1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMID: 39674629 PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment. In recent years, the CBMN assay has become well-validated and emerged as a method of choice for evaluating occupational and accidental exposures scenario. It is feasible due to its cost-effective, simple, and rapid dose assessment rather than a conventional chromosome aberration assay. PubMed search tool was used with keywords of MN, biodosimetry, radiotherapy and restricted to human samples. Since Fenech and Morely developed the assay, it has undergone many technical and technological reforms as a biomarker of various applications. In this review, we have abridged recent developments of the CBMN assay in radiation triage and biodosimetry, focusing on (a) the influence of variables on dose estimation, (b) the importance of baseline frequency and reported dose-response coefficient values among different laboratories, (c) inter-laboratory comparison and (d) its limitations and means to overcome them.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
2
|
Wilkins RC, Beaton-Green LA. Development of high-throughput systems for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1477-1484. [PMID: 37721060 PMCID: PMC10720693 DOI: 10.1093/rpd/ncad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 09/19/2023]
Abstract
Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
3
|
Meher PK, Lundholm L, Wojcik A. Fluorescence in situ hybridisation for interphase chromosomal aberration-based biological dosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1501-1507. [PMID: 37721087 PMCID: PMC10505941 DOI: 10.1093/rpd/ncac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 09/19/2023]
Abstract
Metaphase spreads stained with Giemsa or painted with chromosome-specific probes by fluorescence in situ hybridisation (FISH) have been in use since long for retrospective dose assessment (biological dosimetry). However, in cases of accidental exposure to ionising radiation, the culturing of lymphocytes to obtain metaphase chromosomes and analysis of chromosomal aberrations is time-consuming and problematic after high radiation doses. Similarly, analysing chromosomal damage in G0/G1 cells or nondividing cells by premature chromosome condensation is laborious. Following large-scale radiological emergencies, the time required for analysis is more important than precision of dose estimate. Painting of whole chromosomes using chromosome-specific probes in interphase nuclei by the FISH technique will eliminate the time required for cell culture and allow a fast dose estimate, provided that a meaningful dose-response can be obtained by scoring the number of chromosomal domains visible in interphase nuclei. In order to test the applicability of interphase FISH for quick biological dosimetry, whole blood from a healthy donor was irradiated with 8 Gy of gamma radiation. Irradiated whole blood was kept for 2 h at 37°C to allow DNA repair and thereafter processed for FISH with probes specific for Chromosomes-1 and 2. Damaged chromosomal fragments, distinguished by extra color domains, were observed in interphase nuclei of lymphocytes irradiated with 8 Gy. These fragments were efficiently detected and quantified by the FISH technique utilising both confocal and single plane fluorescence microscopy. Furthermore, a clear dose-response curve for interphase fragments was achieved following exposure to 0, 1, 2, 4 and 8 Gy of gamma radiation. These results demonstrate interphase FISH as a promising test for biodosimetry and for studying cytogenetic effects of radiation in nondividing cells.
Collapse
Affiliation(s)
- Prabodha Kumar Meher
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
4
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
5
|
Yamaguchi M, Nishida T, Sato Y, Nakai Y, Kashiwakura I. Identification of Radiation-Dose-Dependent Expressive Genes in Individuals Exposed to External Ionizing Radiation. Radiat Res 2020; 193:274-285. [DOI: 10.1667/rr15532.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Teruki Nishida
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yoshiaki Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| | - Yuji Nakai
- Institute of Regional Innovation, Section of Food Sciences, Laboratory of Foods, Hirosaki University, Aomori 038-0012, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, 036-8564, Japan
| |
Collapse
|
6
|
Lee Y, Jin YW, Wilkins RC, Jang S. Validation of the dicentric chromosome assay for radiation biological dosimetry in South Korea. JOURNAL OF RADIATION RESEARCH 2019; 60:555-563. [PMID: 31165147 PMCID: PMC6806015 DOI: 10.1093/jrr/rrz039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/25/2019] [Indexed: 05/21/2023]
Abstract
The dicentric chromosome assay (DCA) is a well-established biodosimetry test to estimate exposure to ionizing radiation. The Korea Institute of Radiological and Medical Sciences (KIRAMS) established a DCA protocol as a medical response to radiation emergencies in South Korea. To maintain its accuracy and performance, intercomparison exercises with Health Canada (HC) have been conducted; herein, we aimed to validate our capacity of DCA analysis based on those results. Blood samples irradiated at HC were shipped to KIRAMS to assess the irradiation dose to blinded samples using conventional DCA full scoring and triage-based techniques (conventional DCA scoring in triage mode and DCA QuickScan method). Actual doses fell within the 95% confidence intervals of dose estimates for 70-100% of the blinded samples in 2015-2018. All methods discriminated binary dose categories, reflecting clinical significance. This DCA can be used as a reliable radiation biodosimetry tool in preparation for radiation accidents in South Korea.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Corresponding author. Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea. Tel: +82-2-3399-5951; Fax: +82-2-3399-5950;
