extensive reprograming of stress-responsive modules associated with photosynthesis, transmembrane transport, and metabolic processes in M4209 under 50 mM NaCl stress. Using ranking analysis, we identified Phenylalanine Ammonia Lyase (PAL), Acyl-Transferase Like (ATL), and Salt-Activated Transcriptional Activator (SATA) as the genes most associated with salt tolerance in M4209. M4209 also exhibited photosynthetic rates that were 3-4-fold higher than those of Co86032 under NaCl stress conditions. Our results highlight the significance of transcriptional reprogramming coupled with improved photosynthetic efficiency in determining salt tolerance in sugarcane.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Kevin M Dorn
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Ashok A Nikam
- Vasantdada Sugar Institute, Manjari Bk, Pune, Maharashtra, India
| | | | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
16
|
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. PLANTS (BASEL, SWITZERLAND) 2020; 9:E491. [PMID: 32290272 PMCID: PMC7238037 DOI: 10.3390/plants9040491] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Rubab Shabbir
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - Irfan Afzal
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| |
Collapse
|
17
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
18
|
MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant. Sci Rep 2019; 9:20239. [PMID: 31882926 PMCID: PMC6934718 DOI: 10.1038/s41598-019-56686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.
Collapse
|
19
|
Wang MQ, Zeng QH, Huang QX, Lin P, Li Y, Liu QL, Zhang L. Transcriptomic Analysis of Verbena bonariensis Leaves Under Low-Temperature Stress. DNA Cell Biol 2019; 38:1233-1248. [PMID: 31532241 DOI: 10.1089/dna.2019.4707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verbena bonariensis is a valuable plant for both ornament and flower border. As a major constraint, low temperature affects the growing development and survival of V. bonariensis. However, there are few systematic studies in terms of molecular mechanism on the tolerance of low temperature in V. bonariensis. In this study, Illumina sequencing technology was applied to analyze the cold resistance mechanism of plants. Six cDNA libraries were obtained from two samples of two groups, the cold-treated group and the control group. A total of 271,920 unigenes were produced from 406,641 assembled transcripts. Among these, 19,003 differentially expressed genes (DEGs) (corrected p-value <0.01, |log2(fold change) | >3) were obtained, including 9852 upregulated and 9151 downregulated genes. The antioxidant enzyme system, photosynthesis, plant hormone signal transduction, fatty acid metabolism, starch and sucrose metabolism pathway, and transcription factors were analyzed. Based on these results, series of candidate genes related to cold stress were screened out and discussed. The physiological indexes related to response mechanism of low temperature were tested. Eleven upregulated DEGs were validated by Quantitative Real-time PCR. In this study, we provided the transcriptome sequence resource of V. bonariensis and used these data to realize its molecular mechanism under cold stress. The results contributed to valuable clues for genetic studies and helped to screen candidate genes for cold-resistance breeding.
Collapse
Affiliation(s)
- Meng-Qi Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qin-Han Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiu-Xiang Huang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ping Lin
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, China
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Xing X, Jiang J, Huang Y, Zhang Z, Song A, Ding L, Wang H, Yao J, Chen S, Chen F, Fang W. The Constitutive Expression of a Chrysanthemum ERF Transcription Factor Influences Flowering Time in Arabidopsis thaliana. Mol Biotechnol 2019; 61:20-31. [PMID: 30448907 DOI: 10.1007/s12033-018-0134-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AP2/ERF transcription factors (TFs) represent valuable targets for the genetic manipulation of crop plants, as they participate in the control of metabolism, growth and development, as well as in the plants' response to environmental stimuli. Here, an ERF TF encoded by the chrysanthemum (Chrysanthemum morifolium) genome, designated CmERF110, was cloned and functionally characterized. The predicted CmERF110 polypeptide included a conserved DNA-binding AP2/ERF domain. A transient expression experiment revealed that the protein was deposited in the nucleus, and a transactivation experiment in yeast suggested that it had no transcriptional activity. The gene was transcribed in the chrysanthemum root, stem and leaf, with its transcript level following a circadian rhythm under both long and short days. The effect of constitutively expressing the gene in Arabidopsis thaliana was to accelerate flowering. Transcriptional profiling implied that its effect on floral initiation operated through the photoperiod pathway.
