1
|
Morales-Marroquín JA, Alves-Pereira A, Díaz-Hernández BG, Alves Vianna S, de Araújo Batista CE, Colombo CA, Baldin Pinheiro J, Zucchi MI. Genetic variations associated with adaptation in Acrocomia palms: A comparative study across the Neotropics for crop improvement. PLoS One 2025; 20:e0324340. [PMID: 40512773 PMCID: PMC12165397 DOI: 10.1371/journal.pone.0324340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/23/2025] [Indexed: 06/16/2025] Open
Abstract
Population genetic research has evolved, focusing on selection processes using single nucleotide polymorphisms (SNP) genotyping techniques to study crop traits and domestication. This study explores the adaptation process of three neotropical palms of Acrocomia, a genus that has high potential for oil extraction. Our research focused on their genetic structure, evolutionary significance, and implications of the selection signatures for breeding efforts. We employed genotyping-by-sequencing (GBS) focusing on outlier SNP markers to identify adaptive genes in A. aculeata, A. totai, and A. intumescens across their entire distributions. Our results reveal two major gene pools in A. aculeata: a Central American group and a South American group, mainly influenced by dispersal and biogeographic barriers. Putative selective signatures were identified in candidate genes associated with traits related to oil biosynthesis, pathogen resistance, and adaptation to environmental stress like drought tolerance. A. totai exhibited a pronounced genetic structure influenced by distinct biomes, suggesting recent diversification driven by climatic and geological factors, particularly within the Pantanal biome. A. intumescens displays genetic structuring shaped by the endemic process of biogeographic barriers within the Caatinga biome. Correlations between allele frequencies and climatic variables highlight adaptation to diverse environments, with the annual mean temperature and precipitations being one of the most influential. Candidate genes associated with fatty acid and carotenoid biosynthesis, as well as pathogen resistance and drought tolerance, indicate targets for future breeding studies. Despite the challenges associated with reduced representation sequencing, this study highlights the potential for gene discovery in Acrocomia, offering promising targets to enhance oil yield productivity. Future efforts should prioritize whole-genome sequencing and genotype-environment interaction studies to realize the full potential of Acrocomia spp. in sustainable oil production.
Collapse
Affiliation(s)
- Jonathan A. Morales-Marroquín
- Genetics and Molecular Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Alessandro Alves-Pereira
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Brenda Gabriela Díaz-Hernández
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Suelen Alves Vianna
- Institute of Agronomy-IAC, Research Center of Plant Genetic Resources, Campinas, São Paulo, Brazil
| | | | - Carlos A. Colombo
- Institute of Agronomy-IAC, Research Center of Plant Genetic Resources, Campinas, São Paulo, Brazil
| | - José Baldin Pinheiro
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Maria Imaculada Zucchi
- Genetics and Molecular Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Unidade Regional de Pesquisa e Desenvolvimento (APTA), Piracicaba, São Paulo, Brazil
| |
Collapse
|
2
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 PMCID: PMC12145240 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Zhang H, Ma L, Zhai Y, Wang H, Niu M, Zhang M, Guo Y, An Y, Li S, Zhao Y. A phosphatidylinositol 4-kinase alpha (PI4KA) gene reduces plant height of common wheat. Gene 2025; 962:149556. [PMID: 40348068 DOI: 10.1016/j.gene.2025.149556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Reducing plant height (PH) plays an important role in reducing lodging and increasing wheat yield. The potential of wheat yields has reached a plateau in recent years. However the discovery and application of new plant height genes could further increases wheat yield potential. This study located a wheat dwarfing gene downstream of Rht1 on chromosome 4B through QTL mapping, called the phosphatidylinositol 4-kinase alpha (PI4KA-4B). The TaPI4KA-4B gene is located on the cell membrane, and the mating based split-ubiquitin system assays (mbSUS) showed that this gene interacts with TaCSN7 (COP9 signalosome subunit 7). Furthermore, this gene was knocked out in the variety Fielder using the CRISPR/Cas9 gene editing technology. Two homozygous mutant genotypes, AAbbDD (-1 bp) and AAbbDD (-2 bp), were obtained by multi-generation hybridization. Compared with the wild type, the plant height of the mutant was significantly reduced by 6-8 cm, and the stem cell length was significantly shortened with irregular cell morphology. RNA-seq analysis of wild type fielder and mutant plants revealed that the differentially expressed genes (DEGs) were mainly involved in microtubule-based processes, macromolecule biosynthesis, carbohydrate metabolism, and cytoskeletal composition, implying that TaPI4KA-4B regulates plant height through modulating organic synthesis and cytoskeletal reorganization. These results indicate that TaPI4KA-4B is a novel Rht gene that controls plant height in wheat.
