1
|
Kalicharan RE, Fernandez J. Triple Threat: How Global Fungal Rice and Wheat Pathogens Utilize Comparable Pathogenicity Mechanisms to Drive Host Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:173-186. [PMID: 39807944 DOI: 10.1094/mpmi-09-24-0106-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops such as rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease; Fusarium graminearum, responsible for Fusarium head blight in wheat; and Zymoseptoria tritici, the source of Septoria tritici blotch. All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rachel E Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
2
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. Characterizing the role of PP2A B'' family subunits in mechanical stress response and plant development through calcium and ABA signaling in Arabidopsis thaliana. PLoS One 2024; 19:e0313590. [PMID: 39541304 PMCID: PMC11563394 DOI: 10.1371/journal.pone.0313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Protein phosphatase 2AB'' (PP2A B'') family subunits have calcium-binding EF-hand motifs, facilitating interaction with PP2A substrates. In Arabidopsis thaliana, the PP2A B'' family subunits consist of six members, AtB''α-ε and FASS. These subunits can interact with a basic leucine zipper transcription factor, VIP1, and its close homologs. Mechanical stress triggers PP2A-mediated dephosphorylation of VIP1 and its close homologs, leading to nuclear localization and gene upregulation to alleviate touch-induced root bending and leaf damage. However, the physiological roles of PP2A B'' family subunits in the mechanical stress response in Arabidopsis remain unclear. This study aims to characterize such roles. A quadruple knockout mutant with T-DNA insertions in AtB''α, AtB''β, AtB''γ, and AtB''δ was generated. atb''αβγδ mutants exhibited no significant damage upon brushing or touch-induced root bending compared to the wild type. Transcriptome analysis showed a significant decrease in the expression of CYP707A3, a gene potentially targeted by VIP1 that regulates abscisic acid (ABA) catabolism, in the atb''αβγδ mutant compared to wild type leaves. However, other genes, including XTH23, EXLA1, and CYP707A1, also VIP1 targets, exhibited similar induction in both brushed atb''αβγδ mutants and wild type leaves. We observed an enrichment of the CAMTA motif, CGCG(C/T) in the promoters of genes showing downregulated expression levels in brushed atb''αβγδ leaves compared to brushed wild type leaves. These findings suggest that PP2A B'' family subunits exhibit functional redundancy in the VIP1-dependent pathway but influence CAMTA-dependent gene expression under mechanical stress. Under calcium-deficient and ABA-supplemented conditions, growth of atb''αβγδ seedlings was retarded when compared to wild type and single knockout mutants, atb''γ and atb''δ, indicating a crucial role in plant development by modulating calcium or ABA signaling.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
3
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. VIP1 and its close homologs confer mechanical stress tolerance in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109021. [PMID: 39137679 DOI: 10.1016/j.plaphy.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, 060-8589, Japan.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Hangzhou, 311300, PR China.
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
4
|
Lampugnani ER, Persson S, van de Meene AML. Colocalising proteins and polysaccharides in plants for cell wall and trafficking studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1440885. [PMID: 39328792 PMCID: PMC11425716 DOI: 10.3389/fpls.2024.1440885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Plant cell walls (PCWs) are intricate structures with complex polysaccharides delivered by distinct trafficking routes. Unravelling the intricate trafficking pathways of polysaccharides and proteins involved in PCW biosynthesis is a crucial first step towards understanding the complexities of plant growth and development. This study investigated the feasibility of employing a multi-modal approach that combines transmission electron microscopy (TEM) with molecular-genetic tagging and antibody labelling techniques to differentiate these pathways at the nanoscale. The genetically encoded electron microscopy (EM) tag APEX2 was fused to Arabidopsis thaliana cellulose synthase 6 (AtCESA6) and Nicotiana alata ARABINAN DEFICIENT LIKE 1 (NaARADL1), and these were transiently expressed in Nicotiana benthamiana leaves. APEX2 localization was then combined with immunolabeling using pectin-specific antibodies (JIM5 and JIM7). Our results demonstrate distinct trafficking patterns for AtCESA6 and NaARADL, with AtCESA6 localized primarily to the plasma membrane and vesicles, while NaARADL1 was found in the trans-Golgi network and cytoplasmic vesicles. Pectin epitopes were observed near the plasma membrane, in Golgi-associated vesicles, and in secretory vesicle clusters (SVCs) with both APEX2 constructs. Notably, JIM7 labelling was found in vesicles adjacent to APEX2-AtCESA6 vesicles, suggesting potential co-trafficking. This integrative approach offers a powerful tool for elucidating the dynamic interactions between PCW components at the nanoscale level. The methodology presented here facilitates the precise mapping of protein and polysaccharide trafficking pathways, advancing our understanding of PCW biosynthesis and providing avenues for future research aimed at engineering plant cell walls for various applications.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Medicine (RMH), Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
- AirHealth Pty Ltd., Parkville, VIC, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Staffan Persson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Frederiksberg, Denmark
| | - Allison M L van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Advanced Microscopy Facility (BioSciences Microscopy Unit and the Ian Holmes Imaging Centre, Bio21), The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Umezawa A, Matsumoto M, Handa H, Nakazawa K, Miyagawa M, Seifert GJ, Takahashi D, Fushinobu S, Kotake T. Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:508-524. [PMID: 38678521 DOI: 10.1111/tpj.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.
