1
|
Wu Y, Li F, Shu S, Feng Z, Qiu Y, Li S, Zhu Z. Baicalin alleviates intervertebral disc degeneration by inhibiting the p38 MAPK signaling pathway. Exp Gerontol 2025; 204:112743. [PMID: 40174870 DOI: 10.1016/j.exger.2025.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) represents a prevalent degenerative pathology of the spinal, primarily precipitated by inflammatory processes and the deterioration of extracellular matrix (ECM). Baicalin has an effective anti-inflammatory effect on degenerative diseases. In addition, the P38 mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in the pathogenesis of IVDD. OBJECTIVE To investigate the therapeutic potential of baicalin in modulating pathological changes in IVDD. METHODS To design an in vitro model of degeneration of nucleus pulposus cells (NPCs) stimulated by IL-1β and an in vivo mouse model of needling to assess the protective effect of baicalin against IVDD and its underlying mechanism. RESULTS Baicalin down-regulated inflammatory factors (INOS, COX-2, IL-6) and catabolic factors (MMP-3, MMP-13, ADAMTS-5) while up-regulating anabolic factors (collagen II, SOX-9) by inhibiting the activation of the p38 MAPK signaling pathway, in addition to slowing down the progression of IVDD in the mouse acupuncture model. CONCLUSION Our study demonstrated in vitro experiments that baicalin attenuates IL-1β-stimulated IVDD by inhibiting activation of the P38 MAPK signaling pathway. Meanwhile, the effects of baicalin were also confirmed in vivo experiments, Consequently, we propose that baicalin is a promising therapeutic agent for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Yating Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengrui Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shibin Shu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wu G, Ma F, Liu Z, Liu J, Xue Y, Zhang M, Wen C, Tang B, Lin L. Hybrid composites with magnesium-containing glycosaminoglycans as a chondroconducive matrix for osteoarthritic cartilage repair. Int J Biol Macromol 2022; 220:1104-1113. [PMID: 35981680 DOI: 10.1016/j.ijbiomac.2022.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The alteration of the extracellular matrix (ECM) homeostasis plays an important role in the development of osteoarthritis (OA). The pathological changes of OA are mainly manifested in the large reduction of components in ECM, like type II collagen and aggrecan, especially hyaluronic acid and chondroitin sulfate and often accompanied by inflammation. Rebuilding ECM and inhibiting inflammation may reverse OA progression. In this work, we developed new magnesium-containing glycosaminoglycans (Mg-GAGs), to create a positive ECM condition for promoting cartilage regeneration and alleviating OA. In vitro results suggested that the introduction of Mg-GAGs contributed to promoting chondrocyte proliferation and facilitated upregulating chondrogenic genes and suppressed inflammation-related factors. Moreover, Mg-GAGs exhibited positive effects on suppressing synovial inflammation, reducing chondrocyte apoptosis and preserving the subchondral bone in the ACLT-induced OA rabbit model. This study provides new insight into ECM-based therapeutic strategy and opens a new avenue for the development of novel OA treatment.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yizhebang Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mengdi Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Klimek K, Tarczynska M, Truszkiewicz W, Gaweda K, Douglas TEL, Ginalska G. Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation-A Pilot In-Vitro Study. Cells 2022; 11:282. [PMID: 35053397 PMCID: PMC8773726 DOI: 10.3390/cells11020282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young's modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA 1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA 1 4YW, UK
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| |
Collapse
|
4
|
Wilken F, Slotta-Huspenina J, Laux F, Blanke F, Schauwecker J, Vogt S, Gollwitzer H. Autologous Chondrocyte Transplantation in Femoroacetabular Impingement Syndrome: Growth and Redifferentiation Potential of Chondrocytes Harvested from the Femur in Cam-Type Deformities. Cartilage 2021; 12:377-386. [PMID: 30862178 PMCID: PMC8236656 DOI: 10.1177/1947603519833138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Cam-type femoroacetabular impingement (FAI) syndrome is one of the most frequent reasons for cartilage damage in the hip. Autologous chondrocyte transplantation has proven high success rates in the treatment of focal chondral defects; however, harvesting of chondrocytes in the hip has been reported but not specifically from the region of femoral cam lesions. Therefore, the goal of this study was to analyze the growth and redifferentiation potential of cartilage samples harvested from the cam deformities in patients with FAI. DESIGN Cartilage samples were gained from 15 patients with cam-type FAI undergoing arthroscopic femoral cam resection. Healthy (hyaline cartilage of the hip and knee joint, n = 12) and arthritic control groups (degenerative changes in cartilage of the hip joint, n = 8) were also analyzed. Chondrocytes were initially cultured under monolayer, and subsequently under pellet conditions. A comparative representation of the groups was performed by Mankin score classification, immunohistochemistry (IHC) (Col1, Col2, aggrecan), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Col1, Col2, Col10, Sox9, RunX2). RESULTS Mankin score of FAI-samples (4.1±3.1, Range 0-10) showed a wide variation but was significant lower (P = 0.0244) when compared with the arthritic control (7.5 ± 2.7, range 4-12). IHC showed an increased deposition of Col2 (P = 0.0002) and aggrecan (P = 0.0261) after pellet culture compared with deposition after monolayer culture in all groups. In qRT-PCR, FAI samples showed after pellet culture increased Col2 (P = 0.0050) and Col10 expression (P = 0.0006) and also Mankin score correlated increasing gene-expression of Col10 (r = 0.8108, P = 0.0341) and RunX2 (r = 0.8829, P = 0.123). CONCLUSIONS Cartilage samples of patients with cam-type FAI showed sufficient but heterogeneous composition relating to histological quality and chondrogenic potential. However, harvesting of chondrocytes from the cam lesion might be a valid option especially if a cartilage lesion is noted in a diagnostic arthroscopy and individual preexisting stage of cartilage degeneration and appropriate pellet-culturing conditions are considered.
Collapse
Affiliation(s)
- Frauke Wilken
- Clinic of Orthopaedics and Orthopaedic Sports Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany,Department of Orthopaedic Sports Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Laux
- Clinic of Orthopaedics and Orthopaedic Sports Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fabian Blanke
- Department of Orthopaedic Sports Medicine, Hessing Stiftung, Augsburg, Germany
| | - Johannes Schauwecker
- Clinic of Orthopaedics and Orthopaedic Sports Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany,Department of Orthopaedic Sports Medicine, Hessing Stiftung, Augsburg, Germany,Stephan Vogt, Department of Orthopaedic Sports Medicine, Hessing Stiftung, Hessingstraße 17, 86199 Augsburg, Germany.
| | | |
Collapse
|
5
|
Xie A, Peng Y, Yao Z, Lu L, Ni T. Effect of a subset of adipose-derived stem cells isolated with liposome magnetic beads to promote cartilage repair. J Cell Mol Med 2021; 25:4204-4215. [PMID: 33768729 PMCID: PMC8093962 DOI: 10.1111/jcmm.16470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the ability of CD146+ subset of ADSCs to repair cartilage defects. In this study, we prepared CD146+ liposome magnetic beads (CD146+LMB) to isolate CD146+ADSCs. The cells were induced for chondrogenic differentiation and verified by cartilage‐specific mRNA and protein expression. Then a mouse model of cartilage defect was constructed and treated by filling the induced cartilage cells into the damaged joint, to evaluate the function of such cells in the cartilage microenvironment. Our results demonstrated that the CD146+LMBs we prepared were uniform, small and highly stable, and cell experiments showed that the CD146+LMB has low cytotoxicity to the ADSCs. ADSCs isolated with CD146+LMB were all CD146+, CD105+, CD166+ and CD73+. After chondrogenic induction, the cells showed significantly increased expression of cartilage markers Sox9, collagen Ⅱ and aggrecan at protein level and significantly increased Sox9, collagen Ⅱ and aggrecan at mRNA level, and the protein expression and mRNA expression of CD146+ADSCs group were higher than those of ADSCs group. The CD146+ADSCs group showed superior tissue repair ability than the ADSCs group and blank control group in the animal experiment, as judged by gross observation, histological observation and histological scoring. The above results proved that CD146+LMB can successfully isolate the CD146+ADSCs, and after chondrogenic induction, these cells successfully promoted repair of articular cartilage defects, which may be a new direction of tissue engineering.
Collapse
Affiliation(s)
- Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Anti-inflammatory capacity of Apremilast in human chondrocytes is dependent on SOX-9. Inflamm Res 2020; 69:1123-1132. [DOI: 10.1007/s00011-020-01392-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
|
7
|
Razali RA, Lokanathan Y, Chowdhury SR, Yahaya NHM, Saim AB, Ruszymah BHI. Human chondrocyte-conditioned medium promotes chondrogenesis of bone marrow stem cells. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Cell-based therapy for osteoarthritis requires culturing of good quality cells, especially with a chondrogenic lineage, for implantation.
Objective
To investigate the ability of chondrocyte-conditioned medium (CCM) to induced chondrogenesis.
Methods
Bone marrow mesenchymal stem cells (BMSCs) were subjected to chondrogenic induction using CCM and chondrocyte induction medium (CIM). The optimal condition for the collection of CCM was evaluated by quantifying the concentration of secreted proteins. The chondrogenic efficiency of BMSCs induced by CCM (iCCM) was evaluated using immunocytochemical analysis, Safranin-O staining, and gene expression.
Results
Protein quantification revealed that CCM obtained from cells at passage 3 at the 72 h collection point had the greatest amount of protein. Supplementation of CCM results in the aggregation of BMSCs; however, no clumping was visible as in iCIM. The expression of collagen type 2 was detected as early as day 7 for all groups except for non-induced BMSCs; however, the level of expression decreased with culture time. Similarly, all tested groups showed positive staining for Safranin-O as early as day 7. The induction of BMSCs by CCM caused the down-regulation of collagen type 1, along with the up-regulation of the collagen type 2, ACP and SOX9 genes.