Collapse
Affiliation(s)
- Xiaojuan Xing
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Yaoyao Huang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Zixin Zhang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Lian Ding
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Haibing Wang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Jianjun Yao
- Shanghai Honghua Horticulture Co. Ltd., Shanghai, 200070, China
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China
| | - Weimin Fang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Ministry of Agriculture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, Republic of China.
| |
Collapse
|
21
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
22
|
Liang S, Xiong W, Yin C, Xie X, Jin YJ, Zhang S, Yang B, Ye G, Chen S, Luan WJ. Overexpression of OsARD1 Improves Submergence, Drought, and Salt Tolerances of Seedling Through the Enhancement of Ethylene Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1088. [PMID: 31552078 PMCID: PMC6746970 DOI: 10.3389/fpls.2019.01088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
Acireductone dioxygenase (ARD) is a metal-binding metalloenzyme and involved in the methionine salvage pathway. In rice, OsARD1 binds Fe2+ and catalyzes the formation of 2-keto-4-methylthiobutyrate (KMTB) to produce methionine, which is an initial substrate in ethylene synthesis pathway. Here, we report that overexpression of OsARD1 elevates the endogenous ethylene release rate, enhances the tolerance to submergence stress, and reduces the sensitivity to drought, salt, and osmotic stresses in rice. OsARD1 is strongly induced by submergence, drought, salinity, PEG6000, and mechanical damage stresses and exhibits high expression level in senescent leaves. Transgenic plants overexpressing OsARD1 (OsARD1-OE) display fast elongation growth to escape submergence stress. The ethylene content is significantly maximized in OsARD1-OE plants compared with the wide type. OsARD1-OE plants display increased shoot elongation and inhibition of root elongation under the submergence stress and grow in dark due to increase of ethylene. The elongation of coleoptile under anaerobic germination is also significantly promoted in OsARD1-OE lines due to the increase of ethylene content. The sensitivity to drought and salt stresses is reduced in OsARD1-OE transgenic lines. Water holding capacity is enhanced, and the stomata and trichomes on leaves increase in OsARD1-OE lines. Drought and salt tolerance and ethylene synthesis-related genes are upregulated in OsARD1-OE plants. Subcellular localization shows that OsARD1 displays strong localization signal in cell nucleus, suggesting OsARD1 may interact with the transcription factors. Taken together, the results provide the understanding of the function of OsARD1 in ethylene synthesis and abiotic stress response in rice.
Collapse
Affiliation(s)
- Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wei Xiong
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Cuicui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Xie
- College of Agriculture, Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, China
| | - Ya-jun Jin
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bo Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Guoyou Ye
- Genetics and Biotechnology Division, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Shouyi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-jiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
- *Correspondence: Wei-jiang Luan,
| |
Collapse
|
23
|
Yang J, Liu Y, Yan H, Tian T, You Q, Zhang L, Xu W, Su Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front Genet 2018; 9:590. [PMID: 30555515 PMCID: PMC6283911 DOI: 10.3389/fgene.2018.00590] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motifs, which were initially identified in members of the Arabidopsis ethylene response factor (ERF) family, are transcriptional repression motifs in plants and are defined by the consensus sequence patterns of either LxLxL or DLNxxP. EAR motif-containing proteins can function as transcription repressors, thus interacting with co-repressors, such as TOPLESS and AtSAP18, affecting the structure of chromatin by histone modifications and thereby repressing gene transcription. EAR motif-containing proteins are highly conserved across diverse plant species and play important roles in hormone signal transduction, stress responses and development, but they have not been identified in most plants. In this study, we identified 20,542 EAR motif-containing proteins from 71 plant species based on a Hidden Markov Model and orthologous gene search, and then we constructed a functional analysis platform for plant EAR motif-containing proteins (PlantEAR, http://structuralbiology.cau.edu.cn/plantEAR) by integrating a variety of functional annotations and processed data. Several tools were provided as functional support for EAR motif-containing proteins, such as browse, search, co-expression and protein-protein interaction (PPI) network analysis as well as cis-element analysis and gene set enrichment analysis (GSEA). In addition, basing on the identified EAR motif-containing proteins, we also explored their distribution in various species and found that the numbers of EAR motif-containing proteins showed an increasing trend in evolution from algae to angiosperms.
