1
|
AlHusnain L, AlKahtani MDF, Attia KA, Sanaullah T, Elsharnoby DE. Application of CRISPR/Cas9 system to knock out GluB gene for developing low glutelin rice mutant. BOTANICAL STUDIES 2024; 65:27. [PMID: 39225765 PMCID: PMC11371991 DOI: 10.1186/s40529-024-00432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The nutritional quality improvement is among the most integral objective for any rice molecular breeding programs. The seed storage proteins (SSPs) have greater role to determine the nutritional quality of any cereal grains. Rice contains relatively balanced amino acid composition and the SSPs are fractioned into albumins (ALB), globulins (GLO), prolamins (PRO) and glutelins (GLU) according to differences in solubility. GLUs are further divided into subfamilies: GluA, GluB, GluC, and GluD depending on resemblance in amino acid. The GLU protein accounts for 60-80% of total protein contents, encoded by 15 genes located on different chromosomes of rice genome. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system was employed to knockout Glu-B (LOC-Os02g15070) gene in non-basmati rice PK386 cultivar. The mutant displayed two base pair and three base pair mutation in the targeted regions. The homozygous mutant plant displayed reduction for both in total protein contents and GLU contents whereas, elevation in GLO, ALB and PRO. Moreover, the mutant plant also displayed reduction in physio-chemical properties e.g., total starch, amylose and gel consistency. The agronomic characteristics of both mutant and wild type displayed non-significant differences along with increase in higher percentage of chalkiness in mutant plants. The results obtained from scanning electron microscopy showed the loosely packed starch granules compared to wild type. The gene expression analysis displayed the lower expression of gene at 5 days after flowering (DAF), 10 DAF, 15 DAF and 20 DAF compared to wild type. GUS sub-cellular localization showed the staining in seed which further validated the results obtained from gene expression. Based on these findings it can be concluded Glu-B gene have significant role in controlling GLU contents and can be utilized in breeding programs to enhance the nutritional quality of rice, and may serve as healthy diet for patient allergic with high GLU contents.
Collapse
Affiliation(s)
- Latifa AlHusnain
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muneera D F AlKahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box2455, Riyadh, 11451, Saudi Arabia.
| | - Tayyaba Sanaullah
- Department of Botany, Government Sadiq College Women University, Bahawalpur, 53100, Pakistan
| | - Dalia E Elsharnoby
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| |
Collapse
|
2
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
3
|
Tian H, Li Y, Guo Y, Qu Y, Zhang X, Zhao X, Chang X, Tian B, Wang G, Yuan X. Involvement of a rice mutation in storage protein biogenesis in endosperm and its genomic location. PLANTA 2024; 260:19. [PMID: 38839605 DOI: 10.1007/s00425-024-04452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
MAIN CONCLUSION A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.
Collapse
Affiliation(s)
- Huaidong Tian
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China.
| | - Ying Li
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China
| | - Yanping Guo
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Yajuan Qu
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China
| | - Xiaoye Zhang
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China
| | - Xiaoxian Zhao
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China
| | - Xinya Chang
- Laboratory for Plant Germplasm and Genetic Resources of Crop, School of Life Science, Shanxi University, Taiyuan, 030002, China
| | - Baohua Tian
- School of Ecology, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Guangyuan Wang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xiangmei Yuan
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China
| |
Collapse
|
4
|
Takahashi K, Kohno H, Okuda M. Spatial Distribution and Characteristics of Protein Content and Composition in Japonica Rice Grains: Implications for Sake Quality. RICE (NEW YORK, N.Y.) 2024; 17:26. [PMID: 38607500 PMCID: PMC11014839 DOI: 10.1186/s12284-024-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
The quantity and composition of rice proteins play a crucial role in determining taste quality of sake, Japanese rice wine. However, the spatial distribution of proteins within rice grains, especially in endosperm tissue, and the differences between rice varieties remain unclear. Here, we analyzed the crude protein contents and composition ratios of table (Nipponbare and Koshihikari) and genuine sake rice varieties (Yamadanishiki, Gohyakumangoku, Dewasansan, Dewanosato, and Yumenokaori) to elucidate their spatial distribution within the Japonica rice grain endosperm. Seven sake rice varieties were polished over five harvest years using a brewer's rice-polishing machine. We obtained fractions at 90-70% (the outermost endosperm fraction), 70-50%, 50-30%, and 30-0% (the central region of the endosperm fraction). Yamadanishiki and Dewanosato exhibited considerably lower crude protein contents than the other cultivars. After applying SDS-PAGE, the protein composition, comprising glutelin/total protein (G/TP), prolamin/TP (P/TP), and G/P ratios of these fractions was determined. In white rice (at a 90% rice-polishing ratio), the average ratio of the major protein composition was G/TP 41%, P/TP 21%, and G/P ratios of 1.97. Gohyakumangoku and Yamadanishiki had higher G/TP ratio, while Dewanosato had a lower value. Despite having lower crude protein contents, Yamadanishiki and Dewanosato exhibited significantly varying G/TP ratios. The G/TP ratio markedly varied among rice varieties, particularly in the rice grains' central region. The 50-30% fraction had the highest P/TP ratio among all tested rice varieties, suggesting spatial differences in P/TP within rice grains. Koshihikari had the lowest P/TP ratio. In addition, the 50-30% fraction had the lowest G/P ratio among all tested rice varieties, with Gohyakumangoku having the highest G/P ratio. Dewanosato had the lowest G/P value, and this value significantly differed from that of Yamadanishiki in the 30-0% fraction. We found substantial differences in protein composition within distinct spatial regions of rice grains, and larger differences among rice varieties were observed in the rice grain's central region.
Collapse
Affiliation(s)
- Kei Takahashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-0046, Japan.
| | - Hiromi Kohno
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| | - Masaki Okuda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
5
|
Yan M, Zhou Z, Feng J, Bao X, Jiang Z, Dong Z, Chai M, Tan M, Li L, Cao Y, Ke Z, Wu J, Feng Z, Pan T. OsSHMT4 Is Required for Synthesis of Rice Storage Protein and Storage Organelle Formation in Endosperm Cells. PLANTS (BASEL, SWITZERLAND) 2023; 13:81. [PMID: 38202389 PMCID: PMC10780996 DOI: 10.3390/plants13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Storage proteins are essential for seed germination and seedling growth, as they provide an indispensable nitrogen source and energy. Our previous report highlighted the defective endosperm development in the serine hydroxymethyltransferase 4 (OsSHMT4) gene mutant, floury endosperm20-1 (flo20-1). However, the alterations in storage protein content and distribution within the flo20-1 endosperm remained unclear. Here, the immunocytochemistry analyses revealed a deficiency in storage protein accumulation in flo20-1. Electron microscopic observation uncovered abnormal morphological structures in protein bodies (PBI and PBII) in flo20-1. Immunofluorescence labeling demonstrated that aberrant prolamin composition could lead to the subsequent formation and deposition of atypical structures in protein body I (PBI), and decreased levels of glutelins and globulin resulted in protein body II (PBII) malformation. Further RNA-seq data combined with qRT-PCR results indicated that altered transcription levels of storage protein structural genes were responsible for the abnormal synthesis and accumulation of storage protein, which further led to non-concentric ring structural PBIs and amorphous PBIIs. Collectively, our findings further underscored that OsSHMT4 is required for the synthesis and accumulation of storage proteins and storage organelle formation in endosperm cells.
