1
|
Wang W, Gu L, Hong X, Gao Z, Liu S, Ren Y, Wang Y, Tian L, Wang C. Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS. Biomed Chromatogr 2025; 39:e6061. [PMID: 39732522 DOI: 10.1002/bmc.6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024]
Abstract
An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls. Time-series lung tissue samples during the progression of RILI were collected for dynamic metabolomics studies based on gas chromatography-mass spectrometry (GC-MS). Differential metabolites associated with radiation-induced lung injury were identified, followed by metabolite set enrichment analysis to uncover pathway changes in RILI. The results revealed dynamic metabolic alterations in the progression of RILI, primarily involving in glycine and serine metabolism, the urea cycle, the Warburg effect, glutamate metabolism, arginine and proline metabolism, glucose-alanine cycle, and ammonia recycling. In addition, the potential panel of biomarkers including taurine, lysine, and tyrosine of RILI was selected and then applied to evaluate the diagnostic potential for RILI based on the receiving operator characteristic curve (ROC) at the early-stage of RILI. The better sensitivity, specificity, and accuracy indicate the potential of early diagnosis for RILI. These findings suggest that dynamic metabolomics data could provide new insights into understanding the complex metabolic dysregulation underlying RILI, facilitating the selection of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- WenLi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiedong Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhipiao Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yifan Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yun Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lang Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Tichy A, Carpenter AD, Li Y, Rydlova G, Rehulka P, Markova M, Milanova M, Chmil V, Cheema AK, Singh VK. Radiation Signature in Plasma Metabolome of Total-Body Irradiated Nonhuman Primates and Clinical Patients. Int J Mol Sci 2024; 25:9208. [PMID: 39273157 PMCID: PMC11395250 DOI: 10.3390/ijms25179208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
Collapse
Affiliation(s)
- Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gabriela Rydlova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Biology and Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marketa Markova
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, 128 00 Prague, Czech Republic
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Vojtech Chmil
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 2057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Pannkuk EL, Shuryak I, Kot A, Yun-Tien Lin L, Li HH, Fornace AJ. Host microbiome depletion attenuates biofluid metabolite responses following radiation exposure. PLoS One 2024; 19:e0300883. [PMID: 38758927 PMCID: PMC11101107 DOI: 10.1371/journal.pone.0300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Development of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Anika Kot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lorreta Yun-Tien Lin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Metabolomics Studies, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
4
|
Basov NV, Rogachev AD, Aleshkova MA, Gaisler EV, Sotnikova YS, Patrushev YV, Tolstikova TG, Yarovaya OI, Pokrovsky AG, Salakhutdinov NF. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta 2024; 267:125168. [PMID: 37708770 DOI: 10.1016/j.talanta.2023.125168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The paper presents an LC-MS/MS-based approach to targeted screening of both polar and non-polar metabolites using a synthesized monolithic column which is a copolymer of styrene, divinylbenzene, and 1-vinyl-1,2,4-triazole. It was shown that this column in combination with eluents 20 mM (NH4)2CO3 + NH3 (pH = 9.8, eluent A) and ACN (eluent B) allows for separation of metabolites of different nature in two modes, HILIC and RP LC, and these methods are mutually complementary. A combination of analyses based on these two modes was proposed, allowing detection of about 400 metabolites in a total time of less than 30 min. Comparison of the developed method with those utilizing commercially available columns with sorbents of various types showed that it could provide a broader metabolite coverage. Using the developed approach, metabolomic screening of dried blood spots samples of mice exposed with X-ray was performed, and metabolites that could be considered as possible markers of irradiation exposure and organ tissue damage were detected. Analysis of marker metabolites revealed metabolic pathways that were altered by radiation exposure. Comparison of the results with literature data showed the effectiveness of the developed metabolomic screening approach.
Collapse
Affiliation(s)
- Nikita V Basov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia.