Conclusion
The optimum CCM to induce BMSC into chondrocytes was collected at passage 3 after 72 h and was used in a 50:50 ratio of CCM to fresh medium.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital , Selangor , Malaysia
| | - Bt Hj Idrus Ruszymah
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
8
|
Xu Y, Wang YQ, Wang AT, Yu CY, Luo Y, Liu RM, Zhao YJ, Xiao JH. Effect of CD44 on differentiation of human amniotic mesenchymal stem cells into chondrocytes via Smad and ERK signaling pathways. Mol Med Rep 2020; 21:2357-2366. [PMID: 32236637 PMCID: PMC7185282 DOI: 10.3892/mmr.2020.11044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
CD44 antigen (CD44) is a transmembrane protein found in cell adhesion molecules and is involved in the regulation of various physiological processes in cells. It was hypothesized that CD44 directly affected the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). In the present study, the expression of chondrocyte‑associated factors was detected in the absence and presence of the antibody blocker anti‑CD44 antibody during the chondrogenic differentiation of hAMSCs. Following inhibition of CD44 expression, the transcriptional levels of chondrocyte‑associated genes SRY‑box transcription factor 9, aggrecan and collagen type II α 1 chain, as well as the production of chondrocyte markers type II collagen and aggrecan were significantly decreased in hAMSCs. Further investigation indicated that there was no significant change in total ERK1/2 expression following inhibition of CD44 expression; however, phosphorylated (p)‑ERK1/2 expression was decreased. The expression of p‑Smad2/3 was also upregulated following CD44 inhibition. These data indicated that CD44 may affect the differentiation of hAMSCs into chondrocytes by regulating the Smad2/3 and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi-Qing Wang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ai-Tong Wang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Chang-Yin Yu
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
9
|
D'Adamo S, Cetrullo S, Guidotti S, Silvestri Y, Minguzzi M, Santi S, Cattini L, Filardo G, Flamigni F, Borzì RM. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med 2020; 153:159-172. [PMID: 32305648 DOI: 10.1016/j.freeradbiomed.2020.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) contributes to Osteoarthritis (OA) pathogenesis and its effects are worsened by the impairment of homeostatic mechanisms such as autophagy in OA chondrocytes. Rescue of an efficient autophagic flux could therefore reduce the bulk of damaged molecules, and at the same time improve cell function and viability. As a promising dietary or intra-articular supplement to rescue autophagy in OA chondrocytes, we tested spermidine (SPD), known to induce autophagy and to reduce OS in several other cellular models. Chondrocytes were obtained from OA cartilage and seeded at high-density to keep their differentiated phenotype. The damaging effects of OS and the chondroprotective activity of SPD were assessed by evaluating the extent of cell death, oxidative DNA damage and caspase 3 activation. The autophagy promoting activity of SPD was evaluated by assessing pivotal autophagic effectors, i.e. Beclin-1 (BECN-1), microtubule-associated protein 1 light chain 3 II (LC3-II) and p62. BECN-1 protein expression was significantly increased by SPD and reduced by H2O2 treatment. SPD also rescued the impaired autophagic flux consequent to H2O2 exposure by increasing mRNA and protein expression of LC3-II and p62. SPD induction of mitophagy was revealed by immunofluorescent co-localization of LC3-II and TOM20. The key protective role of autophagy was confirmed by the loss of SPD chondroprotection upon autophagy-related gene 5 (ATG5) silencing. Significant SPD tuning of the H2O2-dependent induction of degradative (MMP-13), inflammatory (iNOS, COX-2) and hypertrophy markers (RUNX2 and VEGF) was revealed by Real Time PCR and pointed at the SPD ability of reducing NF-κB activation through autophagy induction. Conversely, blockage of autophagy led to parallel increases of oxidative markers and p65 nuclear translocation. SPD also increased the proliferation of slow-proliferating primary cultures. Taken together, our findings highlight the chondroprotective, anti-oxidant and anti-inflammatory activity of SPD and suggest that the protection afforded by SPD against OS is exerted through the rescue of the autophagic flux.
Collapse
Affiliation(s)
- Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Serena Guidotti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Ylenia Silvestri
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
10
|
Wu J, Yang Y, He Y, Li Q, Wang X, Sun C, Wang L, An Y, Luo F. EFTUD2 gene deficiency disrupts osteoblast maturation and inhibits chondrocyte differentiation via activation of the p53 signaling pathway. Hum Genomics 2019; 13:63. [PMID: 31806011 PMCID: PMC6894506 DOI: 10.1186/s40246-019-0238-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/13/2019] [Indexed: 11/15/2022] Open
Abstract
Background Mandibulofacial dysostosis with microcephaly (MFDM) is characteristic of multiple skeletal anomalies comprising craniofacial anomalies/dysplasia, microcephaly, dysplastic ears, choanal atresia, and short stature. Heterozygous loss of function variants of EFTUD2 was previously reported in MFDM; however, the mechanism underlying EFTUD2-associated skeletal dysplasia remains unclear. Results We identified a novel frameshift variant of EFTUD2 (c.1030_1031delTG, p.Trp344fs*2) in an MFDM Chinese patient with craniofacial dysmorphism including ear canal structures and microcephaly, mild intellectual disability, and developmental delay. We generated a zebrafish model of eftud2 deficiency, and a consistent phenotype consisting of mandibular bone dysplasia and otolith loss was observed. We also showed that EFTUD2 deficiency significantly inhibited proliferation, differentiation, and maturation in human calvarial osteoblast (HCO) and human articular chondrocyte (HC-a) cells. RNA-Seq analysis uncovered activated TP53 signaling with increased phosphorylation of the TP53 protein and upregulation of five TP53 downstream target genes (FAS, STEAP3, CASP3, P21, and SESN1) both in HCO and in eftud2−/− zebrafish. Additionally, inhibition of p53 by morpholino significantly reduced the mortality of eftud2−/− larvae. Conclusions Our results confirm a novel de novo variant of the EFTUD2 gene and suggest that EFTUD2 may participate in the maturation and differentiation of osteoblasts and chondrocytes, possibly via activation of the TP53 signaling pathway. Thus, mutations in this gene may lead to skeletal anomalies in vertebrates.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - You He
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong District, Shanghai, 201204, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lishun Wang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Yu An
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
11
|
Jiang C, Guo Q, Jin Y, Xu JJ, Sun ZM, Zhu DC, Lin JH, Tian NF, Sun LJ, Zhang XL, Wu YS. Inhibition of EZH2 ameliorates cartilage endplate degeneration and attenuates the progression of intervertebral disc degeneration via demethylation of Sox-9. EBioMedicine 2019; 48:619-629. [PMID: 31631036 PMCID: PMC6838408 DOI: 10.1016/j.ebiom.2019.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Cartilaginous endplate (CEP) degeneration is considered as one of the major causes of intervertebral disc degeneration (IVDD) which causes low back pain. Recent studies have proved that epigenetic alteration is involved in a variety of diseases. This work explored the role of histone methyltransferase enhancer of zeste homologue 2 (EZH2) in CEP degeneration, as well as its underlying epigenetic mechanisms, and confirmed the effect of EZH2 knockdown on delaying IVDD development. Methods Western blotting, immunofluorescence staining, and ChIP assay were applied to demonstrate the molecular mechanism of EZH2 in CEP tissue. The therapeutic potential of EZH2 was investigated using puncture-induced rat models. Findings The EZH2 expression was upregulated in human and rat CEP tissue. It was also found that the overexpression of EZH2 suppressed the expression of Collagen II, aggrecan and Sox-9, and promoted the expression of ADTAMTS5 and MMP13 in rat endplate chondrocytes (EPCs), which could be reversed by EZH2 silencing. The correlation between EZH2 and Sox-9 was further explored, while overexpression of Sox-9 could reverse the effect of EZH2 in rat EPCs. Moreover, inhibition of EZH2 upregulated the level of Sox-9 by demethylating H3K27me3 at Sox-9 promoter sites, revealing the regulatory mechanism of EZH2 on Sox-9. Meanwhile, puncture-induced rat models showed that EZH2 knockdown exerted a protective effect on CEP and disc degeneration. Interpretation This study reveals that EZH2 inhibition is a promising strategy for mitigating the symptoms and progression of IVDD. Funding : This study was funded by the Natural Science Foundation of Zhejiang Province (Y16H060034). Authors declare that the funders had no involvement in the study design, data analysis and interpretation of the results.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiang Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jia-Jing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Ze-Ming Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Ding-Chao Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jia-Hao Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Nai-Feng Tian
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China
| | - Liao-Jun Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China.
| | - Xiao-Lei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China.
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, China.
| |
Collapse
|
12
|
Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN. Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:107-117. [DOI: 10.1016/j.bbagrm.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
13
|
Castro Martins M, Peffers MJ, Lee K, Rubio-Martinez LM. Effects of stanozolol on normal and IL-1β-stimulated equine chondrocytes in vitro. BMC Vet Res 2018; 14:103. [PMID: 29554899 PMCID: PMC5859414 DOI: 10.1186/s12917-018-1426-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
Background Intra-articular administration of stanozolol has shown promising results by improving the clinical management of lameness associated with naturally-occurring osteoarthritis (OA) in horses, and by decreasing osteophyte formation and subchondral bone reaction in sheep following surgically induced OA. However, there is limited evidence on the anti-inflammatory and modulatory properties of stanozolol on articular tissues. The objective of the current study was to evaluate the effects of stanozolol on chondrocyte viability and gene expression in normal equine chondrocytes and an inflammatory in vitro system of OA (interleukin-1β (IL-1β) treated chondrocytes). Results Chondrocytes from normal metacarpophalangeal joints of skeletally mature horses were exposed to four treatment groups: (1) media only (2) media+IL-1β (3) media+IL-1β + stanozolol (4) media+stanozolol. Following exposure, chondrocyte viability and the expression of catabolic, anabolic and structural genes were determined. General linear models with Dunnet’s comparisons with Bonferroni’s adjustment were performed. Cell viability was similar in all groups. Stanozolol treatment reduced gene expression of MMP-13, MMP-1, IL-6 and COX-2 in both normal and IL-1β treated chondrocytes. Stanozolol treatment reduced ADAMTS4 gene expression in normal chondrocytes. Stanozolol reduced the expression of COL2A1. Conclusions The current study demonstrates stanozolol has chondroprotective effects through downregulation of genes for pro-inflammatory/catabolic cytokines and enzymes associated with OA. However, there is no evidence of increased cartilage stimulation through upregulation of the anabolic and structural genes tested.