Collapse
Affiliation(s)
- Haozhen Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Longteng Ma
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Yunhui Zhai
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Hui Wang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Maosen Niu
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Mingxia Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Ying Guo
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China
| | - Yanrong An
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Sishen Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China
| | - Yan Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an 271018 Shandong, China; State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an 271018 Shandong, China; Tai'an Subcenter of National Wheat Improvement Center, Tai'an 271018 Shandong, China.
| |
Collapse
|
4
|
Jolivet MD, Deroubaix AF, Boudsocq M, Abel NB, Rocher M, Robbe T, Wattelet-Boyer V, Huard J, Lefebvre D, Lu YJ, Day B, Saias G, Ahmed J, Cotelle V, Giovinazzo N, Gallois JL, Yamaji Y, German-Retana S, Gronnier J, Ott T, Mongrand S, Germain V. Interdependence of plasma membrane nanoscale dynamics of a kinase and its cognate substrate underlies Arabidopsis response to viral infection. eLife 2025; 12:RP90309. [PMID: 40315285 PMCID: PMC12048157 DOI: 10.7554/elife.90309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Plant viruses represent a risk to agricultural production and as only a few treatments exist, it is urgent to identify resistance mechanisms and factors. In plant immunity, plasma membrane (PM)-localized proteins play an essential role in sensing the extracellular threat presented by bacteria, fungi, or herbivores. Viruses are intracellular pathogens and as such the role of the plant PM in detection and resistance against viruses is often overlooked. We investigated the role of the partially PM-bound Calcium-dependent protein kinase 3 (CPK3) in viral infection and we discovered that it displayed a specific ability to hamper viral propagation over CPK isoforms that are involved in immune response to extracellular pathogens. More and more evidence supports that the lateral organization of PM proteins and lipids underlies signal transduction in plants. We showed here that CPK3 diffusion in the PM is reduced upon activation as well as upon viral infection and that such immobilization depended on its substrate, Remorin (REM1.2), a scaffold protein. Furthermore, we discovered that the viral infection induced a CPK3-dependent increase of REM1.2 PM diffusion. Such interdependence was also observable regarding viral propagation. This study unveils a complex relationship between a kinase and its substrate that contrasts with the commonly described co-stabilisation upon activation while it proposes a PM-based mechanism involved in decreased sensitivity to viral infection in plants.
Collapse
Affiliation(s)
| | - Anne Flore Deroubaix
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2)SaclayFrance
| | - Nikolaj B Abel
- Faculty of Biology, University of FreiburgFreiburgGermany
- Faculty of Biology, University of Munich (LMU)MunichGermany
| | - Marion Rocher
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Terezinha Robbe
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | | | - Jennifer Huard
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Dorian Lefebvre
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2)SaclayFrance
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State UniversityEast LansingUnited States
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State UniversityEast LansingUnited States
| | - Grégoire Saias
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Jahed Ahmed
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INPToulouseFrance
| | | | | | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of TokyoTokyoJapan
| | | | - Julien Gronnier
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
- Center of Plant Molecular Biology (ZMBP), University of TübingenTübingenGermany
| | - Thomas Ott
- Faculty of Biology, University of FreiburgFreiburgGermany
- Faculty of Biology, University of Munich (LMU)MunichGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Sébastien Mongrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| | - Véronique Germain
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM)Villenave d'OrnonFrance
| |
Collapse
|
5
|
Trybus M, Hryniewicz-Jankowska A, Czogalla A, Sikorski AF. EFR3A, an Intriguing Gene, and Protein with a Scaffolding Function. Cells 2025; 14:445. [PMID: 40136694 PMCID: PMC11941745 DOI: 10.3390/cells14060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2-3 protein isoforms. EFR3s are involved in several physiological functions, mostly including phosphatidyl inositide phosphates, e.g., phototransduction (insects), GPCRs, and insulin receptors regulated processes (mammals). Mutations in the EFR3A were linked to several types of human disorders, i.e., neurological, cardiovascular, and several tumors. Structural data on the atomic level indicate the extended superhelical rod-like structure of the first two-thirds of the molecule with a typical armadillo repeat motif (ARM) in the N-terminal part and a triple helical motif in its C-terminal part. EFR3s' best-known molecular function is anchoring the giant phosphatidylinositol 4-kinase A complex to the plasma membrane crucial for cell signaling, also linked directly to the KRAS mutant oncogenic function. Another function connected to the newly uncovered interaction of EFR3A with flotillin-2 may be the participation of the former in the organization and regulation of the membrane raft domain. This review presents EFR3A as an intriguing subject of future studies.