| |
Collapse
|
7
|
Gałecki M, Tartas A, Szymanek A, Sims E, Lundholm L, Sollazzo A, Cheng L, Fujishima Y, Yoshida MA, Żygierewicz J, Wojcik A, Brzozowska-Wardecka B. Precision of scoring radiation-induced chromosomal aberrations and micronuclei by unexperienced scorers. Int J Radiat Biol 2019; 95:1251-1258. [PMID: 31140900 DOI: 10.1080/09553002.2019.1625462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Dose assessment plays an important role in case of radiological accidents and can be performed by scoring structural changes of chromosome morphology induced in cells by ionizing radiation. The results of such a test are biased by scorer experience, therefore, simple to learn assays are recommended to be used when fast analysis of a large amount of data is needed. The aim of this study was to compare the performance of two radiobiological assays - chromosomal aberrations and micronuclei - by unexperienced scorers with the reference values generated by an expert. Materials and methods: Each participant of an EU-funded two-week radiobiology course was asked to score Chinese hamster ovary cells exposed to gamma radiation up to 4 Gy. The congruence of students' and expert's scores at each dose and the coherence of the dose-response curve parameters between the students were investigated. Results: Micronucleus test tended to be faster and easier to learn than scoring chromosomal aberrations. However, both assays carried out by inexperienced students showed reasonable dose-response curves. Conclusions: In the case of a large radiological accident involving many casualties, the unexperienced scorers would support the process of biodosimetric triage by cytogenetic biological dosimetry.
Collapse
Affiliation(s)
- Maciej Gałecki
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | | | - Emma Sims
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield Soil and Agrifood Institute, Cranfield University , Bedford , UK
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Alice Sollazzo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Yohei Fujishima
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Jarosław Żygierewicz
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden.,Institute of Biology, Jan Kochanowski University , Kielce , Poland
| | | |
Collapse
|
8
|
Kulka U, Wojcik A, Di Giorgio M, Wilkins R, Suto Y, Jang S, Quing-Jie L, Jiaxiang L, Ainsbury E, Woda C, Roy L, Li C, Lloyd D, Carr Z. BIODOSIMETRY AND BIODOSIMETRY NETWORKS FOR MANAGING RADIATION EMERGENCY. RADIATION PROTECTION DOSIMETRY 2018; 182:128-138. [PMID: 30423161 DOI: 10.1093/rpd/ncy137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/09/2023]
Abstract
Biological dosimetry enables individual dose reconstruction in the case of unclear or inconsistent radiation exposure situations, especially when a direct measurement of ionizing radiation is not or is no longer possible. To be prepared for large-scale radiological incidents, networking between well-trained laboratories has been identified as a useful approach for provision of the fast and trustworthy dose assessments needed in such circumstances. To this end, various biodosimetry laboratories worldwide have joined forces and set up regional and/or nationwide networks either on a formal or informal basis. Many of these laboratories are also a part of global networks such as those organized by World Health Organization, International Atomic Energy Agency or Global Health Security Initiative. In the present report, biodosimetry networks from different parts of the world are presented, and the partners, activities and cooperation actions are detailed. Moreover, guidance for situational application of tools used for individual dosimetry is given.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - A Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| | - M Di Giorgio
- Autoridad Regulatoria Nuclear, C1429BNP CABA, Buenos Aires, Argentina
| | - R Wilkins
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - Y Suto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Jang
- Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - L Quing-Jie
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Jiaxiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - E Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - C Woda
- HelmholtzZentrum München, Institute of Radiation Protection, Oberschleissheim, Germany
| | - L Roy
- Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses, France
| | - C Li
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - D Lloyd
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Z Carr
- World Health Organization, Department of Public Health, Environmental and Social Determinants of Health, Geneva-27, Switzerland
| |
Collapse
|
9
|
Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol 2018; 95:64-75. [PMID: 30247087 DOI: 10.1080/09553002.2018.1511926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation. MATERIALS AND METHODS We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total). RESULTS Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment. CONCLUSIONS Our results represent an important advancement in the application of gene expression for biodosimetry purposes.
