1
|
Zhang E, Liu K, Liang S, Liu L, Nian H, Lian T. Investigating the synergistic effects of nano-zinc and biochar in mitigating aluminum toxicity in soybeans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109275. [PMID: 39541865 DOI: 10.1016/j.plaphy.2024.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Aluminum (Al) toxicity limited root growth by reducing nutrient translocation and promoting reactive oxygen species (ROS) accumulation, particularly in soybean. The endophyte of root could be modified by plant metabolites, which could potentially alter the tolerance to environmental toxicity of plants in acidic-Al soils. To explore how they help soybean mitigate Al toxicity by altering root endophytes, zinc oxide nanoparticles (ZnO NPs) at doses of 0, 30, 60, 90 mg/kg and 2% biochar (BC) were selected as bio modifiers, and Al2(SO4)3 at 19 mg/kg was used to simulate Al toxicity. We analyzed root endophytes and metabolites by high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS). We found that ZnO NPs with BC could bolster soybean resilience against Al toxicity by enriching soil nutrients, activating enzymes, and bolstering antioxidant mechanisms. We also observed that it enriched root endophytic microbial diversity, notably increasing populations of Nakamurella, Aureimonas, Luteimonas, and Sphingomonas. These changes in the endophytes contributed to the improved adaptability of plants to adversity under Al toxicity. This study highlighted the potential of using ZnO NPs and BC as a sustainable approach to combat Al toxicity, emphasizing the intricate interplay between plant physiology and rhizosphere microbial dynamics in mitigating the effects of environmental toxicity.
Collapse
Affiliation(s)
- Enxi Zhang
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kun Liu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Suwen Liang
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lingrui Liu
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- South China Institute for Soybean Innovation Research, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Sun X, Huang D, Huang Y, Häggblom M, Soleimani M, Li J, Chen Z, Chen Z, Gao P, Li B, Sun W. Microbial-mediated oxidative dissolution of orpiment and realgar in circumneutral aquatic environments. WATER RESEARCH 2024; 251:121163. [PMID: 38266438 DOI: 10.1016/j.watres.2024.121163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Arsenic (As) is a toxic metalloid that causes severe environmental contamination worldwide. Upon exposure to aqueous phases, the As-bearing minerals, such as orpiment (As2S3) and realgar (As4S4), undergo oxidative dissolution, in which biotic and abiotic activities both contributed significant roles. Consequently, the dissolved As and S are rapidly discharged through water transportation to broader regions and contaminate surrounding areas, especially in aquatic environments. Despite both orpiment and realgar are frequently encountered in carbonate-hosted neutral environments, the microbial-mediated oxidative dissolution of these minerals, however, have been primarily investigated under acidic conditions. Therefore, the current study aimed to elucidate microbial-mediated oxidative dissolution under neutral aquatic conditions. The current study demonstrated that the dissolution of orpiment and realgar is synergistically regulated by abiotic (i.e., specific surface area (SSA) of the mineral) and biotic (i.e., microbial oxidation) factors. The initial dissolution of As(III) and S2- from minerals is abiotically impacted by SSA, while the microbial oxidation of As(III) and S2- accelerated the overall dissolution rates of orpiment and realgar. In As-contaminated environments, members of Thiobacillus and Rhizobium were identified as the major populations that mediated oxidative dissolution of orpiment and realgar by DNA-stable isotope probing. This study provides novel insights regarding the microbial-mediated oxidative dissolution process of orpiment and realgar under neutral conditions.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jiayi Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Park JW, Braswell WE, Kunta M. Co-Occurrence Analysis of Citrus Root Bacterial Microbiota under Citrus Greening Disease. PLANTS (BASEL, SWITZERLAND) 2023; 13:80. [PMID: 38202388 PMCID: PMC10781011 DOI: 10.3390/plants13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
Candidatus Liberibacter asiaticus (CLas) is associated with Citrus Huanglongbing (HLB), a devastating disease in the US. Previously, we conducted a two-year-long monthly HLB survey by quantitative real-time PCR using root DNA fractions prepared from 112 field grapefruit trees grafted on sour orange rootstock. Approximately 10% of the trees remained CLas-free during the entire survey period. This study conducted 16S metagenomics using the time-series root DNA fractions, monthly prepared during twenty-four consecutive months, followed by microbial co-occurrence network analysis to investigate the microbial factors contributing to the CLas-free phenotype of the aforementioned trees. Based on the HLB status and the time when the trees were first diagnosed as CLas-positive during the survey, the samples were divided into four groups, Stage H (healthy), Stage I (early), II (mid), and III (late) samples. The 16S metagenomics data using Silva 16S database v132 revealed that HLB compromised the diversity of rhizosphere microbiota. At the phylum level, Actinobacteria and Proteobacteria were the predominant bacterial phyla, comprising >93% of total bacterial phyla, irrespective of HLB status. In addition, a temporal change in the rhizosphere microbe population was observed during a two-year-long survey, from which we confirmed that some bacterial families differently responded to HLB disease status. The clustering of the bacterial co-occurrence network data revealed the presence of a subnetwork composed of Streptomycetaceae and bacterial families with plant growth-promoting activity in Stage H and III samples. These data implicated that the Streptomycetaceae subnetwork may act as a functional unit against HLB.
Collapse
Affiliation(s)
- Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| | - W. Evan Braswell
- Insect Management and Molecular Diagnostic Laboratory, USDA APHIS PPQ S&T, Edinburg, TX 78541, USA
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| |
Collapse
|
4
|
Farooq B, Nazir A, Anjum S, Farooq M, Farooq MU. Diversity of various symbiotic associations between microbes and host plants. RHIZOBIOME 2023:1-18. [DOI: 10.1016/b978-0-443-16030-1.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Maghboli Balasjin N, Maki JS, Schläppi MR, Marshall CW. Plant Growth-Promoting Activity of Bacteria Isolated from Asian Rice (Oryza sativa L.) Depends on Rice Genotype. Microbiol Spectr 2022; 10:e0278721. [PMID: 35862989 PMCID: PMC9431195 DOI: 10.1128/spectrum.02787-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Asian rice is one of the most important crops because it is a staple food for almost half of the world's population. To have production of rice keep pace with a growing world population, it is anticipated that the use of fertilizers will also need to increase, which may cause environmental damage through runoff impacts. An alternative strategy to increase crop yield is the use of plant growth-promoting bacteria. Thousands of microbial species can exist in association with plant roots and shoots, and some are critical to the plant's survival. We isolated 140 bacteria from two distantly related rice accessions and investigated whether their impact on the growth of four different rice accessions. The bacterial isolates were screened for their ability to solubilize phosphate, a known plant growth-promoting characteristic, and 25 isolates were selected for further analysis. These 25 phosphate-solubilizing isolates were also able to produce other potentially growth-promoting factors. Five of the most promising bacterial isolates were chosen for whole-genome sequencing. Four of these bacteria, isolates related to Pseudomonas mosselii, a Microvirga sp., Paenibacillus rigui, and Paenibacillus graminis, improved root and shoot growth in a rice genotype-dependent manner. This indicates that while bacteria have several known plant growth-promoting functions, their effects on growth parameters are rice genotype dependent and suggest a close relationship between plants and their microbial partners. IMPORTANCE In this study, endophytic bacterial isolates from roots and shoots of two distantly related rice accessions were characterized phenotypically and genotypically. From the isolated bacterial species, five of the most promising plant growth-promoting bacteria were selected to test their abilities to enhance growth of the four rice accessions. Interestingly, plant growth enhancement was both bacterial isolate specific and plant genotype specific. However, the positive interactions between plant and bacteria could not easily be predicted because rice growth-promoting bacteria isolated from their host plants did not necessarily stimulate growth of their own host.