Collapse
Affiliation(s)
- Magdalena Trybus
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| |
Collapse
|
6
|
Moreira GLLS, Ferreira MEP, Linhares FS. Identity Transitions of Tapetum Phases: Insights into Vesicular Dynamics and in Mortem Support During Pollen Maturation. PLANTS (BASEL, SWITZERLAND) 2025; 14:749. [PMID: 40094707 PMCID: PMC11902102 DOI: 10.3390/plants14050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025]
Abstract
Flower development progresses through twelve distinct stages, meticulously regulated to optimize plant reproductive success. At stage 5, the initiation of anther development occurs, which is further categorized into 14 stages divided into two defined phases: phase 1, known as microsporogenesis, and phase 2, termed microgametogenesis-encompassing pollen maturation and anther dehiscence. The maturation of pollen grains must be temporally synchronized with anther dehiscence, with auxin serving as a pivotal spatio-temporal link between these processes, coordinating various aspects of anther development, including stamen elongation, anther dehiscence, and tapetum development. The tapetum, a secretory tissue adjacent to the meiocytes, is essential for nurturing developing pollen grains by secreting components of the pollen wall and ultimately undergoing programmed cell death (PCD). This review primarily focuses on microgametogenesis, the identity and function of the tapetum during the different progression phases, the role of vesicular signaling in delivering external components crucial for pollen grain maturation, and the distinctive process of PCD associated with these developmental processes.
Collapse
Affiliation(s)
| | | | - Francisco S. Linhares
- Laboratório de Biologia do Desenvolvimento e Estrutura Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba 13400-970, SP, Brazil; (G.L.L.S.M.); (M.E.P.F.)
| |
Collapse
|
7
|
Heilmann M, Heilmann I. Getting attached to membranes-How plant signaling networks employ PtdIns(4,5)P2. PLANT PHYSIOLOGY 2025; 197:kiae393. [PMID: 39056549 DOI: 10.1093/plphys/kiae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
In eukaryotes, a small subset of membrane lipids, the phosphoinositides (PIs), exert regulatory effects on membrane-associated processes with profound impact on the organism, and PIs are relevant also for the physiology and development of plants. The PI, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has emerged as an important regulatory player in plants, and in recent years this lipid has received substantial attention. This Update Review focuses on our current understanding of how PtdIns(4,5)P2 exerts its regulatory functions, how biosynthesis and degradation of this important regulatory lipid are controlled, and how PtdIns(4,5)P2 is linked to upstream and downstream elements within plant signalling networks.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles-Tanford Protein Science Center, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles-Tanford Protein Science Center, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Hdedeh O, Mercier C, Poitout A, Martinière A, Zelazny E. Membrane nanodomains to shape plant cellular functions and signaling. THE NEW PHYTOLOGIST 2025; 245:1369-1385. [PMID: 39722237 PMCID: PMC11754938 DOI: 10.1111/nph.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Plasma membrane (PM) nanodomains have emerged as pivotal elements in the regulation of plant cellular functions and signal transduction. These nanoscale membrane regions, enriched in specific lipids and proteins, behave as regulatory/signaling hubs spatially and temporally coordinating critical cellular functions. In this review, we first examine the mechanisms underlying the formation and maintenance of PM nanodomains in plant cells, highlighting the roles of PM lipid composition, protein oligomerization and interactions with cytoskeletal and cell wall components. Then, we discuss how nanodomains act as organizing centers by mediating protein-protein interactions that orchestrate essential processes such as symbiosis, defense against pathogens, ion transport or hormonal and reactive oxygen species (ROS) signaling. Finally, we introduce the concept of nanoenvironments, where localized physicochemical variations are generated in the very close proximity of PM nanodomains, in response to stimuli. After decoding by a dedicated machinery likely localized in the vicinity of nanodomains, this enrichment of secondary messengers, such as ROS or Ca2+, would allow specific downstream cellular responses. This review provides insights into the dynamic nature of nanodomains and proposes future research to better understand their contribution to the intricate signaling networks that govern plant development and stress responses.