Collapse
Affiliation(s)
- Ellina Macaeva
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Mohamed Mysara
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| | - Winnok H De Vos
- b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium.,c Department of Veterinary Sciences , University of Antwerp , Belgium
| | - Sarah Baatout
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Roel Quintens
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| |
Collapse
|
10
|
Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:65-71. [PMID: 30389164 DOI: 10.1016/j.mrgentox.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023]
Abstract
In radiation accidents and large-scale radiological emergencies, a fast and reliable triage of individuals according to their degree of exposure is important for accident management and identification of those who need medical assistance. In this work, the applicability of cell-fusion-mediated premature chromosome condensation (PCC) in G0-lymphocytes is examined for the development of a rapid, minimally invasive and automatable micro-PCC assay, which requires blood volumes of only 100 μl and can be performed in 96-well plates, towards risk assessments and categorization of individuals based on dose estimates. Chromosomal aberrations are visualized for dose-estimation analysis within two hours, without the need of blood culturing for two days, as required by conventional cytogenetics. The various steps of the standard-PCC procedure were adapted and, for the first time, lymphocytes in blood volumes of 100 μl were successfully fused with CHO-mitotics in 96-well plates of 2 ml/well. The plates are advantageous for high-throughput analysis since the various steps required are applied to all 96-wells simultaneously. Interestingly, the use of only 1.5 ml hypotonic and Carnoy's fixative per well offers high quality PCC-images, and the morphology of lymphocyte PCCs is identical to that obtained using the conventional PCC-assay, which requires much larger blood volumes and 15 ml tubes. For dose assessments, appropriate calibration curves were constructed and for PCC analysis specialized software (MetaSystems) was used. The micro-PCC assay can be combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric (C/T) peptide nucleic acid (PNA) probes. This allows dose assessments on the basis of accurate scoring of dicentric and centric ring chromosomes in G0-lymphocyte PCCs, which is particularly helpful when further evaluation into treatment-level categories of exposed individuals is needed. The micro-PCC assay has significant advantages for early triage biodosimetry when compared to other cytogenetic biodosimetry assays. It is rapid, cost-effective, and could pave the way to its subsequent automation.
Collapse
|
11
|
Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II: Implementation of a High-Throughput Micronucleus Biodosimetry Assay on Commercial Biotech Robotic Systems. Radiat Res 2017; 187:492-498. [PMID: 28231025 DOI: 10.1667/rr011cc.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We demonstrate the use of high-throughput biodosimetry platforms based on commercial high-throughput/high-content screening robotic systems. The cytokinesis-block micronucleus (CBMN) assay, using only 20 μl whole blood from a fingerstick, was implemented on a PerkinElmer cell::explorer and General Electric IN Cell Analyzer 2000. On average 500 binucleated cells per sample were detected by our FluorQuantMN software. A calibration curve was generated in the radiation dose range up to 5.0 Gy using the data from 8 donors and 48,083 binucleated cells in total. The study described here demonstrates that high-throughput radiation biodosimetry is practical using current commercial high-throughput/high-content screening robotic systems, which can be readily programmed to perform and analyze robotics-optimized cytogenetic assays. Application to other commercial high-throughput/high-content screening systems beyond the ones used in this study is clearly practical. This approach will allow much wider access to high-throughput biodosimetric screening for large-scale radiological incidents than is currently available.
Collapse
Affiliation(s)
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | - Charles Karan
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | | | - Guy Garty
- a Center for Radiological Research and
| |
Collapse
|
12
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, De Amicis A, Domínguez I, Fattibene P, Frøvig, AM, Gregoire E, Guogyte K, Hadjidekova V, Jaworska A, Kriehuber R, Lindholm C, Lloyd D, Lumniczky K, Lyng F, Meschini R, Mörtl S, Della Monaca S, Monteiro Gil O, Montoro A, Moquet J, Moreno M, Oestreicher U, Palitti F, Pantelias G, Patrono C, Piqueret-Stephan L, Port M, Prieto MJ, Quintens R, Ricoul M, Romm H, Roy L, Sáfrány G, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Turai I, Trompier F, Valente M, Vaz P, Voisin P, Vral A, Woda C, Zafiropoulos D, Wojcik A. RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol 2016; 93:2-14. [DOI: 10.1080/09553002.2016.1230239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | - David Lloyd
- affiliated to Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Fiona Lyng
- Dublin Institute of Technology, Dublin, Ireland
| | | | - Simone Mörtl
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montoro
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Laure Piqueret-Stephan
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - María Jesus Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Géza Sáfrány
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Natividad Sebastià
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | - Georgia Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Istvan Turai
- affiliated to National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Philippe Voisin
- affiliated to Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Anne Vral
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Clemens Woda
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Andrzej Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| |
Collapse
|
14
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
15
|
Cucu MA, Popescu IA. RENEB - THE ROMANIAN PERSPECTIVE. RADIATION PROTECTION DOSIMETRY 2016; 171:70-72. [PMID: 27521207 DOI: 10.1093/rpd/ncw197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/22/2016] [Indexed: 06/06/2023]
Abstract
The European Commission supports the development of an European network in biodosimetry (RENEB), in which a large number of experienced laboratories from 16 European countries are involved. The final goal will be the significant improvement of the biodosimetry capacity for response to accidents and radiological emergencies, based on a well-organized cooperative action with a rapid and rigorous dose assessment. The project is aimed at consolidating the network with its operational platform, inter-comparison exercises, training activities, proceedings in quality assurance and implementation and integration of new network partners and new methods. In the project context, the Romanian perspective on the participation benefits for the Romanian biodosimetry is described.