Collapse
Affiliation(s)
- Mariana Castro Martins
- Department of Equine Clinical Studies, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Katie Lee
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Luis M Rubio-Martinez
- Department of Equine Clinical Studies, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| |
Collapse
|
14
|
Liu R, Chen Y, Liu L, Gong Y, Wang M, Li S, Chen C, Yu B. Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 2018; 6:3085-3095. [PMID: 32254343 DOI: 10.1039/c8tb00324f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor (IGF-1) has encouraged researchers to investigate its various potential therapeutic uses such as in the treatment of osteoporosis and repair of articular cartilage.
Collapse
Affiliation(s)
- Rui Liu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Yan Chen
- Department of Ultrasonic Diagnosis
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Yong Gong
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Mingbo Wang
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Songjian Li
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Bo Yu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| |
Collapse
|
15
|
Mazor M, Cesaro A, Ali M, Best TM, Lespessaille E, Toumi H. Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression. Int J Mol Sci 2017; 18:ijms18081759. [PMID: 28805694 PMCID: PMC5578148 DOI: 10.3390/ijms18081759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/analysis
- Antigens, CD/genetics
- Biomarkers/analysis
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Adhesion Molecules, Neuronal/analysis
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Differentiation
- Endoglin/analysis
- Endoglin/genetics
- Fetal Proteins/analysis
- Fetal Proteins/genetics
- Humans
- Knee Joint/metabolism
- Knee Joint/pathology
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Middle Aged
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- SOX9 Transcription Factor/analysis
- SOX9 Transcription Factor/genetics
- Transcriptome
Collapse
Affiliation(s)
- Marija Mazor
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
| | - Annabelle Cesaro
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
| | - Mazen Ali
- Service chirurgie orthopédique et traumatologique Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| | - Thomas M Best
- UHealth Sports Medicine Institute, Department of Orthopedics, Division of Sports Medicine, U of Miami, Coral Gables, FL 33146, USA.
| | - Eric Lespessaille
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
- EA4708/I3MTO, Service de Rhumatologie, Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| | - Hechmi Toumi
- Department of Sciences, University of Orleans, I3MTO, EA 4708, Orleans F-45032, France.
- EA4708/I3MTO, Service de Rhumatologie, Centre Hospitalier Régional d'Orléans, La Source 45000, France.
| |
Collapse
|
16
|
Olivos-Meza A, Velasquillo Martínez C, Olivos Díaz B, Landa-Solís C, Brittberg M, Pichardo Bahena R, Ortega Sanchez C, Martínez V, Alvarez Lara E, Ibarra-Ponce de León JC. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study. Cell Tissue Bank 2017; 18:369-381. [PMID: 28584920 DOI: 10.1007/s10561-017-9635-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
To compare the quality of the repair tissue in three-dimensional co-culture of human chondrocytes implanted in an in vivo model. Six cadaveric and five live human donors were included. Osteochondral biopsies from the donor knees were harvested for chondrocyte isolation. Fifty percent of cadaveric chondrocytes were expanded until passage-2 (P2) while the remaining cells were cryopreserved in passage-0 (P0). Fresh primary chondrocytes (P0f) obtained from live human donors were co-cultured. Three-dimensional constructs were prepared with a monolayer of passage-2 chondrocytes, collagen membrane (Geistlich Bio-Gide®), and pellet of non-co-cultured (P2) or co-cultured chondrocytes (P2 + P0c, P2 + P0f). Constructs were implanted in the subcutaneous tissue of athymic mice and left for 3 months growth. Safranin-O and Alcian blue staining were used to glycosaminoglycan content assessment. Aggrecan and type-II collagen were evaluated by immunohistochemistry. New-formed tissue quality was evaluated with an adaptation of the modified O'Driscoll score. Histological quality of non-co-cultured group was 4.37 (SD ±4.71), while co-cultured groups had a mean score of 8.71 (SD ±3.98) for the fresh primary chondrocytes and 9.57 (SD ±1.27) in the cryopreserved chondrocytes. In immunohistochemistry, Co-culture groups were strongly stained for type-II and aggrecan not seen in the non-co-cultured group. It is possible to isolate viable chondrocytes from cadaveric human donors in samples processed in the first 48-h of dead. There is non-significant difference between the numbers of chondrocytes isolated from live or cadaveric donors. Cryopreservation of cadaveric primary chondrocytes does not alter the capability to form cartilage like tissue. Co-culture of primary and passaged chondrocytes enhances the histological quality of new-formed tissue compared to non-co-cultured cells.
Collapse
Affiliation(s)
- Anell Olivos-Meza
- Orthopedic Sports Medicine and Arthroscopy Service, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | - Brenda Olivos Díaz
- Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Carlos Landa-Solís
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Mats Brittberg
- Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | | | - Carmina Ortega Sanchez
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Valentin Martínez
- Tissue Engineering, Cell Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | | |
Collapse
|
17
|
MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9792512. [PMID: 28612031 PMCID: PMC5458373 DOI: 10.1155/2017/9792512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022]
Abstract
Objective Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA) cartilage. MicroRNA- (miR-) 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype. Methods After preliminary microarrays screening, miR-29b levels were measured by RT- quantitative PCR in in vitro models of chondrocyte phenotype changes (IL-1β challenge or serial subculturing) and in chondrocytes from OA and non-OA patients. Potential miR-29b targets identified in silico in 3′-UTRs of collagens mRNAs were tested with luciferase reporter assays. The impact of premiR-29b overexpression in ATDC5 cells was studied on collagen mRNA levels and synthesis (Sirius red staining) during chondrogenesis. Results MiR-29b level increased significantly in IL-1β-stimulated and weakly in subcultured chondrocytes. A 5.8-fold increase was observed in chondrocytes from OA versus non-OA patients. Reporter assays showed that miR-29b targeted COL2A1 and COL1A2 3′-UTRs although with a variable recovery upon mutation. In ATDC5 cells overexpressing premiR-29b, collagen production was reduced while mRNA levels increased. Conclusions By acting probably as a posttranscriptional regulator with a different efficacy on COL2A1 and COL1A2 expression, miR-29b can contribute to the collagens imbalance associated with an abnormal chondrocyte phenotype.
Collapse
|
18
|
Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep 2016; 6:37268. [PMID: 27853300 PMCID: PMC5112533 DOI: 10.1038/srep37268] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/27/2016] [Indexed: 01/14/2023] Open
Abstract
Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM.
Collapse
|
19
|
Hirbe AC, Dahiya S, Miller CA, Li T, Fulton RS, Zhang X, McDonald S, DeSchryver K, Duncavage EJ, Walrath J, Reilly KM, Abel HJ, Pekmezci M, Perry A, Ley TJ, Gutmann DH. Whole Exome Sequencing Reveals the Order of Genetic Changes during Malignant Transformation and Metastasis in a Single Patient with NF1-plexiform Neurofibroma. Clin Cancer Res 2015; 21:4201-11. [PMID: 25925892 DOI: 10.1158/1078-0432.ccr-14-3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) occur at increased frequency in individuals with neurofibromatosis type 1 (NF1), where they likely arise from benign plexiform neurofibroma precursors. While previous studies have used a variety of discovery approaches to discover genes associated with MPNST pathogenesis, it is currently unclear what molecular events are associated with the evolution of MPNST from plexiform neurofibroma. EXPERIMENTAL DESIGN Whole-exome sequencing was performed on biopsy materials representing plexiform neurofibroma (n = 3), MPNST, and metastasis from a single individual with NF1 over a 14-year period. Additional validation cases were used to assess candidate genes involved in malignant progression, while a murine MPNST model was used for functional analysis. RESULTS There was an increasing proportion of cells with a somatic NF1 gene mutation as the tumors progressed from benign to malignant, suggesting a clonal process in MPNST development. Copy number variations, including loss of one copy of the TP53 gene, were identified in the primary tumor and the metastatic lesion, but not in benign precursor lesions. A limited number of genes with nonsynonymous somatic mutations (βIII-spectrin and ZNF208) were discovered, several of which were validated in additional primary and metastatic MPNST samples. Finally, increased βIII-spectrin expression was observed in the majority of MPNSTs, and shRNA-mediated knockdown reduced murine MPNST growth in vivo. CONCLUSIONS Collectively, the ability to track the molecular evolution of MPNST in a single individual with NF1 offers new insights into the sequence of genetic events important for disease pathogenesis and progression for future mechanistic study.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Miller
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Tiandao Li
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Robert S Fulton
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Xiaochun Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine DeSchryver
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica Walrath
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | - Karlyne M Reilly
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | | | - Melike Pekmezci
- Neurological Surgery, UCSF School of Medicine, San Francisco, California
| | - Arie Perry
- Neurological Surgery, UCSF School of Medicine, San Francisco, California. Department of Neurology, Washington University, St. Louis, Missouri
| | - Timothy J Ley
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, Missouri.