Collapse
Affiliation(s)
| | - James S. Maki
- Marquette University, Biological Sciences Department, Milwaukee, Wisconsin, USA
| | - Michael R. Schläppi
- Marquette University, Biological Sciences Department, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
6
|
Korenblum E, Massalha H, Aharoni A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. THE PLANT CELL 2022; 34:3168-3182. [PMID: 35678568 PMCID: PMC9421461 DOI: 10.1093/plcell/koac163] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 05/30/2023]
Abstract
Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.
Collapse
Affiliation(s)
- Elisa Korenblum
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon 7528809, Israel
| | - Hassan Massalha
- Theory of Condensed Matter Group, Cavendish Laboratory, Wellcome Sanger Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Ikeda S, Okazaki K, Tsurumaru H, Suzuki T, Hirafuji M. Effects of Different Types of Additional Fertilizers on Root-associated Microbes of Napa Cabbage Grown in an Andosol Field in Japan. Microbes Environ 2022; 37. [PMID: 35650110 PMCID: PMC9530736 DOI: 10.1264/jsme2.me22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of different types of additional fertilizations (a compound fertilizer and Chiyoda-kasei) on the root-associated microbes of napa cabbage grown in an Andosol field were investigated by molecular community ana-lyses. Most of the closest known species of the bacterial sequences whose relative abundance significantly differed among fertilizers were sensitive to nitrogen fertilization and/or related to the geochemical cycles of nitrogen. The fungal community on the roots of napa cabbage was dominated by two genera, Bipolaris and Olpidium. The relative abundance of these two genera was affected by the types of fertilizers to some extent and showed a strong negative correlation.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | - Kazuyuki Okazaki
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | | |
Collapse
|
8
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
10
|
Webster G, Mullins AJ, Cunningham-Oakes E, Renganathan A, Aswathanarayan JB, Mahenthiralingam E, Vittal RR. Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India. FEMS Microbiol Ecol 2021; 96:5876344. [PMID: 32710748 PMCID: PMC7422900 DOI: 10.1093/femsec/fiaa147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial endophytes are found in the internal tissues of plants and have intimate associations with their host. However, little is known about the diversity of medicinal plant endophytes (ME) or their capability to produce specialised metabolites that may contribute to therapeutic properties. We isolated 75 bacterial ME from 24 plant species of the Western Ghats, India. Molecular identification by 16S rRNA gene sequencing grouped MEs into 13 bacterial genera, with members of Gammaproteobacteria and Firmicutes being the most abundant. To improve taxonomic identification, 26 selected MEs were genome sequenced and average nucleotide identity (ANI) used to identify them to the species-level. This identified multiple species in the most common genus as Bacillus. Similarly, identity of the Enterobacterales was also distinguished within Enterobacter and Serratia by ANI and core-gene analysis. AntiSMASH identified non-ribosomal peptide synthase, lantipeptide and bacteriocin biosynthetic gene clusters (BGC) as the most common BGCs found in the ME genomes. A total of five of the ME isolates belonging to Bacillus, Serratia and Enterobacter showed antimicrobial activity against the plant pathogen Pectobacterium carotovorum. Using molecular and genomic approaches we have characterised a unique collection of endophytic bacteria from medicinal plants. Their genomes encode multiple specialised metabolite gene clusters and the collection can now be screened for novel bioactive and medicinal metabolites.
Collapse
Affiliation(s)
- Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Edward Cunningham-Oakes
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Arun Renganathan
- Department of Studies in Microbiology, University of Mysore, Karnataka, 570006, Mysore, India
| | | | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Karnataka, 570006, Mysore, India
| |
Collapse
|
11
|
Tharek M, Khairuddin D, Najimudin N, Ghazali AH. Plant Growth Promoting Potentials of Beneficial Endophytic Escherichia coli USML2 in Association with Rice Seedlings. Trop Life Sci Res 2021; 32:119-143. [PMID: 33936555 PMCID: PMC8054666 DOI: 10.21315/tlsr2021.32.1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An endophytic Escherichia coli USML2 originally isolated from the inner part of an oil palm (Elaeis guineensis Jacq.) leaf tissue was inoculated to rice seedlings to investigate its ability in colonising plant inner tissues and promoting growth. Infection of E. coli USML2 was initiated by colonisation on the root surface, invasion of the interior root system followed by endophytic spreading. Inoculation of E. coli USML2 in the rice rhizosphere zone resulted in a significant increase in leaf numbers (33.3%), chlorophyll content (33.3%), shoot height (34.8%) and plant dry weight (90.4%) of 42 days old rice seedlings as compared to the control. These findings also demonstrated the ability of E. coli USML2 to spread endophytically which serves as a beneficial strategy for the bacterium to colonise the host plant and gain protection against adverse soil conditions. The genome of E. coli USML2 had also revealed predicted genes essential for endophytic bacterial colonisation and plant growth promotion which further proven potentials of E. coli USML2 as Plant Growth Promoting Endophyte (PGPE).