Collapse
Affiliation(s)
- Omar Hdedeh
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | - Caroline Mercier
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | - Arthur Poitout
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | | | - Enric Zelazny
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| |
Collapse
|
9
|
Cheng C, Yang F, Chen X, Zhao S. Identifying novel heterozygous PI4KA variants in fetal abnormalities. BMC Med Genomics 2025; 18:23. [PMID: 39885450 PMCID: PMC11783698 DOI: 10.1186/s12920-025-02093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The clinical manifestations of PI4KA-related disorders are characterized by considerable variability, predominantly featuring neurological impairments, gastrointestinal symptoms, and a combined immunodeficiency. The aim of this study was to delineate the novel spectrum of PI4KA variants detected prenatally and to assess their influence on fetal development. METHODS A thorough fetal ultrasound screening was conducted, supplemented by both antenatal and post-abortion magnetic resonance imaging (MRI) studies. Novel PI4KA variants were detected through clinical Whole exon sequencing (WES) and validated by Sanger sequencing. The functional consequences of these variants were evaluated using bioinformatics tools. The effects of the identified variants on splicing were analyzed through minigene splicing assays. Subsequently, both wild-type and mutant PI4KA protein fragments were purified, and their enzymatic activities were quantitatively assessed. RESULTS Ultrasound imaging, MRI scans revealed a dilated small intestine with an obstruction. Compound heterozygous variants (NM_058004.3: c.2802_2863-40del and c.2819 C > T, p.Ala940Val) were identified in the PI4KA of the affected fetus through clinical trio-WES. Both variants were predicted deleterious. The PI4KA variant c.2802_2863-40del resulted in the production of three distinct mRNA isoforms. The PI4KA variant c.2819 C > T (p.Ala940Val) significantly reduced the enzyme activity. CONCLUSIONS This study extended the mutational spectrum of PI4KA and may provide guidance for genetic counseling. Functional studies confirmed that the identified variant induces alterations in RNA splicing and impairs enzyme activity.
Collapse
Affiliation(s)
- Chen Cheng
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Fan Yang
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Xinlin Chen
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Sheng Zhao
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
10
|
Peng J, Zhang L, Lu K, Chen X, Pang H, Yao X, Li P, Cao P, Li X, Wang Z, Qin L, Zhou M, Wang M, Li Q, Qiu C, Sun M, Li Y, Gong L, Wei X, Wang S, Chen J, Lu C, Zou S, Ding X, Chen L, Zhang M, Dong H. Plant PI4P is required for bacteria to translocate type-3 effectors. THE NEW PHYTOLOGIST 2025; 245:748-766. [PMID: 39568298 DOI: 10.1111/nph.20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Type-3 effectors (T3E) of phytopathogenic Gram-negative bacteria fulfill a virulent role, causing disease, or an avirulent role, inducing immunity, following their translocation into plant cells. This study aimed to validate the hypothesis that bacterial T3E translocation requires lipidic compounds in plant cell membranes. Based on genetic, molecular, and biochemical assays, we determined that phosphatidylinositol 4-phosphate (PI4P) associated with plant cell membranes is essential for the translocation of T3E by bacterial pathogens. Replicate experimental data revealed that PI4P cooperates with the type-3 translocase HrpF to facilitate the translocation of effectors TAL and Xop from Xanthomonas oryzae and Hop from Pseudomonas syringae into the cells of Oryza sativa and Nicotiana benthamiana, respectively. Genetic and molecular analyses confirmed that, once translocated into plant cells, the distinct effectors induce disease or immunity. Combined genetic and pharmacological analyses revealed that when PI4P content is suppressed via genetic or pharmacological measures, the T3 effector translocation is considerably suppressed, resulting in serious inhibition of bacterial infection. Overall, these findings demonstrate that cooperative functioning of HrpF-PI4P is conserved in bacterial effectors and plants.
