1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMID: 39674629 PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment. In recent years, the CBMN assay has become well-validated and emerged as a method of choice for evaluating occupational and accidental exposures scenario. It is feasible due to its cost-effective, simple, and rapid dose assessment rather than a conventional chromosome aberration assay. PubMed search tool was used with keywords of MN, biodosimetry, radiotherapy and restricted to human samples. Since Fenech and Morely developed the assay, it has undergone many technical and technological reforms as a biomarker of various applications. In this review, we have abridged recent developments of the CBMN assay in radiation triage and biodosimetry, focusing on (a) the influence of variables on dose estimation, (b) the importance of baseline frequency and reported dose-response coefficient values among different laboratories, (c) inter-laboratory comparison and (d) its limitations and means to overcome them.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
2
|
Schüle S, Ostheim P, Port M, Abend M. Identifying radiation responsive exon-regions of genes often used for biodosimetry and acute radiation syndrome prediction. Sci Rep 2022; 12:9545. [PMID: 35680903 PMCID: PMC9184472 DOI: 10.1038/s41598-022-13577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Gene expression (GE) analysis of FDXR, DDB2, WNT3 and POU2AF1 is a promising approach for identification of clinically relevant groups (unexposed, low- and high exposed) after radiological/nuclear events. However, results from international biodosimetry exercises have shown differences in dose estimates based on radiation-induced GE of the four genes. Also, differences in GE using next-generation-sequening (NGS) and validation with quantitative real-time polymerase chain reaction (qRT-PCR) was reported. These discrepancies could be caused by radiation-responsive differences among exons of the same gene. We performed GE analysis with qRT-PCR using TaqMan-assays covering all exon-regions of FDXR, DDB2, WNT3 and POU2AF1. Peripheral whole blood from three healthy donors was X-irradiated with 0, 0.5 and 4 Gy. After 24 and 48 h a dose-dependent up-regulation across almost all exon-regions for FDXR and DDB2 (4–42-fold) was found. A down-regulation for POU2AF1 (two- to threefold) and WNT3 (< sevenfold) at the 3’-end was found at 4 Gy irradiation only. Hence, this confirms our hypothesis for radiation-responsive exon-regions for WNT3 and POU2AF1, but not for FDXR and DDB2. Finally, we identified the most promising TaqMan-assays for FDXR (e.g. AR7DTG3, Hs00244586_m1), DDB2 (AR47X6H, Hs03044951_m1), WNT3 (Hs00902258_m1, Hs00902257_m1) and POU2AF1 (Hs01573370_g1, Hs01573371_m1) for biodosimetry purposes and acute radiation syndrome prediction, considering several criteria (detection limit, dose dependency, time persistency, inter-individual variability).
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
3
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
4
|
Gregoire E, Barquinero JF, Gruel G, Benadjaoud M, Martinez JS, Beinke C, Balajee A, Beukes P, Blakely WF, Dominguez I, Duy PN, Gil OM, Güçlü I, Guogyte K, Hadjidekova SP, Hadjidekova V, Hande P, Jang S, Lumniczky K, Meschini R, Milic M, Montoro A, Moquet J, Moreno M, Norton FN, Oestreicher U, Pajic J, Sabatier L, Sommer S, Testa A, Terzoudi G, Valente M, Venkatachalam P, Vral A, Wilkins RC, Wojcik A, Zafiropoulos D, Kulka U. RENEB Inter-Laboratory comparison 2017: limits and pitfalls of ILCs. Int J Radiat Biol 2021; 97:888-905. [PMID: 33970757 DOI: 10.1080/09553002.2021.1928782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.
Collapse
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Gaetan Gruel
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Adayabalam Balajee
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health, Sciences, Bethesda, MD, USA
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | | | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | | | - Alegria Montoro
- Fundación para la Investigación del Hospital Universitario LA FE de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud - Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Farrah N Norton
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ursula Oestreicher
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux-Roses, France and Université Paris-Saclay, France
| | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L´Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research "Demokritos", NCSR"D", Athens, Greece
| | | | | | - Anne Vral
- Radiobiology Research Unit, Gent University, Gent, Belgium
| | | | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | | | - Ulrike Kulka
- Federal Office for Radiation Protection (BfS), Oberschleissheim, Germany
| |
Collapse
|
5
|
Chaurasia RK, Bhat NN, Gaur N, Shirsath KB, Desai UN, Sapra BK. Establishment and multiparametric-cytogenetic validation of 60Co-gamma-ray induced, phospho-gamma-H2AX calibration curve for rapid biodosimetry and triage management during radiological emergencies. Mutat Res 2021; 866:503354. [PMID: 33985694 DOI: 10.1016/j.mrgentox.2021.503354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
Exposure to ionizing radiation is unavoidable to our modern developing society as its applications are widespread and increasing with societal development. The exposures may be planned as in medical applications or may be unplanned as in occupational work and radiological emergencies. Dose quantification of planned and unplanned exposures is essential to make crucial decisions for management of such exposures. This study aims to establish ex-vivo dose-response curve for 60Co-gamma-ray induced gamma-H2AX-foci by immunofluorescence using microscopy and flowcytometry with human lymphocytes. This technique has the potential to serve as a rapid tool for dose estimation and triage application during small to large scale radiological emergencies and clinical exposures. Response curves were generated for the dose range 0-4 Gy (at 1, 2, 4, 8, 16, 24, 48, 72 and 96 h of incubation after irradiation) with microscopy and 0-8 Gy (at 2, 4, 8, 16 and 24 h of incubation after irradiation) with flow cytometry. These curves can be applied for dose reconstruction when post exposure sampling is delayed up to 96 h. In order to evaluate Minimum Detection Limit (MDL) of the assay, variation of background frequency of gamma-H2AX-foci was measured in 12 volunteers. To understand the application window of the assay, gamma-H2AX foci decay kinetics has been studied up to 96 h with microscopy and response curves were generated from 1 to 96 hours post exposure. Gamma-H2AX fluorescence intensity decay kinetics was also studied up to 96 h with flow cytometry and response curves were generated from 2 to 24 hours post irradiation. Established curves were validated with dose blinded samples and also compared with standard cytogenetic assays. An inter-comparison of dose estimates was made among gamma-H2AX assay, dicentric aberrations and reciprocal translocations for application window in various dose ranges and time of blood collection after exposures.
