1
|
Kirkhus MH, Frisch A, Evankow AM, Blaalid R, Zane R, Bendiksby M, Davey ML. Diversity of tremellalean Pertusaria-associated fungi in Norway and the role of secondary metabolites in host specificity. Fungal Biol 2025; 129:101563. [PMID: 40222764 DOI: 10.1016/j.funbio.2025.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025]
Abstract
The diversity and host relationships of lichen-inhabiting tremellalean fungi remain understudied, partly due to their asymptomatic yeast phase. This study employs ITS2 metabarcoding to investigate the diversity and colonization patterns of these fungi within 13 Pertusaria lichen species collected in Norway. We discovered a high prevalence, with tremellalean fungi present in 57 % of the examined specimens, representing 12 of the 13 species included, 10 of which were not previously recognized as hosts. Our findings suggest a broad host range for the presumed yeast phase of these fungi, though occurrences of the five most frequent OTUs appeared non-random across different host species. Additionally, negative-binomial general linear models indicated a negative correlation between the presence of tremellalean fungi and the occurrence of specific secondary metabolites, such as thiophaninic acid, fumarprotocetraric acid, and gyrophoric acid, in Pertusaria hosts. These results highlight previously undocumented genetic diversity within tremellalean fungi and suggest that host chemotype significantly influences colonization patterns. Our findings demonstrate a higher frequency of asymptomatic colonization than previously reported, emphasizing the need for further research into their ecological roles and interactions.
Collapse
Affiliation(s)
- Mika H Kirkhus
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Andreas Frisch
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; Natural History Museum, University of Oslo, Oslo, Norway
| | - Ann M Evankow
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; Natural History Museum, University of Oslo, Oslo, Norway
| | - Rakel Blaalid
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Raffaele Zane
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Mika Bendiksby
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway; Natural History Museum, University of Oslo, Oslo, Norway
| | - Marie L Davey
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
2
|
Su B, Zhang T, Mao M, Wang R, You B, Zhang J, Yu L, Si S, Wu J, Chen M. New diketopiperazine dimers and 4-hydroxyphenylacetates from an endolichenic fungus Aspergillus sp. Fitoterapia 2025; 180:106318. [PMID: 39608465 DOI: 10.1016/j.fitote.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Two novel diketopiperazine dimers (1 and 2) and two new 4-hydroxyphenylacetates (5 and 6), along with two previously known diketopiperazine dimers were isolated from the culture of the endolichenic fungus Aspergillus sp. CPCC 400810. Their structures were determined through comprehensive spectroscopic analysis, including high-resolution electrospray ionization mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) data. The absolute configurations of the new compounds were confirmed using Marfey's method and chemical synthesis.
Collapse
Affiliation(s)
- Bingjie Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengjia Mao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Renzhong Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baoqing You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshuai Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang Uygur Autonomous Region, Urumqi 830004, China.
| |
Collapse
|
3
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
4
|
Pérez Y, Almendras K, Millanes AM, Serey N, Yurkov A, Lizana N, Nesci A, Fessia A, Orlando J. Peltigera lichens as sources of uncharacterized cultured basidiomycete yeasts. IMA Fungus 2024; 15:39. [PMID: 39633484 PMCID: PMC11616168 DOI: 10.1186/s43008-024-00170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Lichens represent one of the most successful examples of symbiosis. They are constituted by the association between a dominant fungus (i.e., the mycobiont), one or more photosynthetic partners (algae or cyanobacteria), and harbor an array of associated microorganisms, including bacteria and fungi. The associated fungal communities in lichens, known as the "lichen mycobiome", are composed of both ascomycetes and basidiomycetes, including filamentous and yeast taxa. Recently, basidiomycete yeasts have received considerable attention as a much-overlooked source of diversity within the lichen mycobiome, with hypothesized roles in lichen symbiosis. This study surveyed the diversity of cultivable basidiomycete yeasts associated with Peltigera lichens across southern Chile. A phylogenetic study based on sequences of 179 yeast isolates allowed the identification of 29 taxa from 13 genera in the classes Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes, and Tremellomycetes, with the latter being the most represented. This research revealed several yeast species, including members of the genera Boekhoutia and Goffeauzyma, in lichens for the first time, thereby expanding our understanding of lichen-associated fungal diversity. In addition, four new cultivable species isolated from Peltigera are formally described. These are Boekhoutia peltigerae sp. nov., Cystobasidium chilense sp. nov., Genolevuria patagonica sp. nov. and Pseudotremella navarinensis sp. nov. These results highlight the role of lichens as reservoirs of uncharacterized basidiomycete yeasts.
Collapse
Affiliation(s)
- Yosbany Pérez
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), 7800003, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Katerin Almendras
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), 7800003, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Ana M Millanes
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos (URJC), 28933, Móstoles, Spain
- Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos (URJC), 28933, Móstoles, Spain
| | - Nayla Serey
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), 7800003, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Andrey Yurkov
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Natalia Lizana
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), 7800003, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología E Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, ICBIA (Instituto de Ciencias de La Tierra, Biodiversidad y Sustentabilidad Ambiental, CONICET-UNRC, Río Cuarto, Argentina
| | - Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología E Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, ICBIA (Instituto de Ciencias de La Tierra, Biodiversidad y Sustentabilidad Ambiental, CONICET-UNRC, Río Cuarto, Argentina
| | - Julieta Orlando
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), 7800003, Santiago, Chile.