| |
Collapse
|
20
|
Mullen LM, Best SM, Ghose S, Wardale J, Rushton N, Cameron RE. Bioactive IGF-1 release from collagen-GAG scaffold to enhance cartilage repair in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5325. [PMID: 25577208 PMCID: PMC4289525 DOI: 10.1007/s10856-014-5325-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/20/2014] [Indexed: 05/28/2023]
Abstract
Tissue engineering is a promising technique for cartilage repair. Toward this goal, a porous collagen-glycosaminoglycan (CG) scaffold was loaded with different concentrations of insulin-like growth factor-1 (IGF-1) and evaluated as a growth factor delivery device. The biological response was assessed by monitoring the amount of type II collagen and proteoglycan synthesised by the chondrocytes seeded within the scaffolds. IGF-1 release was dependent on the IGF-1 loading concentration used to adsorb IGF-1 onto the CG scaffolds and the amount of IGF-1 released into the media was highest at day 4. This initial IGF-1 release could be modelled using linear regression analysis. Osteoarthritic (OA) chondrocytes seeded within scaffolds containing adsorbed IGF-1 deposited decorin and type II collagen in a dose dependent manner and the highest type II collagen deposition was achieved via loading the scaffold with 50 μg/ml IGF-1. Cells seeded within the IGF-1 loaded scaffolds also deposited more extracellular matrix than the no growth factor control group thus the IGF-1 released from the scaffold remained bioactive and exerted an anabolic effect on OA chondrocytes. The effectiveness of adsorbing IGF-1 onto the scaffold may be due to protection of the molecule from proteolytic digestion allowing a more sustained release of IGF-1 over time compared to adding multiple doses of exogenous growth factor. Incorporating IGF-1 into the CG scaffold provided an initial therapeutic burst release of IGF-1 which is beneficial in initiating ECM deposition and repair in this in vitro model and shows potential for developing this delivery device in vivo.
Collapse
Affiliation(s)
- Leanne M Mullen
- Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK,
| | | | | | | | | | | |
Collapse
|
21
|
Bradley EW, Carpio LR, Olson EN, Westendorf JJ. Histone deacetylase 7 (Hdac7) suppresses chondrocyte proliferation and β-catenin activity during endochondral ossification. J Biol Chem 2014; 290:118-26. [PMID: 25389289 DOI: 10.1074/jbc.m114.596247] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (Hdacs) regulate endochondral ossification by suppressing gene transcription and modulating cellular responses to growth factors and cytokines. We previously showed that Hdac7 suppresses Runx2 activity and osteoblast differentiation. In this study, we examined the role of Hdac7 in postnatal chondrocytes. Hdac7 was highly expressed in proliferating cells within the growth plate. Postnatal tissue-specific ablation of Hdac7 with a tamoxifen-inducible collagen type 2a1-driven Cre recombinase increased proliferation and β-catenin levels in growth plate chondrocytes and expanded the proliferative zone. Similar results were obtained in primary chondrocyte cultures where Hdac7 was deleted with adenoviral-Cre. Hdac7 bound β-catenin in proliferating chondrocytes, but stimulation of chondrocyte maturation promoted the translocation of Hdac7 to the cytoplasm where it was degraded by the proteasome. As a result, β-catenin levels and transcription activity increased in the nucleus. These data demonstrate that Hdac7 suppresses proliferation and β-catenin activity in chondrocytes. Reducing Hdac7 levels in early chondrocytes may promote the expansion and regeneration of cartilage tissues.
Collapse
Affiliation(s)
| | | | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jennifer J Westendorf
- From the Department of Orthopedic Surgery, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
22
|
Stenberg J, de Windt TS, Synnergren J, Hynsjö L, van der Lee J, Saris DBF, Brittberg M, Peterson L, Lindahl A. Clinical Outcome 3 Years After Autologous Chondrocyte Implantation Does Not Correlate With the Expression of a Predefined Gene Marker Set in Chondrocytes Prior to Implantation but Is Associated With Critical Signaling Pathways. Orthop J Sports Med 2014; 2:2325967114550781. [PMID: 26535366 PMCID: PMC4555627 DOI: 10.1177/2325967114550781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. Purpose: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after autologous chondrocyte implantation. Study Design: Controlled laboratory study and case-control study; Level of evidence, 3. Methods: Five patients with clinical improvement after autologous chondrocyte implantation and 5 patients with graft failures 3 years after implantation were included. Surplus chondrocytes from the transplantation were frozen for each patient. Each chondrocyte sample was subsequently thawed at the same time point and cultured for 1 cell doubling, prior to RNA purification and global microarray analysis. The expression profiles of a set of predefined marker genes (ie, collagen type II α1 [COL2A1], bone morphogenic protein 2 [BMP2], fibroblast growth factor receptor 3 [FGFR3], aggrecan [ACAN], CD44, and activin receptor–like kinase receptor 1 [ACVRL1]) were also evaluated. Results: No significant difference in expression of the predefined marker set was observed between the success and failure groups. Thirty-nine genes were found to be induced, and 38 genes were found to be repressed between the 2 groups prior to autologous chondrocyte implantation, which have implications for cell-regulating pathways (eg, apoptosis, interleukin signaling, and β-catenin regulation). Conclusion: No expressional differences that predict clinical outcome could be found in the present study, which may have implications for quality control assessments of autologous chondrocyte implantation. The subtle difference in gene expression regulation found between the 2 groups may strengthen the basis for further research, aiming at reliable biomarkers and quality control for tissue engineering in cartilage repair. Clinical Relevance: The present study shows the possible limitations of using gene expression before transplantation to predict the chondrogenic and thus clinical potency of the cells. This result is especially important as the chondrogenic potential of the chondrocytes is currently part of quality control measures according to European and American legislations regarding advanced therapies.
Collapse
Affiliation(s)
- Johan Stenberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jane Synnergren
- School of Life Sciences, System Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Lars Hynsjö
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Josefine van der Lee
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands. ; MIRA Institute for Biotechnology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Mats Brittberg
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Peterson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm Res 2014; 38:742-51. [PMID: 25142942 DOI: 10.1007/s12272-014-0465-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
Severe acute pancreatitis (SAP), a common necroinflammatory disease initiated by the premature activation of digestive enzymes within the pancreatic acinar cells, is associated with significant morbidity and mortality. In this study, we investigated whether human bone marrow-derived clonal mesenchymal stem cells (hcMSCs), isolated from human bone marrow aspirate according to our newly established isolation protocol, have potential therapeutic effects in SAP. SAP was induced by three intraperitoneal (i.p.) injections of cerulein (100 μg/kg) and sequential LPS (10 mg/kg) in Sprague-Dawley (SD) rats. hcMSCs (1 × 10(6)/head) were infused on 24 h after LPS injection via the tail vein. The rats were sacrificed 3 days after infusion of hcMSCs. We observed that infused hcMSCs reduced the levels of serum amylase and lipase. Infused hcMSCs ameliorated acinar cell necrosis, pancreatic edema, and inflammatory infiltration. Also, infused hcMSCs decreased the level of malondialdehyde, and increased the levels of glutathione peroxidase and superoxide dismutase. The number of TUNEL positive acinar cells was reduced after hcMSCs infusion. In addition, hcMSCs reduced the expression levels of pro-inflammation mediators and cytokines, and increased the expression of SOX9 in SAP. Taken together, hcMSCs could effectively relieve injury of pancreatitis as a promising therapeutics for SAP.
Collapse
|
24
|
Hasegawa A, Nakahara H, Kinoshita M, Asahara H, Koziol J, Lotz MK. Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Res Ther 2013; 15:R29. [PMID: 23406989 PMCID: PMC3672799 DOI: 10.1186/ar4165] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/28/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Anterior cruciate ligament (ACL) degeneration is observed in most osteoarthritis (OA)-affected knee joints. However, the specific spatial and temporal relations of these changes and their association with extracellular matrix (ECM) degeneration are not well understood. The objective of this study was to characterize the patterns and relations of aging-related and OA-associated changes in ACL cells and the ECM. METHODS Human knee joints from 80 donors (age 23 through 94) were obtained at autopsy. ACL degeneration was assessed histologically by using a quantitative scoring system. Tissue sections were analyzed for cell density, cell organization, ECM components, ECM-degrading enzymes and markers of differentiation, proliferation, and stem cells. RESULTS Total cell number in normal ACL decreased with aging but increased in degenerated ACL, because of the formation of perivascular cell aggregates and islands of chondrocyte-like cells. Matrix metalloproteinase (MMP)-1, -3, and -13 expression was reduced in aging ACL but increased in degenerated ACL, mainly in the chondrocyte-like cells. Collagen I was expressed throughout normal and degenerated ACL. Collagen II and X were detected only in the areas with chondroid metaplasia, which also expressed collagen III. Sox9, Runt-related transcription factor 2 (Runx2), and scleraxis expression was increased in the chondrocyte-like cells in degenerated ACL. Alpha-smooth muscle actin (α-SMA), a marker of myofibroblasts and the progenitor cell marker STRO-1, decreased with aging in normal ACL. In degenerated ACL, the new cell aggregates were positive for α-SMA and STRO-1. CONCLUSIONS ACL aging is characterized by reduced cell density and activation. In contrast, ACL degeneration is associated with cell recruitment or proliferation, including progenitor cells or myofibroblasts. Abnormally differentiated chondrocyte-like cell aggregates in degenerated ACL produce abnormal ECM and may predispose to mechanical failure.