Collapse
Affiliation(s)
- Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Ziyue Zhou
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Juling Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Xiuhao Bao
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China;
| | - Zhengrong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiwei Dong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Meijie Chai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Ming Tan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Yaoliang Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Zhanbo Ke
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Jingchen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| | - Tian Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (Z.Z.); (Z.D.); (M.C.); (M.T.); (L.L.); (Y.C.); (Z.K.); (J.W.)
| |
Collapse
|
6
|
Chandra D, Cho K, Pham HA, Lee JY, Han O. Down-Regulation of Rice Glutelin by CRISPR-Cas9 Gene Editing Decreases Carbohydrate Content and Grain Weight and Modulates Synthesis of Seed Storage Proteins during Seed Maturation. Int J Mol Sci 2023; 24:16941. [PMID: 38069264 PMCID: PMC10707166 DOI: 10.3390/ijms242316941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The glutelins are a family of abundant plant proteins comprised of four glutelin subfamilies (GluA, GluB, GluC, and GluD) encoded by 15 genes. In this study, expression of subsets of rice glutelins were suppressed using CRISPR-Cas9 gene-editing technology to generate three transgenic rice variant lines, GluA1, GluB2, and GluC1. Suppression of the targeted glutelin genes was confirmed by SDS-PAGE, Western blot, and q-RT-PCR. Transgenic rice variants GluA1, GluB2, and GluC1 showed reduced amylose and starch content, increased prolamine content, reduced grain weight, and irregularly shaped protein aggregates/protein bodies in mature seeds. Targeted transcriptional profiling of immature seeds was performed with a focus on genes associated with grain quality, starch content, and grain weight, and the results were analyzed using the Pearson correlation test (requiring correlation coefficient absolute value ≥ 0.7 for significance). Significantly up- or down-regulated genes were associated with gene ontology (GO) and KEGG pathway functional annotations related to RNA processing (spliceosomal RNAs, group II catalytic introns, small nucleolar RNAs, microRNAs), as well as protein translation (transfer RNA, ribosomal RNA and other ribosome and translation factors). These results suggest that rice glutelin genes may interact during seed development with genes that regulate synthesis of starch and seed storage proteins and modulate their expression via post-transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Hue Anh Pham
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (D.C.); (K.C.); (H.A.P.)
| |
Collapse
|
7
|
Takaiwa F. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Mol Biotechnol 2023; 65:1869-1886. [PMID: 36856922 DOI: 10.1007/s12033-023-00666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
To exploit the rice seed-based oral vaccine against Sjögren's syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.
- National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
8
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
A small secreted protein, RsMf8HN, in Rhizoctonia solani triggers plant immune response, which interacts with rice OsHIPP28. Microbiol Res 2023; 266:127219. [DOI: 10.1016/j.micres.2022.127219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
|
10
|
Zhang L, Si Q, Yang K, Zhang W, Okita TW, Tian L. mRNA Localization to the Endoplasmic Reticulum in Plant Endosperm Cells. Int J Mol Sci 2022; 23:13511. [PMID: 36362297 PMCID: PMC9656906 DOI: 10.3390/ijms232113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.
Collapse
Affiliation(s)
- Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Qidong Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Kejie Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Wenwei Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| |
Collapse
|
11
|
Chen Z, Du H, Tao Y, Xu Y, Wang F, Li B, Zhu QH, Niu H, Yang J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111449. [PMID: 36058302 DOI: 10.1016/j.plantsci.2022.111449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Chronic kidney disease (CKD) and phenylketonuria (PKU) patients need to eat rice with low glutelin content. Therefore, breeding low glutelin content rice varieties with high yield and delicious taste is one of the major goals of rice breeders due to the high demand for the product. In this study, we designed three sgRNAs targeting nine glutelin genes and generated nine T-DNA-free homozygous editing lines with reduced glutelin content compared with the wild-type due to simultaneous mutation(s) in 5-7 glutelin genes. The glutelin content of two lines is even significantly lower than that of the low glutelin content cultivar, LGC-1. Compared to the wild-type, these low glutelin lines showed similar agronomic traits, including yield components and viscosity properties, and can be used as new varieties or parental materials for further breeding.
Collapse
Affiliation(s)
- Zhihui Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hongxu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yajun Tao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China; Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Bin Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia.
| | - Hongbin Niu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China; Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
12
|
Bacala R, Hatcher DW, Perreault H, Fu BX. Challenges and opportunities for proteomics and the improvement of bread wheat quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153743. [PMID: 35749977 DOI: 10.1016/j.jplph.2022.153743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Wheat remains a critical global food source, pressured by climate change and the need to maximize yield, improve processing and nutritional quality and ensure safety. An enormous amount of research has been conducted to understand gluten protein composition and structure in relation to end-use quality, yet progress has become stagnant. This is mainly due to the need and inability to biochemically characterize the intact functional glutenin polymer in order to correlate to quality, necessitating reduction to monomeric subunits and a loss of contextual information. While some individual gluten proteins might have a positive or negative influence on gluten quality, it is the sum total of these proteins, their relative and absolute expression, their sub-cellular trafficking, the amount and size of glutenin polymers, and ratios between gluten protein classes that define viscoelasticity of gluten. The sub-cellular trafficking of gluten proteins during seed maturation is still not completely clear and there is evidence of dual pathways and therefore different destinations for proteins, either constitutively or temporally. The trafficking of proteins is also unclear in endosperm cells as they undergo programmed cell death; Golgi disappear around 12 DPA but protein filling continues at least to 25 DPA. Modulation of the timing of cellular events will invariably affect protein deposition and therefore gluten strength and function. Existing and emerging proteomics technologies such as proteoform profiling and top-down proteomics offer new tools to study gluten protein composition as a whole system and identify compositional patterns that can modify gluten structure with improved functionality.