Collapse
Affiliation(s)
- Munirah Tharek
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Dzulaikha Khairuddin
- Department of Water Resources and Environmental System, Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Amir Hamzah Ghazali
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Yang F, Zhang J, Zhang H, Ji G, Zeng L, Li Y, Yu C, Fernando WGD, Chen W. Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. FRONTIERS IN PLANT SCIENCE 2020; 11:963. [PMID: 32793250 PMCID: PMC7390967 DOI: 10.3389/fpls.2020.00963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 05/25/2023]
Abstract
The endophytic microbiome plays an important role in plant health and pathogenesis. However, little is known about its relationship with bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). The current study compared the community compositional structure of the endophytic microbiota in healthy and BB symptomatic leaves of rice through a metabarcoding approach, which revealed BB induced a decrease in the alpha-diversity of the fungal communities and an increase in the bacterial communities. BB-diseased rice leaves were enriched with saprophytic fungi that are capable of decomposing plant cell walls (e.g. Khuskia spp. and Leptosphaerulina spp.), while healthy rice leaves were found to be significantly more abundant with plant pathogens or mycotoxin-producing fungi (e.g. Fusarium, Magnaporthe, and Aspergillus). The endophytic bacterial communities of BB-diseased leaves were significantly enriched with Pantoea, Pseudomonas, and Curtobacterium, strains. Pantoea sp. isolates from BB leaves are identified as promising candidates for the biocontrol of BB for their ability to inhibit in vitro growth of Xoo, suppress the development of rice BB disease, and possess multiple PGP characteristics. Our study revealed BB-induced complexed changes in the endophytic fungal and bacterial communities of rice leaves and demonstrated that BB-associated enrichment of some endophytic bacterial taxa, e.g. Pantoea sp. isolates, may play important roles in suppressing the development of BB disease in rice.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaying Zhang
- Ottawa Research & Development Centre, Science & Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Guanghai Ji
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Liexian Zeng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Wen Chen
- Ottawa Research & Development Centre, Science & Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
13
|
Kaushal M, Mahuku G, Swennen R. Metagenomic Insights of the Root Colonizing Microbiome Associated with Symptomatic and Non-Symptomatic Bananas in Fusarium Wilt Infected Fields. PLANTS 2020; 9:plants9020263. [PMID: 32085593 PMCID: PMC7076721 DOI: 10.3390/plants9020263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Plants tissues are colonized by diverse communities of microorganisms called endophytes. They are key determinants of plant production and health, for example by facilitating nutrient exchanges or limiting disease development. Endophytic communities of banana plants have not been studied until very recently, and their potential role in disease development has not been explored so far. Roots from symptomatic and non-symptomatic banana plants were sampled from fields infected by Fusarium oxysporum f.sp. cubense race 1. The goal was to compare the endophytic microbiota between symptomatic and non-symptomatic plants through high throughput sequencing of 16s rDNA and shotgun metagenome sequencing. The results revealed that the endophytic root microbiome in bananas is dominated by Proteobacteria and Bacteroidetes followed to a lesser extent by Actinobacteria. The development of disease greatly impacted the endophytic microbial communities. For example, Flavobacteriales abundance was correlated with symptom development.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam-34441, Tanzania;
- Correspondence: ; Tel.: +255-758589012
| | - George Mahuku
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam-34441, Tanzania;
| | - Rony Swennen
- Bioversity International, Willem De Croylaan 42, B-3001 Leuven, Belgium;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
- International Institute of Tropical Agriculture. c/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha 23306, Tanzania
| |
Collapse
|
14
|
Zhang Q, Geng Z, Li D, Ding Z. Characterization and discrimination of microbial community and co-occurrence patterns in fresh and strong flavor style flue-cured tobacco leaves. Microbiologyopen 2020; 9:e965. [PMID: 31808296 PMCID: PMC7002102 DOI: 10.1002/mbo3.965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Fermentation, also known as aging, is vital for enhancing the quality of flue-cured tobacco leaves (FTLs). Aged FTLs demonstrate high-quality sensory characteristics, while unaged FTLs do not. Microbes play important roles in the FTL fermentation process. However, the eukaryotic microbial community diversity is poorly understood, as are microbial associations within FTLs. We aimed to characterize and compare the microbiota associated with two important categories, fresh and strong flavor style FTLs, and to reveal correlations between the microbial taxa within them. Based on 16S and 18S rRNA Illumina MiSeq sequencing, the community richness and diversity of prokaryotes were almost as high as that of eukaryotes. The dominant microbes of FTLs belonged to seven genera, including Pseudomonas, Bacillus, Methylobacterium, Acinetobacter, Sphingomonas, Neophaeosphaeria, and Cladosporium, of the Proteobacteria, Firmicutes, and Ascomycota phyla. According to partial least square discriminant analysis (PLS-DA), Xanthomonas, Franconibacter, Massilia, Quadrisphaera, Staphylococcus, Cladosporium, Lodderomyces, Symmetrospora, Golovinomyces, and Dioszegia were significantly positively correlated with fresh flavor style FTLs, while Xenophilus, Fusarium, unclassified Ustilaginaceae, Tilletiopsis, Cryphonectria, Colletotrichum, and Cyanodermella were significantly positively correlated with strong flavor style FTLs. Network analysis identified seven hubs, Aureimonas, Kocuria, Massilia, Brachybacterium, Clostridium, Dietzia, and Vishniacozyma, that may play important roles in FTL ecosystem stability, which may be destroyed by Myrmecridium. FTL microbiota was found to be correlated with flavor style. Species present in lower numbers than the dominant microbes might be used as microbial markers to discriminate different flavor style samples and to stabilize FTL microbial communities. This research advances our understanding of FTL microbiota and describes a means of discriminating between fresh and strong flavor FTLs based on their respective stable microbiota.
Collapse
Affiliation(s)
- Qianying Zhang
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| | - Zongze Geng
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Dongliang Li
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
15
|
Esposito-Polesi NP. Contaminação versus manifestação endofítica: implicações no cultivo in vitro de plantas. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo A cultura de tecidos vegetais é imprescindível à propagação e multiplicação uniforme de plantas, à conservação de germoplasma, a programas de melhoramento e à transformação genética. Essa técnica tem exigido, cada vez mais, estudos que colaborem com o entendimento dos mecanismos envolvidos no crescimento dos microrganismos nos meios de cultivo, bem como as relações que eles estabelecem com a planta hospedeira. Dessa maneira, a presente revisão pretende esclarecer esses questionamentos e promover a distinção entre contaminação e manifestação endofítica que ocorrem no cultivo in vitro por diferentes causas. Tal distinção permite diminuir o pânico que se instala quando do seu aparecimento, além de auxiliar na adoção de medidas de prevenção e/ou controle desses eventos sem que haja descartes desnecessários de material de alto valor comercial e genético.
Collapse
|
16
|
Matthews A, Pierce S, Hipperson H, Raymond B. Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Front Microbiol 2019; 10:581. [PMID: 31019492 PMCID: PMC6458290 DOI: 10.3389/fmicb.2019.00581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 02/01/2023] Open
Abstract
Currently our limited understanding of crop rhizosphere community assembly hinders attempts to manipulate it beneficially. Variation in root communities has been attributed to plant host effects, soil type, and plant condition, but it is hard to disentangle the relative importance of soil and host without experimental manipulation. To examine the effects of soil origin and host plant on root associated bacterial communities we experimentally manipulated four crop species in split-plot mesocosms and surveyed variation in bacterial diversity by Illumina amplicon sequencing. Overall, plant species had a greater impact than soil type on community composition. While plant species associated with different Operational Taxonomic Units (OTUs) in different soils, plants tended to recruit bacteria from similar, higher order, taxonomic groups in different soils. However, the effect of soil on root-associated communities varied between crop species: Onion had a relatively invariant bacterial community while other species (maize and pea) had a more variable community structure. Dynamic communities could result from environment specific recruitment, differential bacterial colonization or reflect broader symbiont host range; while invariant community assembly implies tighter evolutionary or ecological interactions between plants and root-associated bacteria. Irrespective of mechanism, it appears both communities and community assembly rules vary between crop species.