Collapse
|
25
|
Rosenzweig DH, Matmati M, Khayat G, Chaudhry S, Hinz B, Quinn TM. Culture of primary bovine chondrocytes on a continuously expanding surface inhibits dedifferentiation. Tissue Eng Part A 2012; 18:2466-76. [PMID: 22738340 DOI: 10.1089/ten.tea.2012.0215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Expansion of autologous chondrocytes in vitro is used to generate adequate populations for cell-based therapies. However, standard (SD) culture methods cause loss of chondrocyte phenotype and dedifferentiation to fibroblast-like cells. Here, we use a novel surface expansion culture system in an effort to inhibit chondrocyte dedifferentiation. A highly elastic silicone rubber culture surface was continuously stretched over a 13-day period to 600% of its initial surface area. This maintained cells at a high density while limiting contact inhibition and reducing the need for passaging. Gene expression analysis, biochemical assays, and immunofluorescence microscopy of follow-on pellet cultures were used to characterize the results of continuous expansion (CE) culture versus SD cultures on rigid polystyrene. CE culture yielded cells with a more chondrocyte-like morphology and higher RNA-level expression of the chondrogenic markers collagen type II, aggrecan, and cartilage oligomeric matrix protein. Furthermore, the expression of collagen type I RNA and α-smooth muscle actin protein were significantly reduced, indicating suppression of fibroblastic features. Pellet cultures from CE chondrocytes contained more sulphated glycosaminoglycan and collagen type II than pellets from SD culture. Additional control cultures on static (unexpanded) silicone (SS culture) indicated that benefits of CE culture were partially due to features of the culture surface itself and partially due to the reduced passaging which that surface enabled through CE. Chondrocytes grown in CE culture may, therefore, be a superior source for cell-based therapies.
Collapse
Affiliation(s)
- Derek H Rosenzweig
- Soft Tissue Biophysics Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Modulation of bovine chondrocyte metabolism by free periosteal grafts in vitro. Int J Artif Organs 2012; 35:108-18. [PMID: 22395917 DOI: 10.5301/ijao.5000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE Autologous chondrocyte transplantation (ACT) is an established method in cartilage repair. Although long-term results show durable repair of isolated cartilage defects, some problems still remain. Since hypertrophy of the transplanted periosteum is a common problem, alternatives for periosteum are in demand. Periosteal grafts have been reported to stimulate neochondrogenesis via paracrine effects. The objective of this study was to evaluate the modulation of chondrocyte metabolism by periosteal grafts in vitro. METHODS Periosteal explants and articular chondrocytes obtained from slaughtered adult cattle were co-cultured in a newly established perfusion system. The experimental groups were: 1. monocultured chondrocytes; 2. chondrocytes cultured with synovial supernatants; 3. chondrocytes cultured with periosteal supernatants; 4. chondrocytes co-cultured with periosteal explants. RESULTS Chondrocyte proliferation, evaluated by measuring total DNA content, was prolongated by periosteal and synovial explants. Immunocytochemical staining of collagen type II was stronger in monoculture than in co-culture. Protein biosynthetic activity estimated by [³H]-proline incorporation, as well as extracellular matrix deposition for collagen type II, were reduced by periosteal and synovial explants. Additionally, co-culturing led to a decrease in aggrecan synthesis and release. The inhibiting effects were significantly stronger when cellular chondrocyte-periosteal cross-talk was made possible via paracrine effects. CONCLUSIONS The results of our study suggest a catabolic effect of periosteal explants on isolated chondrocytes in vitro. Further investigations are necessary whether periosteum in ACT is dispensable.
Collapse
|
27
|
Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 2012; 90:649-66. [DOI: 10.1007/s00109-011-0842-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
|
28
|
Mueller MB, Tuan RS. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM R 2011; 3:S3-11. [PMID: 21703577 DOI: 10.1016/j.pmrj.2011.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Osteoarthritis is the most common degenerative musculoskeletal disease. In healthy cartilage, a low turnover of extracellular matrix molecules occurs. Proper balance of anabolic and catabolic activities is thus crucial for the maintenance of cartilage tissue integrity and for the repair of molecular damages sustained during daily usage. In persons with degenerative diseases such as osteoarthritis, this balance of anabolic and catabolic activities is compromised, and the extent of tissue degradation predominates over the capacity of tissue repair. This mismatch eventually results in cartilage loss in persons with osteoarthritis. Tissue homeostasis is controlled by coordinated actions and crosstalk among a number of proanabolic and antianabolic and procatabolic and anticatabolic factors. In osteoarthritis, an elevation of antianabolic and catabolic factors occurs. Interestingly, anabolic activity is also increased, but this response fails to repair the tissue because of both quantitative and qualitative insufficiency. This review presents an overview of the anabolic and catabolic activities involved in cartilage degeneration and the interplay among different signaling and metabolic factors. Understanding the basic molecular mechanisms responsible for tissue degeneration is critical to identifying and developing means to efficiently block or reverse the pathobiological symptoms of osteoarthritis.
Collapse
Affiliation(s)
- Michael B Mueller
- Department of Trauma Surgery, University of Regensburg Medical Center, Regensburg, Germany
| | | |
Collapse
|
29
|
Yin J, Xia Y. Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier Transform Infrared Microimaging. BIOMEDICAL OPTICS EXPRESS 2011; 2:937-945. [PMID: 21483615 PMCID: PMC3072132 DOI: 10.1364/boe.2.000937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Fourier transform infrared imaging (FTIRI) and the attenuated total reflection Fourier transform infrared microimaging (ATR-FTIRM) were used to study the chemical and structural distributions of cellular components surrounding individual chondrocytes in canine humeral cartilage, at 6.25µm pixel resolution in FTIRI and 1.56µm pixel resolution in ATR-FTIRM. The chemical and structural distributions of the cellular components in chondrocytes and tissue can be successfully imaged in high resolution ATR-FTIRM. One can also study the territorial matrix of fine collagen fibrils surrounding the individual chondrocytes by the polarization experiments using the absorption ratio of amide I to amide II bands.
Collapse
|
30
|
Hojo H, Yano F, Ohba S, Igawa K, Nakajima K, Komiyama Y, Kan A, Ikeda T, Yonezawa T, Woo JT, Takato T, Nakamura K, Kawaguchi H, Chung UI. Identification of oxytetracycline as a chondrogenic compound using a cell-based screening system. J Bone Miner Metab 2010; 28:627-33. [PMID: 20376510 DOI: 10.1007/s00774-010-0179-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 03/03/2010] [Indexed: 12/14/2022]
Abstract
To effectively treat degenerative joint diseases including osteoarthritis (OA), small chemical compounds need to be developed that can potently induce chondrogenic differentiation without promoting terminal differentiation. For this purpose, we screened natural and synthetic compound libraries using a Col2GFP-ATDC5 system and identified oxytetracycline (Oxy) as a chondrogenic compound. Oxy induced cartilaginous matrix synthesis and mRNA expressions of chondrocyte markers in ATDC5 cells. In addition, Oxy suppressed mineralization and mRNA expressions of terminal chondrocyte differentiation markers in ATDC5 cells, primary chondrocytes, and cultured metatarsal bones. Oxy's induction of Col2 mRNA expression was decreased by the addition of Noggin and was increased by the addition of BMP2. Furthermore, Oxy increased mRNA expression of Id1, Bmp2, Bmp4, and Bmp6. These data suggest that Oxy induces chondrogenic differentiation in a BMP-dependent manner and suppresses terminal differentiation. Oxy may be useful for treatment of OA and also for regeneration of cartilage tissue.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kemmis CM, Vahdati A, Weiss HE, Wagner DR. Bone morphogenetic protein 6 drives both osteogenesis and chondrogenesis in murine adipose-derived mesenchymal cells depending on culture conditions. Biochem Biophys Res Commun 2010; 401:20-5. [PMID: 20816936 DOI: 10.1016/j.bbrc.2010.08.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a dual role as a factor in both bone and cartilage development and correspondingly have the therapeutic potential to regenerate both tissues. Given this dual nature, previous in vitro research using BMPs has relied on distinct media formulations and culture conditions to drive undifferentiated cells to the osteogenic or chondrogenic lineage. To isolate the impact of culture conditions and to explore the effect of BMP-6 on murine adipose-derived mesenchymal cells (ASCs), ASCs were seeded in either monolayer or pellets in an identical medium containing BMP-6. Results indicate that BMP-6 differentially promotes osteogenesis and chondrogenesis in ASCs depending on culture conditions. BMP-6 potently induced alkaline phosphatase activity and mineralization in ASCs cultured in monolayer conditions. In contrast, BMP-6 enhanced proteoglycan accumulation in ASCs seeded in chondrogenic pellet culture. A comparison of gene expression suggests that the differentiating effect of BMP-6 is specific to the particular culture condition. This study highlights the importance of the interactions between chemical signaling and microenvironmental cues in directing cell fate.
Collapse
Affiliation(s)
- Carly M Kemmis
- Department of Mechanical Engineering and Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
32
|
Kim HJ, Delaney JD, Kirsch T. The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes. Bone 2010; 47:657-65. [PMID: 20601283 PMCID: PMC2926124 DOI: 10.1016/j.bone.2010.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/03/2010] [Accepted: 06/17/2010] [Indexed: 11/20/2022]
Abstract
Extracellular inorganic phosphate (P(i)) concentrations are the highest in the growth plate just before the onset of mineralization. The study reported here demonstrates that P(i) not only is required for hydroxyapatite mineral formation but also modulates terminal differentiation and apoptosis of growth plate chondrocytes. Extracellular P(i) stimulated terminal differentiation marker gene expression, including the progressive ankylosis gene (ank), alkaline phosphatase (APase), matrix metalloproteinase-13 (MMP-13), osteocalcin, and runx2, mineralization, and apoptosis of growth plate chondrocytes. The stimulatory effect of extracellular P(i) on terminal differentiation and apoptosis events of growth plate chondrocytes was dependent on the concentration, the expression levels of type III Na(+)/P(i) cotransporters, and ultimately P(i) uptake. A high extracellular P(i) concentration was required for the stimulation of apoptosis, whereas lower P(i) concentrations were required for the most effective stimulation of terminal differentiation events, including terminal differentiation marker gene expression and mineralization. Suppression of Pit-1 was sufficient to inhibit the stimulatory effects of extracellular P(i) on terminal differentiation events. On the other hand, increasing the local extracellular P(i) concentration by overexpressing ANK, a protein transporting intracellular PP(i) to the extracellular milieu where it is hydrolyzed to P(i) in the presence of APase, resulted in marked increases of hypertrophic and early terminal differentiation marker mRNA levels, including APase, runx2 and type X collagen, and slight increase of MMP-13 mRNA levels, but decreased osteocalcin mRNA level, a late terminal differentiation markers. In the presence of levamisole, a specific APase inhibitor to prevent hydrolysis of extracellular PP(i) to P(i), ANK overexpression of growth plate chondrocytes resulted in decreased mRNA levels of hypertrophic and terminal differentiation markers but increased MMP-13 mRNA levels. In conclusion, with extracellular PP(i) inhibiting and extracellular P(i) stimulating hypertrophic and terminal differentiation events, a precise regulation of PP(i)/P(i) homeostasis is required for the spatial and temporal control of terminal differentiation events of growth plate chondrocytes.