Collapse
Affiliation(s)
- Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Yin L, Qu J, Zhou H, Shang X, Fang H, Lu J, Yan H. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants. Genes Genomics 2018; 40:927-935. [PMID: 30155710 DOI: 10.1007/s13258-018-0692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/12/2018] [Indexed: 11/25/2022]
Abstract
Polyploidy breeding of cassava has been used to improve cassava traits over the past years. We previously reported in vitro induction of tetraploids in the cassava variety "Xinxuan 048" using colchicine. Significant differences in morphology and anatomy were found between the diploid and tetraploid plants. However, very little is known about the transcriptome difference between them. In this study, morphological and physiological characteristics including leaf thickness, plant height, internode length, chlorophyll content, and photosynthetic capacity were measured. Further, we investigated and validated the difference in gene expression patterns between cassava "Xinxuan 048" tetraploid genotype and its diploid plants using RNA sequencing (RNAseq) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Significant differences in morphology and physiology were observed during tetraploidization. A comparison revealed that tetraploidy induced very limited changes in the leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants. However, the differentially expressed genes (DEGs) between 2× and 4× plants, especially those upregulated in 4× plants, were strongly associated with hormonal and stress responses. Large changes in morphology and physiology between the diploid cassava "Xinxuan 048" and its autotetraploid were not associated with large changes in their leaf transcriptomes. Moreover, the differently expressed genes related to the regulation of gibberellin and brassinosteroids potentially explained why the plant height and internode length of 4× plants became shorter. Collectively, our results suggest that 4× cassava is potentially valuable for breeding strains with improved stress resistance.
Collapse
Affiliation(s)
- Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huiwen Zhou
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiaohong Shang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hui Fang
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jiang Lu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200024, China.
| | - Huabing Yan
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
25
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
26
|
Alessio VM, Cavaçana N, Dantas LLDB, Lee N, Hotta CT, Imaizumi T, Menossi M. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2511-2525. [PMID: 29514290 PMCID: PMC5920332 DOI: 10.1093/jxb/ery083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/27/2018] [Indexed: 05/21/2023]
Abstract
Ethylene is a phytohormone involved in the regulation of several aspects of plant development and in responses to biotic and abiotic stress. The effects of exogenous application of ethylene to sugarcane plants are well characterized as growth inhibition of immature internodes and stimulation of sucrose accumulation. However, the molecular network underlying the control of ethylene biosynthesis in sugarcane remains largely unknown. The chemical reaction catalyzed by 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is an important rate-limiting step that regulates ethylene production in plants. In this work, using a yeast one-hybrid approach, we identified three basic helix-loop-helix (bHLH) transcription factors, homologs of Arabidopsis FBH (FLOWERING BHLH), that bind to the promoter of ScACS2 (Sugarcane ACS2), a sugarcane type 3 ACS isozyme gene. Protein-protein interaction assays showed that sugarcane FBH1 (ScFBH1), ScFBH2, and ScFBH3 form homo- and heterodimers in the nucleus. Gene expression analysis revealed that ScFBHs and ScACS2 transcripts are more abundant in maturing internodes during afternoon and night. In addition, Arabidopsis functional analysis demonstrated that FBH controls ethylene production by regulating transcript levels of ACS7, a homolog of ScACS2. These results indicate that ScFBHs transcriptionally regulate ethylene biosynthesis in maturing internodes of sugarcane.
