1
|
Salahi A, Abd El-Ghany WA. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1336-1347. [PMID: 38689488 DOI: 10.1111/jpn.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The production of healthy food is one of the basic requirements and challenges. Research efforts have been introduced in the human's food industry to reduce the microbial resistance and use safe and healthy alternatives with a high durability. However, the conducted work about these issues in the field of livestock animal production have been started since 2015. Inappropriate and extensive use of antibiotics has resulted in the increase of antimicrobial resistance, presence of drug residues in tissues, and destruction of the gut microbiome. Therefore, discovering and developing antibiotic substitutes were urgent demands. Probiotic compounds containing living micro-organisms are important antibiotic alternative that have been beneficially and extensively used in humans, animals, and poultry. However, some probiotics show some obstacles during production and applications. Accordingly, this review article proposes a comprehensive description of the next-generation of probiotics including postbiotics, proteobiotics, psychobiotics, immunobiotics and paraprobiotics and their effects on poultry production and human's therapy. These compounds proved great efficiency in terms of restoring gut health, improving performance and general health conditions, modulating the immune response and reducing the pathogenic micro-organisms. However, more future research work should be carried out regarding this issue.
Collapse
Affiliation(s)
- Ahmad Salahi
- Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
4
|
Hosseini SH, Farhangfar A, Moradi M, Dalir-Naghadeh B. Beyond probiotics: Exploring the potential of postbiotics and parabiotics in veterinary medicine. Res Vet Sci 2024; 167:105133. [PMID: 38176207 DOI: 10.1016/j.rvsc.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Postbiotics and parabiotics (PP) are emerging fields of study in animal nutrition, preventive veterinary medicine, and animal production. Postbiotics are bioactive compounds produced by beneficial microorganisms during the fermentation of a substrate, while parabiotics are inactivated beneficial microbial cells, either intact or broken. Unlike probiotics, which are live microorganisms, PP are produced from a fermentation process without live cells and show significant advantages in promoting animal health owing to their distinctive stability, safety, and functional diversity. PP have numerous beneficial effects on animal health, such as enhancing growth performance, improving the immune system and microbiota of the gastrointestinal tract, aiding ulcer healing, and preventing pathogenic microorganisms from colonizing in the skin. Moreover, PP have been identified as a potential alternative to traditional antibiotics in veterinary medicine due to their ability to improve animal health without the risk of antimicrobial resistance. This review comprehensively explores the current research and applications of PP in veterinary medicine. We aimed to thoroughly examine the mechanisms of action, benefits, and potential applications of PP in various species, emphasizing their use specifically in livestock and poultry. Additionally, we discuss the various routes of administration to animals, including feed, drinking water, and topical use. This review also presents in-depth information on the methodology behind the preparation of PP, outlining the criteria employed to select appropriate microorganisms, and highlighting the challenges commonly associated with PP utilization in veterinary medicine.
Collapse
Affiliation(s)
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
5
|
Gut health benefit and application of postbiotics in animal production. J Anim Sci Biotechnol 2022; 13:38. [PMID: 35392985 PMCID: PMC8991504 DOI: 10.1186/s40104-022-00688-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Gut homeostasis is of importance to host health and imbalance of the gut usually leads to disorders or diseases for both human and animal. Postbiotics have been applied in manipulating of gut health, and utilization of postbiotics threads new lights into the host health. Compared with the application of probiotics, the characteristics such as stability and safety of postbiotics make it a potential alternative to probiotics. Studies have reported the beneficial effects of components derived from postbiotics, mainly through the mechanisms including inhibition of pathogens, strengthen gut barrier, and/or regulation of immunity of the host. In this review, we summarized the characteristics of postbiotics, main compounds of postbiotics, potential mechanisms in gut health, and their application in animal production.
Collapse
|
6
|
KDP, a Lactobacilli Product from Kimchi, Enhances Mucosal Immunity by Increasing Secretory IgA in Mice and Exhibits Antimicrobial Activity. Nutrients 2021; 13:nu13113936. [PMID: 34836191 PMCID: PMC8618749 DOI: 10.3390/nu13113936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer’s patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5–59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP’s adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine’s secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.
Collapse
|
7
|
Park SA, Lee GH, Hoang TH, Lee HY, Kang IY, Chung MJ, Jin JS, Chae HJ. Heat-inactivated Lactobacillus plantarum nF1 promotes intestinal health in Loperamide-induced constipation rats. PLoS One 2021; 16:e0250354. [PMID: 33872333 PMCID: PMC8055018 DOI: 10.1371/journal.pone.0250354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.