Collapse
Affiliation(s)
- Akira Umezawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Mayuko Matsumoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Handa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Konatsu Nakazawa
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Megumi Miyagawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Georg J Seifert
- Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Science, Muthgasse 18, A-1190, Vienna, Austria
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
- Green Bioscience Research Center, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
6
|
Fangel JU, Sørensen KM, Jacobsen N, Mravec J, Ahl LI, Bakshani C, Mikkelsen MD, Engelsen SB, Willats W, Ulvskov P. The legacy of terrestrial plant evolution on cell wall fine structure. PLANT, CELL & ENVIRONMENT 2024; 47:1238-1254. [PMID: 38173082 DOI: 10.1111/pce.14785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.
Collapse
Affiliation(s)
- Jonatan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Niels Jacobsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louise Isager Ahl
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Cassie Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | | | | | - William Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Takahashi D, Soga K, Kikuchi T, Kutsuno T, Hao P, Sasaki K, Nishiyama Y, Kidokoro S, Sampathkumar A, Bacic A, Johnson KL, Kotake T. Structural changes in cell wall pectic polymers contribute to freezing tolerance induced by cold acclimation in plants. Curr Biol 2024; 34:958-968.e5. [PMID: 38335960 DOI: 10.1016/j.cub.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance. Although previous studies have shown that the amounts of constituent sugars of the cell wall, in particular those of pectic polysaccharides, are altered by cold acclimation, the significance of this change during cold acclimation has not been clarified. We found that β-1,4-galactan, which forms neutral side chains of the acidic pectic rhamnogalacturonan-I, accumulates in the cell walls of Arabidopsis and various freezing-tolerant vegetables during cold acclimation. The gals1 gals2 gals3 triple mutant, which has reduced β-1,4-galactan in the cell wall, exhibited impaired freezing tolerance compared with wild-type Arabidopsis during initial stages of cold acclimation. Expression of genes involved in the galactan biosynthesis pathway, such as galactan synthases and UDP-glucose 4-epimerases, was induced during cold acclimation in Arabidopsis, explaining the galactan accumulation. Cold acclimation resulted in a decrease in extensibility and an increase in rigidity of the cell wall in the wild type, whereas these changes were not observed in the gals1 gals2 gals3 triple mutant. These results indicate that the accumulation of pectic β-1,4-galactan contributes to acquired freezing tolerance by cold acclimation, likely via changes in cell wall mechanical properties.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Kouichi Soga
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takuma Kikuchi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tatsuya Kutsuno
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Pengfei Hao
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kazuma Sasaki
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yui Nishiyama
- Department of Biochemistry & Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Toshihisa Kotake
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P. Do Cuticular Gaps Make It Possible to Study the Composition of the Cell Walls in the Glands of Drosophyllum lusitanicum? Int J Mol Sci 2024; 25:1320. [PMID: 38279320 PMCID: PMC10816202 DOI: 10.3390/ijms25021320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Carnivorous plants can survive in poor habitats because they have the ability to attract, capture, and digest prey and absorb animal nutrients using modified organs that are equipped with glands. These glands have terminal cells with permeable cuticles. Cuticular discontinuities allow both secretion and endocytosis. In Drosophyllum lusitanicum, these emergences have glandular cells with cuticular discontinuities in the form of cuticular gaps. In this study, we determined whether these specific cuticular discontinuities were permeable enough to antibodies to show the occurrence of the cell wall polymers in the glands. Scanning transmission electron microscopy was used to show the structure of the cuticle. Fluorescence microscopy revealed the localization of the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. We showed that Drosophyllum leaf epidermal cells have a continuous and well-developed cuticle, which helps the plant inhibit water loss and live in a dry environment. The cuticular gaps only partially allow us to study the composition of cell walls in the glands of Drosophyllum. We recoded arabinogalactan proteins, some homogalacturonans, and hemicelluloses. However, antibody penetration was only limited to the cell wall surface. The localization of the wall components in the cell wall ingrowths was missing. The use of enzymatic digestion improves the labeling of hemicelluloses in Drosophyllum glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
9