Collapse
Affiliation(s)
- Andrew Matthews
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Sarah Pierce
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Helen Hipperson
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom.,Department of Animal and Plant Sciences, P3 Institute for Plant and Soil Biology, The University of Sheffield, Sheffield, United Kingdom
| | - Ben Raymond
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
17
|
Cui HL, Duan GL, Zhang H, Cheng W, Zhu YG. Microbiota in non-flooded and flooded rice culms. FEMS Microbiol Ecol 2019; 95:5393367. [PMID: 30889240 DOI: 10.1093/femsec/fiz036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023] Open
Abstract
Rice plants are the habitat for large and diverse populations of microbes, which play important roles on rice health and productivity. However, the response of microbiome on rice culm to water flooding is poorly understood. In this study, the bacterial community on non-flooded (RSA) and flooded (RSB) rice culms was investigated through 16S rRNA gene sequencing. The results showed that RSA and RSB had significantly distinct bacterial communities. In RSA, Gammaproteobacteria and Pantoea were the most abundant class (57%), genus (37.06%), respectively, while in RSB, the most abundant phylum and genus was Firmicutes (54%) and Bacillus (52.63%), respectively. Compared with RSA, the abundance of 27 genera significantly increased and 21 genera significantly decreased in RSB, and some remarkably changed species, such as Aeromonas, Bacillus were identified, which are sensitive to non-flooded or flooded conditions. In addition, rare operational taxonomic units (OTUs) was much more than abundant OTUs in all samples, and RSB had significantly higher bacterial richness than RSA due to having more rare taxa. Our study would advance the insights into the microbiome of rice culms and its response to flooding, which would help to identify potential beneficial bacteria for improving crop health and sustainable productivity in agroecosystems.
Collapse
Affiliation(s)
- Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing 100049, People's Republic of China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085, People's Republic of China
| | - Hongmei Zhang
- Jiaxing Academy of Agricultural Sciences, Shuangqiao Town, Xiuzhou District, Jiaxing 314016, People's Republic of China
| | - Wangda Cheng
- Jiaxing Academy of Agricultural Sciences, Shuangqiao Town, Xiuzhou District, Jiaxing 314016, People's Republic of China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085, People's Republic of China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences,1799 Jimei Rd, Xiamen 361021, Fujian Province, People's Republic of China
| |
Collapse
|
18
|
Masuda S, Sasaki K, Kazama Y, Kisara C, Takeda S, Hanzawa E, Minamisawa K, Sato T. Mapping of quantitative trait loci related to primary rice root growth as a response to inoculation with Azospirillum sp. strain B510. Commun Integr Biol 2018; 11:1-6. [PMID: 30214671 PMCID: PMC6132424 DOI: 10.1080/19420889.2018.1502586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022] Open
Abstract
Azospirillum sp. strain B510 has been known as the plant growth-promoting endophyte; however, the growth-promotion effect is dependent on the plant genotype. Here, we aimed to identify quantitative trait loci (QTL) related to primary root length in rice at the seedling stage as a response to inoculation with B510. The primary root length of "Nipponbare" was significantly reduced by inoculation with B510, whereas that of "Kasalath" was not affected. Thus, we examined 98 backcrossed inbred lines and four chromosome segment substitution lines (CSSL) derived from a cross between Nipponbare and Kasalath. The primary root length was measured as a response to inoculation with B510, and the relative root length (RRL) was calculated based on the response to non-inoculation. Three QTL alleles, qRLI-6 and qRLC-6 on Chromosome (Chr.) 6 and qRRL-7 on Chr. 7 derived from Kasalath increased primary root length with inoculation (RLI), without inoculation, (RLC) and RRL and explained 20.2%, 21.3%, and 11.9% of the phenotypic variation, respectively. CSSL33, in which substitution occurred in the vicinity region of qRRL-7, showed a completely different response to inoculation with B510 compared with Nipponbare. Therefore, we suggest that qRRL-7 might strongly control root growth in response to inoculation with Azospirillum sp. strain B510.
Collapse
Affiliation(s)
- Sachiko Masuda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,RIKEN, Center for Sustainable Resource Science, Yokohama City, Japan
| | - Kazuhiro Sasaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuri Kazama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Chiharu Kisara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shoko Takeda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Eiko Hanzawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Tadashi Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Patel JK, Madaan S, Archana G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 2018; 215:36-45. [PMID: 30172307 DOI: 10.1016/j.micres.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 11/16/2022]
Abstract
The Streptomyces spp. used in this work were previously isolated as diazotrophic endophytes from sorghum stems. Here, we characterized the Streptomyces spp. for their colonization ability, plant growth promotion and protection against fungal disease in three cereals. In vitro analysis by dual culture study showed inhibitory effect on the rice pathogen Magnaporthe oryzae B157 along with inhibition of the ubiquitous phytopathogen Rhizoctonia solani by the Streptomyces spp. used in this study. The active compounds responsible for phytopathogen inhibition were extracted with ethyl acetate and tested positive against the fungal pathogens. GC-MS based identification of the active compounds responsible for fungal pathogen inhibition showed them to be 2-(chloromethyl)-2-cyclopropyloxirane, 2, 4- ditert-butylphenol and 1-ethylthio-3-methyl-1, 3-butadiene in extracts of culture supernatants from the three different strains respectively. EGFP tagged Streptomyces strains showed profuse colonization in roots as well as aerial parts of cereal plants. Direct inhibitory action against M. oryzae B157 and R. solani correlated with the observation that upon fungal pathogen challenge, the bacterized rice, sorghum and wheat plants showed significantly good plant growth, particularly in aerial parts as compared to unbacterized controls. In addition, benefit was seen in inoculated healthy plants in terms of increase in wet weight of roots and shoots as compared to the uninoculated controls. The mechanism of biocontrol also involved induction of plant defense response as evidenced by the upregulation of PR10a, NPR1, PAL and LOX2 in Streptomyces colonized plants.