Collapse
Affiliation(s)
- M A Cucu
- UMF Carol Davila Bucharest, Dr Leonte str. 1-3, 050463 Bucharest, Romania
| | - I A Popescu
- National Institute of Public Health, Regional Center of Public Health Iasi
| |
Collapse
|
16
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
17
|
Perumal V, Sekaran TSG, Raavi V, Basheerudeen SAS, Kanagaraj K, Chowdhury AR, Paul SFD. Radiation signature on exposed cells: Relevance in dose estimation. World J Radiol 2015; 7:266-278. [PMID: 26435777 PMCID: PMC4585950 DOI: 10.4329/wjr.v7.i9.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.
Collapse
|
18
|
Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:353-63. [PMID: 25972268 PMCID: PMC4510913 DOI: 10.1007/s00411-015-0603-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland,
| | | |
Collapse
|
19
|
Kulka U, Ainsbury L, Atkinson M, Barnard S, Smith R, Barquinero JF, Barrios L, Bassinet C, Beinke C, Cucu A, Darroudi F, Fattibene P, Bortolin E, Monaca SD, Gil O, Gregoire E, Hadjidekova V, Haghdoost S, Hatzi V, Hempel W, Herranz R, Jaworska A, Lindholm C, Lumniczky K, M'kacher R, Mörtl S, Montoro A, Moquet J, Moreno M, Noditi M, Ogbazghi A, Oestreicher U, Palitti F, Pantelias G, Popescu I, Prieto MJ, Roch-Lefevre S, Roessler U, Romm H, Rothkamm K, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Trompier F, Turai I, Vandevoorde C, Vaz P, Voisin P, Vral A, Ugletveit F, Wieser A, Woda C, Wojcik A. Realising the European network of biodosimetry: RENEB-status quo. RADIATION PROTECTION DOSIMETRY 2015; 164:42-5. [PMID: 25205835 PMCID: PMC4401036 DOI: 10.1093/rpd/ncu266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | | | - M Atkinson
- Helmholtz Centre Munich, Neuherberg, Germany
| | | | - R Smith
- Public Health England, Chilton, UK
| | - J F Barquinero
- Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - L Barrios
- Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - C Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - C Beinke
- Bundeswehr Institut für Radiobiologie/Universität Ulm, Ulm, Germany
| | - A Cucu
- National Institute of Public Health Romania, Bucharest, Romania
| | - F Darroudi
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - E Bortolin
- Istituto Superiore di Sanità, Rome, Italy
| | | | - O Gil
- Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - E Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - V Hadjidekova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | | | - V Hatzi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - W Hempel
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - R Herranz
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - A Jaworska
- Norwegian Radiation Protection Authority, Osteraas, Norway
| | - C Lindholm
- Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki, Finland
| | - K Lumniczky
- National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - R M'kacher
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - S Mörtl
- Helmholtz Centre Munich, Neuherberg, Germany
| | - A Montoro
- Fundación para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - J Moquet
- Public Health England, Chilton, UK
| | - M Moreno
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Noditi
- National Institute of Public Health Romania, Bucharest, Romania
| | - A Ogbazghi
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | | | - F Palitti
- University of Tuscia, Viterbo, Italy
| | - G Pantelias
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - I Popescu
- National Institute of Public Health Romania, Bucharest, Romania
| | - M J Prieto
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - S Roch-Lefevre
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - U Roessler
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - H Romm
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | | | - L Sabatier
- Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France
| | - N Sebastià
- Fundación para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - S Sommer
- Instytut Chemii i Techniki Jadrowej, Warsaw, Poland
| | - G Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - A Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - H Thierens
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - F Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - I Turai
- National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - C Vandevoorde
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - P Vaz
- Instituto Superior Técnico, Universidade de Lisboa, Bobadela LRS, Portugal
| | - P Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - A Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - F Ugletveit
- Norwegian Radiation Protection Authority, Osteraas, Norway
| | - A Wieser
- Helmholtz Centre Munich, Neuherberg, Germany
| | - C Woda
- Helmholtz Centre Munich, Neuherberg, Germany
| | - A Wojcik
- Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Jaworska A, Ainsbury EA, Fattibene P, Lindholm C, Oestreicher U, Rothkamm K, Romm H, Thierens H, Trompier F, Voisin P, Vral A, Woda C, Wojcik A. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. RADIATION PROTECTION DOSIMETRY 2015; 164:165-169. [PMID: 25274532 DOI: 10.1093/rpd/ncu294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
Collapse
Affiliation(s)
- Alicja Jaworska
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Oesteraas, Norway
| | - Elizabeth A Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Paola Fattibene
- Department Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carita Lindholm
- Department of Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Ursula Oestreicher
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Kai Rothkamm
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Horst Romm
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Hubert Thierens
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Francois Trompier
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Philippe Voisin
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Anne Vral
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Clemens Woda
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Bakkiam D, Bhavani M, Anantha Kumar AA, Sonwani S, Venkatachalam P, Sivasubramanian K, Venkatraman B. Dicentric assay: inter-laboratory comparison in Indian laboratories for routine and triage applications. Appl Radiat Isot 2015; 99:77-85. [PMID: 25728004 DOI: 10.1016/j.apradiso.2015.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
An Inter-Laboratory Comparison (ILC) study on Dicentric Chromosome Assay (DCA) was carried out between two Indian biodosimetry labs. Human peripheral blood samples exposed to 10 different doses of X-rays up to 5Gy were shared between the labs to generate calibration data. Validation of calibration curves was done by dose estimation of coded samples exposed to X- or gamma radiation. Reliability of the DCA data for triage application was evaluated by scoring 20, 50 and 100 metaphases in the dose range of 0.5-3.0Gy. No significant difference was observed between labs regarding the established calibration data as well as the DCA triage dose assessments. Scoring of 20 metaphases (MP) was adequate to detect radiation exposure of >2Gy whereas 50 MP were sufficient to determine exposures of 0.5Gy. Both labs performed the DCA in a reliable manner and made the first step in setting up a biodosimetry network in India.