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Han J, Liu Y, Shen Y, Zhang D, Li W. Transcriptome Dynamics during Spike Differentiation of Wheat Reveal Amazing Changes in Cell Wall Metabolic Regulators. Int J Mol Sci 2023; 24:11666. [PMID: 37511426 PMCID: PMC10380499 DOI: 10.3390/ijms241411666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coordinated cell proliferation and differentiation result in the complex structure of the inflorescence in wheat. It exhibits unique differentiation patterns and structural changes at different stages, which have attracted the attention of botanists studying the dynamic regulation of its genes. Our research aims to understand the molecular mechanisms underlying the regulation of spike development genes at different growth stages. We conducted RNA-Seq and qRT-PCR evaluations on spikes at three stages. Our findings revealed that genes associated with the cell wall and carbohydrate metabolism showed high expression levels between any two stages throughout the entire process, suggesting their regulatory role in early spike development. Furthermore, through transgenic experiments, we elucidated the role of the cell wall regulator gene in spike development regulation. These research results contribute to identifying essential genes associated with the morphology and development of wheat spike tissue.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Donghai Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| |
Collapse
|
11
|
Chavan RR, Singh AP, Turner AP. Cell corner middle lamella in hydroids of dendroid moss Hypnodendron menziesii gametophyte is prominently thickened: a proposed role in the mechanical support function. PLANTA 2023; 257:82. [PMID: 36917364 DOI: 10.1007/s00425-023-04101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Significantly thickened corner middle lamella of the hydroid cell wall in the stipe of dendroid moss Hypnodendron menziesii has a mechanical support function. The hydroid cell walls of the erect stipe of Hypnodendron menziesii were investigated using light microscopy (LM), transmission electron microscopy (TEM), and TEM-immunogold labeling in support of the proposed biomechanical function for the highly thickened cell corner middle lamellae. The statistical analyses of dimensions of hydroid cell and wall parameters revealed a strong positive correlation between the area of hydroid cell and (i) the hydroid cell walls adhering to thick corner middle lamella, (ii) the area of the thick cell wall at hydroid corners, and (iii) the maximum thickness of cell wall at hydroid corners. The total area of the thick cell wall at the hydroid corners concomitantly increased with the area of the hydroid cell wall adhering to the middle lamella, and with the increased number of hydroids surrounding a reference hydroid. The results suggest that markedly thickened middle lamellae of the hydroid cell wall in Hypnodendron likely function by preventing hydroid cells from collapsing under the tensile forces generated from the transpirational pull on the water column. The specific localization of (1→4)- β-D-galactan and (1,5)-α-L-arabinan in the interface region of the hydroid cell wall and the thick middle lamella is consistent with these cell wall components being involved in the mechanical strengthening of the interface through firm adhesion as well as elasticity, ensuring the structural stability of this cell wall region, which may be prone to delamination/fracturing from the various internal and external pressures imposed. The copious presence of homogalacturonan in the thick middle lamella may further enhance the strength and flexibility of hydroid cell walls.
Collapse
Affiliation(s)
- Ramesh R Chavan
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Adya P Singh
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Adrian P Turner
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
12
|
The Course of Mechanical Stress: Types, Perception, and Plant Response. BIOLOGY 2023; 12:biology12020217. [PMID: 36829495 PMCID: PMC9953051 DOI: 10.3390/biology12020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Mechanical stimuli, together with the corresponding plant perception mechanisms and the finely tuned thigmomorphogenetic response, has been of scientific and practical interest since the mid-17th century. As an emerging field, there are many challenges in the research of mechanical stress. Indeed, studies on different plant species (annual/perennial) and plant organs (stem/root) using different approaches (field, wet lab, and in silico/computational) have delivered insufficient findings that frequently impede the practical application of the acquired knowledge. Accordingly, the current work distils existing mechanical stress knowledge by bringing in side-by-side the research conducted on both stem and roots. First, the various types of mechanical stress encountered by plants are defined. Second, plant perception mechanisms are outlined. Finally, the different strategies employed by the plant stem and roots to counteract the perceived mechanical stresses are summarized, depicting the corresponding morphological, phytohormonal, and molecular characteristics. The comprehensive literature on both perennial (woody) and annual plants was reviewed, considering the potential benefits and drawbacks of the two plant types, which allowed us to highlight current gaps in knowledge as areas of interest for future research.