Collapse
Affiliation(s)
- Ray Bacala
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Dave W Hatcher
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada
| | - Héléne Perreault
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Bin Xiao Fu
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; Department of Food and Human Nutritional Sciences, 209 - 35 Chancellor's Circle, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
13
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
14
|
Matsusaka H, Fukuda M, Elakhdar A, Kumamaru T. Serine hydroxymethyltransferase participates in the synthesis of cysteine-rich storage proteins in rice seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111049. [PMID: 34620446 DOI: 10.1016/j.plantsci.2021.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The low level of cysteine-rich proteins (lcrp) mutation indicates a decrease in cysteine-rich (CysR) prolamines, α-globulin, and glutelin. To identify the causing factor of lcrp mutation, to elucidate its function, and to elucidate the role of CysR proteins in the formation of protein bodies (PBs), lcrp mutant was analyzed. A linkage map of the LCRP gene was constructed and genomic DNA sequencing of a predicted gene within the mapped region demonstrated that LCRP encodes a serine hydroxymethyltransferase, which participates in glycine-serine interconversion of one-carbon metabolism in the sulfur assimilation pathway. The levels of l-Ser, Gly, and Met in the sulfur assimilation pathway in the lcrp seeds increased significantly compared to that in the wildtype (WT). As the lcrp mutation influences the growth of shoot and root, the effects of the addition to the medium of amino acids and other compounds on the sulfur assimilation pathway were studied. Electron-lucent PBs surrounded by ribosome-attached membranes were observed accumulating cysteine-poor prolamines in the lcrp seeds. Additionally, glutelin-containing PBs were smaller and distorted in the lcrp seeds compared to those in the WT. These analyses of PBs in the lcrp seeds suggest that cysteine-rich proteins play an important role in the formation of PBs in rice.
Collapse
Affiliation(s)
- Hiroaki Matsusaka
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
15
|
Wang Y, Shewry PR, Hawkesford MJ, Qi P, Wan Y. High molecular weight glutenin subunit (HMW-GS) 1Dx5 is concentrated in small protein bodies when overexpressed in wheat starchy endosperm. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gann PJ, Esguerra M, Counce PA, Srivastava V. Genotype-dependent and heat-induced grain chalkiness in rice correlates with the expression patterns of starch biosynthesis genes. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:165-176. [PMID: 37283703 PMCID: PMC10168090 DOI: 10.1002/pei3.10054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 06/08/2023]
Abstract
Starch biosynthesis is a complex process underlying grain chalkiness in rice in a genotype-dependent manner. Coordinated expression of starch biosynthesis genes is important for producing translucent rice grains, while disruption in this process leads to opaque or chalky grains. To better understand the dynamics of starch biosynthesis genes in grain chalkiness, six rice genotypes showing variable chalk levels were subjected to gene expression analysis during reproductive stages. In the chalky genotypes, peak expression of the large subunit genes of ADP-glucose pyrophosphorylase (AGPase), encoding the first key step in starch biosynthesis, occurred in the stages before grain filling commenced, creating a gap with the upregulation of starch synthase genes, granule bound starch synthase I (GBSSI) and starch synthase IIA (SSIIA). Whereas, in low-chalk genotypes, AGPase large subunit genes expressed at later stages, generally following the expression patterns of GBSSI and SSIIA. However, heat treatment altered the expression in a genotype-dependent manner that was accompanied by transformed grain morphology and increased chalkiness. The suppression of AGPase subunit genes during early grain filling stages was observed in the chalky genotypes or upon heat treatment, which could result in a limited pool of ADP-Glucose for synthesizing amylose and amylopectin, the major components of the starch. This suboptimal starch biosynthesis process could subsequently lead to inefficient grain filling and air pockets that contribute to chalkiness. In summary, this study suggests a mechanism of grain chalkiness based on the expression patterns of the starch biosynthesis genes in rice.
Collapse
Affiliation(s)
- Peter James Gann
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
| | | | - Paul Allen Counce
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Rice Research and Extension CenterStuttgartARUSA
| | - Vibha Srivastava
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
17
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
18
|
Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR. Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 2019; 60:3304-3320. [DOI: 10.1080/10408398.2019.1685454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | | | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
19
|
Chou HL, Tian L, Fukuda M, Kumamaru T, Okita TW. The Role of RNA-Binding Protein OsTudor-SN in Post-Transcriptional Regulation of Seed Storage Proteins and Endosperm Development. PLANT & CELL PHYSIOLOGY 2019; 60:2193-2205. [PMID: 31198964 DOI: 10.1093/pcp/pcz113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/28/2019] [Indexed: 05/28/2023]
Abstract
Tudor-SN is involved in a myriad of transcriptional and post-transcriptional processes due to its modular structure consisting of 4 tandem SN domains (4SN module) and C-terminal Tsn module consisting of Tudor-partial SN domains. We had previously demonstrated that OsTudor-SN is a key player for transporting storage protein mRNAs to specific ER subdomains in developing rice endosperm. Here, we provide genetic evidence that this multifunctional RBP is required for storage protein expression, seed development and protein body formation. The rice EM1084 line, possessing a nonsynonymous mutation in the 4SN module (SN3 domain), exhibited a strong reduction in grain weight and storage protein accumulation, while a mutation in the Tudor domain (47M) or the loss of the Tsn module (43M) had much smaller effects. Immunoelectron microscopic analysis showed the presence of a new protein body type containing glutelin and prolamine inclusions in EM1084, while 43M and 47M exhibited structurally modified prolamine and glutelin protein bodies. Transcriptome analysis indicates that OsTudor-SN also functions in regulating gene expression of transcriptional factors and genes involved in developmental processes and stress responses as well as for storage proteins. Normal protein body formation, grain weight and expression of many genes were partially restored in EM1084 transgenic line complemented with wild-type OsTudor-SN gene. Overall, our study showed that OsTudor-SN possesses multiple functional properties in rice storage protein expression and seed development and that the 4SN and Tsn modules have unique roles in these processes.