Collapse
Affiliation(s)
- Janki K Patel
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Sheeba Madaan
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
20
|
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET. Core microbiomes for sustainable agroecosystems. NATURE PLANTS 2018; 4:247-257. [PMID: 29725101 DOI: 10.1038/s41477-018-0139-4] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/23/2018] [Indexed: 05/18/2023]
Abstract
In an era of ecosystem degradation and climate change, maximizing microbial functions in agroecosystems has become a prerequisite for the future of global agriculture. However, managing species-rich communities of plant-associated microbiomes remains a major challenge. Here, we propose interdisciplinary research strategies to optimize microbiome functions in agroecosystems. Informatics now allows us to identify members and characteristics of 'core microbiomes', which may be deployed to organize otherwise uncontrollable dynamics of resident microbiomes. Integration of microfluidics, robotics and machine learning provides novel ways to capitalize on core microbiomes for increasing resource-efficiency and stress-resistance of agroecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, Meguro, Tokyo, Japan
| | - Kazuhiko Narisawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Kei Hiruma
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ken Naito
- Genetic Resource Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Ushio
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shinji Nakaoka
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute of Industrial Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Yoshida
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
- Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, China
| | - Ryo Sugiura
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Hokkaido Agricultural Research Center, NARO (National Agriculture and Food Research Organization), Memuro, Hokkaido, Japan
| | - Yasunori Ichihashi
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai, Japan
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Igiehon NO, Babalola OO. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040574. [PMID: 29570619 PMCID: PMC5923616 DOI: 10.3390/ijerph15040574] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Abstract
Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study.
Collapse
Affiliation(s)
- Nicholas Ozede Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| |
Collapse
|
22
|
Konishi N, Okubo T, Yamaya T, Hayakawa T, Minamisawa K. Nitrate Supply-Dependent Shifts in Communities of Root-Associated Bacteria in Arabidopsis. Microbes Environ 2017; 32:314-323. [PMID: 29187692 PMCID: PMC5745015 DOI: 10.1264/jsme2.me17031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Root-associated bacterial communities are necessary for healthy plant growth. Nitrate is a signal molecule as well as a major nitrogen source for plant growth. In this study, nitrate-dependent alterations in root-associated bacterial communities and the relationship between nitrate signaling and root-associated bacteria in Arabidopsis were examined. The bacterial community was analyzed by a ribosomal RNA intergenic spacer analysis (RISA) and 16S rRNA amplicon sequencing. The Arabidopsis root-associated bacterial community shifted depending on the nitrate amount and timing of nitrate application. The relative abundance of operational taxonomic units of 25.8% was significantly changed by the amount of nitrate supplied. Moreover, at the family level, the relative abundance of several major root-associated bacteria including Burkholderiaceae, Paenibacillaceae, Bradyrhizobiaceae, and Rhizobiaceae markedly fluctuated with the application of nitrate. These results suggest that the application of nitrate strongly affects root-associated bacterial ecosystems in Arabidopsis. Bulk soil bacterial communities were also affected by the application of nitrate; however, these changes were markedly different from those in root-associated bacteria. These results also suggest that nitrate-dependent alterations in root-associated bacterial communities are mainly affected by plant-derived factors in Arabidopsis. T-DNA insertion plant lines of the genes for two transcription factors involved in nitrate signaling in Arabidopsis roots, NLP7 and TCP20, showed similar nitrate-dependent shifts in root-associated bacterial communities from the wild-type, whereas minor differences were observed in root-associated bacteria. Thus, these results indicate that NLP7 and TCP20 are not major regulators of nitrate-dependent bacterial communities in Arabidopsis roots.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University.,Division for Interdisciplinary Advanced Research and Education, Tohoku University
| | - Takashi Okubo
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization
| | - Tomoyuki Yamaya
- Division for Interdisciplinary Advanced Research and Education, Tohoku University
| | | | | |
Collapse
|
23
|
Kandel SL, Joubert PM, Doty SL. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms 2017; 5:E77. [PMID: 29186821 PMCID: PMC5748586 DOI: 10.3390/microorganisms5040077] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.
Collapse
Affiliation(s)
| | | | - Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA; (S.L.K.); (P.M.J.)
| |
Collapse
|
24
|
Dos-Santos CM, de Souza DG, Balsanelli E, Cruz LM, de Souza EM, Baldani JI, Schwab S. A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization. MICROBIAL ECOLOGY 2017; 74:453-465. [PMID: 28160057 DOI: 10.1007/s00248-017-0941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 05/16/2023]
Abstract
Bacterial endophytes constitute a very diverse community and they confer important benefits which help to improve agricultural yield. Some of these benefits remain underexplored or little understood, mainly due to the bottlenecks associated with the plant feature, a low number of endophytic bacterial cells in relation to the plant, and difficulties in accessing these bacteria using cultivation-independent methods. Enriching endophytic bacterial cells from plant tissues, based on a non-biased, cultivation-independent physical enrichment method, may help to circumvent those problems, especially in the case of sugarcane stems, which have a high degree of interfering factors, such as polysaccharides, phenolic compounds, nucleases, and fibers. In the present study, an enrichment approach for endophytic bacterial cells from sugarcane lower stems is described. The results demonstrate that the enriched bacterial cells are suitable for endophytic community characterization. A community analysis revealed the presence of previously well-described but also novel endophytic bacteria in sugarcane tissues which may exert functions such as plant growth promotion and biological control, with a predominance of the Proteobacterial phylum, but also Actinobacteria, Bacteroidetes, and Firmicutes, among others. In addition, by comparing the present and literature data, it was possible to list the most frequently detected bacterial endophyte genera in sugarcane tissues. The presented enrichment approach paves the way for improved future research toward the assessment of endophytic bacterial community in sugarcane and other biofuel crops.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23897-000, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Daniel G de Souza
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, CEP 81531-980, Brazil
| | - José I Baldani
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, RJ, CEP 23891-000, Brazil.
| |
Collapse
|
25
|
Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19640-19652. [PMID: 28681302 PMCID: PMC5570797 DOI: 10.1007/s11356-017-9496-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/08/2017] [Indexed: 05/15/2023]
Abstract
Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.
Collapse
Affiliation(s)
- Małgorzata Pawlik
- Department of Microbiology, University of Silesia, Katowice, Poland.
| | - Barbara Cania
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Munich, Germany
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | |
Collapse
|
26
|
Whole-Genome Sequence of Endophytic Plant Growth-Promoting Escherichia coli USML2. GENOME ANNOUNCEMENTS 2017; 5:5/19/e00305-17. [PMID: 28495774 PMCID: PMC5427209 DOI: 10.1128/genomea.00305-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%.