Collapse
|
13
|
Pieczywek PM, Chibrikov V, Zdunek A. In silico studies of plant primary cell walls - structure and mechanics. Biol Rev Camb Philos Soc 2023; 98:887-899. [PMID: 36692136 DOI: 10.1111/brv.12935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Primary plant cell wall (PCW) is a highly organized network, its performance is dependent on cellulose, hemicellulose and pectic polysaccharides, their properties, interactions and assemblies. Their mutual relationships and functions in the cell wall can be better understood by means of conceptual models of their higher-order structures. Knowledge unified in the form of a conceptual model allows predictions to be made about the properties and behaviour of the system under study. Ongoing research in this field has resulted in a number of conceptual models of the cell wall. However, due to the currently limited research methods, the community of cell wall researchers have not reached a consensus favouring one model over another. Herein we present yet another research technique - numerical modelling - which is capable of resolving this issue. Even at the current stage of development of numerical techniques, due to their complexity, the in silico reconstruction of PCW remains a challenge for computational simulations. However, some difficulties have been overcome, thereby making it possible to produce advanced approximations of PCW structure and mechanics. This review summarizes the results concerning the simulation of polysaccharide interactions in PCW with regard to network fine structure, supramolecular properties and polysaccharide binding affinity. The in silico mechanical models presented herein incorporate certain physical and biomechanical aspects of cell wall architecture for the purposes of undertaking critical testing to bring about advances in our understanding of the mechanisms controlling cells and limiting cell wall expansion.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Vadym Chibrikov
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
14
|
Carroll S, Amsbury S, Durney CH, Smith RS, Morris RJ, Gray JE, Fleming AJ. Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening. Curr Biol 2022; 32:3170-3179.e4. [PMID: 35675810 PMCID: PMC9616722 DOI: 10.1016/j.cub.2022.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Stomata regulate plant water use and photosynthesis by controlling leaf gas exchange. They do this by reversibly opening the pore formed by two adjacent guard cells, with the limits of this movement ultimately set by the mechanical properties of the guard cell walls and surrounding epidermis.1,2 A body of evidence demonstrates that the methylation status and cellular patterning of pectin wall polymers play a core role in setting the guard cell mechanical properties, with disruption of the system leading to poorer stomatal performance.3-6 Here we present genetic and biochemical data showing that wall arabinans modulate guard cell flexibility and can be used to engineer stomata with improved performance. Specifically, we show that a short-chain linear arabinan epitope associated with the presence of rhamnogalacturonan I in the guard cell wall is required for full opening of the stomatal pore. Manipulations leading to the novel accumulation of longer-chain arabinan epitopes in guard cell walls led to an increase in the maximal pore aperture. Using computational modeling combined with atomic force microscopy, we show that this phenotype reflected a decrease in wall matrix stiffness and, consequently, increased flexing of the guard cells under turgor pressure, generating larger, rounder stomatal pores. Our results provide theoretical and experimental support for the conclusion that arabinan side chains of pectin modulate guard cell wall stiffness, setting the limits for cell flexing and, consequently, pore aperture, gas exchange, and photosynthetic assimilation.
Collapse
Affiliation(s)
- Sarah Carroll
- School of Biosciences, University of Sheffield, Western Park, Sheffield S10 2TN, UK
| | - Sam Amsbury
- School of Biosciences, University of Sheffield, Western Park, Sheffield S10 2TN, UK
| | - Clinton H Durney
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard S Smith
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julie E Gray
- School of Biosciences, University of Sheffield, Western Park, Sheffield S10 2TN, UK
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, Western Park, Sheffield S10 2TN, UK.
| |
Collapse
|
15
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
16
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
17
|
Peng JS, Zhang BC, Chen H, Wang MQ, Wang YT, Li HM, Cao SX, Yi HY, Wang H, Zhou YH, Gong JM. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. MOLECULAR PLANT 2021; 14:1640-1651. [PMID: 34171482 DOI: 10.1016/j.molp.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Apoplastic iron (Fe) in roots represents an essential Fe storage pool. Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation, but how this reallocation process is regulated remains elusive, likely because of the highly complex cell wall structure and the limited knowledge about cell wall biosynthesis and modulation. Here, we present genetic and biochemical evidence to demonstrate that the Cdi-mediated galactosylation of rhamnogalacturonan-II (RG-II) is required for apoplastic Fe reallocation. Cdi is expressed in roots and up-regulated in response to Fe deficiency. It encodes a putative glycosyltransferase localized to the Golgi apparatus. Biochemical and mass spectrometry assays showed that Cdi catalyzes the transfer of GDP-L-galactose to the terminus of side chain A on RG-II. Disruption of Cdi essentially decreased RG-II dimerization and hence disrupted cell wall formation, as well as the reallocation of apoplastic Fe from roots to shoots. Further transcriptomic, Fourier transform infrared spectroscopy, and Fe desorption kinetic analyses coincidently suggested that Cdi mediates apoplastic Fe reallocation through extensive modulation of cell wall components and consequently the Fe adsorption capacity of the cell wall. Our study provides direct evidence demonstrating a link between cell wall biosynthesis and apoplastic Fe reallocation, thus indicating that the structure of the cell wall is important for efficient usage of the cell wall Fe pool.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ting Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hong-Mei Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shao-Xue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
18
|
Gold Nanoparticles-Induced Modifications in Cell Wall Composition in Barley Roots. Cells 2021; 10:cells10081965. [PMID: 34440734 PMCID: PMC8393560 DOI: 10.3390/cells10081965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022] Open
Abstract
The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.
Collapse
|
19
|
The placenta of Physcomitrium patens: transfer cell wall polymers compared across the three bryophyte groups. DIVERSITY 2021; 13. [PMID: 35273462 PMCID: PMC8905678 DOI: 10.3390/d13080378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the composition of cell wall polymers in transfer cells on both sides of the placenta. 16 monoclonal antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this moss. In general, placental transfer cell walls of P. patens contain fewer pectins and far fewer AGPs than those of the hornwort and liverwort. P. patens also lacks the differential labeling that is pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either side of the placenta of P. patens are relatively similar in composition with slight variation in HG pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers among the three bryophytes and between the two generations suggests that similarity in function and morphology of cell walls does not require a common cell wall composition. We propose that the specific developmental and life history traits of these plants may provide even more important clues in understanding the basis for these differences. This study significantly builds on our knowledge of cell wall composition in bryophytes in general and transfer cells across plants.