Collapse
Affiliation(s)
- Jinfeng Peng
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Kai Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Hao Pang
- Hainan Province Sanya City Bureau for Business Environment Construction, Sanya, 572022, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Ping Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Zhou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Maoling Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Qizhen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Chunyu Qiu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Mingxin Sun
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Yufen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Liping Gong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinlin Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Siyi Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chongchong Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
11
|
Jozwiak A, Panda S, Akiyama R, Yoneda A, Umemoto N, Saito K, Yasumoto S, Muranaka T, Gharat SA, Kazachkova Y, Dong Y, Arava S, Goliand I, Nevo R, Rogachev I, Meir S, Mizutani M, Aharoni A. A cellulose synthase-like protein governs the biosynthesis of Solanum alkaloids. Science 2024; 386:eadq5721. [PMID: 39700293 DOI: 10.1126/science.adq5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/01/2024] [Indexed: 12/21/2024]
Abstract
Decades of research on the infamous antinutritional steroidal glycoalkaloids (SGAs) in Solanaceae plants have provided deep insights into their metabolism and roles. However, engineering SGAs in heterologous hosts has remained a challenge. We discovered that a protein evolved from the machinery involved in building plant cell walls is the crucial link in the biosynthesis of SGAs. We show that cellulose synthase-like M [GLYCOALKALOID METABOLISM15 (GAME15)] functions both as a cholesterol glucuronosyltransferase and a scaffold protein. Silencing GAME15 depletes SGAs, which makes plants more vulnerable to pests. Our findings illuminate plant evolutionary adaptations that balance chemical defense and self-toxicity and open possibilities for producing steroidal compounds in heterologous systems for food, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano Yoneda
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomy Arava
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Goliand
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Jaillais Y, Bayer E, Bergmann DC, Botella MA, Boutté Y, Bozkurt TO, Caillaud MC, Germain V, Grossmann G, Heilmann I, Hemsley PA, Kirchhelle C, Martinière A, Miao Y, Mongrand S, Müller S, Noack LC, Oda Y, Ott T, Pan X, Pleskot R, Potocky M, Robert S, Rodriguez CS, Simon-Plas F, Russinova E, Van Damme D, Van Norman JM, Weijers D, Yalovsky S, Yang Z, Zelazny E, Gronnier J. Guidelines for naming and studying plasma membrane domains in plants. NATURE PLANTS 2024; 10:1172-1183. [PMID: 39134664 DOI: 10.1038/s41477-024-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.
Collapse
Affiliation(s)
- Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Emmanuelle Bayer
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Yohann Boutté
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | | | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Véronique Germain
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology, Department of Plant Biochemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Charlotte Kirchhelle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexandre Martinière
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sebastien Mongrand
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon, France
| | - Sabine Müller
- Department of Biology, Friedrich Alexander Universität Erlangen Nuremberg, Erlangen, Germany
| | - Lise C Noack
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xue Pan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocky
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clara Sanchez Rodriguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo UPM, Pozuelo de Alarcón, Spain
| | | | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enric Zelazny
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Julien Gronnier
- NanoSignaling Lab, Zentrum für Molekularbiologie der Pflanzen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Bahammou D, Recorbet G, Mamode Cassim A, Robert F, Balliau T, Van Delft P, Haddad Y, Mongrand S, Fouillen L, Simon-Plas F. A combined lipidomic and proteomic profiling of Arabidopsis thaliana plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38761101 DOI: 10.1111/tpj.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
The plant plasma membrane (PM) plays a key role in perception of environmental signals, and set-up of adaptive responses. An exhaustive and quantitative description of the whole set of lipids and proteins constituting the PM is necessary to understand how these components allow to fulfill such essential physiological functions. Here we provide by state-of-the-art approaches the first combined reference of the plant PM lipidome and proteome from Arabidopsis thaliana suspension cell culture. We identified and quantified a reproducible core set of 2165 proteins, which is by far the largest set of available data concerning this plant PM proteome. Using the same samples, combined lipidomic approaches, allowing the identification and quantification of an unprecedented repertoire of 414 molecular species of lipids showed that sterols, phospholipids, and sphingolipids are present in similar proportions in the plant PM. Within each lipid class, the precise amount of each lipid family and the relative proportion of each molecular species were further determined, allowing to establish the complete lipidome of Arabidopsis PM, and highlighting specific characteristics of the different molecular species of lipids. Results obtained point to a finely tuned adjustment of the molecular characteristics of lipids and proteins. More than a hundred proteins related to lipid metabolism, transport, or signaling have been identified and put in perspective of the lipids with which they are associated. This set of data represents an innovative resource to guide further research relative to the organization and functions of the plant PM.