Collapse
Affiliation(s)
- Valter Miotto Alessio
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CP, Campinas, SP, Brazil
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Natale Cavaçana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Marcelo Menossi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CP, Campinas, SP, Brazil
- Correspondence:
| |
Collapse
|
27
|
Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. BOTANICAL STUDIES 2017; 58:6. [PMID: 28510189 PMCID: PMC5432895 DOI: 10.1186/s40529-016-0159-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/26/2016] [Indexed: 05/05/2023]
Abstract
APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) is a superfamily in plant kingdom, which has been reported to be involved in regulation of plant growth and development, fruit ripening, defense response, and metabolism. As the final response gene in ethylene signaling pathway, AP2/ERF TF could feedback modulate phytohormone biosynthesis, including ethylene, cytokinin, gibberellin, and abscisic acid. Moreover, AP2/ERF TF also participates in response to the signals of auxin, cytokinin, abscisic acid, and jasmonate. Thus, this superfamily is key regulator for connecting the phytohormonal signals. In this review, based on the evidence of structural and functional studies, we discussed the multiple regulator roles of AP2/ERF TF in angiosperm, and then constructed the network model of AP2/ERF TF in response to various phytohormonal signals and regulatory mechanism of the cross-talk.
Collapse
Affiliation(s)
- Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Hua Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ping-Ping Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guo-Ming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zi-Ming Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shao-Ling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Center of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
28
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Yu Y, Duan X, Ding X, Chen C, Zhu D, Yin K, Cao L, Song X, Zhu P, Li Q, Nisa ZU, Yu J, Du J, Song Y, Li H, Liu B, Zhu Y. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2017; 94:509-530. [PMID: 28681139 DOI: 10.1007/s11103-017-0623-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H+-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H+-ATPase and by modifying auxin accumulation in transgenic plants.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kuide Yin
- School of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xuewei Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Pinghui Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Zaib Un Nisa
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jiyang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jianying Du
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Huiqing Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 413, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
30
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
31
|
Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. PROTOPLASMA 2017; 254:401-408. [PMID: 27040682 DOI: 10.1007/s00709-016-0960-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Drought is an important factor limiting plant development and crop production. Dissecting the factors involved in this process is the key for enhancement of plant tolerance to drought stress by genetic approach. Here, we evaluated the regulatory function of a novel rice ethylene response factor (ERF) OsERF109 in drought stress. Expression of OsERF109 was rapidly induced by stress and phytohormones. Subcellular localization and transactivation assay demonstrated that OsERF109 was localized in nucleus and possessed transactivation activity. Transgenic plants overexpressing (OE) and knockdown with RNA interfering (RI) OsERF109 exhibited significantly reduced and improved drought resistance, respectively, indicating that OsERF109 negatively regulates drought resistance in rice. Furthermore, measurement by gas chromatography showed that ethylene contents were less in OE while more in RI lines than these in wild types, supporting the data of drought tolerance and water loss in transgenic lines. Quantitative real-time PCR analysis also proved the regulation of OsERF109 in the expression of OSACS6, OSACO2, and OsERF3, which have been identified to play important roles in ethylene biosynthesis. Based on these results, our data evidence that OsERF109 regulates drought resistance by affecting the ethylene biosynthesis in rice. Overall, our study reveals the negative role of OsERF109 in ethylene biosynthesis and drought tolerance in rice.
Collapse
Affiliation(s)
- Yanwen Yu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dexin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juntao Gu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Fengru Wang
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Jingao Dong
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China.