Collapse
Affiliation(s)
- Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - N N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - Neeraj Gaur
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - K B Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - U N Desai
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| |
Collapse
|
6
|
Giussani A, Lopez MA, Romm H, Testa A, Ainsbury EA, Degteva M, Della Monaca S, Etherington G, Fattibene P, Güclu I, Jaworska A, Lloyd DC, Malátová I, McComish S, Melo D, Osko J, Rojo A, Roch-Lefevre S, Roy L, Shishkina E, Sotnik N, Tolmachev SY, Wieser A, Woda C, Youngman M. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:357-387. [PMID: 32372284 PMCID: PMC7369133 DOI: 10.1007/s00411-020-00845-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/15/2020] [Indexed: 05/17/2023]
Abstract
This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.
Collapse
Affiliation(s)
- A Giussani
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany.
| | - M A Lopez
- CIEMAT - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av.da Complutense 40, 28040, Madrid, Spain
| | - H Romm
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany
| | - A Testa
- ENEA Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
| | - E A Ainsbury
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - M Degteva
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
| | - S Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - G Etherington
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - P Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - I Güclu
- Cekmece Nuclear Research and Training Center Radiobiology Unit Yarımburgaz, Turkish Atomic Energy Authority, Istanbul, Turkey
| | - A Jaworska
- DSA-Norwegian Radiation and Nuclear Safety Authority, Skøyen, P. O. Box 329, 0213, Oslo, Norway
| | - D C Lloyd
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - I Malátová
- SURO-National Radiation Protection Institute, Bartoskova 28, 14000, Prague, Czech Republic
| | - S McComish
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - D Melo
- Melohill Technology, 1 Research Court, Rockville, MD, 20850, USA
| | - J Osko
- National Centre for Nuclear Research, A. Soltana 7, 05400, Otwock, Poland
| | - A Rojo
- ARN-Nuclear Regulatory Authority of Argentina, Av. del Libertador 8250, Buenos Aires, Argentina
| | - S Roch-Lefevre
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - L Roy
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - E Shishkina
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
- Chelyabinsk State University (ChelSU), 129, Bratiev Kashirinih Street, Chelyabinsk, 454001, Russia
| | - N Sotnik
- Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - S Y Tolmachev
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - A Wieser
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - C Woda
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - M Youngman
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| |
Collapse
|
7
|
|
8
|
Micronucleus Assay: The State of Art, and Future Directions. Int J Mol Sci 2020; 21:ijms21041534. [PMID: 32102335 PMCID: PMC7073234 DOI: 10.3390/ijms21041534] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.
Collapse
|
9
|
Zaguia N, Laplagne E, Colicchio B, Cariou O, Al Jawhari M, Heidingsfelder L, Hempel WM, Jrad BBH, Jeandidier E, Dieterlen A, Carde P, Voisin P, M’kacher R. A new tool for genotoxic risk assessment: Reevaluation of the cytokinesis-block micronucleus assay using semi-automated scoring following telomere and centromere staining. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503143. [DOI: 10.1016/j.mrgentox.2020.503143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
|
10
|
Repin M, Pampou S, Brenner DJ, Garty G. The use of a centrifuge-free RABiT-II system for high-throughput micronucleus analysis. JOURNAL OF RADIATION RESEARCH 2020; 61:68-72. [PMID: 31825079 PMCID: PMC6976732 DOI: 10.1093/jrr/rrz074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The cytokinesis-block micronucleus (CBMN) assay is considered to be the most suitable biodosimetry method for automation. Previously, we automated this assay on a commercial robotic biotech high-throughput system (RABiT-II) adopting both a traditional and an accelerated micronucleus protocol, using centrifugation steps for both lymphocyte harvesting and washing, after whole blood culturing. Here we describe further development of our accelerated CBMN assay protocol for use on high-throughput/high content screening (HTS/HCS) robotic systems without a centrifuge. This opens the way for implementation of the CBMN assay on a wider range of commercial automated HTS/HCS systems and thus increases the potential capacity for dose estimates following a mass-casualty radiological event.