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, 7800003, Santiago, Chile.
| |
Collapse
|
5
|
Dilrukshi HAC, Ruklani NCS, Rubasinghe SCK. Cryptogams as bio-indicators for ecosystem monitoring in Sri Lanka: a comprehensive review and recommendations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1231. [PMID: 39570496 DOI: 10.1007/s10661-024-13392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Cryptogams, encompassing algae, fungi, lichens, bryophytes, and pteridophytes play essential roles in soil formation, nutrient cycling, and ecological stability. Sri Lanka faces numerous environmental challenges, including habitat loss, climate change, and pollution and there is an urgent need for effective monitoring programs to assess and mitigate these changes. This comprehensive review compiles existing literature on the importance of cryptogams and their responses to various environmental stressors and highlights the specific characteristics that make cryptogams valuable bio-indicators, such as their sensitivity to pollution, climate change, and land-use changes in habitats such as forests, agricultural lands, and urban areas, as well as their ability to accumulate and retain pollutants over time. The diversity of cryptogams is integral to their effectiveness as bio-indicators, providing a comprehensive picture of ecosystem health. Furthermore, recommendations for the development of monitoring programs are provided for different areas in the country. These recommendations include establishing baseline data for cryptogam diversity and abundance and incorporating the integration of modern molecular techniques such as DNA barcoding which are widely used in biodiversity monitoring programs to track the responses of cryptogams to environmental changes. This review seeks to emphasize the importance of cryptogams in ecosystem health assessment raising awareness among policymakers, researchers, and conservationists in Sri Lanka. Through the implementation of effective monitoring programs, we can enhance our understanding of local ecosystem dynamics, improve conservation efforts, and contribute to the sustainable management of Sri Lanka's natural resources in the face of ongoing environmental changes.
Collapse
Affiliation(s)
- H A C Dilrukshi
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Kandy, Sri Lanka
| | - N C S Ruklani
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Kandy, Sri Lanka.
| | - S C K Rubasinghe
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Kandy, Sri Lanka
| |
Collapse
|
6
|
Koch Bach RA, Murithi HM, Coyne D, Clough SJ. Phylogenetic analyses show the Select Agent Coniothyrium glycines represents a single species that has significant morphological and genetic variation. Mycologia 2024; 116:936-948. [PMID: 39287961 DOI: 10.1080/00275514.2024.2383114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Soybean red leaf blotch (RLB), caused by the fungus Coniothyrium glycines, represents a foliar disease of soybean that is thus far restricted to Africa. The fungus is listed as a Select Agent by the Federal Select Agent Program because it could pose a severe threat to plant health were it to establish in the United States. Previous work uncovered tremendous molecular diversity at the internal transcribed spacer region, suggesting that there may be multiple species causing RLB. To determine whether multiple species cause RLB, we reconstructed the phylogeny of C. glycines and taxonomic allies using sequence data from four genes. We included 33 C. glycines isolates collected from six African countries and determined that all isolates form a well-supported, monophyletic lineage. Within this lineage there are at least six well-supported clades that largely correspond to geography, with one clade exclusively composed of isolates from Ethiopia, another exclusively composed of isolates from Uganda, and four composed of isolates from southern Africa. However, we did not detect any concordance for these clades between the four genes, indicating that all isolates included in this analysis are representative of a single species. Isolates in the Ethiopia clade are morphologically distinct from isolates in the other clades, as they produce larger sclerotia and smaller pycnida and more sclerotia in planta. Additionally, ancestral range estimations suggest that the C. glycines lineage emerged in southern Africa. These results show that there is significantly more genetic and morphological diversity than was initially suspected with this high-consequence fungal plant pathogen.