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| |
Collapse
|
32
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077/full 10.3389/fpls.2017.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
- *Correspondence: Marcelo Menossi
| |
Collapse
|
33
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
34
|
John R, Anjum NA, Sopory SK, Akram NA, Ashraf M. Some key physiological and molecular processes of cold acclimation. BIOLOGIA PLANTARUM 2016; 60:603-618. [PMID: 0 DOI: 10.1007/s10535-016-0648-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
35
|
Yao W, Wang S, Zhou B, Jiang T. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. TREE PHYSIOLOGY 2016; 36:896-908. [PMID: 26941290 DOI: 10.1093/treephys/tpw004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/08/2016] [Indexed: 05/19/2023]
Abstract
The ethylene response factor (ERF) family is one of the largest plant-specific transcription factor families, playing an important role in plant development and response to stresses. The ERF76 gene is a member of the poplar ERF transcription factor gene family. First, we validated that the ERF76 gene expressed in leaf and root tissues is responsive to salinity stress. We then successfully cloned the ERF76 cDNA fragment containing an open reading frame from di-haploid Populus simonii × Populus nigra and proved that ERF76 protein is targeted to the nucleus. Finally, we transferred the gene into the same poplar clone by the Agrobacterium-mediated leaf disc method. Using both RNA-Seq and reverse transcription-quantitative polymerase chain reaction, we validated that expression level of ERF76 is significantly higher in transgenic plants than that in the nontransgenic control. Using RNA-Seq data, we have identified 375 genes that are differentially expressed between the transgenic plants and the control under salt treatment. Among the differentially expressed genes, 16 are transcription factor genes and 45 are stress-related genes, both of which are upregulated significantly in transgenic plants, compared with the control. Under salt stress, the transgenic plants showed significant increases in plant height, root length, fresh weight, and abscisic acid (ABA) and gibberellin (GA) concentration compared with the control, suggesting that overexpression of ERF76 in transgenic poplar upregulated the expression of stress-related genes and increased the ability of ABA and GA biosynthesis, which resulted in stronger tolerance to salt stress.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Shengji Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| |
Collapse
|
36
|
Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. PLoS One 2016; 11:e0147398. [PMID: 26848754 PMCID: PMC4743971 DOI: 10.1371/journal.pone.0147398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023] Open
Abstract
The response and adaption to salt remains poorly understood for beach morning glory [Ipomoea imperati (Vahl) Griseb], one of a few relatives of sweetpotato, known to thrive under salty and extreme drought conditions. In order to understand the genetic mechanisms underlying salt tolerance of a Convolvulaceae member, a genome-wide transcriptome study was carried out in beach morning glory by 454 pyrosequencing. A total of 286,584 filtered reads from both salt stressed and unstressed (control) root and shoot tissues were assembled into 95,790 unigenes with an average length of 667 base pairs (bp) and N50 of 706 bp. Putative differentially expressed genes (DEGs) were identified as transcripts overrepresented under salt stressed tissues compared to the control, and were placed into metabolic pathways. Most of these DEGs were involved in stress response, membrane transport, signal transduction, transcription activity and other cellular and molecular processes. We further analyzed the gene expression of 14 candidate genes of interest for salt tolerance through quantitative reverse transcription PCR (qRT-PCR) and confirmed their differential expression under salt stress in both beach morning glory and sweetpotato. The results comparing transcripts of I. imperati against the transcriptome of other Ipomoea species, including sweetpotato are also presented in this study. In addition, 6,233 SSR markers were identified, and an in silico analysis predicted that 434 primer pairs out of 4,897 target an identifiable homologous sequence in other Ipomoea transcriptomes, including sweetpotato. The data generated in this study will help in understanding the basics of salt tolerance of beach morning glory and the SSR resources generated will be useful for comparative genomics studies and further enhance the path to the marker-assisted breeding of sweetpotato for salt tolerance.