Collapse
Affiliation(s)
- Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sergey Pampou
- Columbia Genome Center High Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, 10533, USA
| |
Collapse
|
11
|
Jang S, Suto Y, Liu J, Liu Q, Zuo Y, Duy PN, Miura T, Abe Y, Hamasaki K, Suzuki K, Kodama S. CAPABILITIES OF THE ARADOS-WG03 REGIONAL NETWORK FOR LARGE-SCALE RADIOLOGICAL AND NUCLEAR EMERGENCY SITUATIONS IN ASIA. RADIATION PROTECTION DOSIMETRY 2019; 186:139-142. [PMID: 30576530 DOI: 10.1093/rpd/ncy279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
In 2015, the Asian Radiation Dosimetry Group established a regional network of biological dosimetry laboratories known as the ARADOS-WG03 (Working Group 03; Biological Dosimetry). A survey was conducted in 2017 to evaluate the capabilities and capacities of the participating laboratories for emergency preparedness and responses in large-scale nuclear and/or radiological incidents. The results of this survey were identified and assessed. The data provide important information on the current state of emergency cytogenetic biological dosimetry capabilities in the Asian region.
Collapse
Affiliation(s)
- S Jang
- Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Y Suto
- National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - J Liu
- National Institute of Radiation Protection (NIRP), China CDC, Beijing, China
| | - Q Liu
- National Institute of Radiation Protection (NIRP), China CDC, Beijing, China
| | - Y Zuo
- China Institute of Radiation Protection (CIRP), China National Nuclear Corporation (CNNC), Taiyuen, China
| | - P N Duy
- Nuclear Research Institute (NRI), Viet Nam Atomic Energy Commission, VINATOM, Dalat, Viet Nam
| | - T Miura
- Hirosaki University, Hirosaki, Japan
| | - Y Abe
- Fukushima Medical University, Fukushima, Japan
| | - K Hamasaki
- Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - K Suzuki
- Nagasaki University, Nagasaki, Japan
| | - S Kodama
- Osaka Prefacture University, Osaka, Japan
| |
Collapse
|
12
|
Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:65-71. [PMID: 30389164 DOI: 10.1016/j.mrgentox.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023]
Abstract
In radiation accidents and large-scale radiological emergencies, a fast and reliable triage of individuals according to their degree of exposure is important for accident management and identification of those who need medical assistance. In this work, the applicability of cell-fusion-mediated premature chromosome condensation (PCC) in G0-lymphocytes is examined for the development of a rapid, minimally invasive and automatable micro-PCC assay, which requires blood volumes of only 100 μl and can be performed in 96-well plates, towards risk assessments and categorization of individuals based on dose estimates. Chromosomal aberrations are visualized for dose-estimation analysis within two hours, without the need of blood culturing for two days, as required by conventional cytogenetics. The various steps of the standard-PCC procedure were adapted and, for the first time, lymphocytes in blood volumes of 100 μl were successfully fused with CHO-mitotics in 96-well plates of 2 ml/well. The plates are advantageous for high-throughput analysis since the various steps required are applied to all 96-wells simultaneously. Interestingly, the use of only 1.5 ml hypotonic and Carnoy's fixative per well offers high quality PCC-images, and the morphology of lymphocyte PCCs is identical to that obtained using the conventional PCC-assay, which requires much larger blood volumes and 15 ml tubes. For dose assessments, appropriate calibration curves were constructed and for PCC analysis specialized software (MetaSystems) was used. The micro-PCC assay can be combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric (C/T) peptide nucleic acid (PNA) probes. This allows dose assessments on the basis of accurate scoring of dicentric and centric ring chromosomes in G0-lymphocyte PCCs, which is particularly helpful when further evaluation into treatment-level categories of exposed individuals is needed. The micro-PCC assay has significant advantages for early triage biodosimetry when compared to other cytogenetic biodosimetry assays. It is rapid, cost-effective, and could pave the way to its subsequent automation.
Collapse
|
13
|
Ainsbury EA, Samaga D, Della Monaca S, Marrale M, Bassinet C, Burbidge CI, Correcher V, Discher M, Eakins J, Fattibene P, Güçlü I, Higueras M, Lund E, Maltar-Strmecki N, McKeever S, Rääf CL, Sholom S, Veronese I, Wieser A, Woda C, Trompier F. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS. RADIATION PROTECTION DOSIMETRY 2018; 178:382-404. [PMID: 28981844 DOI: 10.1093/rpd/ncx125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 05/16/2023]
Abstract
Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Daniel Samaga
- Bundesamt für Strahlenschutz, Ingolstaedter Landstr. 1, 85764 Oberschleissheim, Germany
| | - Sara Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry and Advanced Technologies Network Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Celine Bassinet
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| | - Christopher I Burbidge
- Environmental Protection Agency, Office of Radiological Protection, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland
| | - Virgilio Correcher
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de la Moncloa, Complutense, 40, 28040 Madrid, Spain
| | - Michael Discher
- University of Salzburg, Department of Geography and Geology, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Jon Eakins
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Paola Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 192, 06510, Çankaya - Ankara, Turkey
| | - Manuel Higueras
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
| | - Eva Lund
- Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Nadica Maltar-Strmecki
- Ruder Boškovic Institute, Division of Physical Chemistry, Laboratory for Magnetic Resonances, Bijenicka cesta 54,10000 Zagreb, Croatia
| | - Stephen McKeever
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Christopher L Rääf
- Medicinsk strålningsfysik, Institutionen för Translationell Medicin, Lunds universitet, Skånes universitetssjukhus SUS, SE-205 02 Malmö, Sweden
| | - Sergey Sholom
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Ivan Veronese
- Università degli Studi di Milano, Department of Physics and National Institute of Nuclear Physics, Section of Milan, Via Celoria 16, 20133 - Milano, Italy
| | - Albrecht Wieser
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Clemens Woda
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Francois Trompier