Collapse
Affiliation(s)
- D Bakkiam
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - M Bhavani
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - A Arul Anantha Kumar
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India.
| | - Swetha Sonwani
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - P Venkatachalam
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - K Sivasubramanian
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - B Venkatraman
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
22
|
Bhavani M, Tamizh Selvan G, Kaur H, Adhikari JS, Vijayalakshmi J, Venkatachalam P, Chaudhury NK. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories. Appl Radiat Isot 2014; 92:85-90. [PMID: 25014548 DOI: 10.1016/j.apradiso.2014.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Accepted: 06/04/2014] [Indexed: 11/25/2022]
Abstract
To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to (60)Co γ-radiation for ten different doses (0-5Gy) at a dose rate of 0.7 and 2Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications.
Collapse
Affiliation(s)
- M Bhavani
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - G Tamizh Selvan
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India; Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| | - Harpreet Kaur
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - J S Adhikari
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| | - J Vijayalakshmi
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - P Venkatachalam
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - N K Chaudhury
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| |
Collapse
|
23
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
24
|
Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, Moquet J, Oestreicher U, Puig R, Rothkamm K, Sommer S, Thierens H, Vandersickel V, Vral A, Wojcik A. Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. HEALTH PHYSICS 2014; 106:764-771. [PMID: 24776911 DOI: 10.1097/hp.0000000000000077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Large scale radiological emergencies require high throughput techniques of biological dosimetry for population triage in order to identify individuals indicated for medical treatment. The dicentric assay is the "gold standard" technique for the performance of biological dosimetry, but it is very time consuming and needs well trained scorers. To increase the throughput of blood samples, semi-automation of dicentric scoring was investigated in the framework of the MULTIBIODOSE EU FP7 project, and dose effect curves were established in six biodosimetry laboratories. To validate these dose effect curves, blood samples from 33 healthy donors (>10 donors/scenario) were irradiated in vitro with ⁶⁰Co gamma rays simulating three different exposure scenarios: acute whole body, partial body, and protracted exposure, with three different doses for each scenario. All the blood samples were irradiated at Ghent University, Belgium, and then shipped blind coded to the participating laboratories. The blood samples were set up by each lab using their own standard protocols, and metaphase slides were prepared to validate the calibration curves established by semi-automatic dicentric scoring. In order to achieve this, 300 metaphases per sample were captured, and the doses were estimated using the newly formed dose effect curves. After acute uniform exposure, all laboratories were able to distinguish between 0 Gy, 0.5 Gy, 2.0, and 4.0 Gy (p < 0.001), and, in most cases, the dose estimates were within a range of ± 0.5 Gy of the given dose. After protracted exposure, all laboratories were able to distinguish between 1.0 Gy, 2.0 Gy, and 4.0 Gy (p < 0.001), and here also a large number of the dose estimates were within ± 0.5 Gy of the irradiation dose. After simulated partial body exposure, all laboratories were able to distinguish between 2.0 Gy, 4.0 Gy, and 6.0 Gy (p < 0.001). Overdispersion of the dicentric distribution enabled the detection of the partial body samples; however, this result was clearly dose-dependent. For partial body exposures, only a few dose estimates were in the range of ± 0.5 Gy of the given dose, but an improvement could be achieved with higher cell numbers. The new method of semi-automation of the dicentric assay was introduced successfully in a network of six laboratories. It is therefore concluded that this method can be used as a high-throughput screening tool in a large-scale radiation accident.