Collapse
|
20
|
Jones-Moore HR, Jelley RE, Marangon M, Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Saez-Aguayo S, Parra-Rojas JP, Sepúlveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, Sallé C, Salinas-Grenet H, Largo-Gosens A, North HM, Ralet MC, Orellana A. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. PLANT PHYSIOLOGY 2021; 185:914-933. [PMID: 33793913 PMCID: PMC8133686 DOI: 10.1093/plphys/kiaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | | | | | | | - Christine Sallé
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Helen M North
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Author for communication:
| |
Collapse
|
22
|
Corso M, An X, Jones CY, Gonzalez-Doblas V, Schvartzman MS, Malkowski E, Willats WGT, Hanikenne M, Verbruggen N. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. THE NEW PHYTOLOGIST 2021; 230:669-682. [PMID: 33421150 DOI: 10.1111/nph.17173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 05/21/2023]
Abstract
Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.
Collapse
Affiliation(s)
- Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Xinhui An
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Catherine Yvonne Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Verónica Gonzalez-Doblas
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Eugeniusz Malkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
23
|
Henry JS, Lopez RA, Renzaglia KS. Differential localization of cell wall polymers across generations in the placenta of Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2020; 133:911-924. [PMID: 33106966 PMCID: PMC8192078 DOI: 10.1007/s10265-020-01232-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations contain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemicelluloses, and arabinogalactan proteins, are present, there are variations in the richness and specificity across generations. An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The difference in polymer localizations in transfer cell walls between generations is consistent with directional movement from gametophyte to sporophyte in this liverwort.
Collapse
Affiliation(s)
- Jason S Henry
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA.
| | - Renee A Lopez
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| |
Collapse
|
24
|
Zhdanov O, Blatt MR, Cammarano A, Zare-Behtash H, Busse A. A new perspective on mechanical characterisation of Arabidopsis stems through vibration tests. J Mech Behav Biomed Mater 2020; 112:104041. [PMID: 32891976 DOI: 10.1016/j.jmbbm.2020.104041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
The mechanical properties of plants are important for understanding plant biomechanics and for breeding new plants that can survive in challenging environments. Thus, accurate and reliable methods are required for the determination of mechanical properties such as stiffness and Young's modulus of elasticity. Much attention has been paid to the application of static methods to plants, while dynamic methods have received considerably less attention. In the present study, a dynamic forced vibration method for mechanical characterisation of Arabidopsis inflorescence stems was developed and validated against the conventional three-point bending test. Compared to dynamic tests based on free vibration, the current method allows to determine simultaneously more than one natural frequency, thus increasing the overall accuracy of the results. In addition, this method can be applied to the top parts of the stems that are more flexible, and where application of the three-point bending test is often limited. To demonstrate one of the potential applications of this method, it was applied to evaluate the influence of turgor pressure on the mechanical properties of Arabidopsis stems. Overall, the new dynamic testing approach has been shown to provide reliable data for the local mechanical properties along the Arabidopsis inflorescence stem.
Collapse
Affiliation(s)
- Oleksandr Zhdanov
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, G12 8QQ, UK.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, G12 8QQ, UK
| | - Andrea Cammarano
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Angela Busse
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
25
|
Wachananawat B, Kuroha T, Takenaka Y, Kajiura H, Naramoto S, Yokoyama R, Ishizaki K, Nishitani K, Ishimizu T. Diversity of Pectin Rhamnogalacturonan I Rhamnosyltransferases in Glycosyltransferase Family 106. FRONTIERS IN PLANT SCIENCE 2020; 11:997. [PMID: 32714362 PMCID: PMC7343896 DOI: 10.3389/fpls.2020.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 05/23/2023]
Abstract
Rhamnogalacturonan I (RG-I) comprises approximately one quarter of the pectin molecules in land plants, and the backbone of RG-I consists of a repeating sequence of [2)-α-L-Rha(1-4)-α-D-GalUA(1-] disaccharide. Four Arabidopsis thaliana genes encoding RG-I rhamnosyltransferases (AtRRT1 to AtRRT4), which synthesize the disaccharide repeats, have been identified in the glycosyltransferase family (GT106). However, the functional role of RG-I in plant cell walls and the evolutional history of RRTs remains to be clarified. Here, we characterized the sole ortholog of AtRRT1-AtRRT4 in liverwort, Marchantia polymorpha, namely, MpRRT1. MpRRT1 had RRT activity and genetically complemented the AtRRT1-deficient mutant phenotype in A. thaliana. However, the MpRRT1-deficient M. polymorpha mutants showed no prominent morphological changes and only an approximate 20% reduction in rhamnose content in the cell wall fraction compared to that in wild-type plants, suggesting the existence of other RRT gene(s) in the M. polymorpha genome. As expected, we detected RRT activities in other GT106 family proteins such as those encoded by MpRRT3 in M. polymorpha and FRB1/AtRRT8 in A. thaliana, the deficient mutant of which affects cell adhesion. Our results show that RRT genes are more redundant and diverse in GT106 than previously thought.