Collapse
Affiliation(s)
- Julio Solis
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| | - Steven R. Brandt
- Louisiana Digital Media Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Arthur Villordon
- Sweet Potato Research Station, Louisiana State University Agricultural Center, Chase, LA, United States of America
| | - Don La Bonte
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America
- * E-mail: (NB); (DL)
| |
Collapse
|
37
|
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2016; 7:1029. [PMID: 27471513 PMCID: PMC4943945 DOI: 10.3389/fpls.2016.01029] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagar, India
| | - Balwant Singh
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses ResearchKanpur, India
| | - Zahoor A. Dar
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ajaz A. Lone
- Dryland Agricultural Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirBudgam, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- *Correspondence: Sneh L. Singla-Pareek,
| |
Collapse
|
38
|
Lim CW, Lim S, Baek W, Lee SC. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. PHYSIOLOGIA PLANTARUM 2015; 154:526-42. [PMID: 25302464 DOI: 10.1111/ppl.12298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/26/2014] [Indexed: 05/08/2023]
Abstract
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
39
|
Bahieldin A, Atef A, Sabir JSM, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF, Hassan SM, Baeshen NA, Abuzinadah O, Al-Kordy MA, El-Domyati FM, Jansen RK. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol 2015; 338:285-97. [PMID: 25882349 DOI: 10.1016/j.crvi.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resulted in 94.3 to 95.3% of the unmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were unigene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were "response to external stimulus" and "electron-carrier activity". Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Nezar A Radhwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Osama Abuzinadah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Integrative Biology, University of Texas at Austin, 78712 Austin, USA
| |
Collapse
|
40
|
Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PCG, Vandepoele K, Hemerly AS. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 2014; 9:e114744. [PMID: 25489849 PMCID: PMC4260876 DOI: 10.1371/journal.pone.0114744] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.
Collapse
Affiliation(s)
- Lívia Vargas
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ailton B. Santa Brígida
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - José P. Mota Filho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Thais G. de Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Cristian A. Rojas
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, PR, Brazil
| | - Dries Vaneechoutte
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Michiel Van Bel
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | - Paulo C. G. Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Wang L, Qin L, Liu W, Zhang D, Wang Y. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2014; 152:84-97. [PMID: 24479715 DOI: 10.1111/ppl.12159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/10/2013] [Accepted: 12/22/2013] [Indexed: 05/24/2023]
Abstract
Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability.
Collapse
Affiliation(s)
- Liuqiang Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | |
Collapse
|
42
|
Expression patterns of ERF genes underlying abiotic stresses in di-haploid Populus simonii × P. nigra. ScientificWorldJournal 2014; 2014:745091. [PMID: 24737991 PMCID: PMC3967781 DOI: 10.1155/2014/745091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/01/2014] [Indexed: 01/01/2023] Open
Abstract
176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment.
Collapse
|
43
|
Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latché A, Pech JC, Bouzayen M, Regad F. A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:406-19. [PMID: 23931552 DOI: 10.1111/tpj.12305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 05/20/2023]
Abstract
Ethylene Response Factors (ERFs) are downstream components of the ethylene signal transduction pathway, although their role in ethylene-dependent developmental processes remains poorly understood. As the ethylene-inducible tomato Sl-ERF.B3 has been shown previously to display a strong binding affinity to GCC-box-containing promoters, its physiological significance was addressed here by a reverse genetics approach. However, classical up- and down-regulation strategies failed to give clear clues to its roles in planta, probably due to functional redundancy among ERF family members. Expression of a dominant repressor ERF.B3-SRDX version of Sl-ERF.B3 in the tomato resulted in pleiotropic ethylene responses and vegetative and reproductive growth phenotypes. The dominant repressor etiolated seedlings displayed partial constitutive ethylene response in the absence of ethylene and adult plants exhibited typical ethylene-related alterations such as leaf epinasty, premature flower senescence and accelerated fruit abscission. The multiple symptoms related to enhanced ethylene sensitivity correlated with the altered expression of ethylene biosynthesis and signaling genes and suggested the involvement of Sl-ERF.B3 in a feedback mechanism that regulates components of ethylene production and response. Moreover, Sl-ERF.B3 was shown to modulate the transcription of a set of ERFs and revealed the existence of a complex network interconnecting different ERF genes. Overall, the study indicated that Sl-ERF.B3 had a critical role in the regulation of multiple genes and identified a number of ERFs among its primary targets, consistent with the pleiotropic phenotypes displayed by the dominant repression lines.