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| |
Collapse
|
14
|
Grégoire E, Roy L, Buard V, Delbos M, Durand V, Martin-Bodiot C, Voisin P, Sorokine-Durm I, Vaurijoux A, Voisin P, Baldeyron C, Barquinero JF. Twenty years of FISH-based translocation analysis for retrospective ionizing radiation biodosimetry. Int J Radiat Biol 2018; 94:248-258. [DOI: 10.1080/09553002.2018.1427903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Eric Grégoire
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Laurence Roy
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Valérie Buard
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Martine Delbos
- Institut Fédératif de Biologie, CHU Toulouse Purpan, Toulouse, France
| | - Valérie Durand
- Bureau des Etudes Biomédicales chez l’Animal, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Cécile Martin-Bodiot
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Pascale Voisin
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Irène Sorokine-Durm
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Aurélie Vaurijoux
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Philippe Voisin
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - Céline Baldeyron
- Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sureté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | | |
Collapse
|
15
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
16
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
18
|
Karachristou I, Karakosta M, Pantelias A, Hatzi V, Pantelias G, Thanassoulas A, Karaiskos P, Dimitriou P, Terzoudi GI. Biodosimetry for High-Dose Exposures Based on Dicentric Analysis in Lymphocytes Released from the G2-Block by Caffeine. RADIATION PROTECTION DOSIMETRY 2016; 172:230-237. [PMID: 27344061 DOI: 10.1093/rpd/ncw151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-dose assessments using the conventional dicentric assay are essentially restricted to doses up to 5 Gy and only to lymphocytes that succeed to proceed to first post-exposure mitosis. Since G2-checkpoint activation facilitates DNA damage recognition and arrest of damaged cells, caffeine is used to release G2-blocked lymphocytes overcoming the mitotic index and dicentric yield saturation problems, enabling thus dicentric analysis even at high-dose exposures. Using the fluorescence in situ hybridization technique with telomere and centromere peptide nucleic acid probes, the released lymphocytes, identified as metaphases with decondensed chromosomes following 1.5 h caffeine treatment, show increased yield of dicentrics compared to that obtained in lymphocytes that reach metaphase without G2-checkpoint abrogation by caffeine. Here, a 3-h caffeine/colcemid co-treatment before harvesting at 55 h post-exposure is used so that the dicentric analysis using Giemsa staining is based predominantly on lymphocytes released from the G2-block, increasing thus dicentric yield and enabling construction of a dose-response calibration curve with improved precision of high-dose estimates.
Collapse
Affiliation(s)
- Ioanna Karachristou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Maria Karakosta
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Antonio Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Vasiliki Hatzi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Gabriel Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Angelos Thanassoulas
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Dimitriou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| |
Collapse
|
19
|
Terzoudi GI, Pantelias G, Darroudi F, Barszczewska K, Buraczewska I, Depuydt J, Georgieva D, Hadjidekova V, Hatzi VI, Karachristou I, Karakosta M, Meschini R, M'Kacher R, Montoro A, Palitti F, Pantelias A, Pepe G, Ricoul M, Sabatier L, Sebastià N, Sommer S, Vral A, Zafiropoulos D, Wojcik A. Dose assessment intercomparisons within the RENEB network using G 0-lymphocyte prematurely condensed chromosomes (PCC assay). Int J Radiat Biol 2016; 93:48-57. [PMID: 27813725 DOI: 10.1080/09553002.2016.1234725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. MATERIALS AND METHODS Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. RESULTS Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. CONCLUSIONS Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.
Collapse
Affiliation(s)
- Georgia I Terzoudi
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Gabriel Pantelias
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Firouz Darroudi
- b Leiden University Medical Centre , Department of Toxicogenetics , Leiden , The Netherlands
| | - Katarzyna Barszczewska
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | | | - Julie Depuydt
- d Faculty of Medicine and Health Sciences , Universiteit Gent , Gent , Belgium
| | - Dimka Georgieva
- e National Center for Radiobiology and Radiation Protection , Sofia , Bulgaria
| | - Valeria Hadjidekova
- e National Center for Radiobiology and Radiation Protection , Sofia , Bulgaria
| | - Vasiliki I Hatzi
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Ioanna Karachristou
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Maria Karakosta
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Roberta Meschini
- f Department of Ecological and Biological Sciences , University of Tuscia , Viterbo , Italy
| | - Radhia M'Kacher
- g PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, Université Paris-Saclay , France
| | - Alegria Montoro
- h Hospital Universitario y Politécnico La Fe , Valencia , Spain
| | - Fabrizio Palitti
- f Department of Ecological and Biological Sciences , University of Tuscia , Viterbo , Italy
| | - Antonio Pantelias
- a National Centre for Scientific Research "Demokritos" , Health Physics, Radiobiology & Cytogenetics Laboratory , Athens , Greece
| | - Gaetano Pepe
- f Department of Ecological and Biological Sciences , University of Tuscia , Viterbo , Italy
| | - Michelle Ricoul
- g PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, Université Paris-Saclay , France
| | - Laure Sabatier
- g PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, Université Paris-Saclay , France
| | | | - Sylwester Sommer
- c Institut of Nuclear Chemistry and Technology , Warsaw , Poland
| | - Anne Vral
- d Faculty of Medicine and Health Sciences , Universiteit Gent , Gent , Belgium
| | | | - Andrzej Wojcik
- j Stockholm University, Institute Molecular Biosciences , Stockholm , Sweden.,k Institute for Biology, Jan Kochanowski University , Kielce , Poland
| |
Collapse
|
20
|