Collapse
Affiliation(s)
| | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
26
|
Anderson CT, Kieber JJ. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:39-69. [PMID: 32084323 DOI: 10.1146/annurev-arplant-081519-035846] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
27
|
Nester K, Plazinski W. Conformational properties of inulin, levan and arabinan studied by molecular dynamics simulations. Carbohydr Polym 2020; 240:116266. [PMID: 32475556 DOI: 10.1016/j.carbpol.2020.116266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
Inulin, levan and arabinan are the polysaccharides that consist of exclusively furanose units. To date, their conformational features studied at the molecular scale have remained largely unexplained. To tackle this issue, we have performed a series of explicit-solvent molecular dynamics simulations, carried out within the furanose-dedicated force field. None of the polysaccharides exhibits a single, dominating structure type. Instead, they create a large number of separated conformational states originating from the intensive rotation around the φ and ω glycosidic angles. 21-helices are the preferential conformational forms for all compounds but they appear only locally, at the length of several consecutive residues. The flexibility of all three furanose-based polysaccharides is much greater in relation to the (1-4)-linked pyranose polysaccharides and is comparable to that of (1-6)-linked pyranoses. The dynamic geometries of both furanose rings and glycosidic linkages are nearly unchanged independently if considering them at the level of mono-, di- or polysaccharides.
Collapse
Affiliation(s)
- Karina Nester
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Ul. Niezapominajek 8, 30-239 Cracow, Poland
| | - Wojciech Plazinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Ul. Niezapominajek 8, 30-239 Cracow, Poland.
| |
Collapse
|
28
|
Collins PP, O'donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, Schröder R, McAtee PA, Prakash R, Ireland HS, Johnston JW, Atkinson RG, Schaffer RJ, Hallett IC, Brummell DA. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6085-6099. [PMID: 31408160 DOI: 10.1093/jxb/erz370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.
Collapse
Affiliation(s)
- Patrick P Collins
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Heather R Tiffin
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- PFR, Motueka, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| |
Collapse
|
29
|
Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, Sepúlveda-Orellana P, Temple H, Sanhueza D, Reyes FC, Meneses C, Saez-Aguayo S, Orellana A. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5071-5088. [PMID: 31145803 PMCID: PMC6793455 DOI: 10.1093/jxb/erz262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 05/04/2023]
Abstract
Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Tomás Carrasco
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Celiz-Balboa
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Verónica Arenas-Morales
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
31
|
Saffer AM. Expanding roles for pectins in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:910-923. [PMID: 29727062 DOI: 10.1111/jipb.12662] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/02/2018] [Indexed: 05/19/2023]
Abstract
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components, implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composition have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, OML260, 266 Whitney Ave, New Haven, CT 06520-8104, USA
| |
Collapse
|
32
|
Shtein I, Bar-On B, Popper ZA. Plant and algal structure: from cell walls to biomechanical function. PHYSIOLOGIA PLANTARUM 2018; 164:56-66. [PMID: 29572853 DOI: 10.1111/ppl.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Plant and algal cell walls are complex biomaterials composed of stiff cellulose microfibrils embedded in a soft matrix of polysaccharides, proteins and phenolic compounds. Cell wall composition differs between taxonomic groups and different tissue types (or even at the sub-cellular level) within a plant enabling specific biomechanical properties important for cell/tissue function. Moreover, cell wall composition changes may be induced in response to environmental conditions. Plant structure, habit, morphology and internal anatomy are also dependent on the taxonomic group as well as abiotic and biotic factors. This review aims to examine the complex and incompletely understood interactions of cell wall composition, plant form and biomechanical function.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Eastern Region Research and Development Center, Ariel, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Zoë A Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
33
|
Betekhtin A, Milewska-Hendel A, Lusinska J, Chajec L, Kurczynska E, Hasterok R. Organ and Tissue-Specific Localisation of Selected Cell Wall Epitopes in the Zygotic Embryo of Brachypodium distachyon. Int J Mol Sci 2018; 19:ijms19030725. [PMID: 29510511 PMCID: PMC5877586 DOI: 10.3390/ijms19030725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/30/2023] Open
Abstract
The plant cell wall shows a great diversity regarding its chemical composition, which may vary significantly even during different developmental stages. In this study, we analysed the distribution of several cell wall epitopes in embryos of Brachypodium distachyon (Brachypodium). We also described the variations in the nucleus shape and the number of nucleoli that occurred in some embryo cells. The use of transmission electron microscopy, and histological and immunolocalisation techniques permitted the distribution of selected arabinogalactan proteins, extensins, pectins, and hemicelluloses on the embryo surface, internal cell compartments, and in the context of the cell wall ultrastructure to be demonstrated. We revealed that the majority of arabinogalactan proteins and extensins were distributed on the cell surface and that pectins were the main component of the seed coat and other parts, such as the mesocotyl cell walls and the radicula. Hemicelluloses were localised in the cell wall and outside of the radicula protodermis, respectively. The specific arrangement of those components may indicate their significance during embryo development and seed germination, thus suggesting the importance of their protective functions. Despite the differences in the cell wall composition, we found that some of the antibodies can be used as markers to identify specific cells and the parts of the developing Brachypodium embryo.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Lukasz Chajec
- Department of Animal Histology and Embryology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland.