Collapse
|
27
|
Eberhart LJ, Knutson CM, Barney BM. A methodology for markerless genetic modifications in Azotobacter vinelandii. J Appl Microbiol 2017; 120:1595-604. [PMID: 26854474 DOI: 10.1111/jam.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 01/03/2023]
Abstract
AIMS Efficient manipulation of multiple regions within a genome can be improved by counter-selection approaches. In this work, we sought to develop a method to manipulate Azotobacter vinelandii using a counter-selection approach based on the presence of the pyrF gene. METHODS AND RESULTS A background uracil auxotroph of A. vinelandii was first constructed by deleting the pyrF gene coding orotidine-5'-phosphate decarboxylase. The pyrF gene and promoter were also incorporated together with an antibiotic marker to create a selection and counter-selection cassette to shuttle into various plasmids. The constructed cassette could then be removed using a plasmid lacking the pyrF gene via counter-selection resulting from the production of 5-fluorouracil. The process could be repeated multiple times using the same procedure for selection and counter-selection. Following completion, the pyrF gene may be reintroduced to the genome in its original location, leaving a completed strain devoid of any antibiotic markers. CONCLUSIONS Utilization of the pyrF gene for counter-selection is a powerful tool that can be used effectively to make multiple gene deletions in A. vinelandii. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the successful application of a counter-selection approach to yield markerless genetic modifications to A. vinelandii, which should be of interest for a range of applications in this important model bacterium.
Collapse
Affiliation(s)
- L J Eberhart
- Department of Bioproducts and Biosystems Engineering, Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - C M Knutson
- Department of Bioproducts and Biosystems Engineering, Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - B M Barney
- Department of Bioproducts and Biosystems Engineering, Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
28
|
Utturkar SM, Cude WN, Robeson MS, Yang ZK, Klingeman DM, Land ML, Allman SL, Lu TYS, Brown SD, Schadt CW, Podar M, Doktycz MJ, Pelletier DA. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis. Appl Environ Microbiol 2016; 82:5698-708. [PMID: 27422831 PMCID: PMC5007785 DOI: 10.1128/aem.01285-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. Here, we describe a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria. IMPORTANCE Plant roots harbor a diverse collection of microbes that live within host tissues. To gain a comprehensive understanding of microbial adaptations to this endophytic lifestyle from strains that cannot be cultivated, it is necessary to separate bacterial cells from the predominance of plant tissue. This study provides a valuable approach for the separation and isolation of endophytic bacteria from plant root tissue. Isolated live bacteria provide material for microbiome sequencing, single-cell genomics, and analyses of genomes of uncultured bacteria to provide genomics information that will facilitate future cultivation attempts.
Collapse
Affiliation(s)
- Sagar M Utturkar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - W Nathan Cude
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Michael S Robeson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin K Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam L Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steve L Allman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Tse-Yuan S Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
29
|
Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnol Adv 2016; 34:1245-1259. [PMID: 27587331 DOI: 10.1016/j.biotechadv.2016.08.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023]
Abstract
Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions.
Collapse
|
30
|
Akamatsu A, Shimamoto K, Kawano Y. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice. Curr Genomics 2016; 17:297-307. [PMID: 27499679 PMCID: PMC4955034 DOI: 10.2174/1389202917666160331201602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.
Collapse
Affiliation(s)
- Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Cell and Developmental Biology, John Innes Centre, Norwich,United Kingdom
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Shanghai Center for Plant Stress Biology, Shanghai,P.R. China;; Kihara Institute for Biological Research, Yokohama,Japan
| |
Collapse
|
31
|
Minamisawa K, Imaizumi-Anraku H, Bao Z, Shinoda R, Okubo T, Ikeda S. Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root? Microbes Environ 2016; 31:4-10. [PMID: 26960961 PMCID: PMC4791114 DOI: 10.1264/jsme2.me15180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane–nitrogen (CH4–N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of 15N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation).
Collapse
|
32
|
Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. Network modules and hubs in plant-root fungal biomes. J R Soc Interface 2016; 13:20151097. [PMID: 26962029 PMCID: PMC4843674 DOI: 10.1098/rsif.2015.1097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont-symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e., 'enterotype') and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont-symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root-microbiome dynamics.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Satoshi Yamamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Akifumi S Tanabe
- National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Hiroshi S Ishii
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
33
|
Microbial and Functional Diversity within the Phyllosphere of Espeletia Species in an Andean High-Mountain Ecosystem. Appl Environ Microbiol 2016; 82:1807-1817. [PMID: 26746719 DOI: 10.1128/aem.02781-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
Microbial populations residing in close contact with plants can be found in the rhizosphere, in the phyllosphere as epiphytes on the surface, or inside plants as endophytes. Here, we analyzed the microbiota associated with Espeletia plants, endemic to the Páramo environment of the Andes Mountains and a unique model for studying microbial populations and their adaptations to the adverse conditions of high-mountain neotropical ecosystems. Communities were analyzed using samples from the rhizosphere, necromass, and young and mature leaves, the last two analyzed separately as endophytes and epiphytes. The taxonomic composition determined by performing sequencing of the V5-V6 region of the 16S rRNA gene indicated differences among populations of the leaf phyllosphere, the necromass, and the rhizosphere, with predominance of some phyla but only few shared operational taxonomic units (OTUs). Functional profiles predicted on the basis of taxonomic affiliations differed from those obtained by GeoChip microarray analysis, which separated community functional capacities based on plant microenvironment. The identified metabolic pathways provided insight regarding microbial strategies for colonization and survival in these ecosystems. This study of novel plant phyllosphere microbiomes and their putative functional ecology is also the first step for future bioprospecting studies in search of enzymes, compounds, or microorganisms relevant to industry or for remediation efforts.
Collapse
|
34
|
Tian BY, Cao Y, Zhang KQ. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 2015; 5:17087. [PMID: 26603211 PMCID: PMC4658523 DOI: 10.1038/srep17087] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/23/2015] [Indexed: 11/09/2022] Open
Abstract
Endophytes are known to play important roles in plant’s health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis. Community analysis of root-associated microbiomes in healthy and nematode-infected tomatoes indicated that nematode infections were associated with variation and differentiation of the endophyte and rhizosphere bacterial populations in plant roots. The community of the resident endophytes in tomato root was significantly affected by nemato-pathogenesis. Remarkably, some bacterial groups in the nematode feeding structure, the root gall, were specifically enriched, suggesting an association with nematode pathogenesis. Function-based metagenomic analysis indicated that the enriched bacterial populations in root gall harbored abundant genes related to degradation of plant polysaccharides, carbohydrate and protein metabolism, and biological nitrogen fixation. Our data indicated that some of the previously assumed beneficial endophytes or bacterial associates with nematode might be involved in nematode infections of the tomato roots.