Collapse
Affiliation(s)
- Seon-Ah Park
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Hwa-Young Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | | | - Myong-Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, South Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
- * E-mail:
| |
Collapse
|
8
|
Abd El-Ghany WA. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Vet J 2020; 10:323-330. [PMID: 33282704 PMCID: PMC7703615 DOI: 10.4314/ovj.v10i3.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
With the high rise of drug resistance in microbial populations, there has been a surge in researches to find new natural antibiotics alternative compounds that can be used safely in both humans and animals. The main goals of using this category of alternatives are maintaining the gut microbiome in healthy conditions and preventing the attachment of pathogenic organisms at the early life stages. Probiotics, prebiotics, and synbiotics have been widely used for several years as growth promoters and as preventive measures against several enteric pathogens with successful results. Recently, paraprobiotics and postbiotics are derivatives of probiotic cultures and have been used in humans, animals, and poultry. They are regarded as immunostimulators, anti-inflammatory, antioxidants, and anti-microbial, as well as growth promoters. Till now, there is scanty information about the use of paraprobiotics and postbiotics in animals or in the poultry sector. Accordingly, this review article has focused on defining these new categories of natural alternatives with descriptions of their types, functions, and uses, especially in the poultry field.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
A novel kefir product (PFT) inhibits Ehrlich ascites carcinoma in mice via induction of apoptosis and immunomodulation. BMC Complement Med Ther 2020; 20:127. [PMID: 32345289 PMCID: PMC7189677 DOI: 10.1186/s12906-020-02901-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The popularity of fermented foods such as kefir, kuniss, and tofu has been greatly increasing over the past several decades, and the ability of probiotic bacteria to exert anticancer effects has recently become the focus of research. While we have recently demonstrated the ability of the novel kefir product PFT (Probiotics Fermentation Technology) to exert anticancer effects in vitro, here we demonstrate its ability to inhibit Ehrlich ascites carcinoma (EAC) in mice. METHODS Mice were inoculated intramuscularly with EAC cells to develop solid tumors. PFT was administered orally (2 g/kg/day) to mice 6 days/week, either 2 days before tumor cell inoculation or 9 days after inoculation to mice bearing solid tumors. Tumor growth, blood lymphocyte levels, cell cycle progression, apoptosis, apoptotic regulator expression, TNF-α expression, changes in mitochondrial membrane potential (MMP), PCNA, and CD4+ and CD8+ T cells in tumor cells were quantitatively evaluated by flow cytometry or RT-PCR. Further studies in vitro were carried out where EAC cells along with several other human cancer cell lines were cultured in the presence of PFT (0-5 mg/mL). Percent cell viability and IC50 was estimated by MTT assay. RESULTS Our data shows that PFT exerts the following: 1) inhibition of tumor incidence and tumor growth; 2) inhibition of cellular proliferation via a marked decrease in the expression of tumor marker PCNA; 3) arrest of the tumor cell cycle in the sub-G0/G1 phase, signifying apoptosis; 4) induction of apoptosis in cancer cells via a mitochondrial-dependent pathway as indicated by the up-regulation of p53 expression, increased Bax/Bcl-2 ratio, decrease in the polarization of MMP, and caspase-3 activation; and 5) immunomodulation with an increase in the number of infiltrating CD4+ and CD8+ T cells and an enhancement of TNF-α expression within the tumor. CONCLUSIONS PFT reduces tumor incidence and tumor growth in mice with EAC by inducing apoptosis in EAC cells via the mitochondrial-dependent pathway, suppressing cancer cell proliferation, and stimulating the immune system. PFT may be a useful agent for cancer prevention.
Collapse
|
10
|
Abstract
In recent years, interest in the relationship between gut microbiota and disease states has grown considerably. Indeed, several strategies have been employed to modify the microbiome through the administration of different diets, by the administration of antibiotics or probiotics, or even by transplantation of feces. In the present manuscript, we focus specifically on the potential application of probiotics, which seem to be a safe strategy, in the management of digestive, pain, and emotional disorders. We present evidence from animal models and human studies, notwithstanding that translation to clinic still deserves further investigation. The microbiome influences gut functions as well as neurological activity by a variety of mechanisms, which are also discussed. The design and performance of larger trials is urgently needed to verify whether these new strategies might be useful not only for the treatment of disorders affecting the gastrointestinal tract but also in the management of emotional and pain disorders not directly related to the gut.