Collapse
Affiliation(s)
- Mingchun Liu
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France; INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sherif S, El-Sharkawy I, Paliyath G, Jayasankar S. PpERF3b, a transcriptional repressor from peach, contributes to disease susceptibility and side branching in EAR-dependent and -independent fashions. PLANT CELL REPORTS 2013; 32:1111-24. [PMID: 23515898 DOI: 10.1007/s00299-013-1405-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 05/21/2023]
Abstract
Peach ERF3b is a potent transcriptional repressor for defense-related genes even in the presence of similar levels of transcriptional activators and can interfere with plant development through pathways independent of the EAR motif. Ethylene response factors (ERFs) are a major group of plant transcription factors with either activation or repression capabilities on gene transcription. Repressor-type ERFs are characterised by an intrinsic motif, namely the ERF-associated amphiphilic repression motif (EAR). Here we report the identification of three genes from peach (Prunus persica), PpERF12, PpERF3a and PpERF3b, encoding for ERF repressors. The transcription kinetics of these genes was investigated by qRT-PCR after inoculation of peach leaves with Xanthomonas campestris pv. pruni. All three genes showed higher induction in the susceptible 'BabyGold 5', than in the resistant 'Venture' peach varieties suggesting a negative role for these genes in disease resistance. The functional potency of PpERF3b has been confirmed in vivo by its ability to repress the expression of GUS-reporter gene. To better understand the functional role of PpERF3b, the full-length and the EAR-truncated (PpERF3b∆EAR) genes were overexpressed in tobacco (Nicotiana tabacum). Both transgenic plants (PpERF3b and PpERF3b∆EAR) uniformly exhibited precocious side branching, which suggests the interference of PpERF3b with auxin-mediated dormancy of lateral shoots. Consistent with that the expression of auxin-response factors (Nt-ARF1, Nt-ARF6 and Nt-ARF8) was significantly downregulated in transgenic plants compared to the wild type (WT). Although side branching was independent of EAR motif, the response of transgenic plants to inoculation by Pseudomonas syringae pv. tabaci was EAR dependent. Transgenic plants overexpressing PpERF3b∆EAR showed less disease symptoms than those overexpressing the full-length gene or WT plants. Resistance of PpERF3b∆EAR plants was associated with enhanced induction of pathogenesis-related (PR) genes. Our results indicate that repressor-type ERFs might act through pathways that are dependent or independent of the EAR motif.
Collapse
Affiliation(s)
- S Sherif
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., PO Box 7000, Vineland Station, ON L0R 2E0, Canada
| | | | | | | |
Collapse
|
45
|
Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Lin J, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:70-8. [PMID: 23201563 DOI: 10.1016/j.plaphy.2012.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/26/2012] [Indexed: 05/02/2023]
Abstract
Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms.