Collapse
Affiliation(s)
- Hyon Jong Kim
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003, USA.
| | | | | |
Collapse
|
33
|
Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N, Wu C, Agarwal S. Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther 2010; 12:R106. [PMID: 20509944 PMCID: PMC2911896 DOI: 10.1186/ar3039] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/24/2010] [Accepted: 05/28/2010] [Indexed: 12/18/2022] Open
Abstract
Introduction The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation. Methods ACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction. Results Mechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β. Conclusions The findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.
Collapse
Affiliation(s)
- Priyangi M Perera
- Biomechanics and Tissue Engineering Laboratory, The Ohio State University, Postle Hall, 305 W 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bernstein P, Dong M, Graupner S, Graupher S, Corbeil D, Gelinsky M, Günther KP, Fickert S. Sox9 expression of alginate-encapsulated chondrocytes is stimulated by low cell density. J Biomed Mater Res A 2010; 91:910-8. [PMID: 19097150 DOI: 10.1002/jbm.a.32308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent research in tissue engineering for the treatment of cartilage defects have demonstrated that matrix-biomaterial, cell culture conditions, and cytokine-related factors influence the chondrogenic differentiation pattern, especially for the expression of matrix genes. However, little is known about the impact of cell seeding density in a three-dimensional environment on the key chondrogenic transcription factor Sox9. Here we investigated, whether the cell concentration of alginate encapsulated chondrocytes influences the Sox9 expression. Dedifferentiated passage-4 porcine chondrocytes were encapsulated in alginate beads at two different concentrations (4 x 10(6) versus 7 x 10(7) cells/mL) and cultivated for up to 4 weeks under TGF-ss stimulation. The expression of Sox9, Collagen I, II, and X was assessed via quantitative RT-PCR and compared to those observed in the initial monolayer culture. Cellular viability, cell morphology, and the sulphated glycosaminoglycan-production were monitored. Interestingly Sox9 expression was significantly upregulated in the low-cell-density group, whereas no difference between high-cell-density and monolayer culture group could be observed. Furthermore, the cellular survival and the sulphated glycosaminoglycan production were higher in the low-cell-density group. Collagen I expression was downregulated in the low-cell-density group whereas it was upregulated in the high-cell-density one. Surprisingly, only the high-cell-density group showed the expression of Collagen II, although it appeared not significant. Collagen X expression was upregulated in the low-cell-density group. Taken together our data indicate that a low concentration of cell seeding in a three-dimensional environment is beneficial for the overall chondrogenic development. However, this article reveals discrepancies between Sox9 and the chondrogenic pathway in redifferentiating chondrocytes that should be addressed in further work.
Collapse
Affiliation(s)
- Peter Bernstein
- Department of Orthopaedic Surgery, University Hospital Carl Gustav Carus Dresden, Medical Faculty of Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Ho STB, Yang Z, Hui HPJ, Oh KWS, Choo BHA, Lee EH. A serum free approach towards the conservation of chondrogenic phenotype during in vitro cell expansion. Growth Factors 2009; 27:321-33. [PMID: 19626506 DOI: 10.1080/08977190903137595] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Functionally viable chondrocytes in sufficient quantity is crucial for the success of matrix associated autologous chondrocyte implantation. This is difficult with conventional methods as chondrocytes dedifferentiate during 2D expansion with the loss of their chondrogenic phenotype. Moreover, established protocols are dependent on the use of serum which is not without its drawbacks. This study sought to address the issue by evaluating the feasibility of serum free, growth factors supplemented chondrocyte media with extracellular matrix (ECM) coatings. DESIGN Passage 2 human chondrocytes were cultured in serum supplemented media or serum free media with collagen I or fibronectin coatings. Cell attachment and proliferation were assessed in these conditions. The cells were redifferentiated via pellet cultures for 7 and 14 days before being subjected to histological and gene expression analysis. RESULTS The serum-free, growth factor cocktail supplemented with ECM coating improved long-term chondrocyte proliferation with enhanced basal Sox 9 expression. Upon induction, the redifferentiated chondrocytes expressed aggrecan and collagen II especially so for the cells plated on collagen coated surfaces. The chondrocytic phenotype was better conserved under the serum free conditions but the loss of the hyaline cartilage characteristics was not completely halted given the expression of collagen I. These essential cartilage markers were, however, reduced or absented for cells expanded with serum. Moreover, serum cultures displayed a higher tendency of undergoing hypertrophy given the stronger collagen X gene expression. CONCLUSION The advocated technique promoted cell expansion with respect to conventional serum supplemented cultures while reducing the loss of the chondrogenic phenotype. This demonstrates the feasibility and potential of the novel concomitant use of serum free media and ECM coatings in the expansion of chondrocytes for cartilage regenerative applications.
Collapse
Affiliation(s)
- Saey Tuan Barnabas Ho
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medical, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Hao J, Yao Y, Varshney RR, Wang L, Prakash C, Li H, Wang DA. Gene Transfer and Living Release of Transforming Growth Factor-β3 for Cartilage Tissue Engineering Applications. Tissue Eng Part C Methods 2008; 14:273-80. [DOI: 10.1089/ten.tec.2008.0163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jinghua Hao
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Gastroenterology and Hepatology, Shandong Provincial Hospital, Ji'nan City, Shandong, People's Republic of China
| | - Yongchang Yao
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Rohan R. Varshney
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Laicheng Wang
- Central Laboratory, Shandong Provincial Hospital, Ji'nan City, Shandong, People's Republic of China
| | - Celine Prakash
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Hao Li
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Dong-an Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
38
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008; 67 Suppl 3:iii75-82. [PMID: 19022820 PMCID: PMC3939701 DOI: 10.1136/ard.2008.098764] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In osteoarthritis (OA), adult articular chondrocytes undergo phenotypic modulation in response to alterations in the environment owing to mechanical injury and inflammation. These processes not only stimulate the production of enzymes that degrade the cartilage matrix but also inhibit repair. With the use of in vitro and in vivo models, new genes, not known previously to act in cartilage, have been identified and their roles in chondrocyte differentiation during development and in dysregulated chondrocyte function in OA have been examined. These new genes include growth arrest and DNA damage (GADD)45beta and the epithelial-specific ETS (ESE)-1 transcription factor, induced by bone morphogenetic protein (BMP)-2 and inflammatory cytokines, respectively. Both genes are induced by NF-kappaB, suppress COL2A1 and upregulate matrix meatalloproteinase-13 (MMP-13) expression. These genes have also been examined in mouse models of OA, in which discoidin domain receptor 2 is associated with MMP-13-mediated remodelling, in order to understand their roles in physiological cartilage homoeostasis and joint disease.
Collapse
Affiliation(s)
- M B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
39
|
Cartilaginous features in matrix-producing carcinoma of the breast: four cases report with histochemical and immunohistochemical analysis of matrix molecules. Mod Pathol 2008; 21:1282-92. [PMID: 18622387 DOI: 10.1038/modpathol.2008.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix-producing carcinoma of the breast is a well-established entity in the group of metaplastic carcinoma, which is histologically characterized by myxochondroid matrix formation and is extremely rare. We describe here four additional cases of matrix-producing carcinoma of the breast. All cases of matrix-producing carcinoma show nest-like, sheet-like, and cord-like growth of tumor cells with cellular atypia, in addition to scattered cancer cells within myxoid or myxohyalinous stroma. Three of four cases showed an acellular or oligocellular matrix-rich zone in the center of the tumor. Immunohistochemically, cancer cells of all cases were positive for cytokeratins and epithelial membrane antigens and partially positive for sox9 and p63. Aggrecan and type II collagen, which are cartilage-specific matrix molecules, were deposited in the stroma of all cases. Type I and type IV collagens were also deposited on the stroma of all cases. These findings suggest that, although cancer cells of matrix-producing carcinoma of the breast are epithelial, they transdifferentiate to chondrocyte-like cells and produce cartilage-specific matrix molecules, which are useful markers for diagnosing matrix-producing carcinoma.
Collapse
|
40
|
Oldershaw RA, Tew SR, Russell AM, Meade K, Hawkins R, McKay TR, Brennan KR, Hardingham TE. Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 2008; 26:666-74. [PMID: 18192230 DOI: 10.1634/stemcells.2007-0806] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated Notch signaling during chondrogenesis in human bone marrow stromal cells (hMSC) in three-dimensional cell aggregate culture. Expression analysis of Notch pathway genes in 14-day chondrogenic cultures showed that the Notch ligand Jagged-1 (Jag-1) sharply increased in expression, peaking at day 2, and then declined. A Notch target gene, HEY-1, was also expressed, with a temporal profile that closely followed the expression of Jag-1, and this preceded the rise in type II collagen expression that characterized chondrogenesis. We demonstrated that the shut-down in Notch signaling was critical for full chondrogenesis, as adenoviral human Jag-1 transduction of hMSC, which caused continuous elevated expression of Jag-1 and sustained Notch signaling over 14 days, completely blocked chondrogenesis. In these cultures, there was inhibited production of extracellular matrix, and the gene expression of aggrecan and type II collagen were strongly suppressed; this may reflect the retention of a prechondrogenic state. The JAG-1-mediated Notch signaling was also shown to be necessary for chondrogenesis, as N-[N-(3,5-difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester (DAPT) added to cultures on days 0-14 or just days 0-5 inhibited chondrogenesis, but DAPT added from day 5 did not. The results thus showed that Jag-1-mediated Notch signaling in hMSC was necessary to initiate chondrogenesis, but it must be switched off for chondrogenesis to proceed.