Oestreicher U, Samaga D, Ainsbury E, Antunes AC, Baeyens A, Barrios L, Beinke C, Beukes P, Blakely WF, Cucu A, De Amicis A, Depuydt J, De Sanctis S, Di Giorgio M, Dobos K, Dominguez I, Duy PN, Espinoza ME, Flegal FN, Figel M, Garcia O, Monteiro Gil O, Gregoire E, Guerrero-Carbajal C, Güçlü İ, Hadjidekova V, Hande P, Kulka U, Lemon J, Lindholm C, Lista F, Lumniczky K, Martinez-Lopez W, Maznyk N, Meschini R, M’kacher R, Montoro A, Moquet J, Moreno M, Noditi M, Pajic J, Radl A, Ricoul M, Romm H, Roy L, Sabatier L, Sebastià N, Slabbert J, Sommer S, Stuck Oliveira M, Subramanian U, Suto Y, Que T, Testa A, Terzoudi G, Vral A, Wilkins R, Yanti L, Zafiropoulos D, Wojcik A. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int J Radiat Biol 2016; 93:20-29. [DOI: 10.1080/09553002.2016.1233370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Daniel Samaga
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | | | | | - Julie Depuydt
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | | | - Katalin Dobos
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Pham Ngoc Duy
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | | | - Farrah N. Flegal
- Canadian Nuclear Laboratories, Radiobiology & Health, Chalk River, Ontario, Canada
| | - Markus Figel
- Helmholtz Zentrum München, Auswertungsstelle für Strahlendosimeter
| | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones (CPHR), La Havana. Cuba
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Lisbon, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - İnci Güçlü
- Turkish Atomic Energy Authority, Cekmece Nuclear Research and Traning Center Radiobiology Unit Yarımburgaz, Istanbul, Turkey
| | | | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine: National University of Singapore, Singapore
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Research Institute for Radiobiology & Radiohygiene, Budapest, Hungary
| | | | - Nataliya Maznyk
- Institute for Medical Radiology of National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| | | | - Radia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Alegria Montoro
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Spain
| | | | - Jelena Pajic
- Serbian Institute of Occupational Health, Radiation Protection Center, Belgrade, Serbia
| | - Analía Radl
- Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Horst Romm
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France and Université Paris-Saclay, France
| | - Natividad Sebastià
- Fundacion para la Investigation del Hospital Universitario la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Uma Subramanian
- Armed Forces Radiobiology Research Institute, Uniformed Service University of the Health Sciences, Bethesda, USA
| | - Yumiko Suto
- National Institute of Radiological Sciences, Chiba, Japan
| | - Tran Que
- Center of Biotechnology, Nuclear Research Institute, Dalat, Vietnam
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- National Center for Scientific Research “Demokritos”, NCSR”D”, Greece
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | | | - LusiYanti Yanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Batan, Indonesia
| | | | - Andrzej Wojcik
- Stockholm University, Institute Molecular Biosciences, Stockholm, Sweden
| |
Collapse
|
21
|
Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, De Amicis A, Domínguez I, Fattibene P, Frøvig, AM, Gregoire E, Guogyte K, Hadjidekova V, Jaworska A, Kriehuber R, Lindholm C, Lloyd D, Lumniczky K, Lyng F, Meschini R, Mörtl S, Della Monaca S, Monteiro Gil O, Montoro A, Moquet J, Moreno M, Oestreicher U, Palitti F, Pantelias G, Patrono C, Piqueret-Stephan L, Port M, Prieto MJ, Quintens R, Ricoul M, Romm H, Roy L, Sáfrány G, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Thierens H, Turai I, Trompier F, Valente M, Vaz P, Voisin P, Vral A, Woda C, Zafiropoulos D, Wojcik A. RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol 2016; 93:2-14. [DOI: 10.1080/09553002.2016.1230239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | | | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | - David Lloyd
- affiliated to Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Fiona Lyng
- Dublin Institute of Technology, Dublin, Ireland
| | | | - Simone Mörtl
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montoro
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | - Mercedes Moreno
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | | | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Laure Piqueret-Stephan
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - María Jesus Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Géza Sáfrány
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, and Université Paris-Saclay, Paris, France
| | - Natividad Sebastià
- Hospital Universitario y Politécnico la Fe de la Comunidad Valenciana, Valencia, Spain
| | | | - Georgia Terzoudi
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, ĹEnergia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Istvan Turai
- affiliated to National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Philippe Voisin
- affiliated to Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Anne Vral
- Universiteit Gent, Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Clemens Woda
- HelmholtzZentrum München, Oberschleissheim, Germany
| | | | - Andrzej Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| |
Collapse
|
22
|
Monteiro Gil O, Vaz P, Romm H, De Angelis C, Antunes AC, Barquinero JF, Beinke C, Bortolin E, Burbidge CI, Cucu A, Della Monaca S, Domene MM, Fattibene P, Gregoire E, Hadjidekova V, Kulka U, Lindholm C, Meschini R, M’Kacher R, Moquet J, Oestreicher U, Palitti F, Pantelias G, Montoro Pastor A, Popescu IA, Quattrini MC, Ricoul M, Rothkamm K, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Trompier F, Vral A. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations. Int J Radiat Biol 2016; 93:136-141. [DOI: 10.1080/09553002.2016.1227107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Christina Beinke
- Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - Christopher Ian Burbidge
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Valeria Hadjidekova
- National Centre of Radiobiology and Radiation Protection (NCRRP), Sofia, Bulgaria
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Roberta Meschini
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Radhia M’Kacher
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Fabrizio Palitti
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | | | | | | | - Michelle Ricoul
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laure Sabatier
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Sostenibile, Rome, Italy
| | - François Trompier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Anne Vral
- Ghent University, Department of Basic Medical Sciences, Ghent, Belgium
| |
Collapse
|
23