| | - Maria A Aleshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Evgeny V Gaisler
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Yulia S Sotnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia; Boreskov Institute of Catalysis, Acad. Lavrentiev Ave., 5, 630090, Novosibirsk, Russia
| | - Yuri V Patrushev
- Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia; Boreskov Institute of Catalysis, Acad. Lavrentiev Ave., 5, 630090, Novosibirsk, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Padala SR, Kashyap B, Dekker H, Mikkonen JJW, Palander A, Bravenboer N, Kullaa AM. Irradiation affects the structural, cellular and molecular components of jawbones. Int J Radiat Biol 2021; 98:136-147. [PMID: 34855558 DOI: 10.1080/09553002.2022.2013568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Emerging evidence shows that changes in the bone and its microenvironment following radiotherapy are associated with either an inhibition or a state of low bone formation. Ionizing radiation is damaging to the jawbone as it increases the complication rate due to the development of hypovascular, hypocellular, and hypoxic tissue. This review summarizes and correlates the current knowledge on the effects of irradiation on the bone with an emphasis on jawbone, as these have been a less extensively studied area. CONCLUSIONS The stringent regulation of bone formation and bone resorption can be influenced by radiation, causing detrimental effects at structural, cellular, vascular, and molecular levels. It is also associated with a high risk of damage to surrounding healthy tissues and an increased risk of fracture. Technological advances and research on animal models as well as a few human bone tissue studies have provided novel insights into the ways in which bone can be affected by high, low and sublethal dose of radiation. The influence of radiation on bone metabolism, cellular properties, vascularity, collagen, and other factors like inflammation, reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Sridhar Reddy Padala
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bina Kashyap
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannah Dekker
- Amsterdam University Medical Centers, Academic Centre for Dentistry Amsterdam (ACTA), Department of Oral and Maxillofacial Surgery/Oral Pathology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jopi J W Mikkonen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anni Palander
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Bravenboer
- Amsterdam UMC, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Arja M Kullaa
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Crook A, De Lima Leite A, Payne T, Bhinderwala F, Woods J, Singh VK, Powers R. Radiation exposure induces cross-species temporal metabolic changes that are mitigated in mice by amifostine. Sci Rep 2021; 11:14004. [PMID: 34234212 PMCID: PMC8263605 DOI: 10.1038/s41598-021-93401-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Exposure to acute, damaging radiation may occur through a variety of events from cancer therapy and industrial accidents to terrorist attacks and military actions. Our understanding of how to protect individuals and mitigate the effects of radiation injury or Acute Radiation Syndrome (ARS) is still limited. There are only a few Food and Drug Administration-approved therapies for ARS; whereas, amifostine is limited to treating low dose (0.7-6 Gy) radiation poisoning arising from cancer radiotherapy. An early intervention is critical to treat ARS, which necessitates identifying diagnostic biomarkers to quickly characterize radiation exposure. Towards this end, a multiplatform metabolomics study was performed to comprehensively characterize the temporal changes in metabolite levels from mice and non-human primate serum samples following γ-irradiation. The metabolomic signature of amifostine was also evaluated in mice as a model for radioprotection. The NMR and mass spectrometry metabolomics analysis identified 23 dysregulated pathways resulting from the radiation exposure. These metabolomic alterations exhibited distinct trajectories within glucose metabolism, phospholipid biosynthesis, and nucleotide metabolism. A return to baseline levels with amifostine treatment occurred for these pathways within a week of radiation exposure. Together, our data suggests a unique physiological change that is independent of radiation dose or species. Furthermore, a metabolic signature of radioprotection was observed through the use of amifostine prophylaxis of ARS.
Collapse
Affiliation(s)
- Alexandra Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Aline De Lima Leite
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Thomas Payne
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD, 20814, USA.
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
8
|
Dissmore T, DeMarco AG, Jayatilake M, Girgis M, Bansal S, Li Y, Mehta K, Sridharan V, Gill K, Bansal S, Tyburski JB, Cheema AK. Longitudinal metabolic alterations in plasma of rats exposed to low doses of high linear energy transfer radiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:219-233. [PMID: 33902389 PMCID: PMC9896584 DOI: 10.1080/26896583.2020.1865027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Astronauts embarking on deep space missions are at high risk of long-term exposure to low doses of high linear energy transfer (LET) radiation, which can contribute to the development of cancer and multiple degenerative diseases. However, long term effects of exposure to low doses of high LET radiation in plasma metabolite profiles have not been elucidated. We utilized an untargeted metabolomics and lipidomics approach to analyze plasma obtained from adult male Long Evans rats to determine the longitudinal effects of low-dose proton and low-dose oxygen ion whole-body irradiation on metabolic pathways. Our findings reveal that radiation exposure induced modest changes in the metabolic profiles in plasma, 7 months after exposure. Furthermore, we identified some common metabolite dysregulations between protons and oxygen ions, which may indicate a similar mechanism of action for both radiation types.