Collapse
Affiliation(s)
- Bao-Yu Tian
- College of Life Science, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Yi Cao
- Key Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550081, China
| | - Ke-Qin Zhang
- Key Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| |
Collapse
|
35
|
Endophytic bacterial communities associated with two explant sources of Eucalyptus benthamii Maiden & Cambage. World J Microbiol Biotechnol 2015; 31:1737-46. [PMID: 26377625 DOI: 10.1007/s11274-015-1924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Micropropagation has been applied in the recovery and rejuvenation of adult trees, which is achieved by various subcultures in the multiplication phase. This strategy has brought questions about the endophytic microbiota associated with these plants along its manipulation. Therefore, the aim of this study was to evaluate the composition of the endophytic bacterial communities associated with two explants sources [the canopy branches (CB) and the trunk base of the tree (TB)] under prolonged in vitro cultivation. In addition we analyzed the bacterial community dynamic along the subcultures in different micropropagation phases. Bacterial DNA was extracted from samples of mini-stumps (in vivo) from CB and TB and in micro-stumps produced by in vitro cultivations of these explants sources--both originated from one single matrix plant of Eucalyptus benthamii. In vitro establishment occurred in two dates and the evaluation of endophytic bacterial communities was made in vivo and in vitro samples (on 10th, 13th and 16th subcultures), when elongated shoots and roots were analyzed. Analysis was performed by PCR-DGGE based on the V6 region of ribosomal gene 16S rDNA. Bands profiles showed differences in communities between in vivo and in vitro samples, and also distinctions of communities assessed in the subcultures, elongated and rooted samples. Distinctions in the composition of endophytic bacterial communities were greater in CB micro-stumps. These results indicate a differential colonization of explants by endophytic bacteria, with predominance of common (ever-present) endophytes in TB samples and casual, here named opportunistic, in CB samples.
Collapse
|
36
|
Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor. Appl Environ Microbiol 2015; 81:4316-28. [PMID: 25888177 PMCID: PMC4475869 DOI: 10.1128/aem.00554-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022] Open
Abstract
Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.
Collapse
Affiliation(s)
- Brett M Barney
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Lauren J Eberhart
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Janet M Ohlert
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Carolann M Knutson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Mary H Plunkett
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
37
|
Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 2015; 11:e1005280. [PMID: 26042417 PMCID: PMC4456278 DOI: 10.1371/journal.pgen.1005280] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. Plants have evolved elaborated mechanisms to monitor microbial presence and to control their infection, therefore only particular microbes, so called “endophytes,” are able to colonise the internal tissues with minimal or no host damage. The legume root nodule is a unique environmental niche induced by symbiotic bacteria, but where multiple species, symbiotic and endophytic co-exist. Genetic studies of the binary interaction legume-symbiont led to the discovery of key components evolved in the two partners allowing mutual recognition and nodule infection. In contrast, there is limited knowledge about the endophytic nodule infection, the role of the legume host, or the symbiont in the process of nodule colonisation by endophytes. Here we focus on the early stages of nodule infection in order to identify which molecular signatures and genetic components favour/allow endophyte accommodation, and multiple species co-existence inside nodules. We found that colonisation of Lotus japonicus nodules by endophytic bacteria is a selective process, that endophyte nodule occupancy is host-controlled, and that exopolysaccharides are key bacterial features for chronic infection of nodules. Our strategy based on model legume genetics and co-inoculation can thus be used for identifying mechanisms operating behind host-microbes compatibility in environments where multiple species co-exist.
Collapse
Affiliation(s)
- Rafal Zgadzaj
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Nadieh de Jonge
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Dorthe B. Jensen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Lene H. Madsen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
- Carbohydrate Recognition and Signalling (CARB) Centre, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
38
|
Ikeda S, Tokida T, Nakamura H, Sakai H, Usui Y, Okubo T, Tago K, Hayashi K, Sekiyama Y, Ono H, Tomita S, Hayatsu M, Hasegawa T, Minamisawa K. Characterization of leaf blade- and leaf sheath-associated bacterial communities and assessment of their responses to environmental changes in CO₂, temperature, and nitrogen levels under field conditions. Microbes Environ 2015; 30:51-62. [PMID: 25740174 PMCID: PMC4356464 DOI: 10.1264/jsme2.me14117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 01/12/2023] Open
Abstract
Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research OrganizationShinsei, Memuro-cho, Kasai-gun, Hokkaido 082–0081Japan
| | - Takeshi Tokida
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | | | - Hidemitsu Sakai
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Yasuhiro Usui
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Kanako Tago
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Kentaro Hayashi
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Yasuyo Sekiyama
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Hiroshi Ono
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Satoru Tomita
- National Food Research Institute, National Agriculture and Food Research Organization2–1–12 Kannondai, Tsukuba, Ibaraki 305–8642Japan
| | - Masahito Hayatsu
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Toshihiro Hasegawa
- National Institute for Agro-Environmental Sciences3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| |
Collapse
|
39
|
Montenegro D, Kalpana K, Chrissian C, Sharma A, Takaoka A, Iacovidou M, Soll CE, Aminova O, Heguy A, Cohen L, Shen S, Kawamura A. Uncovering potential 'herbal probiotics' in Juzen-taiho-to through the study of associated bacterial populations. Bioorg Med Chem Lett 2015; 25:466-9. [PMID: 25547935 PMCID: PMC4297534 DOI: 10.1016/j.bmcl.2014.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
Juzen-taiho-to (JTT) is an immune-boosting formulation of ten medicinal herbs. It is used clinically in East Asia to boost the human immune functions. The active factors in JTT have not been clarified. But, existing evidence suggests that lipopolysaccharide (LPS)-like factors contribute to the activity. To examine this possibility, JTT was subjected to a series of analyses, including high resolution mass spectrometry, which suggested the presence of structural variants of LPS. This finding opened a possibility that JTT contains immune-boosting bacteria. As the first step to characterize the bacteria in JTT, 16S ribosomal RNA sequencing was carried out for Angelica sinensis (dried root), one of the most potent immunostimulatory herbs in JTT. The sequencing revealed a total of 519 bacteria genera in A. sinensis. The most abundant genus was Rahnella, which is widely distributed in water and plants. The abundance of Rahnella appeared to correlate with the immunostimulatory activity of A. sinensis. In conclusion, the current study provided new pieces of evidence supporting the emerging theory of bacterial contribution in immune-boosting herbs.
Collapse
Affiliation(s)
- Diego Montenegro
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kriti Kalpana
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Christine Chrissian
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ashutosh Sharma
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Anna Takaoka
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Maria Iacovidou
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Clifford E Soll
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Olga Aminova
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Lisa Cohen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Steven Shen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, Center for Health Informatics and Bioinformatics, NYU School of Medicine, 227 East 30th Street, New York, NY 10016, USA
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
Kukla M, Płociniczak T, Piotrowska-Seget Z. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. CHEMOSPHERE 2014; 117:40-6. [PMID: 24954306 DOI: 10.1016/j.chemosphere.2014.05.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 05/08/2023]
Abstract
The aim of this study was to assess the ability of twenty-nine endophytic bacteria isolated from the tissues of ryegrass (Lolium perenne L.) to promote plant growth and the degradation of hydrocarbon. Most of the isolates belonged to the genus Pseudomonas and showed multiple plant growth-promoting abilities. All of the bacteria that were tested exhibited the ability to produce indole-3-acetic acid and were sensitive to streptomycin. These strains were capable of phosphate solubilization (62%), cellulolytic enzyme production (62%), a capacity for motility (55%) as well as for the production of siderophore (45%), ammonium (41%) and hydrogen cyanide (38%). Only five endophytes had the emulsification ability that results from the production of biosurfactants. The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene (acdS) was found in ten strains. These bacteria exhibited ACCD activities in the range from 1.8 to 56.6 μmol of α-ketobutyrate mg(-1)h(-1), which suggests that these strains may be able to modulate ethylene levels and enhance plant growth. The potential for hydrocarbon degradation was assessed by PCR amplification on the following genes: alkH, alkB, C23O, P450 and pah. The thirteen strains that were tested had the P450 gene but the alkH and pah genes were found only in the Rhodococcus fascians strain (L11). Four endophytic bacteria belonging to Microbacterium sp. and Rhodococcus sp. (L7, S12, S23, S25) showed positive results for the alkB gene.