Collapse
Affiliation(s)
- Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, USA
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, USA
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, USA
| |
Collapse
|
20
|
Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:223-231. [PMID: 30824055 DOI: 10.1016/j.plantsci.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Noriko Yamashiro
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
21
|
Tian L, Chou HL, Zhang L, Okita TW. Targeted Endoplasmic Reticulum Localization of Storage Protein mRNAs Requires the RNA-Binding Protein RBP-L. PLANT PHYSIOLOGY 2019; 179:1111-1131. [PMID: 30659066 PMCID: PMC6393789 DOI: 10.1104/pp.18.01434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 05/18/2023]
Abstract
The transport and targeting of glutelin and prolamine mRNAs to distinct subdomains of the cortical endoplasmic reticulum is a model for mRNA localization in plants. This process requires a number of RNA-binding proteins (RBPs) that recognize and bind to mRNA cis-localization (zipcode) elements to form messenger ribonucleoprotein complexes, which then transport the RNAs to their destination sites at the cortical endoplasmic reticulum. Here, we present evidence that the rice (Oryza sativa) RNA-binding protein, RBP-L, like its interacting RBP-P partner, specifically binds to glutelin and prolamine zipcode RNA sequences and is required for proper mRNA localization in rice endosperm cells. A transfer DNA insertion in the 3' untranslated region resulted in reduced expression of the RBP-L gene to 10% to 25% of that in the wild-type. Reduced amounts of RBP-L caused partial mislocalization of glutelin and prolamine RNAs and conferred other general growth defects, including dwarfism, late flowering, and smaller seeds. Transcriptome analysis showed that RBP-L knockdown greatly affected the expression of prolamine family genes and several classes of transcription factors. Collectively, these results indicate that RBP-L, like RBP-P, is a key RBP involved in mRNA localization in rice endosperm cells. Moreover, distinct from RBP-P, RBP-L exhibits additional regulatory roles in development, either directly through its binding to corresponding RNAs or indirectly through its effect on transcription factors.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
22
|
Wada H, Hatakeyama Y, Onda Y, Nonami H, Nakashima T, Erra-Balsells R, Morita S, Hiraoka K, Tanaka F, Nakano H. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1299-1311. [PMID: 30508115 PMCID: PMC6382329 DOI: 10.1093/jxb/ery427] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
Heat-induced chalkiness of rice grains is a major concern for rice production, particularly with respect to climate change. Although the formation of chalkiness in the endosperm is suppressed by nitrogen, little is known about the cell-specific dynamics of this process. Here, using picolitre pressure-probe electrospray-ionization mass spectrometry together with transmission electron microscopy and turgor measurements, we examine heat-induced chalkiness in single endosperm cells of intact rice seeds produced under controlled environmental conditions. Exposure to heat stress decreased turgor pressure and increased the cytosolic accumulation of sugars, glutathione, and amino acids, particularly cysteine. Heat stress also led to a significant enlargement of the protein storage vacuoles but with little accumulation of storage proteins. Crucially, this heat-induced partial arrest of amyloplast development led to formation of chalkiness. Whilst increased nitrogen availability also resulted in increased accumulation of amino acids, there was no decrease in turgor pressure. The heat-induced accumulation of cysteine and glutathione was much less marked in the presence of nitrogen, and storage proteins were produced without chalkiness. These data provide important information on the cell dynamics of heat acclimation that underpin the formation of chalkiness in the rice endosperm. We conclude that rice seeds employ multiple strategies to mitigate the adverse effects of heat stress in a manner that is dependent on nitrogen availability, and that the regulation of protein synthesis may play a crucial role in optimizing organelle compartmentation during heat adaption.
Collapse
Affiliation(s)
- Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
- Correspondence:
| | - Yuto Hatakeyama
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Yayoi Onda
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Taiken Nakashima
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Kenzo Hiraoka
- Clean Energy Research Center, The University of Yamanashi, Kofu, Yamanashi, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nakano
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| |
Collapse
|
23
|
Tian L, Xing Y, Fukuda M, Li R, Kumamaru T, Qian D, Dong X, Qu LQ. A conserved motif is essential for the correct assembly of proglutelins and for their export from the endoplasmic reticulum in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5029-5043. [PMID: 30107432 PMCID: PMC6184509 DOI: 10.1093/jxb/ery290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/27/2018] [Indexed: 05/13/2023]
Abstract
Rice glutelins are initially synthesized as 57-kDa precursors at the endoplasmic reticulum (ER) and are ultimately transported into protein storage vacuoles. However, the sequence motifs that affect proglutelin folding, assembly, and their export from the ER remain poorly defined. In this study, we characterized a mutant with nine amino acids deleted in the GluA2 protein, which resulted in specific accumulation of the GluA precursor. The deleted amino acids constitute a well-conserved sequence (LVYIIQGRG) in glutelins and all residues in this motif are necessary for ER export of GluA2. Immunoelectron microscopy and stable transgenic analyses indicated that proglutelins with deletion of this motif misassembled and aggregated through non-native intermolecular disulfide bonds, and were deposited in ER-derived protein bodies (PB-Is), resulting in conversion of PB-Is into a new type of PB. These results indicate that the conserved motif is essential for proper assembly of proglutelin. The correct assembly of proglutelins is critical for their segregation from prolamins in the ER lumen, which is essential for enabling the export of proglutelin from the ER and for the proper formation of PB-Is. We also found that the interchain disulfide bond between acidic and basic subunits is not necessary for their assembly, but it is required for proglutelin folding.
Collapse
Affiliation(s)
- Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Yanping Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | | | - Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
24
|
Okuda M, Joyo M, Tamamoto Y, Sasaki M, Takahashi K, Goto-Yamamoto N, Ikegami M, Hashizume K. Analysis of protein composition in rice cultivar used for sake brewing, and their effects on nitrogen compounds in sake. Cereal Chem 2018. [DOI: 10.1002/cche.10036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaki Okuda
- National Research Institute of Brewing; Higashihiroshima Japan
| | - Midori Joyo
- National Research Institute of Brewing; Higashihiroshima Japan
| | - Yuki Tamamoto
- National Research Institute of Brewing; Higashihiroshima Japan
- Graduate School of Biosphere Sciences; Hiroshima University; Higashihiroshima Japan
| | - Motoki Sasaki
- National Research Institute of Brewing; Higashihiroshima Japan
- Graduate School of Biosphere Sciences; Hiroshima University; Higashihiroshima Japan
| | - Kei Takahashi
- National Research Institute of Brewing; Higashihiroshima Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing; Higashihiroshima Japan
- Graduate School of Biosphere Sciences; Hiroshima University; Higashihiroshima Japan
| | - Masaru Ikegami
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fishers; Kato Hyogo Japan
| | - Katsumi Hashizume
- Department of Biological Resource Sciences; Akita Prefectural University; Nakano Shimoshinjyo Akita Japan
| |
Collapse
|
25
|
Takaiwa F, Yang L, Wakasa Y, Ozawa K. Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies. PLANT CELL REPORTS 2018; 37:209-223. [PMID: 29075848 DOI: 10.1007/s00299-017-2220-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/03/2017] [Indexed: 05/22/2023]
Abstract