Collapse
Affiliation(s)
- H Romm
- *Bundesamt fuer Strahlenschutz (Germany); †Public Health England (United Kingdom); ‡Universitat Autonoma de Barcelona (Spain); §Institut de Radioprotection et de Sûreté Nucleaire (France); **Bundeswehr Institute of Radiobiology affiliated to the University of Ulm (Germany); ††Stockholm University (Sweden); ‡‡Radiation and Nuclear Safety Authority (Finland); §§Institute of Nuclear Chemistry and Technology (Poland); ***University of Ghent (Belgium)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romm H, Ainsbury E, Bajinskis A, Barnard S, Barquinero JF, Barrios L, Beinke C, Puig-Casanovas R, Deperas-Kaminska M, Gregoire E, Oestreicher U, Lindholm C, Moquet J, Rothkamm K, Sommer S, Thierens H, Vral A, Vandersickel V, Wojcik A. Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:241-254. [PMID: 24557539 DOI: 10.1007/s00411-014-0519-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
In the case of a large scale radiation accident high throughput methods of biological dosimetry for population triage are needed to identify individuals requiring clinical treatment. The dicentric assay performed in web-based scoring mode may be a very suitable technique. Within the MULTIBIODOSE EU FP7 project a network is being established of 8 laboratories with expertise in dose estimations based on the dicentric assay. Here, the manual dicentric assay was tested in a web-based scoring mode. More than 23,000 high resolution images of metaphase spreads (only first mitosis) were captured by four laboratories and established as image galleries on the internet (cloud). The galleries included images of a complete dose effect curve (0-5.0 Gy) and three types of irradiation scenarios simulating acute whole body, partial body and protracted exposure. The blood samples had been irradiated in vitro with gamma rays at the University of Ghent, Belgium. Two laboratories provided image galleries from Fluorescence plus Giemsa stained slides (3 h colcemid) and the image galleries from the other two laboratories contained images from Giemsa stained preparations (24 h colcemid). Each of the 8 participating laboratories analysed 3 dose points of the dose effect curve (scoring 100 cells for each point) and 3 unknown dose points (50 cells) for each of the 3 simulated irradiation scenarios. At first all analyses were performed in a QuickScan Mode without scoring individual chromosomes, followed by conventional scoring (only complete cells, 46 centromeres). The calibration curves obtained using these two scoring methods were very similar, with no significant difference in the linear-quadratic curve coefficients. Analysis of variance showed a significant effect of dose on the yield of dicentrics, but no significant effect of the laboratories, different methods of slide preparation or different incubation times used for colcemid. The results obtained to date within the MULTIBIODOSE project by a network of 8 collaborating laboratories throughout Europe are very promising. The dicentric assay in the web based scoring mode as a high throughput scoring strategy is a useful application for biodosimetry in the case of a large scale radiation accident.
Collapse
Affiliation(s)
- H Romm
- Bundesamt fuer Strahlenschutz, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
27
|
The cytokinesis-blocked micronucleus assay: Dose estimation and inter-individual differences in the response to γ-radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:17-22. [DOI: 10.1016/j.mrgentox.2013.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022]
|
28
|
Romm H, Barnard S, Boulay-Greene H, De Amicis A, De Sanctis S, Franco M, Herodin F, Jones A, Kulka U, Lista F, Martigne P, Moquet J, Oestreicher U, Rothkamm K, Thierens H, Valente M, Vandersickel V, Vral A, Braselmann H, Meineke V, Abend M, Beinke C. Laboratory Intercomparison of the Cytokinesis-Block Micronucleus Assay. Radiat Res 2013; 180:120-8. [DOI: 10.1667/rr3234.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero J, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, Moquet J, Oestreicher U, Puig R, Rothkamm K, Sommer S, Thierens H, Vandersickel V, Vral A, Wojcik A. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:174-83. [DOI: 10.1016/j.mrgentox.2013.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
|
30
|
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, Greither R, Lista F, Peinnequin A, Poyot T, Herodin F, Missel A, Terbrueggen B, Zenhausern F, Rothkamm K, Meineke V, Braselmann H, Beinke C, Abend M. Laboratory intercomparison of gene expression assays. Radiat Res 2013; 180:138-48. [PMID: 23886340 DOI: 10.1667/rr3236.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide rapid individual dose estimates with high sample throughput. The focus of the study was an intercomparison of laboratories' dose-assessment performances using gene expression assays. Lithium-heparinized whole blood from one healthy donor was irradiated (240 kVp, 1 Gy/min) immediately after venipuncture at approximately 37°C using single X-ray doses. Blood samples to establish calibration curves (0.25-4 Gy) as well as 10 blinded test samples (0.1-6.4 Gy) were incubated for 24 h at 37°C supplemented with an equal volume of medium and 10% fetal calf serum. For quantitative reverse transcription polymerase chain reaction (qRT-PCR), samples were lysed, stored at -20°C and shipped on ice. For the Chemical Ligation Dependent Probe Amplification methodology (CLPA), aliquots were incubated in 2 ml CLPA reaction buffer (DxTerity), mixed and shipped at room temperature. Assays were run in each laboratory according to locally established protocols. The mean absolute difference (MAD) of estimated doses relative to the true doses (in Gy) was calculated. We also merged doses into binary categories reflecting aspects of clinical/diagnostic relevance and examined accuracy, sensitivity and specificity. The earliest reported time on dose estimates was <8 h. The standard deviation of technical replicate measurements in 75% of all measurements was below 11%. MAD values of 0.3-0.5 Gy and 0.8-1.3 Gy divided the laboratories contributions into two groups. These fourfold differences in accuracy could be primarily explained by unexpected variances of the housekeeping gene (P = 0.0008) and performance differences in processing of calibration and blinded test samples by half of the contributing laboratories. Reported gene expression dose estimates aggregated into binary categories in general showed an accuracies and sensitivities of 93-100% and 76-100% for the groups, with low MAD and high MAD, respectively. In conclusion, gene expression-based dose estimates were reported quickly, and for laboratories with MAD between 0.3-0.5 Gy binary dose categories of clinical significance could be discriminated with an accuracy and sensitivity comparable to established cytogenetic assays.