Collapse
Affiliation(s)
- Tixieanna Dissmore
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Andrew G DeMarco
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Khyati Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kirandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | - Sunil Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC, USA
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
10
|
Vicente E, Vujaskovic Z, Jackson IL. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020; 10:E259. [PMID: 32575772 PMCID: PMC7344731 DOI: 10.3390/metabo10060259] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
Abstract
A large-scale nuclear event has the ability to inflict mass casualties requiring point-of-care and laboratory-based diagnostic and prognostic biomarkers to inform victim triage and appropriate medical intervention. Extensive progress has been made to develop post-exposure point-of-care biodosimetry assays and to identify biomarkers that may be used in early phase testing to predict the course of the disease. Screening for biomarkers has recently extended to identify specific metabolomic and lipidomic responses to radiation using animal models. The objective of this review was to determine which metabolites or lipids most frequently experienced perturbations post-ionizing irradiation (IR) in preclinical studies using animal models of acute radiation sickness (ARS) and delayed effects of acute radiation exposure (DEARE). Upon review of approximately 65 manuscripts published in the peer-reviewed literature, the most frequently referenced metabolites showing clear changes in IR induced injury were found to be citrulline, citric acid, creatine, taurine, carnitine, xanthine, creatinine, hypoxanthine, uric acid, and threonine. Each metabolite was evaluated by specific study parameters to determine whether trends were in agreement across several studies. A select few show agreement across variable animal models, IR doses and timepoints, indicating that they may be ubiquitous and appropriate for use in diagnostic or prognostic biomarker panels.
Collapse
Affiliation(s)
| | | | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.V.); (Z.V.)
| |
Collapse
|
11
|
Wu H, Xu C, Gu Y, Yang S, Wang Y, Wang C. An improved pseudotargeted GC-MS/MS-based metabolomics method and its application in radiation-induced hepatic injury in a rat model. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122250. [PMID: 32619786 DOI: 10.1016/j.jchromb.2020.122250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is the pivotal metabolic organ primarily responsible for metabolic activities, detoxification and regulation of carbohydrate, protein, amino acid, and lipid metabolism. However, very little is known about the complicated pathophysiologic mechanisms of liver injury result from ionizing radiation exposure. Therefore, a pseudotargeted metabolomics approach based on gas chromatography-tandem mass spectrometry with selected reaction monitoring (GC-MS-SRM) was developed to study metabolic alterations of liver tissues in radiation-induced hepatic injury. The pseudotargeted GC-MS-SRM method was validated with satisfactory analytical characteristics in terms of precision, linearity, sensitivity and recovery. Compared to the SIM-based approach, the SRM scanning method had mildly better precision, higher sensitivity, and wider linear ranges. A total of 37 differential metabolites associated with radiation-induced hepatic injury were identified using the GC-MS-SRM metabolomics method. Global metabolic clustering analysis showed that amino acids, carbohydrates, unsaturated fatty acids, organic acids, metabolites associated with pyrimidine metabolism, ubiquinone biosynthesis and oxidative phosphorylation appeared significantly declined after high dose irradiation exposure, whereas metabolites related to lysine catabolism, glycerolipid metabolism and glutathione metabolism presented the opposite behavior. These changes indicate energy deficiency, antioxidant defense damage, accumulation of ammonia and lipid oxidation of liver tissues in response to radiation exposure. It is shown that the developed pseudotargeted method based on GC-MS-SRM is a useful tool for metabolomics study.
Collapse
Affiliation(s)
- Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Yifeng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Shugao Yang
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou 215123, China
| | - Yarong Wang
- Experimental Center of Medical College, Soochow University, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Upadhyay M, Rajagopal M, Gill K, Li Y, Bansal S, Sridharan V, Tyburski JB, Boerma M, Cheema AK. Identification of Plasma Lipidome Changes Associated with Low Dose Space-Type Radiation Exposure in a Murine Model. Metabolites 2020; 10:metabo10060252. [PMID: 32560360 PMCID: PMC7345467 DOI: 10.3390/metabo10060252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term exposures to low dose space radiation may have adverse effects on human health during missions in deep space. Conventional dosimetry, monitoring of prodromal symptoms, and peripheral lymphocyte counts are of limited value as biomarkers of organ- and tissue-specific radiation injury, particularly of injuries that appear weeks or months after radiation exposure. To assess the feasibility of using plasma metabolic and lipidomic profiles as biomarkers of injury from space radiation, we used a mouse model of exposure to low doses of oxygen ions (16O) and protons (1H). Plasma profiles were compared with those of mice exposed to γ-rays as a reference set. Our results demonstrate major changes in glycerophospholipid metabolism, amino acid metabolism, as well as fatty acid metabolism. We also observed dyslipidemia and lipid peroxidation, suggesting an inflammatory phenotype with possible long-term consequences to overall health upon exposure to low doses of high linear energy transfer (LET) radiation.
Collapse
Affiliation(s)
- Maarisha Upadhyay
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Meena Rajagopal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Kirandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA; (V.S.); (M.B.)
| | - John B. Tyburski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA; (V.S.); (M.B.)
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.); (M.R.); (K.G.); (Y.L.); (S.B.); (J.B.T.)