Collapse
|
11
|
Peralta-Sánchez JM, Martín-Platero AM, Ariza-Romero JJ, Rabelo-Ruiz M, Zurita-González MJ, Baños A, Rodríguez-Ruano SM, Maqueda M, Valdivia E, Martínez-Bueno M. Egg Production in Poultry Farming Is Improved by Probiotic Bacteria. Front Microbiol 2019; 10:1042. [PMID: 31178831 PMCID: PMC6543855 DOI: 10.3389/fmicb.2019.01042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith’s diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Baños
- Departamento de Microbiología y Biotecnología - DMC Research Center, Granada, Spain
| | - Sonia María Rodríguez-Ruano
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| |
Collapse
|
12
|
Mountzouris KC, Palamidi I, Paraskeuas V, Griela E, Fegeros K. Dietary probiotic form modulates broiler gut microbiota indices and expression of gut barrier genes including essential components for gut homeostasis. J Anim Physiol Anim Nutr (Berl) 2019; 103:1143-1159. [PMID: 31087706 DOI: 10.1111/jpn.13112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
The probiotic form (PF) type and its dietary administration in combination or not with avilamycin (AV) were investigated for their effects on broiler gut microbiota and expression of genes relevant for gut barrier and gut homeostasis. Depending on PF type (i.e. no addition, viable, inactivated) and AV addition (no/yes), 450 one-day-old Cobb male broilers were allocated in 6 treatments (CON, CON + A, ViP, ViP + A, InP and InP + A) according to a 3 × 2 factorial arrangement with 5 replicates of 15 broilers each for 42 days. Significant interactions (PPF × AV ≤ 0.05) between PF and AV administration were shown for the ileal mucosa-associated bacteria, the caecal digesta Lactobacillus spp., the molar ratio of the sum of valeric, hexanoic and heptanoic acids and the gene expressions of ileal and caecal IgA and ileal claudin 1. Avilamycin suppressed ileal digesta Lactobacillus spp. (PAV < 0.001) and caecal digesta Clostridium perfringens subgroup (PAV = 0.018) and modulated the intestinal fermentation intensity and pattern. The viable PF had the higher levels of ileal digesta Bacteroides spp. (PPF = 0.021) and caecal digesta Lactobacillus spp. (PPF = 0.038) compared with the other two PF. Probiotic form modulated the microbial metabolic activity in the ileum and caeca with the viable PF being the most noteworthy in terms of effects regarded as beneficial. Furthermore, the viable PF resulted in reduced expression of caecal Toll-like receptors TLR2B (PPF = 0.026) and TLR4 (PPF = 0.011) and transcription factor NFΚΒ1 (PPF = 0.002), which could be considered as essential for limiting inflammation and preserving gut homeostasis. In conclusion, under non-challenge conditions, probiotic function was shown to depend on PF type and to a lesser degree on co-administration with AV. The importance of probiotic viability for the beneficial modulation of important gut components towards a reduced state of physiological inflammation has been highlighted.
Collapse
Affiliation(s)
| | - Irida Palamidi
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Vasileios Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Eirini Griela
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Tamaki R, Takahashi M, Tai S, Makioka-Itaya Y, Ijich T, Inoue R. Exploratory investigation of the anti-inflammatory effects of RNase A-treated Enterococcus faecalis strain EC-12. Biosci Biotechnol Biochem 2019; 83:1343-1353. [PMID: 31038020 DOI: 10.1080/09168451.2019.1608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We previously reported that the major component of Enterococcus faecalis strain EC-12 (EC-12) inducing production of Interleukin (IL)-12 in mouse/human immune cells was its own RNA. This study aimed to investigate if RNase A-treated EC-12 could also produce IL-10 and to evaluate the possible effects of IL-10 produced by RNase A-treated EC-12. Three experiments were conducted: (1) Assessment of the effect of RNase A-treated EC-12 on transcriptome profiles and biological pathways in human peripheral blood mononuclear cells; (2) Determination of cytokine concentration in its culture supernatants; and (3) Supplementation of RNase A-treated EC-12 (RN) to mice with dextran sodium sulfate-induced colitis. Treatment of EC-12 with RNase A inhibited inflammatory response including the potency to induce IL-12 production, while it did not affect IL-10 production (Experiment 1 and 2). Colitis symptoms were milder in RN than in PBS-supplemented controls (Experiment 3). RNase A-treated EC-12 likely became an anti-inflammatory agent primarily inducing IL-10 production.
Collapse
Affiliation(s)
- Ryuji Tamaki
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Mio Takahashi
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Shoya Tai
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | | | - Tetsuo Ijich
- b Life Science , Combi Corporation , Saitama , Japan
| | - Ryo Inoue
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
14
|
Al Seraih A, Belguesmia Y, Cudennec B, Baah J, Drider D. In Silico and Experimental Data Claiming Safety Aspects and Beneficial Attributes of the Bacteriocinogenic Strain Enterococcus faecalis B3A-B3B. Probiotics Antimicrob Proteins 2019; 10:456-465. [PMID: 29168155 DOI: 10.1007/s12602-017-9357-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study aimed at comparing the genome of Enterococcus faecalis B3A-B3B, a bacteriocinogenic strain recently isolated from a healthy Iraqi infant to those of Enterococci of clinical and beneficial grades. The putative genes gelE, cpd, efaAfm, ccf, agg, and cob coding for virulence factors were detected in B3A-B3B strain, which meanwhile resulted to be non-cytotoxic, non-hemolytic, devoid of inflammatory effects, and sensitive to most of the antibiotics tested except for clindamycin and trimethoprim, which resistance is usually ascribed to intrinsic nature. B3A-B3B strain was remarkable for its hydrophobicity, auto-aggregation, adhesion to human Caco-2 cells, and survival in simulated gastrointestinal conditions, and cholesterol assimilation fulfilling therefore key beneficial attributes.