|
Badie C, Hess J, Zitzelsberger H, Kulka U. Established and Emerging Biomarkers of Radiation Exposure. Clin Oncol (R Coll Radiol) 2016; 28:619-21. [DOI: 10.1016/j.clon.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
24
|
Ainsbury EA, Higueras M, Puig P, Einbeck J, Samaga D, Barquinero JF, Barrios L, Brzozowska B, Fattibene P, Gregoire E, Jaworska A, Lloyd D, Oestreicher U, Romm H, Rothkamm K, Roy L, Sommer S, Terzoudi G, Thierens H, Trompier F, Vral A, Woda C. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int J Radiat Biol 2016; 93:127-135. [PMID: 27572921 DOI: 10.1080/09553002.2016.1227106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | - Manuel Higueras
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Pedro Puig
- b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Jochen Einbeck
- c Department of Mathematical Sciences , Durham University , Durham , UK
| | - Daniel Samaga
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | | | | | - Beata Brzozowska
- e Stockholm University , Centre for Radiation Protection Research, Department of Molecular Bioscience, The Wenner-Gren Institute , Stockholm , Sweden.,f University of Warsaw , Faculty of Physics, Department of Biomedical Physics , Warsaw , Poland
| | | | - Eric Gregoire
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Alicja Jaworska
- i Norwegian Radiation Protection Authority (NRPA) , Østerås , Norway
| | - David Lloyd
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | | | - Horst Romm
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | - Kai Rothkamm
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,j University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Laurence Roy
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Sylwester Sommer
- k Institute of Nuclear Chemistry and Technology (ICHTJ) , Warsaw , Poland
| | - Georgia Terzoudi
- l National Centre for Scientific Research Demokritos , Athens , Greece
| | | | - Francois Trompier
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Anne Vral
- m Ghent University , Ghent , Belgium
| | - Clemens Woda
- n Helmholtz Zentrum München (HMGU) , Neuherberg , Germany
| |
Collapse
|
25
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
26
|
Romm H, Ainsbury EA, Barquinero JF, Barrios L, Beinke C, Cucu A, Domene MM, Filippi S, Monteiro Gil O, Gregoire E, Hadjidekova V, Hatzi V, Lindholm C, M´ kacher R, Montoro A, Moquet J, Noditi M, Oestreicher U, Palitti F, Pantelias G, Prieto MJ, Popescu I, Rothkamm K, Sebastià N, Sommer S, Terzoudi G, Testa A, Wojcik A. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int J Radiat Biol 2016; 93:110-117. [DOI: 10.1080/09553002.2016.1206228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | | | | | | | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Mercedes Moreno Domene
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Silvia Filippi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Octávia Monteiro Gil
- Centro de Ciêincias e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Vasia Hatzi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Radhia M´ kacher
- Commissariat à l´ Énergie Atomique, Paris, France
- Cell Environment, Paris, France
| | | | - Jayne Moquet
- Public Health England, CRCE, Chilton, Didcot, UK
| | - Mihaela Noditi
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | - Fabrizio Palitti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - María Jesús Prieto
- Servicio Madrileño de Salud – Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irina Popescu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | - Kai Rothkamm
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Andrzej Wojcik
- Stockholm University, Department of Molecular Biosciences, Stockholm, Sweden and Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
27
|
Depuydt J, Baeyens A, Barnard S, Beinke C, Benedek A, Beukes P, Buraczewska I, Darroudi F, De Sanctis S, Dominguez I, Monteiro Gil O, Hadjidekova V, Kis E, Kulka U, Lista F, Lumniczky K, M’kacher R, Moquet J, Obreja D, Oestreicher U, Pajic J, Pastor N, Popova L, Regalbuto E, Ricoul M, Sabatier L, Slabbert J, Sommer S, Testa A, Thierens H, Wojcik A, Vral A. RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay). Int J Radiat Biol 2016; 93:36-47. [DOI: 10.1080/09553002.2016.1206231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Julie Depuydt
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ans Baeyens
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Christina Beinke
- Bundeswehr Institut für Radiobiology, Universität Ulm, Munich, Germany
| | - Anett Benedek
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Philip Beukes
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | | | | | | | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Enikő Kis
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome, Italy
| | - Katalin Lumniczky
- National Public Health Centre – National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Radhia M’kacher
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Doina Obreja
- Institutul National de Sanatate Publica, Bucuresti, Romania
| | - Ursula Oestreicher
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Jelena Pajic
- Serbian Institute of Occupational Health “Dr Dragomir Karajovic”, Radiation Protection Center, Belgrado, Serbia
| | | | - Ljubomira Popova
- National Center for Radiobiology and Radiation Protection, Sofia, Bulgaria
| | | | - Michelle Ricoul
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l’Energy Atomique, France
| | - Jacobus Slabbert
- National Research Foundation (NRF) iThemba LABS, Somerset West, South Africa
| | | | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Hubert Thierens
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Andrzej Wojcik
- Institute Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
28
|
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, Rothkamm K. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 2016; 93:58-64. [DOI: 10.1080/09553002.2016.1207822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Albena Staynova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Carita Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Octávia Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Vanda Martins
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Ute Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Charlot Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
- Themba LABS, National Research Foundation, Somerset West, South Africa
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