| |
Collapse
|
34
|
Bishimbayeva N, Murtazina A, McDougall G. Influence of Phytohormones on Monosaccharide Composition of Polysaccharides from Wheat Suspension Culture. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Plant polysaccharides with technical and physiologic traits attract researchers by their high physiological activity in regulation of the growth, development and protective reactions. Cell cultures allow to regulate chemical composition of synthesized substances by changing media composition and are widely used to enhance or change the biosynthesis of metabolites. The aim of this study was to investigate the influence of phytohormones 2,4-dichlorphenoxyacetic acid (2,4 –D) and abscisic acid (ABA) of culture medium on chemical composition of polysaccharides (PS), extracted from cells and extracellular liquid of wheat suspension culture. It was shown for the medium with ABA that monosaccharide composition of extracellular PS mainly represented by glucose (87%), whereas PS isolated from cells were rich for xylose and glucuronic acid. Monosaccharide composition of extracellular PS from media with 2,4-D showed 6-fold increase of arabinose, 8-fold ‒ of galactose, 5-fold ‒ of xylose and glucuronic acid, compared to extracellular PS from ABA medium. Composition of cellular PS from media with 2,4-D were mainly similar to ABA and differed by the increased amount of mannose (3-fold), and galacturonic acid (2,5-fold). Thus, regulative effect of the use of two different types of phytohormones was demonstrated on the biosynthesis of variously composed polysaccharides.
Collapse
|
35
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
36
|
Verhertbruggen Y, Walker JL, Guillon F, Scheller HV. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:1505. [PMID: 28900439 PMCID: PMC5581911 DOI: 10.3389/fpls.2017.01505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/14/2017] [Indexed: 05/02/2023]
Abstract
Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.
Collapse
Affiliation(s)
- Yves Verhertbruggen
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National LaboratoryBerkeley, CA, United States
- Institut National de la Recherche Agronomique, UR 1268Nantes, France
- *Correspondence: Yves Verhertbruggen
| | - Jesse L. Walker
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, United States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, United States
| | - Fabienne Guillon
- Institut National de la Recherche Agronomique, UR 1268Nantes, France
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National LaboratoryBerkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
37
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
38
|
Lee Y, Ayeh KO, Ambrose M, Hvoslef-Eide AK. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds. BMC Res Notes 2016; 9:427. [PMID: 27581466 PMCID: PMC5007855 DOI: 10.1186/s13104-016-2231-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/19/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. METHODS Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. RESULTS Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. CONCLUSIONS Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.
Collapse
Affiliation(s)
- YeonKyeong Lee
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. BOX 5003, 1432 Ås, Norway
| | - Kwadwo Owusu Ayeh
- Department of Botany, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Mike Ambrose
- Department of Crops Genetics, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, UK
| | - Anne Kathrine Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. BOX 5003, 1432 Ås, Norway
| |
Collapse
|
39
|
Buffetto F, Cornuault V, Rydahl MG, Ropartz D, Alvarado C, Echasserieau V, Le Gall S, Bouchet B, Tranquet O, Verhertbruggen Y, Willats WGT, Knox JP, Ralet MC, Guillon F. The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel Arabinogalactan Oligosaccharide Epitope. PLANT & CELL PHYSIOLOGY 2015; 56:2181-96. [PMID: 26384432 DOI: 10.1093/pcp/pcv128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.
Collapse
Affiliation(s)
- Fanny Buffetto
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France Present address: Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Valérie Cornuault
- Centre for Plant Sciences, Faculty of Biological Sciences University of Leeds, Leeds LS2 9JT, UK
| | - Maja Gro Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - David Ropartz
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | | | - Sophie Le Gall
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Olivier Tranquet
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | | | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences University of Leeds, Leeds LS2 9JT, UK
| | | | - Fabienne Guillon
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| |
Collapse
|
40
|
Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou MT, Frey B, Pauly M, Bacic A, Ringli C. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC PLANT BIOLOGY 2015; 15:155. [PMID: 26099801 PMCID: PMC4477543 DOI: 10.1186/s12870-015-0548-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/11/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Collapse
Affiliation(s)
- Christian Draeger
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
- Current address: Thermo Fisher Scientific, Neuhofstrasse 11, 4153, Reinach, Switzerland.
| | | | - Emilie Gineau
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Grégory Mouille
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Benjamin M Kuhn
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Isabel Moller
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
- Current address: The New Zealand Institute for Plant & Food Research Limited, Auckland, 1142, New Zealand.
| | - Marie-Therese Abdou
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| | - Beat Frey
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland.
| | - Markus Pauly
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Christoph Ringli
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| |
Collapse
|
41
|
Nafisi M, Fimognari L, Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. PHYTOCHEMISTRY 2015; 112:63-71. [PMID: 25496656 DOI: 10.1016/j.phytochem.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/02/2014] [Accepted: 11/06/2014] [Indexed: 05/04/2023]
Abstract
The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant-necrotrophic pathogen interaction.