Collapse
Affiliation(s)
- C Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, Bernard N, Boulay-Greene H, Brengues M, De Amicis A, De Sanctis S, Greither R, Herodin F, Jones A, Kabacik S, Knie T, Kulka U, Lista F, Martigne P, Missel A, Moquet J, Oestreicher U, Peinnequin A, Poyot T, Roessler U, Scherthan H, Terbrueggen B, Thierens H, Valente M, Vral A, Zenhausern F, Meineke V, Braselmann H, Abend M. Comparison of established and emerging biodosimetry assays. Radiat Res 2013; 180:111-9. [PMID: 23862692 DOI: 10.1667/rr3231.1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools.
Collapse
Affiliation(s)
- K Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Levêque P, Desmet C, Dos Santos-Goncalvez AM, Beun S, Leprince JG, Leloup G, Gallez B. Influence of free radicals signal from dental resins on the radio-induced signal in teeth in EPR retrospective dosimetry. PLoS One 2013; 8:e62225. [PMID: 23704875 PMCID: PMC3660527 DOI: 10.1371/journal.pone.0062225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022] Open
Abstract
In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal.
Collapse
Affiliation(s)
- Philippe Levêque
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
| | - Céline Desmet
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Sébastien Beun
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Julian G. Leprince
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Bio- and Soft- Matter, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Gaëtane Leloup
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Bio- and Soft- Matter, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
33
|
Kulka U, Ainsbury L, Atkinson M, Barquinero JF, Barrios L, Beinke C, Bognar G, Cucu A, Darroudi F, Fattibene P, Gil O, Gregoire E, Hadjidekova V, Haghdoost S, Herranz R, Jaworska A, Lindholm C, Mkacher R, Mörtl S, Montoro A, Moquet J, Moreno M, Ogbazghi A, Oestreicher U, Palitti F, Pantelias G, Popescu I, Prieto MJ, Romm H, Rothkamm K, Sabatier L, Sommer S, Terzoudi G, Testa A, Thierens H, Trompier F, Turai I, Vandersickel V, Vaz P, Voisin P, Vral A, Ugletveit F, Woda C, Wojcik A. Realising the European Network of Biodosimetry (RENEB). RADIATION PROTECTION DOSIMETRY 2012; 151:621-625. [PMID: 22923244 DOI: 10.1093/rpd/ncs157] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In Europe, a network for biological dosimetry has been created to strengthen the emergency preparedness and response capabilities in case of a large-scale nuclear accident or radiological emergency. Through the RENEB (Realising the European Network of Biodosimetry) project, 23 experienced laboratories from 16 European countries will establish a sustainable network for rapid, comprehensive and standardised biodosimetry provision that would be urgently required in an emergency situation on European ground. The foundation of the network is formed by five main pillars: (1) the ad hoc operational basis, (2) a basis of future developments, (3) an effective quality-management system, (4) arrangements to guarantee long-term sustainability and (5) awareness of the existence of RENEB. RENEB will thus provide a mechanism for quick, efficient and reliable support within the European radiation emergency management. The scientific basis of RENEB will concurrently contribute to increased safety in the field of radiation protection.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Maznyk NA, Wilkins RC, Carr Z, Lloyd DC. The capacity, capabilities and needs of the WHO BioDoseNet member laboratories. RADIATION PROTECTION DOSIMETRY 2012; 151:611-620. [PMID: 22908357 DOI: 10.1093/rpd/ncs156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biodosimetry is an essential tool for providing timely assessments of radiation exposure, particularly when physical dosimetry is unavailable or unreliable. For mass-casualty events involving public exposure to ionising radiation, it is paramount to rapidly provide this dose information for medical management of casualties. The dicentric chromosome assay is currently the most reliable accepted method for biodosimetry; however, in a mass-casualty scenario, the throughput of this assay will be challenged by its time-consuming nature and the specific expertise required. To address this limitation, many countries have established expertise in cytogenetic biodosimetry and started developing surge capabilities through setting up regional networks to deal with emergency situations. To capitalise on this growing expertise and organise it into an internationally coordinated laboratory network, the World Health Organization has created and launched a global biodosimetry network (BioDoseNet). In order to determine the existing capacity of BioDoseNet member laboratories, including their expertise and in vivo experience, involvement in national and international activities, problems, needs and prospects, an in-depth survey was conducted. These survey results provide significant information on the current state of emergency cytogenetic biodosimetry capabilities around the world.