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- Correspondence:
| |
Collapse
|
13
|
Taraboletti A, Goudarzi M, Kabir A, Moon BH, Laiakis EC, Lacombe J, Ake P, Shoishiro S, Brenner D, Fornace AJ, Zenhausern F. Fabric Phase Sorptive Extraction-A Metabolomic Preprocessing Approach for Ionizing Radiation Exposure Assessment. J Proteome Res 2019; 18:3020-3031. [PMID: 31090424 PMCID: PMC7437658 DOI: 10.1021/acs.jproteome.9b00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.
Collapse
Affiliation(s)
- Alexandra Taraboletti
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Bo-Hyun Moon
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Jerome Lacombe
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Pelagie Ake
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Sueoka Shoishiro
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - David Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Albert J. Fornace
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Frederic Zenhausern
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
- Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, College of Medicine Phoenix, 425 North Fifth Street, Phoenix, Arizona 85004, United States
| |
Collapse
|
14
|
Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography⁻Mass Spectrometry Metabolomics. Metabolites 2019; 9:metabo9050098. [PMID: 31096611 PMCID: PMC6571779 DOI: 10.3390/metabo9050098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography-mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage.
Collapse
|
15
|
Vera NB, Chen Z, Pannkuk E, Laiakis EC, Fornace AJ, Erion DM, Coy SL, Pfefferkorn JA, Vouros P. Differential mobility spectrometry (DMS) reveals the elevation of urinary acetylcarnitine in non-human primates (NHPs) exposed to radiation. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:548-559. [PMID: 29596720 PMCID: PMC6030448 DOI: 10.1002/jms.4085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 05/21/2023]
Abstract
Acetylcarnitine has been identified as one of several urinary biomarkers indicative of radiation exposure in adult rhesus macaque monkeys (non-human primates, NHPs). Previous work has demonstrated an up-regulated dose-response profile in a balanced male/female NHP cohort. As a contribution toward the development of metabolomics-based radiation biodosimetry in human populations and other applications of acetylcarnitine screening, we have developed a quantitative, high-throughput method for the analysis of acetylcarnitine. We employed the Sciex SelexIon DMS-MS/MS QTRAP 5500 platform coupled to flow injection analysis (FIA), thereby allowing for fast analysis times of less than 0.5 minutes per injection with no chromatographic separation. Ethyl acetate is used as a DMS modifier to reduce matrix chemical background. We have measured NHP urinary acetylcarnitine from the male cohorts that were exposed to the following radiation levels: control, 2, 4, 6, 7, and 10 Gy. Biological variability, along with calibration accuracy of the FIA-DMS-MS/MS method, indicates LOQ of 20 μM, with observed biological levels on the order of 600 μM and control levels near 10 μM. There is an apparent onset of intensified response in the transition from 6 to 10 Gy. The results demonstrate that FIA-DMS-MS/MS is a rapid, quantitative technique that can be utilized for the analysis of urinary biomarker levels for radiation biodosimetry.
Collapse
Affiliation(s)
- Nicholas B Vera
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Zhidan Chen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Evan Pannkuk
- Georgetown University, 3700 O Street NW, Washington, DC, 20057, USA
| | | | - Albert J Fornace
- Georgetown University, 3700 O Street NW, Washington, DC, 20057, USA
| | - Derek M Erion
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Stephen L Coy
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Jeffrey A Pfefferkorn
- Pfizer Global Research and Development, Cambridge Laboratories, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Paul Vouros
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J Proteome Res 2017; 16:2091-2100. [PMID: 28351153 PMCID: PMC5720681 DOI: 10.1021/acs.jproteome.7b00064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ionizing radiation (IR) directly damages cells and tissues or indirectly damages them through reactive free radicals that may lead to longer term adverse sequelae such as cancers, persistent inflammation, or possible death. Potential exposures include nuclear reactor accidents, improper disposal of equipment containing radioactive materials or medical errors, and terrorist attacks. Metabolomics (comprehensive analysis of compounds <1 kDa) by mass spectrometry (MS) has been proposed as a tool for high-throughput biodosimetry and rapid assessment of exposed dose and triage needed. While multiple studies have been dedicated to radiation biomarker discovery, many have utilized liquid chromatography (LC) MS platforms that may not detect particular compounds (e.g., small carboxylic acids or isomers) that complementary analytical tools, such as gas chromatography (GC) time-of-flight (TOF) MS, are ideal for. The current study uses global GC-TOF-MS metabolomics to complement previous LC-MS analyses on nonhuman primate biofluids (urine and serum) 7 days after exposure to 2, 4, 6, 7, and 10 Gy IR. Multivariate data analysis was used to visualize differences between control and IR exposed groups. Univariate analysis was used to determine a combined 26 biomarkers in urine and serum that significantly changed after exposure to IR. We found several metabolites involved in tricarboxylic acid cycle function, amino acid metabolism, and host microbiota that were not previously detected by global and targeted LC-MS studies.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Simon Authier
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Karen Wong
- CiToxLAB North America, Laval, Quebec H7V 4B3, Canada
| | - Albert J. Fornace
- Tumor Biology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
17
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
18
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
19
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
20