Collapse
Affiliation(s)
- Rachel A Oldershaw
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol 2007; 73:1434-45. [PMID: 17291458 DOI: 10.1016/j.bcp.2007.01.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/22/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022]
Abstract
Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) play a key role in the pathogenesis of osteoarthritis (OA). Anti-inflammatory agents capable of suppressing the production and catabolic actions of these cytokines may have therapeutic potential in the treatment of OA and a range of other osteoarticular disorders. The purpose of this study was to examine the effects of curcumin (diferuloylmethane), a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in human articular chondrocytes maintained in vitro. The effects of curcumin were studied in cultures of human articular chondrocytes treated with IL-1beta and TNF-alpha for up to 72h. Expression of collagen type II, integrin beta1, cyclo-oxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) was monitored by western blotting. The effects of curcumin on the expression, phosphorylation and nuclear translocation of protein components of the NF-kappaB system were studied by western blotting and immunofluorescence, respectively. Treatment of chondrocytes with curcumin suppressed IL-1beta-induced NF-kappaB activation via inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation and p65 nuclear translocation. Curcumin inhibited the IL-1beta-induced stimulation of up-stream protein kinase B Akt. These events correlated with down-regulation of NF-kappaB targets including COX-2 and MMP-9. Similar results were obtained in chondrocytes stimulated with TNF-alpha. Curcumin also reversed the IL-1beta-induced down-regulation of collagen type II and beta1-integrin receptor expression. These results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
42
|
Shakibaei M, John T, Seifarth C, Mobasheri A. Resveratrol Inhibits IL-1beta-Induced Stimulation of Caspase-3 and Cleavage of PARP in Human Articular Chondrocytes in Vitro. Ann N Y Acad Sci 2007; 1095:554-63. [PMID: 17404069 DOI: 10.1196/annals.1397.060] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resveratrol is a polyphenolic phytoalexin that is present in various fruits, in the skin of red grapes and peanuts. Recent studies have shown that resveratrol exhibits potent antioxidant properties and is able to exert anti-inflammatory and anti-catabolic properties in several cell types. The pro-inflammatory cytokine interleukin-1beta (IL-1beta) plays a pivotal role in the pathogenesis of osteoarthritis (OA) in humans and animals. In this article we investigated whether resveratrol is able to block the effects of IL-1beta, specifically the activation of caspase-3 and subsequent cleavage of poly (ADP-ribose) polymerase (PARP) in human articular chondrocytes. Cultures of human chondrocytes were prestimulated with 10 ng/mL IL-1beta for 1, 12, and 24 h before being co-treated with IL-1beta and 100 microM resveratrol or 50 microM of the caspase inhibitor Z-DEVD-FMK for 1, 12, and 24 h, respectively in vitro. Resveratrol significantly reduced the IL-1beta-induced inhibition of expression of cartilage-specific collagen type II and signal transduction receptor beta1-integrin in a time-dependent manner. Incubation of chondrocytes with IL-1beta resulted in the activation of caspase-3 and PARP cleavage. These effects were abolished through co-treatment with resveratrol. Furthermore, co-treatment of IL-1beta-stimulated cells with the caspase inhibitor Z-DEVD-FMK blocked activation of caspase-3 and PARP cleavage, suggesting that this process is a caspase-dependent pathway. In summary, our results confirm that resveratrol is an effective inhibitor of chondrocyte apoptosis in vitro. These findings suggest that this dietary polyphenolic compound may have future applications in the nutraceutical-based therapy of human and animal OA.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Musculoskeletal Research Group, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich.
| | | | | | | |
Collapse
|
43
|
Shakibaei M, Seifarth C, John T, Rahmanzadeh M, Mobasheri A. Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between Sox9 and Erk1/2. Biochem Pharmacol 2006; 72:1382-95. [PMID: 17010943 DOI: 10.1016/j.bcp.2006.08.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Expansion of articular chondrocytes in monolayer culture leads to loss of the unique chondrocyte phenotype and the cells' redifferentiation capacity. Dedifferentiation of chondrocytes in monolayer culture is a challenging problem for autologous chondrocyte transplantation (ACT). It is well established that Igf-I exerts positive anabolic effects on chondrocytes in vivo and in vitro. Accordingly, in this study, we examined whether the anabolic insulin-like growth factor-I (Igf-I) is capable of extending the chondrogenic potential of dedifferentiated chondrocytes in vitro. Chondrocyte monolayers were cultured up to 10 passages. At each passage chondrocytes were stimulated with Igf-I (10ng/ml) and introduced to high-density cultures for up to 7 days. Expression of collagen type II, cartilage-specific proteoglycans, activated caspase-3, integrin beta1, extracellular signal-regulated kinase (Erk) and Sox9 was examined by Western blotting, immunoprecipitation and immunomorphological techniques. Monolayer chondrocytes rapidly lost their differentiated phenotype. When introduced to high-density cultures, only chondrocytes from P1-P4 redifferentiated. In contrast, Igf-I treated cells from P1 up to P7 redifferentiated and formed cartilage-like tissue in high-density culture. P8-P10 cells exhibited apoptotic alterations and produced significantly less matrix. Igf-I markedly increased expression of integrin beta1, Erk and Sox9. Immunoprecipitation revealed that phosphorylated Erk1/2 physically interacts with Sox9 in chondrocyte nuclei, suggesting a previously unreported functional association which was markedly enhanced by Igf-I. Treatment of chondrocyte cultures with Igf-I stabilizes chondrogenic potential, stimulates Sox9 and promotes molecular interactions between Erk and Sox9. These effects appear to be regulated by the integrin/MAPK signaling pathways.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-University, Pettenkoferstrasse 11, 80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
44
|
Madhavan S, Anghelina M, Rath-Deschner B, Wypasek E, John A, Deschner J, Piesco N, Agarwal S. Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthritis Cartilage 2006; 14:1023-32. [PMID: 16731008 PMCID: PMC4950917 DOI: 10.1016/j.joca.2006.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/28/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Physical therapies are commonly used for limiting joint inflammation. To gain insight into their mechanisms of actions for optimal usage, we examined persistence of mechanical signals generated by cyclic tensile strain (CTS) in chondrocytes, in vitro. We hypothesized that mechanical signals induce anti-inflammatory and anabolic responses that are sustained over extended periods. METHODS Articular chondrocytes obtained from rats were subjected to CTS for various time intervals followed by a period of rest, in the presence of interleukin-1beta (IL-1beta). The induction for cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP)-9, MMP-13 and aggrecan was analyzed by real-time polymerase chain reaction (PCR), Western blot analysis and immunofluorescence. RESULTS Exposure of chondrocytes to constant CTS (3% CTS at 0.25 Hz) for 4-24 h blocked more than 90% (P<0.05) of the IL-1beta-induced transcriptional activation of proinflammatory genes, like iNOS, COX-2, MMP-9 and MMP-13, and abrogated inhibition of aggrecan synthesis. CTS exposure for 4, 8, 12, 16, or 20 h followed by a rest for 20, 16, 12, 8 or 4h, respectively, revealed that 8h of CTS optimally blocked (P<0.05) IL-1beta-induced proinflammatory gene induction for ensuing 16 h. However, CTS for 8h was not sufficient to inhibit iNOS expression for ensuing 28 or 40 h. CONCLUSIONS Data suggest that constant application of CTS blocks IL-1beta-induced proinflammatory genes at transcriptional level. The signals generated by CTS are sustained after its removal, and their persistence depends upon the length of CTS exposure. Furthermore, the sustained effects of mechanical signals are also reflected in their ability to induce aggrecan synthesis. These findings, once extrapolated to human chondrocytes, may provide insight in obtaining optimal sustained effects of physical therapies in the management of arthritic joints.
Collapse
Affiliation(s)
- S. Madhavan
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - M. Anghelina
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - B. Rath-Deschner
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - E. Wypasek
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - A. John
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - J. Deschner
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
| | - N. Piesco
- Department of Oral Medicine and Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - S. Agarwal
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH 43210, USA
- Address correspondence and reprint requests to: Sudha Agarwal, Ph.D., Biomechanics and Tissue Engineering Laboratory, 4010 Postle Hall, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA. Tel: 1-614-688-5935; Fax: 1-614-247-6945;
| |
Collapse
|
45
|
Saraf A, Mikos AG. Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev 2006; 58:592-603. [PMID: 16766079 PMCID: PMC2702530 DOI: 10.1016/j.addr.2006.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 03/24/2006] [Indexed: 01/01/2023]
Abstract
Tissue engineering is a multifaceted technology developed with a purpose of regenerating complex tissues and organs. Cartilage regeneration continues to challenge engineers and a new wave of efforts focus on developing strategies that provide sustained stimulation to cells by growth factors and other biological molecules to promote their differentiation into chondrocytes. Though significant research is dedicated to developing controlled release systems that deliver growth factors directly, a simpler approach to resolving this dilemma involves converting cells into protein producing factories. This is done through gene delivery. Gene Therapy studies published for articular diseases such as rheumatoid and osteoarthritis provide valuable information regarding different types of cells, gene delivery vectors and genes that can potentially be used to regenerate cartilage. Tissue engineering approaches provide the opportunity to combine two or more strategies used for Gene Therapy thus far and create a cohesive system that addresses both cartilage degeneration and synthesis simultaneously. Adopting gene transfer techniques for tissue engineering is a relatively novel approach, as non-viral gene delivery vectors are continually optimized for therapeutic purposes, and reservations about viral vectors have increasingly dampened their appeal. However, every element involved in gene transfection (i.e., the cell, vector and gene) is a variable which decides the physiological and biomechanical properties of the cartilage produced, and significant work still needs to be done in understanding the contribution of each of these factors to cartilage regeneration.