Collapse
Affiliation(s)
- M Kukla
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - T Płociniczak
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Z Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
41
|
Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I. Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 2014; 9:e112763. [PMID: 25387008 PMCID: PMC4227848 DOI: 10.1371/journal.pone.0112763] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023] Open
Abstract
Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.
Collapse
Affiliation(s)
- Andrea Campisano
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- * E-mail:
| | - Livio Antonielli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Austrian Institute of Technology GmbH, Department of Health & Environment, Bioresources Unit, Tulln, Austria
| | - Michael Pancher
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Sohail Yousaf
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| |
Collapse
|
42
|
Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 2014; 80:5043-52. [PMID: 24928870 DOI: 10.1128/aem.00969-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots.
Collapse
|
43
|
Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:650905. [PMID: 24971151 PMCID: PMC4058287 DOI: 10.1155/2014/650905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/29/2014] [Indexed: 12/04/2022]
Abstract
Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health.
Collapse
|
44
|
Okazaki K, Iino T, Kuroda Y, Taguchi K, Takahashi H, Ohwada T, Tsurumaru H, Okubo T, Minamisawa K, Ikeda S. An assessment of the diversity of culturable bacteria from main root of sugar beet. Microbes Environ 2014; 29:220-3. [PMID: 24789987 PMCID: PMC4103529 DOI: 10.1264/jsme2.me13182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The partial sequences of the 16S rRNA genes of 531 bacteria isolated from the main root of the sugar beet (Beta vulgaris L.) were determined and subsequently grouped into 155 operational taxonomic units by clustering analysis (≥99% identity). The most abundant phylum was Proteobacteria (72.5–77.2%), followed by Actinobacteria (9.8–16.6%) and Bacteroidetes (4.3– 15.4%). Alphaproteobacteria (46.7–64.8%) was the most dominant class within Proteobacteria. Four strains belonging to Verrucomicrobia were also isolated. Phylogenetic analysis revealed that the Verrucomicrobia bacterial strains were closely related to Haloferula or Verrucomicrobium.
Collapse
Affiliation(s)
- Kazuyuki Okazaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 2014; 29:50-9. [PMID: 24463575 PMCID: PMC4041235 DOI: 10.1264/jsme2.me13110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.
Collapse
Affiliation(s)
- Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Villa JA, Ray EE, Barney BM. Azotobacter vinelandiisiderophore can provide nitrogen to support the culture of the green algaeNeochloris oleoabundansandScenedesmussp. BA032. FEMS Microbiol Lett 2014; 351:70-77. [DOI: 10.1111/1574-6968.12347] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/24/2013] [Accepted: 11/24/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Juan A. Villa
- Biotechnology Institute; University of Minnesota; St. Paul MN USA
| | - Erin E. Ray
- Department of Bioproducts and Biosystems Engineering; University of Minnesota; St. Paul MN USA
| | - Brett M. Barney
- Biotechnology Institute; University of Minnesota; St. Paul MN USA
- Department of Bioproducts and Biosystems Engineering; University of Minnesota; St. Paul MN USA
| |
Collapse
|
47
|
Radhakrishnan R, Khan AL, Lee IJ. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J Microbiol 2013; 51:850-7. [PMID: 24385364 DOI: 10.1007/s12275-013-3168-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.
Collapse
|
48
|
Bao Z, Sasaki K, Okubo T, Ikeda S, Anda M, Hanzawa E, Kakizaki K, Sato T, Mitsui H, Minamisawa K. Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 2013; 28:487-90. [PMID: 24256970 PMCID: PMC4070703 DOI: 10.1264/jsme2.me13049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rice seedlings were inoculated with Azospirillum sp. B510 and transplanted into a paddy field. Growth in terms of tiller numbers and shoot length was significantly increased by inoculation. Principal-coordinates analysis of rice bacterial communities using the 16S rRNA gene showed no overall change from B510 inoculation. However, the abundance of Veillonellaceae and Aurantimonas significantly increased in the base and shoots, respectively, of B510-inoculated plants. The abundance of Azospirillum did not differ between B510-inoculated and uninoculated plants (0.02-0.50%). These results indicate that the application of Azospirillum sp. B510 not only enhanced rice growth, but also affected minor rice-associated bacteria.
Collapse
Affiliation(s)
- Zhihua Bao
- Graduate School of Life Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 2013; 87:2-17. [PMID: 24003903 PMCID: PMC3906827 DOI: 10.1111/1574-6941.12198] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022] Open
Abstract
Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food.
Collapse
Affiliation(s)
- Thomas Müller
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | | |
Collapse
|
50
|
Someya N, Ohdaira Kobayashi Y, Tsuda S, Ikeda S. Molecular characterization of the bacterial community in a potato phytosphere. Microbes Environ 2013; 28:295-305. [PMID: 23748858 PMCID: PMC4070957 DOI: 10.1264/jsme2.me13006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bacterial community of a potato phytosphere at the flowering stage was examined using both culture-dependent and -independent methods. Tissues (leaves, stems, roots and tubers) were sampled from field-grown potato plants (cultivar Matilda), and the clone libraries of 16S rRNA genes and the isolate collections using R2A medium were constructed. By analyzing the combined data set of 16S rRNA gene sequences from both clone libraries and isolate collections, 82 genera from 8 phyla were found and 237 OTUs (≥97% identity) at species level were identified across the potato phytosphere. The statistical analyses of clone libraries suggested that stems harbor the lowest diversity among the tissues examined. The phylogenetic analyses revealed that the most dominant phylum was shown to be Proteobacteria for all tissues (62.0%-89.7% and 57.7%-72.9%, respectively), followed by Actinobacteria (5.0%-10.7% and 14.6%-39.4%, respectively). The results of principal coordinates analyses of both clone libraries and isolate collections indicated that distinct differences were observed between above- and below-ground tissues for bacterial community structures. The results also revealed that leaves harbored highly similar community structures to stems, while the tuber community was shown to be distinctly different from the stem and root communities.
Collapse
Affiliation(s)
- Nobutaka Someya
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization
| | | | | | | |
Collapse
|