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv 2016; 6:51192-51202. [PMID: 28367319 PMCID: PMC5373493 DOI: 10.1039/c6ra07757a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a need for research to rapidly determine an individual's absorbed dose and its potential health effects after a potential radiological or nuclear event that could expose large portions of a population to ionizing radiation (IR). Studies on biomarker identification after radiation exposure could aid in biodosimetry, identifying individual dose absorbed, as well as biologic response, and administering immediate and proper medical care. Metabolomics on easily accessible biofluids is an emerging field with potential for high-throughput biodosimetry. While tremendous effort has been put into obtaining discovery based global radiation signatures from a number of biofluids and model organisms, quantitative targeted analysis on a subset of known radiation biomarkers is required to develop an optimized panel of biomarkers for future clinical applications. The current study analyzes levels of several known broad chemical groups (acylcarnitines, amino acids, phosphatidylcholines, and biogenic amines) affected by IR in serum from nonhuman primates (NHP) 7 days after exposure through multiple reaction monitoring (MRM) analysis with a triple quadrupole mass spectrometry (MS) platform. We identified several novel metabolites affected by IR exposure through univariate and unsupervised multivariate analyses. Levels of acylcarnitines, amino acids, and phospholipids were perturbed indicating altered protein metabolism, fatty acid β-oxidation, and inflammation. Fold changes in carnitine and short-chain acylcarnitines (acetylcarnitine, propionylcarnitine, butyrylcarnitine, and valerylcarnitine) complement previous global radiation signatures on NHP; notably, the levels of change were lower than previously observed in urine. Decreased levels of glutamate, citrulline, and arginine after IR are biomarkers indicating gastrointestinal syndrome and perturbations to the urea cycle. Sex differences were also assessed and were more prevalent in circulating acylcarnitines and phospholipids after IR exposure. These biomarkers may be combined with previously described compounds from DNA damage to develop a defined metabolomic biodosimetry panel to be analyzed by MS platforms, which are increasingly available in clinical laboratories.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Pannkuk EL, Laiakis EC, Mak TD, Astarita G, Authier S, Wong K, Fornace AJ. A Lipidomic and Metabolomic Serum Signature from Nonhuman Primates Exposed to Ionizing Radiation. Metabolomics 2016; 12:80. [PMID: 28220056 PMCID: PMC5314995 DOI: 10.1007/s11306-016-1010-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Due to dangers associated with potential accidents from nuclear energy and terrorist threats, there is a need for high-throughput biodosimetry to rapidly assess individual doses of radiation exposure. Lipidomics and metabolomics are becoming common tools for determining global signatures after disease or other physical insult and provide a "snapshot" of potential cellular damage. OBJECTIVES The current study assesses changes in the nonhuman primate (NHP) serum lipidome and metabolome 7 days following exposure to ionizing radiation (IR). METHODS Serum sample lipids and metabolites were extracted using a biphasic liquid-liquid extraction and analyzed by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Global radiation signatures were acquired in data-independent mode. RESULTS Radiation exposure caused significant perturbations in lipid metabolism, affecting all major lipid species, including free fatty acids, glycerolipids, glycerophospholipids and esterified sterols. In particular, we observed a significant increase in the levels of polyunsaturated fatty acids (PUFA)-containing lipids in the serum of NHPs exposed to 10 Gy radiation, suggesting a primary role played by PUFAs in the physiological response to IR. Metabolomics profiling indicated an increase in the levels of amino acids, carnitine, and purine metabolites in the serum of NHPs exposed to 10 Gy radiation, suggesting perturbations to protein digestion/absorption, biological oxidations, and fatty acid β-oxidation. CONCLUSIONS This is the first report to determine changes in the global NHP serum lipidome and metabolome following radiation exposure and provides information for developing metabolomic biomarker panels in human-based biodosimetry.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Tytus D. Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Health Sciences, Waters Corporation, Milford, MA
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Address for correspondence: Georgetown University, 3970 Reservoir Road, NW, New, Research Building, Room E504, Washington, DC 20057, , Phone: 202-687-7843, Fax: 202-687-3140
| |
Collapse
|
22
|
Jang WG, Park JY, Lee J, Bang E, Kim SR, Lee EK, Yun HJ, Kang CM, Hwang GS. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1)H NMR and solution (1)H NMR. NMR IN BIOMEDICINE 2016; 29:507-518. [PMID: 26871685 DOI: 10.1002/nbm.3485] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Excess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues--including the jejunum, spleen, liver, and plasma--of rats exposed to X-ray radiation. The organs, tissues, and blood samples were obtained 24, 48, and 72 h after exposure to low-dose (2 Gy) and high-dose (6 Gy) X-ray radiation and subjected to metabolite profiling and multivariate analyses. The results showed the time course of the metabolic responses, and many significant changes were detected in the high-dose compared with the low-dose group. Metabolites with antioxidant properties showed acute responses in the jejunum and spleen after radiation exposure. The levels of metabolites related to lipid and protein metabolism were decreased in the jejunum. In addition, amino acid levels increased consistently at all post-irradiation time points as a consequence of activated protein breakdown. Consistent with these changes, plasma levels of tricarboxylic acid cycle intermediate metabolites decreased. The liver did not appear to undergo remarkable metabolic changes after radiation exposure. These results may provide insight into the major metabolic perturbations and mechanisms of the biological systems in response to pathophysiological damage caused by X-ray radiation.