Collapse
Affiliation(s)
- Majse Nafisi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
42
|
Hoson T, Wakabayashi K. Role of the plant cell wall in gravity resistance. PHYTOCHEMISTRY 2015; 112:84-90. [PMID: 25236694 DOI: 10.1016/j.phytochem.2014.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/11/2014] [Accepted: 08/21/2014] [Indexed: 05/04/2023]
Abstract
Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.
Collapse
Affiliation(s)
- Takayuki Hoson
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Kazuyuki Wakabayashi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
43
|
Measuring the Mechanical Properties of Plant Cell Walls. PLANTS 2015; 4:167-82. [PMID: 27135321 PMCID: PMC4844320 DOI: 10.3390/plants4020167] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 11/21/2022]
Abstract
The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM).
Collapse
|
44
|
Leroux O, Sørensen I, Marcus SE, Viane RLL, Willats WGT, Knox JP. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC PLANT BIOLOGY 2015; 15:56. [PMID: 25848828 PMCID: PMC4351822 DOI: 10.1186/s12870-014-0362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.
Collapse
Affiliation(s)
- Olivier Leroux
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - Iben Sørensen
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
- />Department of Plant Biology, Cornell University, Ithaca, NY 14853 USA
| | - Susan E Marcus
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Ronnie LL Viane
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - William GT Willats
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
| | - J Paul Knox
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
45
|
Altartouri B, Geitmann A. Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:76-82. [PMID: 25449730 DOI: 10.1016/j.pbi.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/08/2023]
Abstract
Plant cell development and growth are determined by the expansion pattern of the cell wall, a matrix of mixed polysaccharide polymers and proteins. To understand the different roles of these polymers in the regulation of the morphogenetic process, their spatial dynamics need to be monitored over time. Recent developments in the live cell labeling of polysaccharides include specific dyes whose insertion into the wall does not interfere with wall properties and growth, as well as metabolically inserted labeling. The present review explains the motivation and necessity for novel polysaccharide labeling techniques and provides an overview of the insight gained with these strategies.
Collapse
Affiliation(s)
- Bara Altartouri
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada.
| |
Collapse
|
46
|
The Utilization of Plant Facilities on the International Space Station-The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions. PLANTS 2015; 4:44-62. [PMID: 27135317 PMCID: PMC4844336 DOI: 10.3390/plants4010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023]
Abstract
In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8-14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station.
Collapse
|
47
|
Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:781-92. [PMID: 24725206 DOI: 10.1094/mpmi-02-14-0036-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.
Collapse
|
48
|
Cornuault V, Manfield IW, Ralet MC, Knox JP. Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:715-22. [PMID: 24621270 DOI: 10.1111/tpj.12504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 05/24/2023]
Abstract
Plant cell walls are complex, multi-macromolecular assemblies of glycans and other molecules and their compositions and molecular architectures vary extensively. Even though the chemistry of cell-wall glycans is now well understood, it remains a challenge to understand the diversity of glycan configurations and interactions in muro, and how these relate to changes in the biological and mechanical properties of cell walls. Here we describe in detail a method called epitope detection chromatography analysis of cell-wall matrix glycan sub-populations and inter-connections. The method combines chromatographic separations with use of glycan-directed monoclonal antibodies as detection tools. The high discrimination capacity and high sensitivity for the detection of glycan structural features (epitopes) provided by use of established monoclonal antibodies allows the study of oligosaccharide motifs on sets of cell-wall glycans in small amounts of plant materials such as a single organ of Arabidopsis thaliana without the need for extensive purification procedures. We describe the use of epitope detection chromatography to assess the heterogeneity of xyloglucan and pectic rhamnogalacturonan I sub-populations and their modulation in A. thaliana organs.
Collapse
Affiliation(s)
- Valérie Cornuault
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
49
|
Müller K, Levesque-Tremblay G, Fernandes A, Wormit A, Bartels S, Usadel B, Kermode A. Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation. PLANT SIGNALING & BEHAVIOR 2013; 8:e26464. [PMID: 24675171 PMCID: PMC4091240 DOI: 10.4161/psb.26464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 05/18/2023]
Abstract
The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes.
Collapse
Affiliation(s)
- Kerstin Müller
- Department of Biological Sciences; Simon Fraser University; Burnaby, BC Canada
| | | | - Anwesha Fernandes
- School of Physics and Astronomy; University of Nottingham; University Park; Nottingham, UK
| | | | | | - Bjoern Usadel
- Institute of Botany; University of Basel; Basel, Switzerland
- Institute of Bio- and Geosciences; IBG-2: Plant Sciences; Forschungszentrum Jülich; Jülich, Germany
| | - Allison Kermode
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
- Correspondence to: Allison Kermode,
| |
Collapse
|