Bioactive peptide was produced by fusion to rice prolamins in transgenic rice seeds. Their accumulation levels were affected by their deposition sites and by compensatory rebalancing between prolamins within PB-Is. Peptide immunotherapy using analogue peptide ligands (APLs) is one of promising treatments against autoimmune diseases. Use of seed storage protein as a fusion carrier is reasonable strategy for production of such small size bioactive peptides. In this study, to examine the efficacy of various rice prolamins deposited in ER-derived protein bodies (PB-Is), the APL12 from the Glucose-6-phosphate isomerase (GPI325-339) was expressed by fusion to four types of representative prolamins under the control of the individual native promoters. When the 14 and 16 kDa Cys-rich prolamins, which were localized in middle layer of PB-Is, were used for production of the APL12, they highly accumulated in transgenic rice seeds (~ 200 µg/grain). By contrast, fusion to the 10 and 13 kDa prolamins, which were localized in the core and outermost layer of PB-Is, resulted in lower levels of accumulation (~ 40 µg/grain). These results suggest that accumulation levels were highly affected by their deposition sites. Next, when different prolamin/APL12 fusion proteins were co-expressed to increase accumulation levels, they could not be increased so much as their expected additive levels. High accumulation of one type prolamin/APL12 led to reduction of other type(s) prolamin/APL12 to maintain the limited amounts of prolamins that can be deposited in PB-Is. Moreover, suppression of endogenous seed proteins by RNA interference also did not significantly enhance the accumulation levels of prolamin/APL12. These findings suggest that there may be compensatory rebalancing mechanism that controls the accumulation levels of prolamins deposited within PB-Is.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Lijun Yang
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Kenjiro Ozawa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
26
|
Takaiwa F, Wakasa Y, Hayashi S, Kawakatsu T. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:201-209. [PMID: 28818376 DOI: 10.1016/j.plantsci.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/22/2023]
Abstract
Cereal seed has been utilized as production platform for high-value biopharmaceutical proteins. Especially, protein bodies (PBs) in seeds are not only natural specialized storage organs of seed storage proteins (SSPs), but also suitable intracellular deposition compartment for recombinant proteins. When various recombinant proteins were produced as secretory proteins by attaching N terminal ER signal peptide and C terminal KDEL endoplasmic reticulum (ER) retention signal or as fusion proteins with SSPs, high amounts of recombinant proteins can be predominantly accumulated in the PBs. Recombinant proteins bioencapsulated in PBs exhibit high resistance to digestive enzymes in gastrointestinal tract than other intracellular compartments and are highly stable at ambient temperature, thus allowing oral administration of PBs containing recombinant proteins as oral drugs or functional nutrients in cost-effective minimum processed formulation. In this review, we would like to address key factors determining accumulation levels of recombinant proteins in PBs. Understanding of bottle neck parts and improvement of specific deposition to PBs result in much higher levels of production of high quality recombinant proteins.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Shimpei Hayashi
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Taiji Kawakatsu
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
27
|
Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, Ding Y. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation. PLANT & CELL PHYSIOLOGY 2017; 58:560-573. [PMID: 28158863 PMCID: PMC5444571 DOI: 10.1093/pcp/pcx001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/02/2017] [Indexed: 05/03/2023]
Abstract
Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on 'core' genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zunxin Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
- Corresponding author: E-mail, ; Fax, +86-25-84395313
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| |
Collapse
|
28
|
Fukuda M, Kawagoe Y, Murakami T, Washida H, Sugino A, Nagamine A, Okita TW, Ogawa M, Kumamaru T. The Dual Roles of the Golgi Transport 1 (GOT1B): RNA Localization to the Cortical Endoplasmic Reticulum and the Export of Proglutelin and α-Globulin from the Cortical ER to the Golgi. PLANT & CELL PHYSIOLOGY 2016; 57:2380-2391. [PMID: 27565205 DOI: 10.1093/pcp/pcw154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The rice glup2 lines are characterized by their abnormally high levels of endosperm 57 kDa proglutelins and of the luminal chaperone binding protein (BiP), features characteristic of a defect within the endoplasmic reticulum (ER). To elucidate the underlying genetic basis, the glup2 locus was identified by map based cloning. DNA sequencing of the genomes of three glup2 alleles and wild type demonstrated that the underlying genetic basis was mutations in the Golgi transport 1 (GOT1B) coding sequence. This conclusion was further validated by restoration of normal proglutelin levels in a glup2 line complemented by a GOT1B gene. Microscopic analyses indicated the presence of proglutelin-α-globulin-containing intracisternal granules surrounded by prolamine inclusions within the ER lumen. As assessed by in situ reverse transcriptase polymerase chain reaction (RT-PCR) analysis of developing endosperm sections, prolamine and α-globulin RNAs were found to be mis-targeted from their usual sites on the protein body ER to the cisternal ER, the normal sites of proglutelin synthesis. Our results indicate that GLUP2/GOT1B has a dual role during rice endosperm development. It is required for localization of prolamine and α-globulin RNAs to the protein body ER and for efficient export of proglutelin and α-globulin proteins from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yasushi Kawagoe
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Deceased
| | | | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
- Present address: U-TEC Corporation, 648-1 Matsukasa, Yamatokoriyama, Nara 639-1124, Japan
| | - Aya Sugino
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Ai Nagamine
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Masahiro Ogawa
- Department of General Education, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan
| | | |
Collapse
|
29
|
Okuda M, Miyamoto M, Joyo M, Takahashi K, Goto-Yamamoto N, Iida S, Ishii T. The relationship between rice protein composition and nitrogen compounds in sake. J Biosci Bioeng 2016; 122:70-8. [DOI: 10.1016/j.jbiosc.2015.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
|
30
|
Zhang W, Xu J, Bennetzen JL, Messing J. Teff, an Orphan Cereal in the Chloridoideae, Provides Insights into the Evolution of Storage Proteins in Grasses. Genome Biol Evol 2016; 8:1712-21. [PMID: 27190000 PMCID: PMC4943188 DOI: 10.1093/gbe/evw117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Seed storage proteins (SSP) in cereals provide essential nutrition for humans and animals. Genes encoding these proteins have undergone rapid evolution in different grass species. To better understand the degree of divergence, we analyzed this gene family in the subfamily Chloridoideae, where the genome of teff (Eragrostis tef) has been sequenced. We find gene duplications, deletions, and rapid mutations in protein-coding sequences. The main SSPs in teff, like other grasses, are prolamins, here called eragrostins. Teff has γ- and δ-prolamins, but has no β-prolamins. One δ-type prolamin (δ1) in teff has higher methionine (33%) levels than in maize (23–25%). The other δ-type prolamin (δ2) has reduced methionine residues (<10%) and is phylogenetically closer to α prolamins. Prolamin δ2 in teff represents an intermediate between δ and α types that appears to have been lost in maize and other Panicoideae, and was replaced by the expansion of α-prolamins. Teff also has considerably larger numbers of α-prolamin genes, which we further divide into five sub-groups, where α2 and α5 represent the most abundant α-prolamins both in number and in expression. In addition, indolines that determine kernel softness are present in teff and the panicoid cereal called foxtail millet (Setaria italica) but not in sorghum or maize, indicating that these genes were only recently lost in some members of the Panicoideae. Moreover, this study provides not only information on the evolution of SSPs in the grass family but also the importance of α-globulins in protein aggregation and germplasm divergence.