Collapse
Affiliation(s)
- Yan Lai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Biotechnological approaches to study plant responses to stress. BIOMED RESEARCH INTERNATIONAL 2012; 2013:654120. [PMID: 23509757 PMCID: PMC3591138 DOI: 10.1155/2013/654120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Collapse
|
47
|
Begcy K, Mariano ED, Gentile A, Lembke CG, Zingaretti SM, Souza GM, Menossi M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One 2012; 7:e44697. [PMID: 22984543 PMCID: PMC3439409 DOI: 10.1371/journal.pone.0044697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. METHODOLOGY/PRINCIPAL FINDINGS In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. CONCLUSIONS/SIGNIFICANCE The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO(2) concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Collapse
Affiliation(s)
- Kevin Begcy
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eduardo D. Mariano
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Agustina Gentile
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carolina G. Lembke
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sonia Marli Zingaretti
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Glaucia M. Souza
- Laboratório de Transdução de Sinal, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3899-911. [PMID: 22442415 PMCID: PMC3388842 DOI: 10.1093/jxb/ers079] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 05/18/2023]
Abstract
Rice OsERF922, encoding an APETELA2/ethylene response factor (AP2/ERF) type transcription factor, is rapidly and strongly induced by abscisic acid (ABA) and salt treatments, as well as by both virulent and avirulent pathovars of Magnaporthe oryzae, the causal agent of rice blast disease. OsERF922 is localized to the nucleus, binds specifically to the GCC box sequence, and acts as a transcriptional activator in plant cells. Knockdown of OsERF922 by means of RNAi enhanced resistance against M. oryzae. The elevated disease resistance of the RNAi plants was associated with increased expression of PR, PAL, and the other genes encoding phytoalexin biosynthetic enzymes and without M. oryzae infection. In contrast, OsERF922-overexpressing plants showed reduced expression of these defence-related genes and enhanced susceptibility to M. oryzae. In addition, the OsERF922-overexpressing lines exhibited decreased tolerance to salt stress with an increased Na(+)/K(+) ratio in the shoots. The ABA levels were found increased in the overexpressing lines and decreased in the RNAi plants. Expression of the ABA biosynthesis-related genes, 9-cis-epoxycarotenoid dioxygenase (NCED) 3 and 4, was upregulated in the OsERF922-overexpressing plants, and NCED4 was downregulated in the RNAi lines. These results suggest that OsERF922 is integrated into the cross-talk between biotic and abiotic stress-signalling networks perhaps through modulation of the ABA levels.
Collapse
Affiliation(s)
| | | | | | | | - Zejian Guo
- Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
49
|
Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inzé D, Østergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I. Tackling drought stress: receptor-like kinases present new approaches. THE PLANT CELL 2012; 24:2262-2278. [PMID: 22693282 PMCID: PMC3406892 DOI: 10.1105/tpc.112.096677] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/04/2012] [Accepted: 05/22/2012] [Indexed: 11/08/2022]
Abstract
Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.
Collapse
Affiliation(s)
- Alex Marshall
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Reidunn B. Aalen
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Martin R. Broadley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Melinka A. Butenko
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre de Recerca en Agrigenòmica, 08193 Barcelona, Spain
| | - Sacco de Vries
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, Plant Biochemistry, University Tübingen, 72076 Tuebingen, Germany
| | - Neil S. Graham
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Christine Granier
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Unité Mixte de Recherche 759, Institut National de la Recherche Agronomique-SupAgro, 34060 Montpellier, cedex 1, France
| | - Thomas Greb
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zurich, Switzerland
| | - John P. Hammond
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Renze Heidstra
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Charlie Hodgman
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael Hothorn
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tuebingen, Germany
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Yvonne Stahl
- Developmental Genetics, Heinrich-Heine University, D-40225 Duesseldorf, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
50
|
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. PLANT CELL REPORTS 2012; 31:349-60. [PMID: 22038370 DOI: 10.1007/s00299-011-1170-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 05/02/2023]
Abstract
A novel member of the AP2/ERF transcription factor family, SlERF5, was identified from a tomato mature leaf cDNA library screen. The complete DNA sequence of SlERF5 encodes a putative 244-amino acid DNA-binding protein which most likely acts as a transcriptional regulator and is a member of the ethylene responsive factor (ERF) superfamily. Analysis of the deduced SlERF5 protein sequence showed that it contained an ERF domain and belonged to the class III group of ERFs proteins. Expression of SlERF5 was induced by abiotic stress, such as high salinity, drought, flooding, wounding and cold temperatures. Over-expression of SlERF5 in transgenic tomato plants resulted in high tolerance to drought and salt stress and increased levels of relative water content compared with wild-type plants. This study indicates that SlERF5 is mainly involved in the responses to abiotic stress in tomato.
Collapse
Affiliation(s)
- Yu Pan
- College of Bioengineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | | | | | | | | | | |
Collapse
|