Collapse
Affiliation(s)
- N A Maznyk
- Institute for Medical Radiology of the Academy of Medical Science of Ukraine, Pushkinskaya St. 82, Kharkiv 61024, Ukraine
| | | | | | | |
Collapse
|
35
|
Ainsbury EA, Bakhanova E, Barquinero JF, Brai M, Chumak V, Correcher V, Darroudi F, Fattibene P, Gruel G, Guclu I, Horn S, Jaworska A, Kulka U, Lindholm C, Lloyd D, Longo A, Marrale M, Monteiro Gil O, Oestreicher U, Pajic J, Rakic B, Romm H, Trompier F, Veronese I, Voisin P, Vral A, Whitehouse CA, Wieser A, Woda C, Wojcik A, Rothkamm K. Review of retrospective dosimetry techniques for external ionising radiation exposures. RADIATION PROTECTION DOSIMETRY 2011; 147:573-92. [PMID: 21183550 DOI: 10.1093/rpd/ncq499] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.
Collapse
Affiliation(s)
- E A Ainsbury
- Centre for Radiation, Health Protection Agency, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire OX11 0RQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dainiak N, Gent RN, Carr Z, Schneider R, Bader J, Buglova E, Chao N, Coleman CN, Ganser A, Gorin C, Hauer-Jensen M, Huff LA, Lillis-Hearne P, Maekawa K, Nemhauser J, Powles R, Schünemann H, Shapiro A, Stenke L, Valverde N, Weinstock D, White D, Albanese J, Meineke V. Literature review and global consensus on management of acute radiation syndrome affecting nonhematopoietic organ systems. Disaster Med Public Health Prep 2011; 5:183-201. [PMID: 21986999 PMCID: PMC3638239 DOI: 10.1001/dmp.2011.73] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The World Health Organization convened a panel of experts to rank the evidence for medical countermeasures for management of acute radiation syndrome (ARS) in a hypothetical scenario involving the hospitalization of 100 to 200 victims. The goal of this panel was to achieve consensus on optimal management of ARS affecting nonhematopoietic organ systems based upon evidence in the published literature. METHODS English-language articles were identified in MEDLINE and PubMed. Reference lists of retrieved articles were distributed to conferees in advance of and updated during the meeting. Published case series and case reports of ARS, publications of randomized controlled trials of relevant interventions used to treat nonirradiated individuals, reports of studies in irradiated animals, and prior recommendations of subject matter experts were selected. Studies were extracted using the Grading of Recommendations Assessment Development and Evaluation system. In cases in which data were limited or incomplete, a narrative review of the observations was made. RESULTS No randomized controlled trials of medical countermeasures have been completed for individuals with ARS. Reports of countermeasures were often incompletely described, making it necessary to rely on data generated in nonirradiated humans and in experimental animals. A strong recommendation is made for the administration of a serotonin-receptor antagonist prophylactically when the suspected exposure is >2 Gy and topical steroids, antibiotics, and antihistamines for radiation burns, ulcers, or blisters; excision and grafting of radiation ulcers or necrosis with intractable pain; provision of supportive care to individuals with neurovascular syndrome; and administration of electrolyte replacement therapy and sedatives to individuals with significant burns, hypovolemia, and/or shock. A strong recommendation is made against the use of systemic steroids in the absence of a specific indication. A weak recommendation is made for the use of fluoroquinolones, bowel decontamination, loperamide, and enteral nutrition, and for selective oropharyngeal/digestive decontamination, blood glucose maintenance, and stress ulcer prophylaxis in critically ill patients. CONCLUSIONS High-quality studies of therapeutic interventions in humans exposed to nontherapeutic radiation are not available, and because of ethical concerns regarding the conduct of controlled studies in humans, such studies are unlikely to emerge in the near future.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Yale University School of Medicine and Yale-New Haven Health-Bridgeport Hospital, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wilkins RC, Romm H, Oestreicher U, Marro L, Yoshida MA, Suto Y, Prasanna PGS. Biological Dosimetry by the Triage Dicentric Chromosome Assay - Further validation of International Networking. RADIAT MEAS 2011; 46:923-928. [PMID: 21949482 PMCID: PMC3176593 DOI: 10.1016/j.radmeas.2011.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labour-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labour-demanding and time-consuming metaphase-spread analysis to 20 to 50 metaphase spreads instead of routine 500 to 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome.
Collapse
|
38
|
Romm H, Wilkins RC, Coleman CN, Lillis-Hearne PK, Pellmar TC, Livingston GK, Awa AA, Jenkins MS, Yoshida MA, Oestreicher U, Prasanna PGS. Biological Dosimetry by the Triage Dicentric Chromosome Assay: Potential Implications for Treatment of Acute Radiation Syndrome in Radiological Mass Casualties. Radiat Res 2011; 175:397-404. [DOI: 10.1667/rr2321.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol 2010; 87:115-29. [DOI: 10.3109/09553002.2010.519424] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|