Collapse
Affiliation(s)
- Won Gyo Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Bang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - So Ra Kim
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eun Kyeong Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyun Jin Yun
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Mo Kang
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Menon SS, Uppal M, Randhawa S, Cheema MS, Aghdam N, Usala RL, Ghosh SP, Cheema AK, Dritschilo A. Radiation Metabolomics: Current Status and Future Directions. Front Oncol 2016; 6:20. [PMID: 26870697 PMCID: PMC4736121 DOI: 10.3389/fonc.2016.00020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/18/2016] [Indexed: 12/25/2022] Open
Abstract
Human exposure to ionizing radiation (IR) disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms, and peripheral lymphocyte counts are of limited value as organ- and tissue-specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high-resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic IR. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure.
Collapse
Affiliation(s)
- Smrithi S Menon
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Medha Uppal
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Subeena Randhawa
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Mehar S Cheema
- Department of Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Nima Aghdam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| | - Rachel L Usala
- School of Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute , Bethesda, MD , USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center , Washington, DC , USA
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
24
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
25
|
Tsuyama N, Mizuno H, Katafuchi A, Abe Y, Kurosu Y, Yoshida M, Kamiya K, Sakai A. Identification of low-dose responsive metabolites in X-irradiated human B lymphoblastoid cells and fibroblasts. JOURNAL OF RADIATION RESEARCH 2015; 56:46-58. [PMID: 25227127 PMCID: PMC4572603 DOI: 10.1093/jrr/rru078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/31/2014] [Accepted: 08/16/2014] [Indexed: 05/09/2023]
Abstract
Ionizing radiation (IR) induces cellular stress responses, such as signal transduction, gene expression, protein modification, and metabolite change that affect cellular behavior. We analyzed X-irradiated human Epstein-Barr virus-transformed B lymphoblastoid cells and normal fibroblasts to search for metabolites that would be suitable IR-responsive markers by Liquid Chromotography-Mass spectrometry (LC-MS). Mass spectra, as analyzed with principal component analysis, showed that the proportion of peaks with IR-induced change was relatively small compared with the influence of culture time. Dozens of peaks that had either been upregulated or downregulated by IR were extracted as candidate IR markers. The IR-changed peaks were identified by comparing mock-treated groups to 100 mGy-irradiated groups that had recovered after 10 h, and the results indicated that the metabolites involved in nucleoside synthesis increased and that some acylcarnitine levels decreased in B lymphoblastoids. Some peaks changed by as much as 20 mGy, indicating the presence of an IR-sensitive signal transduction/metabolism control mechanism in these cells. On the other hand, we could not find common IR-changed peaks in fibroblasts of different origin. These data suggest that cell phenotype-specific pathways exist, even in low-dose responses, and could determine cell behavior.