Collapse
Affiliation(s)
- Anita Saraf
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston TX 77251-1892, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston TX 77251-1892, USA
| |
Collapse
|
46
|
Hidaka C, Cheng C, Alexandre D, Bhargava M, Torzilli PA. Maturational differences in superficial and deep zone articular chondrocytes. Cell Tissue Res 2005; 323:127-35. [PMID: 16133144 DOI: 10.1007/s00441-005-0050-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 06/27/2005] [Indexed: 11/25/2022]
Abstract
To examine whether differences in chondrocytes from skeletally immature versus adult individuals are important in cartilage healing, repair, or tissue engineering, superficial zone chondrocytes (SZC, from within 100 microm of the articular surface) and deep zone chondrocytes (DZC, from 30%-45% of the deepest un-mineralized part of articular cartilage) were harvested from immature (1-4 months) and young adult (18-36 months) steers and compared. Cell size, matrix gene expression and protein levels, integrin levels, and chemotactic ability were measured in cells maintained in micromass culture for up to 7 days. Regardless of age, SZC were smaller, had a lower type II to type I collagen gene expression ratio, and higher gene expression of SZ proteins than their DZC counterparts. Regardless of zone, chondrocytes from immature steers had higher levels of Sox 9 and type II collagen gene expression. Over 7 days in culture, the SZC of immature steers had the highest rate of proliferation. Phenotypically, the SZC of immature and adult steers were more stable than their respective DZC. Cell surface alpha5 and alpha2 integrin subunit levels were higher in the SZC of immature than of adult steers, whereas beta1 integrin subunit levels were similar. Both immature and adult SZC were capable of chemotaxis in response to fetal bovine serum or basic fibroblast growth factor. Our data indicate that articular chondrocytes vary in the different zones of cartilage and with the age of the donor. These differences may be important for cartilage growth, tissue engineering, and/or repair.
Collapse
Affiliation(s)
- Chisa Hidaka
- Laboratory for Soft Tissue Research, Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Sox proteins are transcriptional regulators with a high-mobility-group domain as sequence-specific DNA-binding domain. For function, they generally require other transcription factors as partner proteins. Sox proteins furthermore affect DNA topology and may shape the conformation of enhancer-bound multiprotein complexes as architectural proteins. Recent studies suggest that Sox proteins are tightly regulated in their expression by many signalling pathways, and that their transcriptional activity is subject to post-translational modification and sequestration mechanisms. Sox proteins are thus ideally suited to perform their many different functions as transcriptional regulators throughout mammalian development. Their unique properties also cause Sox proteins to escape detection in many standard transcription assays. In melanocytes, studies have so far focused on the Sox10 protein which functions both during melanocyte specification and at later times in the melanocyte lineage. During specification, Sox10 activates the Mitf gene as the key regulator of melanocyte development. At later stages, it ensures cell-type specific expression of melanocyte genes such as Dopachrome tautomerase. Both activities require cooperation with transcriptional partner proteins such as Pax-3, CREB and eventually Mitf. If predictions can be made from other cell lineages, further functions of Sox proteins in melanocytes may still lie ahead.
Collapse
Affiliation(s)
- Michael Wegner
- Institut für Biochemie, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
48
|
Schulze-Tanzil G, Mobasheri A, Sendzik J, John T, Shakibaei M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci 2005; 1030:578-86. [PMID: 15659840 DOI: 10.1196/annals.1329.067] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Curcumin (diferuloylmethane) is a nontoxic dietary pigment in tumeric and curry and a potent inhibitor of the common transcription factor Nuclear Factor kappaB (NF-kappaB) in several cell types. It is well established that some of the catabolic effects of the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha in osteoarthritis are regulated by the activation of NF-kappaB. Therefore, the aim of this study was to determine whether curcumin modifies the catabolic response of chondrocytes to IL-1beta. Human articular chondrocytes were prestimulated with 10 ng/mL IL-1beta for 0, 4, 8, 12, or 24 h and then cotreated with 50 microM curcumin for 0, 12, 24, 36, or 48 h. Synthesis of the cartilage-specific collagen type II and matrix-degrading enzyme matrix metalloproteinase-3 (MMP-3) was investigated in chondrocytes by Western blot analysis. Activation and nuclear translocation of NF-kappaB were observed by immunofluorescence microscopy. IL-1beta induced a decrease in collagen type II and upregulation of MMP-3 in a time-dependent manner. Upregulation of MMP-3 was inhibited by curcumin in a time-dependent manner. In addition, IL-1beta-induced a decrease in type II collagen, which was relieved by curcumin treatment. In response to IL-1beta, NF-kappaB translocated to the nucleus, but translocation was inhibited by curcumin, as revealed by immunofluorescence microscopy. Taken together, these results confirmed an IL-1beta-mediated upregulation of proinflammatory MMP-3 in chondrocytes via an NF-kappaB activation mechanism. Curcumin protected chondrocytes from the catabolic effects of IL-1beta, such as MMP-3 upregulation, and interestingly also relieved cytokine-induced suppression of matrix protein synthesis. Therefore, curcumin antagonizes crucial catabolic effects of IL-1beta signaling that are known to contribute to the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Charité University Medical School Berlin, Institute of Anatomy, Department of Cell and Neurobiology, Campus Benjamin Franklin, Königin-Luise-Strasse 15, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
49
|
Risbud MV, Fertala J, Vresilovic EJ, Albert TJ, Shapiro IM. Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine (Phila Pa 1976) 2005; 30:882-9. [PMID: 15834331 DOI: 10.1097/01.brs.0000159096.11248.6d] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To examine the impact of hypoxia, rat nucleus pulposus cells were maintained in monolayer culture in 2% O2 and survival and signal transduction pathways identified. OBJECTIVE To elucidate the signaling pathways that allow nucleus pulposus cells to adapt to low oxygen environment. SUMMARY OF BACKGROUND DATA Mammalian cell function is critically dependent on a continuous supply of oxygen. Interestingly, some specialized cell types that include nucleus pulposus cells of the intervertebral disc reside in a hypoxic environment. However, the mechanism of their adaptation to this low oxygen environment is not known. METHODS Rat nucleus pulposus cells were harvested from explant cultures and grown to confluence in monolayer. Cells from passage 3-7 were maintained under hypoxia (2% O2) and normoxia (20% O2) for various time periods in complete or serum-free medium. Cells were also treated with pharmacologic agents that block PI3K and MAPK signaling pathways. Cell survival was assessed by MTT assay, annexinV-PI dual-color flow cytometry, and the TUNEL procedure. Expression of signaling proteins was evaluated by Western blot analysis. Cell phenotype was studied by semiquantitative RT-PCR. RESULTS Under hypoxic conditions, rat nucleus pulposus cells were resistant to apoptosis induced by serum starvation. Protection was also observed after treatment of the nucleus cells by desferrioxamine, a compound that mimics many of the effects of hypoxia. Cell survival in hypoxia was related to activation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Induction of Akt activation and ERK1/2 activationunder hypoxic condition was detected at 12 hours and correlated with inactivation of glycogen synthase kinase-3beta (GSK-3beta), an effector protein involved in regulation of apoptosis. Finally, inhibition of PI3K/Akt and MEK/ERK pathway using the inhibitors LY294002 and PD98059, respectively, impaired cell survival. CONCLUSION It is concluded that under hypoxic conditions, rat nucleus pulposus cells are adapted for survival by regulation of expression of critical genes, downregulation of apoptosis through activation of the PI3K/Akt and MAPK survival pathways.
Collapse
Affiliation(s)
- Makarand V Risbud
- Division of Orthopaedic Research, Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
50
|
Pang Y, Cui P, Chen W, Gao P, Zhang H. Quantitative Study of Tissue-Engineered Cartilage With Human Bone Marrow Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2005; 7:7-11. [PMID: 15655167 DOI: 10.1001/archfaci.7.1.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess the possibility of cartilage tissue engineering using human mesenchymal stem cells (hMSCs) and to investigate the quantitative relationship between hMSCs and engineered cartilage. DESIGN Human mesenchymal stem cells were cultured, cryopreserved, and expanded in vitro. Surface antigens were detected by flow cytometry. In vitro chondrogenesis of hMSCs and cryopreserved hMSCs was performed. The chondrogenesis-induced hMSCs were seeded onto polyglycolic acid scaffolds, cultured in vitro for 3 weeks in chondrogenic medium, and then implanted into nude mice. The implants were harvested after 10 weeks and examined with histologic and immunochemical staining. RESULTS The construction of cartilages was identified grossly and histologically: 1.9 to 2.5 x 10(7) nucleated cells were obtained from 1 mL of bone marrow, and about 1 to 2 x 10(6) hMSCs were obtained from the primary culture. The number of hMSCs tripled at every passage and reached 1.4 to 2.8 x 10(12) at passage 15. The purity of hMSCs was 95% and 98% at the primary and the fourth passages, respectively. Twenty-one days was the optimal (induction rate, 95%) induction time, with no apparent differences in induction rates among different passages. Based on our findings, hMSCs from 0.07 to 0.14 mL of bone marrow, expanded during 4 passages and induced for 21 days, would be sufficient to engineer 1 cm(2) of cartilage, 3-mm thick. CONCLUSION Quantitative standards of hMSCs as seed cells for cartilage tissue engineering were established and may have value for later clinical work.
Collapse
Affiliation(s)
- Yonggang Pang
- Department of Otorhinolaryngology, TangDu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | | | | | | | | |
Collapse
|