Collapse
Affiliation(s)
- Delphine Bahammou
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Ghislaine Recorbet
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Adiilah Mamode Cassim
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franck Robert
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, F-91190, Gif-Sur-Yvette, France
| | - Pierre Van Delft
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Youcef Haddad
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Françoise Simon-Plas
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
14
|
Pierre PM, Preyanka M, Zachary H, Zhang L, Lukas B, Matias GF, Kian F, Callum G, Wolfgang B. Root Walker: an automated pipeline for large scale quantification of early root growth responses at high spatial and temporal resolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:632-646. [PMID: 37871136 PMCID: PMC10841685 DOI: 10.1111/tpj.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Plants are sessile organisms that constantly adapt to their changing environment. The root is exposed to numerous environmental signals ranging from nutrients and water to microbial molecular patterns. These signals can trigger distinct responses including the rapid increase or decrease of root growth. Consequently, using root growth as a readout for signal perception can help decipher which external cues are perceived by roots, and how these signals are integrated. To date, studies measuring root growth responses using large numbers of roots have been limited by a lack of high-throughput image acquisition, poor scalability of analytical methods, or low spatiotemporal resolution. Here, we developed the Root Walker pipeline, which uses automated microscopes to acquire time-series images of many roots exposed to controlled treatments with high spatiotemporal resolution, in conjunction with fast and automated image analysis software. We demonstrate the power of Root Walker by quantifying root growth rate responses at different time and throughput scales upon treatment with natural auxin and two mitogen-associated protein kinase cascade inhibitors. We find a concentration-dependent root growth response to auxin and reveal the specificity of one MAPK inhibitor. We further demonstrate the ability of Root Walker to conduct genetic screens by performing a genome-wide association study on 260 accessions in under 2 weeks, revealing known and unknown root growth regulators. Root Walker promises to be a useful toolkit for the plant science community, allowing large-scale screening of root growth dynamics for a variety of purposes, including genetic screens for root sensing and root growth response mechanisms.
Collapse
Affiliation(s)
- Platre Matthieu Pierre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mehta Preyanka
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Halvorson Zachary
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Ling Zhang
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Brent Lukas
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gleason F. Matias
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Faizi Kian
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Goulding Callum
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Busch Wolfgang
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Chen X, Leśniewska B, Boikine R, Yun N, Mody TA, Vaddepalli P, Schneitz K. Arabidopsis MCTP family member QUIRKY regulates the formation of the STRUBBELIG receptor kinase complex. PLANT PHYSIOLOGY 2023; 193:2538-2554. [PMID: 37668394 DOI: 10.1093/plphys/kiad489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023]
Abstract
Intercellular communication plays a central role in organogenesis. Tissue morphogenesis in Arabidopsis (Arabidopsis thaliana) requires signaling mediated by a cell surface complex containing the atypical receptor kinase STRUBBELIG (SUB) and the multiple C2 domains and transmembrane region protein QUIRKY (QKY). QKY is required to stabilize SUB at the plasma membrane. However, it is unclear what the in vivo architecture of the QKY/SUB signaling complex is, how it is controlled, and how it relates to the maintenance of SUB at the cell surface. We addressed these questions using a combination of genetics, yeast 2-hybrid assays, and Förster resonance energy transfer (FRET)/fluorescence lifetime imaging microscopy (FLIM) in epidermal cells of seedling roots. We found that QKY promotes the formation of SUB homooligomers in vivo. Homooligomerization of SUB appeared to involve its extracellular domain. We also showed that QKY and SUB physically interact and form a complex at the cell surface in vivo. In addition, the data showed that the N-terminal C2A-B region of QKY interacts with the intracellular domain of SUB. They further revealed that this interaction is essential to maintain SUB levels at the cell surface. Finally, we provided evidence that QKY forms homomultimers in vivo in a SUB-independent manner. We suggest a model in which the physical interaction of QKY with SUB mediates the oligomerization of SUB and attenuates its internalization, thereby maintaining sufficiently high levels of SUB at the cell surface required for the control of tissue morphogenesis.
Collapse
Affiliation(s)
- Xia Chen
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Barbara Leśniewska
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Rodion Boikine
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Nicole Yun
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Prasad Vaddepalli
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
16
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
17
|
Chen X, Zhang Y, Yin W, Wei G, Xu H, Ma L, Tian W, Yang G, Li Y, Wu R, Zhang T, Wang N, He G. Full-length EFOP3 and EFOP4 proteins are essential for pollen intine development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36970846 DOI: 10.1111/tpj.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pollen development is critical to plant reproduction, but the underlying regulatory molecular mechanisms have not been fully elucidated. The Arabidopsis (Arabidopsis thaliana) EFR3 OF PLANT 3 (EFOP3) and EFR3 OF PLANT 4 (EFOP4) genes encode members of the Armadillo (ARM) repeat superfamily that play key roles in pollen development. Herein, we demonstrate that EFOP3 and EFOP4 are co-expressed in pollen at anther stages 10-12, but loss-of-function of both EFOP3 and EFOP4 leads to male gametophyte sterility, irregular intine, and shriveled pollen grains at anther stage 12. We further established that full-length EFOP3 and EFOP4 specifically localize to the plasma membrane, and the integrity of these proteins is essential for pollen development. We observed uneven intine, less organized cellulose and reduced pectin content in mutant pollen compared with the wild-type. These, together with the misexpression of several genes related to cell wall metabolism in efop3-/- efop4+/- mutants, suggest that EFOP3 and EFOP4 may indirectly regulate the expression of these genes to affect intine formation, thus controlling Arabidopsis pollen fertility in a functionally redundant manner. Moreover, transcriptome analysis showed that the absence of EFOP3 and EFOP4 function affects multiple pollen development pathways. These results enhance our understanding of EFOPs proteins and their role in pollen development.