Collapse
Affiliation(s)
- Naohiro Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Hajime Mizuno
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Atsushi Katafuchi
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Yu Abe
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Yumiko Kurosu
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Mitsuaki Yoshida
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan Institute of Radiation Emergency Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Kenji Kamiya
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akira Sakai
- Department of Radiation Life Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| |
Collapse
|
26
|
Dose-dependent metabolic alterations in human cells exposed to gamma irradiation. PLoS One 2014; 9:e113573. [PMID: 25419661 PMCID: PMC4242643 DOI: 10.1371/journal.pone.0113573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022] Open
Abstract
Radiation exposure is a threat to public health because it causes many diseases, such as cancers and birth defects, due to genetic modification of cells. Compared with the past, a greater number of people are more frequently exposed to higher levels of radioactivity today, not least due to the increased use of diagnostic and therapeutic radiation-emitting devices. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS)-based metabolic profiling was used to investigate radiation- induced metabolic changes in human fibroblasts. After exposure to 1 and 5 Gy of γ-radiation, the irradiated fibroblasts were harvested at 24, 48, and 72 h and subjected to global metabolite profiling analysis. Mass spectral peaks of cell extracts were analyzed by pattern recognition using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results showed that the cells irradiated with 1 Gy returned to control levels at 72 h post radiation, whereas cells irradiated with 5 Gy were quite unlike the controls; therefore, cells irradiated with 1 Gy had recovered, whereas those irradiated with 5 Gy had not. Lipid and amino acid levels increased after the higher-level radiation, indicating degradation of membranes and proteins. These results suggest that MS-based metabolite profiling of γ-radiation-exposed human cells provides insight into the global metabolic alterations in these cells.
Collapse
|
27
|
Goudarzi M, Weber WM, Mak TD, Chung J, Doyle-Eisele M, Melo DR, Brenner DJ, Guilmette RA, Fornace AJ. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach. J Proteome Res 2014; 14:374-84. [PMID: 25333951 PMCID: PMC4286155 DOI: 10.1021/pr500913n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
In
this study ultra performance liquid chromatography (UPLC) coupled
to time-of-flight mass spectrometry in the MSE mode was
used for rapid and comprehensive analysis of metabolites in the serum
of mice exposed to internal exposure by Cesium-137 (137Cs). The effects of exposure to 137Cs were studied at
several time points after injection of 137CsCl in mice.
Over 1800 spectral features were detected in the serum of mice in
positive and negative electrospray ionization modes combined. Detailed
statistical analysis revealed that several metabolites associated
with amino acid metabolism, fatty acid metabolism, and the TCA cycle
were significantly perturbed in the serum of 137Cs-exposed
mice compared with that of control mice. While metabolites associated
with the TCA cycle and glycolysis increased in their serum abundances,
fatty acids such as linoleic acid and palmitic acid were detected
at lower levels in serum after 137Cs exposure. Furthermore,
phosphatidylcholines (PCs) were among the most perturbed ions in the
serum of 137Cs-exposed mice. This is the first study on
the effects of exposure by an internal emitter in serum using a UPLC–MSE approach. The results have put forth a panel of metabolites,
which may serve as potential serum markers to 137Cs exposure.
Collapse
Affiliation(s)
- Maryam Goudarzi
- Biochemistry and Molecular and Cellular Biology, Georgetown University , 3970 Reservoir Road NW, Washington, DC 20057, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model. Proteomes 2014; 2:382-398. [PMID: 28250387 PMCID: PMC5302749 DOI: 10.3390/proteomes2030382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023] Open
Abstract
To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues.
Collapse
|
29
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
30
|
Cheema AK, Pathak R, Zandkarimi F, Kaur P, Alkhalil L, Singh R, Zhong X, Ghosh S, Aykin-Burns N, Hauer-Jensen M. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J Proteome Res 2014; 13:3065-74. [PMID: 24824572 PMCID: PMC4053308 DOI: 10.1021/pr500278t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Although radiation-induced tissue-specific
injury is well documented,
the underlying molecular changes resulting in organ dysfunction and
the consequences thereof on overall metabolism and physiology have
not been elucidated. We previously reported the generation and characterization
of a transgenic mouse strain that ubiquitously overexpresses Gfrp
(GTPH-1 feedback regulatory protein) and exhibits higher oxidative
stress, which is a possible result of decreased tetrahydrobiopterin
(BH4) bioavailability. In this study, we report genotype-dependent
changes in the metabolic profiles of liver tissue after exposure to
nonlethal doses of ionizing radiation. Using a combination of untargeted
and targeted quantitative mass spectrometry, we report significant
accumulation of metabolites associated with oxidative stress, as well
as the dysregulation of lipid metabolism in transgenic mice after
radiation exposure. The radiation stress seems to exacerbate lipid
peroxidation and also results in higher expression of genes that facilitate
liver fibrosis, in a manner that is dependent on the genetic background
and post-irradiation time interval. These findings suggest the significance
of Gfrp in regulating redox homeostasis in response to stress induced
by ionizing radiation affecting overall physiology.