Collapse
Affiliation(s)
- Alaa Al Seraih
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 Institut Charles Viollette, 59000, Lille, France
| | - Yanath Belguesmia
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 Institut Charles Viollette, 59000, Lille, France.
| | - Benoit Cudennec
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 Institut Charles Viollette, 59000, Lille, France
| | - John Baah
- Best Environmental Technologies Inc, 9610-39 Avenue NW, Edmonton, Alberta, T6E 5T9, Canada
| | - Djamel Drider
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 Institut Charles Viollette, 59000, Lille, France
| |
Collapse
|
15
|
Maidana L, Gerez J, Pinho F, Garcia S, Bracarense A. Histopathological and ultrastructural findings induced by heat-inactivated Lactobacillus plantarum and the culture supernatant on the intestinal mucosa of piglets: an ex vivo approach. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets jejunal explants exposed to two concentration of heat-inactivated Lactobacillus plantarum and their respective culture supernatants. Jejunal explants were incubated for 4 hours in DMEM culture medium with a) only culture medium (control group), b) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1 x 108CFU/ml), c) heat-inactivated Lactobacillus plantarum strain2 - LP2 (2.0 x 109CFU/ml), d) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1), and e) heat-inactivated Lactobacillus plantarum strain2 culture supernatant (CS2). Explants exposed to heat-inactivated L. plantarum strain 1 and 2 showed multifocal to difuse villi atrophy, villi apical necrosis and enterocyte flattening. Morphological assessment revealed similar results with bacterial adhesion to mucus and intestinal epithelial cells and, morphometric analysis showed a decreased villi height compared to the control group. Alterations in explants treated with the culture supernatant of both strains include mild villi atrophy and mild enterocyte apical necrosis. Morphological assesment reveled numerous well delineated villi and, morphometric analysis showed a significant increase in villi height compared to the control group. In general, exposure to the culture supernatants improved the intestinal morphology.
Collapse
Affiliation(s)
| | - J. Gerez
- Universidade Estadual de Londrina, Brazil
| | - F. Pinho
- Universidade Estadual de Londrina, Brazil
| | - S. Garcia
- Universidade Estadual de Londrina, Brazil
| | | |
Collapse
|
16
|
Deshpande G, Athalye-Jape G, Patole S. Para-probiotics for Preterm Neonates-The Next Frontier. Nutrients 2018; 10:nu10070871. [PMID: 29976885 PMCID: PMC6073938 DOI: 10.3390/nu10070871] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Current evidence supports the use of probiotics in preterm neonates for prevention of necrotizing enterocolitis, mortality and late onset sepsis. Despite the strong evidence, the uptake of this intervention has not been universal due to concerns including probiotic sepsis, pro-inflammatory response and transmission of antibiotic resistance. Critically ill extremely preterm neonates with potentially compromised gut integrity are at higher risk of probiotic sepsis due to translocation. In most countries, probiotics are sold as food supplements with poor quality control. The traditional definition of probiotics as “live microorganisms” has been challenged as many experts have questioned the importance of viability in the context of the beneficial effects of probiotics. Paraprobiotics (ghost probiotics), are defined as non-viable microbial cells (intact or broken) or crude cell extracts (i.e., with complex chemical composition), which, when administered (orally or topically) in adequate amounts, confer a benefit on the human or animal consumer. Current evidence indicates that paraprobiotics could be safe alternatives to probiotics in preterm neonates. High-quality pre-clinical and clinical studies including adequately powered randomised controlled trials (RCTs) are warranted in preterm neonates to explore this new frontier.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Neonatology, Nepean Hospital, Kingswood, NSW 2747, Australia.
- Sydney Medical School Nepean, University of Sydney, Kingswood, NSW 2747, Australia.
| | - Gayatri Athalye-Jape
- Department of Neonatology, King Edward Memorial Hospital for Women, Perth, WA 6008, Australia.
| | - Sanjay Patole
- Department of Neonatology, King Edward Memorial Hospital for Women, Perth, WA 6008, Australia.