Collapse
Affiliation(s)
- Xinlong Chen
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Yingying Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Wuzhong Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Sichuan, 621010, People's Republic of China
| | - Gang Wei
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Hailing Xu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Lu Ma
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Guang Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Renhong Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Rice Research Institute, Chongqing, 400715, People's Republic of China
| |
Collapse
|
18
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
19
|
Lebecq A, Doumane M, Fangain A, Bayle V, Leong JX, Rozier F, del Marques-Bueno M, Armengot L, Boisseau R, Simon ML, Franz-Wachtel M, Macek B, Üstün S, Jaillais Y, Caillaud MC. The Arabidopsis SAC9 enzyme is enriched in a cortical population of early endosomes and restricts PI(4,5)P 2 at the plasma membrane. eLife 2022; 11:e73837. [PMID: 36044021 PMCID: PMC9436410 DOI: 10.7554/elife.73837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/09/2022] [Indexed: 01/10/2023] Open
Abstract
Membrane lipids, and especially phosphoinositides, are differentially enriched within the eukaryotic endomembrane system. This generates a landmark code by modulating the properties of each membrane. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] specifically accumulates at the plasma membrane in yeast, animal, and plant cells, where it regulates a wide range of cellular processes including endocytic trafficking. However, the functional consequences of mispatterning PI(4,5)P2 in plants are unknown. Here, we functionally characterized the putative phosphoinositide phosphatase SUPPRESSOR OF ACTIN9 (SAC9) in Arabidopsis thaliana (Arabidopsis). We found that SAC9 depletion led to the ectopic localization of PI(4,5)P2 on cortical intracellular compartments, which depends on PI4P and PI(4,5)P2 production at the plasma membrane. SAC9 localizes to a subpopulation of trans-Golgi Network/early endosomes that are enriched in a region close to the cell cortex and that are coated with clathrin. Furthermore, it interacts and colocalizes with Src Homology 3 Domain Protein 2 (SH3P2), a protein involved in endocytic trafficking. In the absence of SAC9, SH3P2 localization is altered and the clathrin-mediated endocytosis rate is reduced. Together, our results highlight the importance of restricting PI(4,5)P2 at the plasma membrane and illustrate that one of the consequences of PI(4,5)P2 misspatterning in plants is to impact the endocytic trafficking.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | - Mehdi Doumane
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | - Aurelie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | - Jia Xuan Leong
- University of Tübingen, Center for Plant Molecular Biology (ZMBP)TübingenGermany
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | | | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | - Romain Boisseau
- Division of Biological Science, University of MontanaMissoulaUnited States
| | | | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of TübingenTübingenGermany
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of TübingenTübingenGermany
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP)TübingenGermany
- Faculty of Biology & Biotechnology, Ruhr-University BochumBochumGermany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de LyonLyonFrance
| | | |
Collapse
|
20
|
Marković V, Jaillais Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. THE NEW PHYTOLOGIST 2022; 235:867-874. [PMID: 35586972 DOI: 10.1111/nph.18258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is an anionic phospholipid which has been described as a master regulator of the Golgi apparatus in eukaryotic cells. However, recent evidence suggests that PI4P mainly accumulates at the plasma membrane in all plant cells analyzed so far. In addition, many functions that are typically attributed to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) in animal and yeast cells are also supported by PI4P in plants. For example, PI4P is the key anionic lipid that powers the strong electrostatic properties of the plasma membrane. Phosphatidylinositol 4-phosphate is also required for the establishment of stable membrane contacts between the endoplasmic reticulum and the plasma membrane, for exocytosis and to support signaling pathways. Thus, we propose that PI4P has a prominent role in specifying the identity of the plasma membrane and in supporting some of its key functions and should be considered a hallmark lipid of this compartment.