- Department of Radiotherapy & Radio-Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Gregoire E, Ainsbury L, Barrios L, Bassinet C, Fattibene P, Kulka U, Oestreicher U, Pantelias G, Terzoudi G, Trompier F, Voisin P, Vral A, Wojcik A, Roy L. The harmonization process to set up and maintain an operational biological and physical retrospective dosimetry network: QA QM applied to the RENEB network. Int J Radiat Biol 2016; 93:81-86. [DOI: 10.1080/09553002.2016.1206232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Liz Ainsbury
- Public Health England, CRCE, Chilton, Didcot, Oxon, UK
| | | | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | | | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Ursula Oestreicher
- Bundesamt fuer Strahlenschutz, Department Radiation Protection and Health, Neuherberg, Germany
| | - Gabriel Pantelias
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Georgia Terzoudi
- National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Francois Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Philippe Voisin
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Anne Vral
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
30
|
Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes AC, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Castaño CH, Čemusová Z, Christiansson M, Cordero SM, Cosler G, Monaca SD, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever SW, Meade A, Medipally D, Meschini R, M’kacher R, Gil OM, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto MJ, Quattrini MC, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey OV, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans – joint RENEB and EURADOS inter-laboratory comparisons. Int J Radiat Biol 2016; 93:99-109. [DOI: 10.1080/09553002.2016.1206233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elizabeth Ainsbury
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Christophe Badie
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Stephen Barnard
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Grainne Manning
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Jayne Moquet
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology (BIR), Munich, Germany
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Celine Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm (UULM), Munich, Germany
| | | | - Lily Bossin
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
- Durham University (DUR), Durham, UK
| | - Clare Bricknell
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Kamil Brzoska
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Iwona Buraczewska
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | | | - Zina Čemusová
- Státní ústav radiační ochrany (SÚRO), Prague, Czech Republic
| | | | | | - Guillaume Cosler
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | | | | | - Michael Discher
- Salzburg University Department of Geography and Geology, Salzburg, Austria
| | | | | | - Jon Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | | | | | - Monika Frenzel
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Dimka Georgieva
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | | | | | | | - Rositsa Hristova
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Maria Karakosta
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Enikő Kis
- National Public Health Centre – National Research Institute for Radiobiology and Radiohygiene (NRIRR), Hungary
| | - Ralf Kriehuber
- Radiation Biology Unit Forschungszentrum Jülich GmbH (FzJ), Jülich, Germany
| | - Jungil Lee
- Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea
| | - David Lloyd
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Institute for Radiobiology and Radiohygiene (NRIRR), Hungary
| | - Fiona Lyng
- Dublin Institute of Technology (DIT), Dublin, Ireland
| | - Ellina Macaeva
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
- Ghent University (GU), Ghent, Belgium
| | | | - S. Vanda Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Aidan Meade
- Dublin Institute of Technology (DIT), Dublin, Ireland
| | | | | | - Radhia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montero
- Radiation Protection Service, IIS La Fe, Health Research Institute (LAFE), Spain
| | - Mercedes Moreno
- Laboratorio de Dosimetría Biológica, Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañón (SERMAS), Spain
| | | | - Ursula Oestreicher
- Bundesamt fuer Strahlenschutz (BfS), Department Radiation Protection and Health, Neuherberg, Germany
| | - Dominik Oskamp
- Radiation Biology Unit Forschungszentrum Jülich GmbH (FzJ), Jülich, Germany
| | | | - Valentina Palma
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Gabriel Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Jerome Pateux
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | - Clarice Patrono
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Gaetano Pepe
- Università degli Studi della Tuscia (UNITUS), Italy
| | - Matthias Port
- Bundeswehr Institute of Radiobiology (BIR), Munich, Germany
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañón (SERMAS), Spain
| | | | - Roel Quintens
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Natividad Sebastià
- Radiation Protection Service, IIS La Fe, Health Research Institute (LAFE), Spain
| | | | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Albena Staynova
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Sonja Strunz
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Georgia Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Antonella Testa
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Francois Trompier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Marco Valente
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | | | - Ivan Veronese
- Università degli Studi di Milano (UNIMI), Milano, Italy
| | | | - Clemens Woda
- Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| |
Collapse
|
31
|
Beinke C, Port M, Riecke A, Ruf CG, Abend M. Adaption of the Cytokinesis-Block Micronucleus Cytome Assay for Improved Triage Biodosimetry. Radiat Res 2016; 185:461-72. [DOI: 10.1667/rr14294.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C. Beinke
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - A. Riecke
- Department of Hematology, Federal Armed Forces Hospital, 89081 Ulm, Germany; and
| | - C. G. Ruf
- Department of Urology, Federal Armed Forces Hospital, 56072 Koblenz, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| |
Collapse
|
32
|
Bertucci A, Smilenov LB, Turner HC, Amundson SA, Brenner DJ. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:53-59. [PMID: 26791381 PMCID: PMC4792265 DOI: 10.1007/s00411-015-0628-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 11/28/2015] [Indexed: 05/29/2023]
Abstract
Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure.