Collapse
Affiliation(s)
- Amrita K Cheema
- Departments of Oncology, ‡Biochemistry, Molecular and Cellular Biology, and ∥Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center , Washington DC 20057, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Zhou X, Li C, Wu J, Kuo JE, Wang C. Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. MOLECULAR BIOSYSTEMS 2014; 10:1441-9. [PMID: 24647718 DOI: 10.1039/c3mb70526a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid radiation injury early triage after a radiological or nuclear exposure is vital for treatment of a large number of wounded people. Owing to the high-throughput analysis and minimally invasive nature of sample collection, radiation metabolomics has been recently applied to radiation damage research. In the present study, exploring the feasibility of estimating the acute radiation injury for early triage by means of urinary amino acid target analysis was attempted using a high performance liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) technique combined with multivariate statistical analysis. The non-linear kernel partial least squares (KPLS) model was used to separate the control and different radiation dose groups. The classification of different groups was performed after feature selection instead of before feature selection, because of its better separation. The classification accuracy at various radiation injury levels at different time points (5, 24, 48 and 72 h) post-irradiation exposure was investigated. For most of the radiation damage levels, the classification accuracy at 72 h after exposure was superior to that at earlier time points. Additionally, the potential radiation injury biomarkers selected suggested that the urea cycle, glycine, serine and threonine metabolism, alanine, aspartate and glutamine metabolism and related metabolic pathways were involved. The findings suggest that non-invasive urinary biomarkers have great potential for serving as an effective tool for rapid triage of mass casualties in nuclear accidents and understanding the pathogenesis of radiation injury.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou Industrial Park Ren'ai Road 199, Suzhou 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ, Datta K. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure. PLoS One 2014; 9:e87079. [PMID: 24475228 PMCID: PMC3903607 DOI: 10.1371/journal.pone.0087079] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 01/26/2023] Open
Abstract
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Prabhjit Kaur
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Rajbir Singh
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
- Center of Excellence In Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
33
|
Manna SK, Krausz KW, Bonzo JA, Idle JR, Gonzalez FJ. Metabolomics reveals aging-associated attenuation of noninvasive radiation biomarkers in mice: potential role of polyamine catabolism and incoherent DNA damage-repair. J Proteome Res 2013; 12:2269-81. [PMID: 23586774 PMCID: PMC3678303 DOI: 10.1021/pr400161k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Development of methods for rapid screening and stratification of subjects after exposure is an integral part of countermeasures against radiation. The potential demographic and exposure history-related heterogeneity of exposed populations warrants robust biomarkers that withstand and reflect such differences. In this study, the effect of aging and repeated exposure on the metabolic response to sublethal irradiation was examined in mice using UPLC-ESI-QTOF mass spectrometry. Aging attenuated postexposure elevation in excretions of DNA damage biomarkers as well as N(1)-acetylspermidine. Although N(1)-acetylspermidine and 2'-deoxyuridine elevation was highly correlated in all age groups, xanthine and N(1)-acetylspermidine elevation was poorly correlated in older mice. These results may reflect the established decline in DNA damage-repair efficiency associated with aging and indicate a novel role for polyamine metabolism in the process. Although repeated irradiation at long intervals did not affect the elevation of N(1)-acetylspermidine, 2'-deoxyuridine, and xanthine, it did significantly attenuate the elevation of 2'-deoxycytidine and thymidine compared to a single exposure. However, these biomarkers were found to identify exposed subjects with accuracy ranging from 82% (xanthosine) to 98% (2'-deoxyuridine), irrespective of their age and exposure history. This indicates that metabolic biomarkers can act as robust noninvasive signatures of sublethal radiation exposure.
Collapse
Affiliation(s)
- Soumen K. Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Jessica A. Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| | - Jeffrey R. Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
- Hepatology Research Unit, Department of Clinical Research, University of Bern, Bern Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20852
| |
Collapse
|
34
|
Ghosh SP, Singh R, Chakraborty K, Kulkarni S, Uppal A, Luo Y, Kaur P, Pathak R, Kumar KS, Hauer-Jensen M, Cheema AK. Metabolomic changes in gastrointestinal tissues after whole body radiation in a murine model. MOLECULAR BIOSYSTEMS 2013; 9:723-31. [PMID: 23403731 PMCID: PMC3601576 DOI: 10.1039/c3mb25454b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exposure to ionizing radiation (IR) elicits a set of complex biological responses involving gene expression and protein turnover that ultimately manifest as dysregulation of metabolic processes representing the cellular phenotype. Although radiation biomarkers have been reported in urine and serum, they are not informative about IR mediated tissue or organ specific injury. In the present study we report IR induced metabolic changes in gastrointestinal (GI) tissue of CD2F1 mice using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry. Post-radiation GI injury is a critical determinant of survival after exposure to IR. Our results show a distinct dose and time dependent response to GI tissue injury.
Collapse
Affiliation(s)
- Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20889-5603, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|