Collapse
Affiliation(s)
- Vedrana Marković
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
21
|
Phosphatidylinositol-4-phosphate controls autophagosome formation in Arabidopsis thaliana. Nat Commun 2022; 13:4385. [PMID: 35902598 PMCID: PMC9334301 DOI: 10.1038/s41467-022-32109-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Autophagy is an intracellular degradation mechanism critical for plant acclimation to environmental stresses. Central to autophagy is the formation of specialized vesicles, the autophagosomes, which target and deliver cargo to the lytic vacuole. How autophagosomes form in plant cells remains poorly understood. Here, we uncover the importance of the lipid phosphatidylinositol-4-phosphate in autophagy using pharmacological and genetical approaches. Combining biochemical and live-microscopy analyses, we show that PI4K activity is required for early stages of autophagosome formation. Further, our results show that the plasma membrane-localized PI4Kα1 is involved in autophagy and that a substantial portion of autophagy structures are found in proximity to the PI4P-enriched plasma membrane. Together, our study unravels critical insights into the molecular determinants of autophagy, proposing a model whereby the plasma membrane provides PI4P to support the proper assembly and expansion of the phagophore thus governing autophagosome formation in Arabidopsis. Autophagosomes are specialized vesicles that target and deliver cargo to the lytic vacuole. Here the authors show that plasma-membrane derived lipid phosphatidylinositol-4-phosphate supports the assembly and expansion of autophagosomes in Arabidopsis
Collapse
|
22
|
Heilmann M, Heilmann I. Regulators regulated: Different layers of control for plasma membrane phosphoinositides in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102218. [PMID: 35504191 DOI: 10.1016/j.pbi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The membranes of plant cells serve diverse physiological roles, which are defined largely by the localized and dynamic recruitment of proteins. Signaling lipids, such as phosphoinositides, can aid protein recruitment to the plasma membrane via specific recognition of their head groups and influence vesicular trafficking, cytoskeletal dynamics and other processes, with ramifications for plant tissue architecture and development. Phosphoinositide abundance is dynamically regulated. Recent advances indicate various levels of control during development or upon environmental triggers, including transcriptional or posttranslational regulation of enzymes balancing biogenesis and degradation, or the nano-organization of membranes into self-organizing physiologically distinct microenvironments. As patterns of interlinked mechanisms emerge, the horizons of what we do not understand become more and more defined.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany.
| |
Collapse
|
23
|
Heilmann I. Swap, Combine and Substitute to Unravel Specific Functions of Arabidopsis PI4P 5-kinases. PLANT & CELL PHYSIOLOGY 2022; 63:576-579. [PMID: 35434738 DOI: 10.1093/pcp/pcac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| |
Collapse
|
24
|
Lin F, Zheng J, Xie Y, Jing W, Zhang Q, Zhang W. Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J Genet Genomics 2022; 49:726-734. [DOI: 10.1016/j.jgg.2022.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
25
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
26
|
Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. THE NEW PHYTOLOGIST 2022; 233:2185-2202. [PMID: 34931304 DOI: 10.1111/nph.17930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Max Fernkorn
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Katharina Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1000 BE, the Netherlands
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| |
Collapse
|
27
|
Batrouni AG, Bag N, Phan HT, Baird BA, Baskin JM. A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane. J Cell Sci 2022; 135:272297. [PMID: 34569608 DOI: 10.1242/jcs.259365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry T Phan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Weijers D, Bezanilla M, Jiang L, Roeder AHK, Williams M. Back to the roots: A focus on plant cell biology. THE PLANT CELL 2022; 34:1-3. [PMID: 34755878 PMCID: PMC8774064 DOI: 10.1093/plcell/koab278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Affiliation(s)
| | - Magdalena Bezanilla
- Reviewing Editor, The Plant Cell and Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Liwen Jiang
- Guest Editor, The Plant Cell and School of Life Sciences, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrienne H K Roeder
- Guest Editor, The Plant Cell and Weil Institute for Cell and Molecular Biology and School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
29
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
30
|
Stelate A, Tihlaříková E, Schwarzerová K, Neděla V, Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules 2021; 11:1407. [PMID: 34680040 PMCID: PMC8533460 DOI: 10.3390/biom11101407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.
Collapse
Affiliation(s)
- Ayoub Stelate
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Eva Tihlaříková
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| |
Collapse
|
31
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|