Collapse
Affiliation(s)
- Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Jianhong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou China
| | | | | |
Collapse
|
31
|
Cho K, Lee HJ, Jo YM, Lim SH, Rakwal R, Lee JY, Kim YM. RNA Interference-Mediated Simultaneous Suppression of Seed Storage Proteins in Rice Grains. FRONTIERS IN PLANT SCIENCE 2016; 7:1624. [PMID: 27843443 PMCID: PMC5087109 DOI: 10.3389/fpls.2016.01624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/14/2016] [Indexed: 05/22/2023]
Abstract
Seed storage proteins (SSPs) such as glutelin, prolamin, and globulin are abundant components in some of the most widely consumed food cereals in the world. Synthesized in the rough endoplasmic reticulum (ER), SSPs are translocated to the protein bodies. Prolamins are located at the spherical protein body I derived from the ER, whereas, glutelins and globulin are accumulated in the irregularly shaped protein bodies derived from vacuoles. Our previous studies have shown that the individual suppression of glutelins, 13-kDa prolamins and globulin caused the compensative accumulation of other SSPs. Herein, to investigate the phenotypic and molecular features of SSP deficiency transgenic rice plants suppressing all glutelins, prolamins, and globulin were generated using RNA interference (RNAi). The results revealed that glutelin A, cysteine-rich 13-kDa prolamin and globulin proteins were less accumulated but that glutelin B and ER chaperones, such as binding protein 1 (BiP1) and protein disulfide isomerase-like 1-1 (PDIL1-1), were highly accumulated at the transcript and protein levels in seeds of the transformants compared to those in the wild-type seeds. Further, the transcription of starch synthesis-related genes was reduced in immature seeds at 2 weeks after flowering, and the starch granules were loosely packaged with various sphere sizes in seed endosperms of the transformants, resulting in a floury phenotype. Interestingly, the rates of sprouting and reducing sugar accumulation during germination were found to be delayed in the transformants compared to the wild-type. In all, our results provide new insight into the role of SSPs in the formation of intracellular organelles and in germination.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
| | - Hye-Jung Lee
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
| | - Yeong-Min Jo
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
| | - Sun-Hyung Lim
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies, University of TsukubaTsukuba, Japan
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi UniversityTokyo, Japan
| | - Jong-Yeol Lee
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
- *Correspondence: Jong-Yeol Lee, Young-Mi Kim,
| | - Young-Mi Kim
- Rural Development Administration, Department of Agricultural Biotechnology, National Institute of Agricultural ScienceJeonju, South Korea
- *Correspondence: Jong-Yeol Lee, Young-Mi Kim,
| |
Collapse
|
32
|
Wen L, Fukuda M, Sunada M, Ishino S, Ishino Y, Okita TW, Ogawa M, Ueda T, Kumamaru T. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6137-47. [PMID: 26136263 PMCID: PMC4588877 DOI: 10.1093/jxb/erv325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins.
Collapse
Affiliation(s)
- Liuying Wen
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao 266101, China
| | - Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mariko Sunada
- Graduated School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Sonoko Ishino
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yoshizumi Ishino
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Masahiro Ogawa
- Department of General Education, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan
| | - Takashi Ueda
- Graduated School of Science, University of Tokyo, Tokyo 113-0033, Japan Japan Science and Technology Agency (JST), PRESTO, Saitama 332-0012, Japan
| | | |
Collapse
|
33
|
Takaiwa F, Wakasa Y, Takagi H, Hiroi T. Rice seed for delivery of vaccines to gut mucosal immune tissues. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1041-55. [PMID: 26100952 DOI: 10.1111/pbi.12423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 05/09/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is the biggest lymphoid organ in the body. It plays a role in robust immune responses against invading pathogens while maintaining immune tolerance against nonpathogenic antigens such as foods. Oral vaccination can induce mucosal and systemic antigen-specific immune reactions and has several advantages including ease of administration, no requirement for purification and ease of scale-up of antigen. Thus far, taking advantage of these properties, various plant-based oral vaccines have been developed. Seeds provide a superior production platform over other plant tissues for oral vaccines; they offer a suitable delivery vehicle to GALT due to their high stability at room temperature, ample and stable deposition space, high expression level, and protection from digestive enzymes in gut. A rice seed production system for oral vaccines was established by combining stable deposition in protein bodies or protein storage vacuoles and enhanced endosperm-specific expression. Various types of rice-based oral vaccines for infectious and allergic diseases were generated. Efficacy of these rice-based vaccines was evaluated in animal models.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuhya Wakasa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hidenori Takagi
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
34
|
Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice. Int J Mol Sci 2015; 16:14717-36. [PMID: 26133242 PMCID: PMC4519868 DOI: 10.3390/ijms160714717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi), which was generated with RNA interference (RNAi)-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.
Collapse
|
35
|
Vázquez-Gutiérrez JL, Langton M. Current potential and limitations of immunolabeling in cereal grain research. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Masumura T, Shigemitsu T, Morita S, Satoh S. Identification of the region of rice 13 kDa prolamin essential for the formation of ER-derived protein bodies using a heterologous expression system. Biosci Biotechnol Biochem 2014; 79:566-73. [PMID: 25522807 DOI: 10.1080/09168451.2014.991684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cereal prolamins, which are alcohol-soluble seed storage proteins, can induce ER-derived protein bodies (PBs) in heterologous tissue. Like maize and wheat prolamins, rice prolamins can form ER-derived PBs, but the region of mature polypeptides that is essential for PB formation has not been identified. In this study, we examined the formation mechanisms of ER-derived PB-like structures by expressing rice 13 kDa prolamin-deletion mutants fused to green fluorescent protein (GFP) in heterologous tissues such as yeast. The 13 kDa prolamin-GFP fusion protein was stably accumulated in transgenic yeast and formed an ER-derived PB-like structure. In contrast, rice α-globulin-GFP fusion protein was transported to vacuoles. In addition, the middle and COOH-terminal regions of 13 kDa prolamin formed ER-derived PB-like structures, whereas the NH2-terminal region of 13 kDa prolamin did not form such structures. These results suggest that the middle and COOH-terminal regions of 13 kDa prolamin can be retained and thus can induce ER-derived PB in yeast.