| |
Collapse
|
17
|
Inatomi T, Amatatsu M, Romero-Pérez GA, Inoue R, Tsukahara T. Dietary Probiotic Compound Improves Reproductive Performance of Porcine Epidemic Diarrhea Virus-Infected Sows Reared in a Japanese Commercial Swine Farm under Vaccine Control Condition. Front Immunol 2017; 8:1877. [PMID: 29312349 PMCID: PMC5743915 DOI: 10.3389/fimmu.2017.01877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022] Open
Abstract
Lactogenic immunity transferred to piglets after inoculation of a live vaccine to pregnant sows was proved limited to control porcine epidemic diarrhea (PED). Hence, here we evaluated the efficacy of administration of a probiotic compound containing Bacillus mesentericus, Clostridium butyricum, and Enterococcus faecalis together with a commercial live-attenuated PED vaccine (Nisseiken PED Live Vaccine, Nisseiken, Tokyo, Japan) to improve the health and reproductive performance of PED-infected sows. Twenty pregnant sows in a PED-positive farm were equally divided into probiotics-administered (VP) and control (VC) sow groups. A commercial live-attenuated vaccine was injected as per the manufacturer’s instruction. The probiotic compound (15 g/day) was orally administered to VP from 6 weeks pre-parturition to 7 days post-parturition (ppd7). VP had a significantly higher body weight at ppd7 than VC (191 vs 186 kg; P < 0.05). At day 3 post-parturition (ppd3) (4.18 vs 3.63 kg/day) and ppd7 (5.14 vs 4.34 kg/day), milk produced by VP was significantly (P < 0.05) greater than that by VC. Total immunoglobulin (Ig)A and IgG concentrations at day 0 were significantly (P < 0.05) higher in whey of VP (1.9 and 6.6 g/dL, respectively) than in that of VC (1.7 and 6.1 g/dL, respectively). However, total IgG concentration in whey of VP and VC at ppd3 and ppd7 did not differ. Antibody titer was significantly higher at day 0 in serum of VP than it was that of VC (60 vs 37 in geometric mean; P < 0.05). Likewise, the antibody titer in whey of VP and VC was found to be similar at day 0 (416 vs 208 in geometric mean; P = 0.13). Consequently, VP had fewer days between weaning and return to estrus than did VC (7 vs 10 days; P < 0.05). Moreover, piglets of VP had a significantly (P < 0.05) higher litter weight at birth (9,252 g/litter) and a lower mortality (12%) during suckling than those of VC (8,686 g/litter and 28%, respectively). In summary, probiotic-supplemented, PED-vaccinated sows were healthier, transferred PED-specific antibodies via colostrum to piglets, had greater litter weight at birth, and reduced mortality during suckling.
Collapse
Affiliation(s)
| | | | | | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | | |
Collapse
|
18
|
Toscano M, De Grandi R, Pastorelli L, Vecchi M, Drago L. A consumer's guide for probiotics: 10 golden rules for a correct use. Dig Liver Dis 2017; 49:1177-1184. [PMID: 28830747 DOI: 10.1016/j.dld.2017.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Probiotics are used all over the world as their beneficial effects on the human organism have been widely demonstrated. Certain probiotics can down-regulate production of pro-inflammatory cytokines and promote intestinal epithelial barrier functions, increasing an anti-inflammatory response and contributing to the host's overall health. The main mechanisms by which probiotic microorganisms can interact with the host are by modulating the immune system and the epithelial cell functions and interacting with intestinal gut microbiota. To date, hundreds of different microorganisms are used for the formulation of numerous probiotic products; therefore, it is very difficult to choose the best probiotic product for specific or more general needs. Therefore, physicians are getting more and more confused due to the high number of commercial products which are often lacking healthy effects on the host. Therefore, the aim of this paper is to demonstrate the main characteristics that probiotic microorganisms and products should possess to have a positive impact on the host's health. To this purpose, this review suggests "10 golden rules" or "commandments" that clinicians should follow to properly select the optimal probiotic product and avoid misidentifications, mislabelling and "pie in the sky" stories.
Collapse
Affiliation(s)
- Marco Toscano
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Roberta De Grandi
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Luca Pastorelli
- Department of Biomedical Science for Health, University of Milan, Milan, Italy; Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Maurizio Vecchi
- Department of Biomedical Science for Health, University of Milan, Milan, Italy; Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biomedical Science for Health, University of Milan, Milan, Italy; Laboratory of Clinical-Chemistry and Microbiology, IRCCS Galeazzi Institute, University of Milan, Milan, Italy.
| |
Collapse
|
19
|
The immune-genes regulation mediated mechanisms of probiotics to control salmonella infection in chicken. WORLD POULTRY SCI J 2017. [DOI: 10.1017/s0043933917000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Wijesekara PNK, Kumbukgolla WW, Jayaweera JAAS, Rawat D. Review on Usage of Vancomycin in Livestock and Humans: Maintaining Its Efficacy, Prevention of Resistance and Alternative Therapy. Vet Sci 2017; 4:vetsci4010006. [PMID: 29056665 PMCID: PMC5606620 DOI: 10.3390/vetsci4010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
Vancomycin is one of the “last-line” classes of antibiotics used in the treatment of life-threatening infections caused by Gram-positive bacteria. Even though vancomycin was discovered in the 1950s, it was widely used after the 1980s for the treatment of infections caused by methicillin-resistant Staphylococci, as the prevalence of these strains were increased. However, it is currently evident that vancomycin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci have developed for various reasons, including the use of avaparcin—an analog of vancomycin—as a feed additive in livestock. Therefore, prophylactic and empiric use of antibiotics and their analogues need to be minimized. Herein we discuss the rational use of vancomycin in treating humans, horses, farm animals, and pet animals such as dogs, cats, and rabbits. In present day context, more attention should be paid to the prevention of the emergence of resistance to antibiotics in order to maintain their efficacy. In order to prevent emergence of resistance, proper guidance for the responsible use of antimicrobials is indispensable. Therefore, almost all stakeholders who use antibiotics should have an in-depth understanding of the antibiotic that they use. As such, it is imperative to be aware of the important aspects of vancomycin. In the present review, efforts have been made to discuss the pharmacokinetics and pharmacodynamics, indications, emergence of resistance, control of resistance, adverse effects, and alternative therapy for vancomycin.