Collapse
Affiliation(s)
- Antonella Bertucci
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
33
|
Beinke C, Port M, Lamkowski A, Abend M. Comparing seven mitogens with PHA-M for improved lymphocyte stimulation in dicentric chromosome analysis for biodosimetry. RADIATION PROTECTION DOSIMETRY 2016; 168:235-41. [PMID: 25958413 PMCID: PMC4884885 DOI: 10.1093/rpd/ncv286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/13/2015] [Indexed: 05/06/2023]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose estimation. Two limiting factors of DCA are the time-consuming lymphocyte stimulation and proliferation using the lectin PHA-M and the upper dose limit of individual dose assessment of ∼4 Gy. By measuring the mitotic index (MI), the authors investigated systematically whether the stimulation of lymphocytes can be improved after administration of alternative (and combined) mitogens. The authors compared the lymphocyte stimulation effectiveness of the traditionally used PHA-M (from Phaseolus vulgaris) with seven cited mitogens by determination of MIs: five lectins namely CNA (concanavalin A), PW (pokeweed), LMA (Maackia amurensis), LTV (T. vulgaris), PHA-L (P. vulgaris) as well as LPS (lipopolysaccharide, Escherichia coli) and SLO (streptolysine O, Streptococcus pyogenes) were applied. The conventional protocol using PHA-M for lymphocyte stimulation proved to be superior over lower/higher PHA-M concentrations as well as seven other mitogens administered either alone or combined with SLO or LPS.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, Munich 80937, Germany
| |
Collapse
|
34
|
Rühm W, Fantuzzi E, Harrison R, Schuhmacher H, Vanhavere F, Alves J, Bottollier Depois JF, Fattibene P, Knežević Ž, Lopez MA, Mayer S, Miljanić S, Neumaier S, Olko P, Stadtmann H, Tanner R, Woda C. EURADOS strategic research agenda: vision for dosimetry of ionising radiation. RADIATION PROTECTION DOSIMETRY 2016; 168:223-34. [PMID: 25752758 PMCID: PMC4884873 DOI: 10.1093/rpd/ncv018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 05/04/2023]
Abstract
Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org).
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich, Institute of Radiation Protection, Neuherberg, Germany
| | - E Fantuzzi
- Radiation Protection Institute, ENEA, Bologna, Italy
| | | | - H Schuhmacher
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - F Vanhavere
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - J Alves
- Instituto Superior Técnico (IST), CTN, Lisboa, Portugal
| | - J F Bottollier Depois
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses Cedex, France
| | - P Fattibene
- Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Ž Knežević
- Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - M A Lopez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - S Mayer
- Paul Scherer Institut (PSI), Villigen, Switzerland
| | - S Miljanić
- Ruđer Bošković Institute (RBI), Zagreb, Croatia
| | - S Neumaier
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - P Olko
- Instytut Fizyki Jądrowej (IFJ), Krakow, Poland
| | - H Stadtmann
- Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - R Tanner
- Public Health England, Chilton, Didcot, UK
| | - C Woda
- Helmholtz Center Munich, Institute of Radiation Protection, Neuherberg, Germany
| |
Collapse
|
35
|
Triage biodosimetry using centromeric/telomeric PNA probes and Giemsa staining to score dicentrics or excess fragments in non-stimulated lymphocyte prematurely condensed chromosomes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:107-14. [PMID: 26520380 DOI: 10.1016/j.mrgentox.2015.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/20/2022]
Abstract
The frequency of dicentric chromosomes in human peripheral blood lymphocytes at metaphase is considered as the "gold-standard" method for biological dosimetry and, presently, it is the most widely used for dose assessment. Yet, it needs lymphocyte stimulation and a 2-day culture, failing the requirement of rapid dose estimation, which is a high priority in radiation emergency medicine and triage biodosimetry. In the present work, we assess the applicability of cell fusion mediated premature chromosome condensation (PCC) methodology, which enables the analysis of radiation-induced chromosomal aberrations directly in non-stimulated G0-lymphocytes, without the 2-day culture delay. Despite its advantages, quantification of an exposure by means of the PCC-method is not currently widely used, mainly because Giemsa-staining of interphase G0-lymphocyte chromosomes facilitates the analysis of fragments and rings, but not of dicentrics. To overcome this shortcoming, the PCC-method is combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric peptide nucleic acid (PNA)-probes. This new approach enables an accurate analysis of dicentric and centric ring chromosomes, which are formed within 8h post irradiation and will, therefore, be present in the blood sample by the time it arrives for dose estimation. For triage biodosimetry, a dose response curve for up to 10Gy was constructed and compared to that obtained using conventional metaphase analysis with Giemsa or centromeric/telomeric PNA-probes in metaphase. Since FISH is labor intensive, a simple PCC-method scoring Giemsa-stained fragments in excess of 46 was also assessed as an even more rapid approach for triage biodosimetry. First, we studied the rejoining kinetics of fragments and constructed a dose-response curve for 24h repair time. Then, its applicability was assessed for four different doses and compared with the PCC-method using centromeric/telomeric PNA-probes, through the evaluation of speed of analysis and minimum number of cells required for dose estimation and categorization of exposed individuals.
Collapse
|