Collapse
Affiliation(s)
- Takehiro Masumura
- a Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | | | | | | |
Collapse
|
37
|
Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D, Guiderdoni E, Rossignol M, Badosa E, Montesinos E, San Segundo B, Coca M. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC PLANT BIOLOGY 2014; 14:102. [PMID: 24755305 PMCID: PMC4032361 DOI: 10.1186/1471-2229-14-102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/14/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. RESULTS Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. CONCLUSIONS Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Esther Izquierdo
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Delphine Mieulet
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Michel Rossignol
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
39
|
Kim HJ, Lee JY, Yoon UH, Lim SH, Kim YM. Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice. Int J Mol Sci 2013; 14:17073-84. [PMID: 23965973 PMCID: PMC3759952 DOI: 10.3390/ijms140817073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/05/2013] [Accepted: 07/03/2013] [Indexed: 11/21/2022] Open
Abstract
Rice seed storage proteins accumulate in two types of protein body (PB-I and PB-II) that are nutrient sources for animals. PB-I is indigestible and negatively affects rice protein quality. To improve the nutritional value of rice seeds we are aiming to engineer the composition and accumulation of endogenous seed storage proteins. In this study we generated transgenic rice plants in which 13 kD prolamin genes were suppressed by RNA interference (13 kD pro-RNAi). Analysis based on qRT-PCR confirmed that the targeted 13 kD prolamins were markedly suppressed, and were compensated for by an increase in other storage proteins including 10 kD prolamin, glutelins, and chaperone proteins. The storage protein profiles further revealed that the levels of 13 kD prolamins were significantly reduced, while that of the glutelin precursor was slightly increased and the remaining storage proteins did not change. Amino acid analysis showed that the reduction of 13 kD prolamins resulted in a 28% increase in the lysine content relative to the wild type, indicating that the 13 kD pro-RNAi rice seeds are more nutritious. Furthermore, a reduction in the levels of 13 kD prolamins resulted in abnormal formation of PB-I, which was small and had no lamellar structure. These results suggest that alteration of prolamins can contribute to improving the nutritional quality of rice.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration (RDA), 224 Suinro Gwonseon-gu, Suwon 441-707, Gyeonggi-do, Korea.
| | | | | | | | | |
Collapse
|
40
|
Impact of processing conditions on the extractability and molecular weight distribution of proteins in parboiled brown rice. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Fukuda M, Wen L, Satoh-Cruz M, Kawagoe Y, Nagamura Y, Okita TW, Washida H, Sugino A, Ishino S, Ishino Y, Ogawa M, Sunada M, Ueda T, Kumamaru T. A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. PLANT PHYSIOLOGY 2013; 162:663-74. [PMID: 23580596 PMCID: PMC3668061 DOI: 10.1104/pp.113.217869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as a precursor, which are then transported via the Golgi to protein storage vacuoles (PSVs), where they are proteolytically processed into acidic and basic subunits. The glutelin precursor mutant6 (glup6) accumulates abnormally large amounts of proglutelin. Map-base cloning studies showed that glup6 was a loss-of-function mutant of guanine nucleotide exchange factor (GEF), which activates Rab GTPase, a key regulator of membrane trafficking. Immunofluorescence studies showed that the transport of proglutelins and α-globulins to PSV was disrupted in glup6 endosperm. Secreted granules of glutelin and α-globulin were readily observed in young glup6 endosperm, followed by the formation of large dilated paramural bodies (PMBs) containing both proteins as the endosperm matures. The PMBs also contained membrane biomarkers for the Golgi and prevacuolar compartment as well as the cell wall component, β-glucan. Direct evidence was gathered showing that GLUP6/GEF activated in vitro GLUP4/Rab5 as well as several Arabidopsis (Arabidopsis thaliana) Rab5 isoforms to the GTP-bound form. Therefore, loss-of-function mutations in GEF or Rab5 disrupt the normal transport of proglutelin from the Golgi to PSVs, resulting in the initial extracellular secretion of these proteins followed, in turn, by the formation of PMBs. Overall, our results indicate that GLUP6/GEF is the activator of Rab5 GTPase and that the cycling of GTP- and GDP-bound forms of this regulatory protein is essential for the intracellular transport of proglutelin and α-globulin from the Golgi to PSVs and in the maintenance of the general structural organization of the endomembrane system in rice seeds.
Collapse
|
42
|
Wang S, Takahashi H, Kajiura H, Kawakatsu T, Fujiyama K, Takaiwa F. Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies. PLANT & CELL PHYSIOLOGY 2013; 54:917-33. [PMID: 23539245 DOI: 10.1093/pcp/pct043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A versatile hypoallergenic allergen derivative against multiple allergens is an ideal tolerogen for allergen-specific immunotherapy. Such a tolerogen should exhibit high efficacy, without side effects, when administered at high doses and should be applicable to several allergens. Tree pollen chimera 7 (TPC7), a hypoallergenic Bet v 1 tolerogen against birch pollen allergy, was previously selected by DNA shuffling of 14 types of Fagales tree pollen allergens. In this study, transgenic rice seed accumulating TPC7 was generated as an oral vaccine against birch pollen allergy by expressing this protein as a secretory protein using the N-terminal signal peptide and the C-terminal KDEL tag under the control of an endosperm-specific glutelin promoter. The highest level of TPC7 accumulation was approximately 207 µg grain(-1). Recombinant TPC7 is a glycoprotein with high mannose-type N-glycan, but without β1,2-xylose or α1,3-fucose, suggesting that TPC7 is retained in the endoplasmic reticulum (ER). TPC7 is deposited as a novel, giant spherical ER-derived protein body, >20 µm in diameter, which is referred to as the TPC7 body. Removal of the KDEL retention signal or mutation of a cysteine residue resulted in an alteration of TPC7 body morphology, and deletion of the signal peptide prevented the accumulation of TPC7 in rice seeds. Therefore, the novel TPC7 bodies may have formed aggregates within the ER lumen, primarily due to the intrinsic physicochemical properties of the protein.
Collapse
Affiliation(s)
- Shuyi Wang
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | | | | | |
Collapse
|
43
|
Onda Y, Kawagoe Y. P5-type sulfhydryl oxidoreductase promotes the sorting of proteins to protein body I in rice endosperm cells. PLANT SIGNALING & BEHAVIOR 2013; 8:e23075. [PMID: 23299424 PMCID: PMC3657003 DOI: 10.4161/psb.23075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 05/30/2023]
Abstract
In rice (Oryza sativa) endosperm cells, oxidative protein folding is necessary for the sorting of storage proteins to protein bodies, PB-I and PB-II. Here we examined the role of sulfhydryl oxidoreductase PDIL2;3 (a human P5 ortholog) in the endoplasmic reticulum (ER), using GFP-AB, a PB-I marker in which the N-terminal region (AB) of α-globulin is fused to green fluorescent protein (GFP). RNAi knockdown of PDIL2;3 inhibited the accumulation of GFP-AB in PB-I and promoted its exit from the ER. We discuss the role of PDIL2;3 in retaining proteins within the ER and specifying their localization to PB-I through disulfide bond formation.
Collapse
Affiliation(s)
- Yayoi Onda
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki, Japan
- Department of Food and Applied Life Sciences; Yamagata University; Tsuruoka, Yamagata, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Francin-Allami M, Bouder A, Popineau Y. Comparative study of wheat low-molecular-weight glutenin and α-gliadin trafficking in tobacco cells. PLANT CELL REPORTS 2013; 32:89-101. [PMID: 23001535 DOI: 10.1007/s00299-012-1343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated. Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.