Collapse
Affiliation(s)
| | - Wikum Widuranga Kumbukgolla
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University Mihintale, Mihintale 50008, Sri Lanka.
| | | | - Diwan Rawat
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
21
|
KHODER GHALIA, AL-MENHALI ASMAA, AL-YASSIR FARAH, KARAM SHERIFM. Potential role of probiotics in the management of gastric ulcer. Exp Ther Med 2016; 12:3-17. [PMID: 27347010 PMCID: PMC4906699 DOI: 10.3892/etm.2016.3293] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer is one of the most common chronic gastrointestinal diseases characterized by a significant defect in the mucosal barrier. Helicobacter pylori (H. pylori) infection and the frequent long-term use of non-steroidal anti-inflammatory drugs are major factors involved in gastric ulcer development. Acid inhibitors and antibiotics are commonly used to treat gastric ulcer. However, in the last few decades, the accumulating evidence for resistance to antibiotics and the side effects of antibiotics and acid inhibitors have drawn attention to the possible use of probiotics in the prevention and treatment of gastric ulcer. Probiotics are live microorganisms that when administered in adequate amounts confer health benefits on the host. Currently, the available experimental and clinical studies indicate that probiotics are promising for future applications in the management of gastric ulcers. This review aims to provide an overview of the general health benefits of probiotics on various systemic and gastrointestinal disorders with a special focus on gastric ulcer and the involved cellular and molecular mechanisms: i) Protection of gastric mucosal barrier; ii) upregulation of prostaglandins, mucus, growth factors and anti-inflammatory cytokines; iii) increased cell proliferation to apoptosis ratio; and iv) induction of angiogenesis. Finally, some of the available data on the possible use of probiotics in H. pylori eradication are discussed.
Collapse
Affiliation(s)
- GHALIA KHODER
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - ASMA A. AL-MENHALI
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - FARAH AL-YASSIR
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - SHERIF M. KARAM
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| |
Collapse
|
22
|
Palamidi I, Fegeros K, Mohnl M, Abdelrahman W, Schatzmayr G, Theodoropoulos G, Mountzouris K. Probiotic form effects on growth performance, digestive function, and immune related biomarkers in broilers. Poult Sci 2016; 95:1598-1608. [DOI: 10.3382/ps/pew052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023] Open
|
23
|
Crouzet L, Rigottier-Gois L, Serror P. Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiol Lett 2015; 362:fnv012. [DOI: 10.1093/femsle/fnv012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/17/2022] Open
|
24
|
Ditu LM, Chifiriuc MC, Bezirtzoglou E, Marutescu L, Bleotu C, Pelinescu D, Mihaescu G, Lazar V. Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:23239. [PMID: 25317114 PMCID: PMC4172693 DOI: 10.3402/mehd.v25.23239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/05/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Background Competition of probiotic bacteria with other species from the intestinal microbiota involves different mechanisms that occur regardless of probiotics’ viability. The objective of this paper was to assess the cytokine serum levels in holoxenic mice after oral administration of non-viable components (NVC) of Enterococcus faecium probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus in comparison to NVC of unstimulated E. faecium probiotic culture. Methods Probiotic E. faecium CMGb 16 culture, grown in the presence of heat-inactivated cultures of E. coli and B. cereus CMGB 102, was subsequently separated into supernatant (SN) and heat-inactivated cellular sediment (CS) fractions by centrifugation. Each NVC was orally administered to holoxenic mice (balb C mouse strain), in three doses, given at 24 hours. Blood samples were collected from the retinal artery, at 7, 14, and 21 days after the first administration of the NVC. The serum concentrations of IL-12 and tumor necrosis factor-alpha (TNF-α) interleukins were assessed by ELISA method. Results After the oral administration of SN component obtained from the probiotic culture stimulated with heat-inactivated cultures of B. cereus CMGB 102 and E. coli O28, the serum concentrations of IL-12 were maintained higher in the samples collected at 7 and 14 days post-administration. No specific TNF-α profile could be established, depending on stimulated or non-stimulated probiotic culture, NVC fraction, or harvesting time. Conclusion The obtained results demonstrate that non-viable fractions of probiotic bacteria, stimulated by other bacterial species, could induce immunostimulatory effects mediated by cytokines and act, therefore, as immunological adjuvants.