Collapse
|
45
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. PLANT PHYSIOLOGY 2013; 161:108-20. [PMID: 23166355 PMCID: PMC3532245 DOI: 10.1104/pp.112.207654] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | | | - Momoko Nishina
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Ikuko Hara-Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| |
Collapse
|
46
|
Yang L, Hirose S, Takahashi H, Kawakatsu T, Takaiwa F. Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1035-45. [PMID: 22882653 DOI: 10.1111/j.1467-7652.2012.00731.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Human IL-10 (hIL-10) is a therapeutic treatment candidate for inflammatory allergy and autoimmune diseases. Rice seed-produced IL-10 can be effectively delivered directly to gut-associated lymphoreticular tissue (GALT) via bio-encapsulation. Previously, the codon-optimized hIL-10 gene was expressed in transgenic rice with the signal peptide and endoplasmic reticulum (ER) retention signal (KDEL) at its 5' and 3' ends, respectively, under the control of the endosperm-specific glutelin GluB-1 promoter. The resulting purified hIL-10 was biologically active. In this study, the yield of hIL-10 in transgenic rice seed was improved. This protein accumulated at the intended deposition sites, which had been made vacant through the selective reduction, via RNA interference, of the endogenous seed storage proteins prolamins or glutelins. Upon suppression of prolamins that were sequestered into ER-derived protein bodies (PB-I), hIL-10 accumulation increased approximately 3-fold as compared to rice seed with no such suppression and reached 219 μg/grain. In contrast, reducing the majority of the glutelins stored in protein-storage vacuoles (PB-II) did not significantly affect the accumulation of hIL-10. Considering that hIL-10 is synthesized in the ER lumen and subsequently buds off in ER-derived granules called IL-10 granules in a manner similar to PB-Is, these results indicate that increases in the available deposition space for the desired recombinant proteins may be crucial for improvements in yield. Furthermore, efficient dimeric intermolecular formation of hIL-10 by inhibiting interaction with Cys-rich prolamins also contributed to the enhanced formation of IL-10 bodies. Higher yield of hIL-10 produced in rice seeds is expected to have broad application in the future.
Collapse
Affiliation(s)
- Lijun Yang
- Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
47
|
Jung HJ, Jung HJ, Ahmed NU, Park JI, Kang KK, Hur Y, Lim YP, Nou IS. Development of self-compatible B. rapa by RNAi-mediated S locus gene silencing. PLoS One 2012; 7:e49497. [PMID: 23145180 PMCID: PMC3493532 DOI: 10.1371/journal.pone.0049497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
The self-incompatibility (SI) system is genetically controlled by a single polymorphic locus known as the S-locus in the Brassicaceae. Pollen rejection occurs when the stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and S-locus protein 11 or S locus Cysteine-rich (SP11/SCR) protein. Here, we examined the function of S(60), one SP11/SCR allele of B. rapa cv. Osome, using a RNAi-mediated gene silencing approach. The transgenic RNAi lines were highly self-compatible, and this trait was stable in subsequent generations, even after crossing with other commercial lines. These findings also suggested that the resultant self-compatibility could be transferred to commercial cultivars with the desired performances in B. rapa.
Collapse
Affiliation(s)
- Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Republic of Korea
| | - Hyo-Jin Jung
- Department of Horticulture, Jeollanam-do Agricultural Research and Extension Services, Najusi, Republic of Korea
| | - Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, Suncheon, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Republic of Korea
| | - Kwon-Kyoo Kang
- Department of Horticulture, Hankyong National University, Ansung, Republic of Korea
| | - Yoonkang Hur
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
48
|
Saito Y, Shigemitsu T, Yamasaki R, Sasou A, Goto F, Kishida K, Kuroda M, Tanaka K, Morita S, Satoh S, Masumura T. Formation mechanism of the internal structure of type I protein bodies in rice endosperm: relationship between the localization of prolamin species and the expression of individual genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:1043-55. [PMID: 22348505 DOI: 10.1111/j.1365-313x.2012.04947.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice prolamins, a group of seed storage proteins, are synthesized on the rough endoplasmic reticulum (ER) and form type I protein bodies (PB-Is) in endosperm cells. Rice prolamins are encoded by a multigene family. In this study, the spatial accumulation patterns of various prolamin species in rice endosperm cells were investigated to determine the mechanism of formation of the internal structure of PB-Is. Immunofluorescence microscopic analysis of mature endosperm cells showed that the 10 kDa prolamin is mainly localized in the core of the PB-Is, the 13b prolamin is localized in the inner layer surrounding the core and the outermost layer, and the 13a and 16 kDa prolamins are localized in the middle layer. Real-time RT-PCR analysis showed that expression of the mRNA for 10 kDa prolamin precedes expression of 13a, 13b-1 and 16 kDa prolamin in the developing stages. mRNA expression for 13b-2 prolamin occurred after that of the other prolamin species. Immunoelectron microscopy of developing seeds showed that the 10 kDa prolamin polypeptide initially accumulates in the ER, and then 13b, 13a, 16 kDa and 13b prolamins are stacked in layers within the ER. Studies with transgenic rice seeds expressing prolamin-GFP fusion proteins under the control of native and constitutive promoters indicated that the temporal expression pattern of prolamin genes influenced the localization of prolamin proteins within the PB-Is. These findings indicate that the control of gene expression of prolamin species contributes to the internal structure of PB-Is.
Collapse
Affiliation(s)
- Yuhi Saito
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
50
|
Onda Y, Kawagoe Y. Oxidative protein folding: selective pressure for prolamin evolution in rice. PLANT SIGNALING & BEHAVIOR 2011; 6:1966-72. [PMID: 22112460 PMCID: PMC3337189 DOI: 10.4161/psb.6.12.17967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During seed development, endosperm cells of highly productive cereals, including rice, synthesize disulfide-rich proteins in large amounts and deposit them into storage organelles. Disulfide bond formation involves electron transfer and generates H(2)O(2) as a by-product. To ensure proper development and maturation of seeds, the endosperm cells must supply large amounts of oxidizing equivalents to dithiols in nascent proteins in a controlled manner. This review compares multiple oxidative protein folding systems in yeast, cultured human cells, and rice endosperm. We discuss possible roles of ERO1, other sulfhydryl oxidases, and the protein disulfide isomerase family in the formation of disulfide bonds in storage proteins and the development of protein bodies. Rice prolamins, encoded by a multigene family, are divided into Cys-rich and Cys-depleted subgroups. We discuss the potential importance of disulfide bond formation in the evolution of the prolamin family in japonica rice.
Collapse
Affiliation(s)
- Yayoi Onda
- Department of Food and Applied Life Sciences; Yamagata University; Tsuruoka, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Japan
| |
Collapse
|