Collapse
Affiliation(s)
- L M Ditu
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - M C Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - E Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Department of Food Science and Technology, Faculty of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - L Marutescu
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - C Bleotu
- Institute of Virology 'St. Nicolau', Bucharest, Romania
| | - D Pelinescu
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - G Mihaescu
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - V Lazar
- Microbiology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
25
|
Tiantong A, Peng HY, Chen SE, Piamya P, Liu WB, Chen MT, Yu C, Nagahata H, Chang CJ. Intramammary infusion of anEnterococcus faecium SF68 preparation promoted the involution of drying off Holstein cows partly related to neutrophil-associated matrix metalloproteinase 9. Anim Sci J 2014; 86:111-9. [DOI: 10.1111/asj.12243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/13/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Attapol Tiantong
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Hsing-Yi Peng
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Piya Piamya
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Wen-Bor Liu
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Ming-Tsao Chen
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - Chi Yu
- Department of Animal Science; National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Hajime Nagahata
- Department of Animal Health; School of Veterinary Medicine; Rakuno Gakuen University; Ebetsu Japan
| | - Chai-Ju Chang
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
26
|
Sukegawa S, Ihara Y, Yuge K, Rao S, Oka K, Arakawa F, Fujimura T, Murakami H, Kurazono H, Takahashi M, Morimatsu F. Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J 2014; 85:454-60. [PMID: 24450962 DOI: 10.1111/asj.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/29/2013] [Indexed: 12/17/2022]
Abstract
Probiotic bacteria such as lactic acid bacteria (LAB) have recently received attention as candidates for alternative anti-microbial feed additives. We previously isolated Enterococcus faecium strain NHRD IHARA (FERM BP-11090, NHRD IHARA strain) and reported its probiotic efficacy. However, we have not determined the effect of oral administration of heat-killed cells of this strain. Here, we performed two experiments to investigate the effect of oral administration of the heat-killed NHRD IHARA strain on post-weaning piglets. In Experiment 1, there was a significant improvement in growth performance (P = 0.04) and increase in serum immunoglobulin A (IgA) production (P = 0.03) in the group fed heat-killed cells. These results were similar to previous results we obtained with live cells. We also found changes in serum and fecal IgA production that were unrelated to the patterns of microbiotal change. In Experiment 2, we detected a significant improvement in villus growth in the jejunum (P = 0.0002). In conclusion, oral administration of the heat-killed NHRD IHARA strain in post-weaning piglets had the same efficacy as administration of the live strain. The heat-killed NHRD IHARA strain can be used as feed additives to improve pig growth and health on commercial farms.
Collapse
Affiliation(s)
- Shin Sukegawa
- Research and Development Center, Nippon Meat Packers, Inc., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ultrasonicated Enterococcus faecium SF68 enhances neutrophil free radical production and udder innate immunity of drying-off dairy cows. J DAIRY RES 2013; 80:349-59. [PMID: 23806218 DOI: 10.1017/s0022029913000319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper dry cow management is critical not only for subsequent milk production and fertility but also for mastitis control. A phenomenon of immunosuppression was commonly observed in transition cows, an example being the high susceptibility of the mammary gland during early the dry period to new infectious agents. Polymorphonuclear neutrophils (PMN) play important defence roles in the mammary gland of newly dried cows. One of the bactericidal mechanisms of PMN is through producing reactive oxygen species (ROS), which can be efficiently quantified by chemiluminescence (CL) assay. In the current study, the potential of intramammary application of a commercial Enterococcus faecium SF68 (SF68) product to enhance the local innate immunity of newly dried mammary glands was evaluated based on the CL assay. The preliminary experiments in vitro indicated virtual dose-responsiveness of ROS generation from three different cell preparations, bovine blood PMN, bovine blood PMN pre-conditioned with cow milk, and the post-diapedesis model somatic cells from cow milk, on their exposure to phorbol 12-myristate 13-acetate (PMA), viable SF68, and ultrasonicated SF68, but not dry-heated SF68. Because ultrasonication treatment was found to profoundly enhance the immunogenicity of SF68 in vitro, in the following animal trial, single infusion of either 5 or 10×107 original cfu of ultrasonicated SF68 was randomly applied to the front quarters and phosphate-bufferedsaline (PBS) applied to the rear quarters of each of the four experimental cows on the first day of milk stasis. The results showed that within the first post-infusion week, ultrasonicated SF68 induced a faster and greater (P<0·05) recruitment of PMN into mammary lumen with no apparent local or systemic inflammatory sign. Meanwhile, ultrasonicated SF68 also induced a greater (P<0·05) ROS production in response to PMA challenge by in situ somatic cells of mammary secretion. Taken together, ultrasonicated SF68 modulated ROS generation of bovine neutrophils, and would be a potential enhancer of udder innate immunity in drying-off dairy cows. More thorough work is warranted.
Collapse
|
28
|
Tsukahara T, Yoshida Y, Tsushima T, Watanabe T, Matsubara N, Inoue R, Ushida K. Evaluation of the heat-killed and dried cell preparation of Enterococcus faecalis against villous atrophy in early-weaned mice and pigs. Anim Sci J 2011; 82:302-6. [PMID: 21729210 DOI: 10.1111/j.1740-0929.2010.00829.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Early weaning induces villous atrophy in the small intestine (SI) of piglets. Oral administration of live lactic acid bacteria (LAB) can improve villous shortening. In this study, we evaluated the oral administration of a heat-killed and dried cell preparation of Enterococcus faecalis (a LAB) strain EC-12 against villous atrophy in early-weaned mice (Experiment 1) and pigs (Experiments 2 and 3). Twelve 16-days-old mice were divided into two groups in Experiment 1: gavage of EC-12 (10 mg/kg body weight (BW)/day), or control. On day 21, SI was collected. Eighteen 21-day-old pigs were divided into two groups in Experiment 2: gavage of EC-12 (10 mg/kg BW/day), or control. After 10 days, the villous height of jejunum was measured. Six 21-day-old pigs were divided into two groups in Experiment 3: the basal diet supplemented with EC-12 at 0.05%-fed group, or the basal diet-fed group. After 10 days, the villous height of jejunum was measured. The villous heights in SI were significantly higher by EC-12 administration in all experiments. EC-12 successfully improved the villous atrophy in the early-weaned mice and pigs when EC-12 was administered orally.
Collapse
Affiliation(s)
- Takamitsu Tsukahara
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Probiotics are usually defined as products which contain viable non-pathogenic micro-organisms able to confer health benefits to the host. There are specific gastrointestinal effects of probiotics such as alleviating inflammatory bowel disease, reducing acute diarrhoea in children, inhibitingSalmonellaandHelicobacter pylori, removing cholesterol, secreting enzymes and bacteriocins and immunomodulation. However, many of the effects obtained from viable cells of probiotics are also obtained from populations of dead cells. Heat-killed cells ofEnterococcus faecalisstimulate the gastrointestinal immune system in chicks. Dead bifidobacteria induce significant increases in TNF-α production. Administration of heat-killedE. faecalisto healthy dogs increases neutrophil phagocytes. The probiotic paradox is that both live and dead cells in probiotic products can generate beneficial biological responses. The action of probiotics could be a dual one. Live probiotic cells influence both the gastrointestinal microflora and the immune response whilst the components of dead cells exert an anti-inflammatory response in the gastrointestinal tract. This is quite analogous to a proposed mode of action of antimicrobial growth promoters in animal production. This has several implications for the production and application of probiotics, as it will be difficult to assess the relative proportions of live and dead cells in a probiotic culture. Variable amounts of dead cells might contribute to the variation in response often seen with live probiotic cultures. However, the use of dead probiotics as biological response modifiers has several attractive advantages; such products would be very safe and have a long shelf-life.
Collapse
|
30
|
TSURUTA T, INOUE R, TSUKAHARA T, MATSUBARA N, HAMASAKI M, USHIDA K. A cell preparation ofEnterococcus faecalisstrain EC-12 stimulates the luminal immunoglobulin A secretion in juvenile calves. Anim Sci J 2009; 80:206-11. [DOI: 10.1111/j.1740-0929.2008.00621.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with Salmonella enterica serovar typhimurium. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1689-93. [PMID: 18827189 DOI: 10.1128/cvi.00242-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several strategies currently exist for control of Salmonella enterica serovar Typhimurium colonization in the chicken intestine, among which the use of probiotics is of note. Little is known about the underlying mechanisms of probiotic-mediated reduction of Salmonella colonization. In this study, we asked whether the effect of probiotics is mediated by antimicrobial peptides, including avian beta-defensins (also called gallinacins) and cathelicidins. Four treatment groups were included in this study: a negative-control group, a probiotic-treated group, a Salmonella-infected group, and a probiotic-treated and Salmonella-infected group. On days 1, 3, and 5 postinfection (p.i.), the cecal tonsils were removed, and RNA was extracted and used for measurement of avian beta-defensin 1 (AvBD1), AvBD2, AvBD4, AvBD6, and cathelicidin gene expression by real-time PCR. The expressions of all avian beta-defensins and cathelicidin were detectable in all groups, irrespective of treatment and time point. Probiotic treatment and Salmonella infection did not affect the expression of any of the investigated genes on day 1 p.i. Furthermore, probiotic treatment had no significant effect on the expression of the genes at either 3 or 5 days p.i. However, the expression levels of all five genes were significantly increased (P < 0.05) in response to Salmonella infection at 3 and 5 days p.i. However, administration of probiotics eliminated the effect of Salmonella infection on the expression of antimicrobial genes. These findings indicate that the expression of antimicrobial peptides may be repressed by probiotics in combination with Salmonella infection or, alternatively, point to the possibility that, due to a reduction in Salmonella load in the intestine, these genes may not be induced.
Collapse
|
32
|
SAKAI Y, TSUKAHARA T, MATSUBARA N, USHIDA K. A cell wall preparation of Enterococcus faecalis strain EC-12 stimulates ?-defensin expression in newly hatched broiler chicks. Anim Sci J 2007. [DOI: 10.1111/j.1740-0929.2006.00410.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
SAKAI Y, TSUKAHARA T, USHIDA K. Possibility of vancomycin-resistant enterococci transmission from human to broilers, and possibility of using the vancomycin-resistant gram-positive cocci as a model in a screening study of vancomycin-resistant enterococci infection in the broiler chick. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00383.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|