Collapse
Affiliation(s)
- Rachel A Koch Bach
- Foreign Disease-Weed Science Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Detrick, Maryland 21702
| | - Harun M Murithi
- Agricultural Research Service Research Participation Program through the Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Steven J Clough
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, Illinois 61801
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
7
|
Tagirdzhanova G, Saary P, Cameron ES, Allen CCG, Garber AI, Escandón DD, Cook AT, Goyette S, Nogerius VT, Passo A, Mayrhofer H, Holien H, Tønsberg T, Stein LY, Finn RD, Spribille T. Microbial occurrence and symbiont detection in a global sample of lichen metagenomes. PLoS Biol 2024; 22:e3002862. [PMID: 39509454 PMCID: PMC11542873 DOI: 10.1371/journal.pbio.3002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024] Open
Abstract
In lichen research, metagenomes are increasingly being used for evaluating symbiont composition and metabolic potential, but the overall content and limitations of these metagenomes have not been assessed. We reassembled over 400 publicly available metagenomes, generated metagenome-assembled genomes (MAGs), constructed phylogenomic trees, and mapped MAG occurrence and frequency across the data set. Ninety-seven percent of the 1,000 recovered MAGs were bacterial or the fungal symbiont that provides most cellular mass. Our mapping of recovered MAGs provides the most detailed survey to date of bacteria in lichens and shows that 4 family-level lineages from 2 phyla accounted for as many bacterial occurrences in lichens as all other 71 families from 16 phyla combined. Annotation of highly complete bacterial, fungal, and algal MAGs reveals functional profiles that suggest interdigitated vitamin prototrophies and auxotrophies, with most lichen fungi auxotrophic for biotin, most bacteria auxotrophic for thiamine and the few annotated algae with partial or complete pathways for both, suggesting a novel dimension of microbial cross-feeding in lichen symbioses. Contrary to longstanding hypotheses, we found no annotations consistent with nitrogen fixation in bacteria other than known cyanobacterial symbionts. Core lichen symbionts such as algae were recovered as MAGs in only a fraction of the lichen symbioses in which they are known to occur. However, the presence of these and other microbes could be detected at high frequency using small subunit rRNA analysis, including in many lichens in which they are not otherwise recognized to occur. The rate of MAG recovery correlates with sequencing depth, but is almost certainly influenced by biological attributes of organisms that affect the likelihood of DNA extraction, sequencing and successful assembly, including cellular abundance, ploidy and strain co-occurrence. Our results suggest that, though metagenomes are a powerful tool for surveying microbial occurrence, they are of limited use in assessing absence, and their interpretation should be guided by an awareness of the interacting effects of microbial community complexity and sequencing depth.
Collapse
Affiliation(s)
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
| | - Ellen S. Cameron
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
- Wellcome Sanger Institute; Hinxton, United Kingdom
| | - Carmen C. G. Allen
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Arkadiy I. Garber
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University; Tempe, Arizona, United States of America
| | | | - Andrew T. Cook
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Spencer Goyette
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- University of British Columbia Herbarium, University of British Columbia, Vancouver, Canada
| | | | - Alfredo Passo
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET—Universidad Nacional de Comahue, Bariloche, Argentina
| | | | - Håkon Holien
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Tor Tønsberg
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Paguirigan JAG, Jeong E, Kang KB, Hur JS, Kim W. Investigation of Antimicrobial Compounds Produced by Endolichenic Fungi in Different Culture Media. THE PLANT PATHOLOGY JOURNAL 2024; 40:559-567. [PMID: 39397309 PMCID: PMC11471934 DOI: 10.5423/ppj.nt.06.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Continuous use of synthetic fungicides has led to explosive emergence of fungicide-resistant microbes. Therefore, there are urgent needs for environmentally friendly antimicrobial agents with novel modes of action. This study investigated endolichenic fungi (ELF) as a source of antimicrobial compounds against various plant pathogens. We utilized an One Strain MAny Compounds (OSMAC) approach to enhance the chemical diversity of fourteen ELF. This involved cultivation of ELF in four growth media and subsequently assessing antimicrobial activities of culture extracts. Nearly half of the culture extracts exhibited antimicrobial activity against a Gram-positive bacterium, but showed minimal activity against Gram-negative bacteria tested. Notably, culture extracts from two ELF, Chaetomium globosum and Nodulisporium sp., demonstrated significant inhibitory effects against plant pathogenic fungi. LC-MS/MS-based metabolome profiling confirmed the presence of known bioactive compounds like cyclic dipeptides and chaetoglobosins. These findings highlight the effectiveness of combining OSMAC and metabolomics for identifying antimicrobial agents for agricultural use.
Collapse
Affiliation(s)
- Jaycee Augusto G. Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Eunah Jeong
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyo Bin Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
9
|
Juby S, Soumya P, Jayachandran K, Radhakrishnan EK. Morphological, Metabolomic and Genomic Evidences on Drought Stress Protective Functioning of the Endophyte Bacillus safensis Ni7. Curr Microbiol 2024; 81:209. [PMID: 38834921 DOI: 10.1007/s00284-024-03720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
The metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.
Collapse
Affiliation(s)
- Silju Juby
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - P Soumya
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - K Jayachandran
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | | |
Collapse
|
10
|
Nimis PL, Pittao E, Caramia M, Pitacco P, Martellos S, Muggia L. The ecology of lichenicolous lichens: a case-study in Italy. MycoKeys 2024; 105:253-266. [PMID: 38855319 PMCID: PMC11161687 DOI: 10.3897/mycokeys.105.121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Abstract
This paper, with Italy as a case-study, provides a general overview on the ecology of lichenicolous lichens, i.e. those which start their life-cycle on the thallus of other lichens. It aims at testing whether some ecological factors do exert a positive selective pressure on the lichenicolous lifestyle. The incidence of some biological traits (photobionts, growth-forms and reproductive strategies) in lichenicolous and non-lichenicolous lichens was compared, on a set of 3005 infrageneric taxa potentially occurring in Italy, 189 of which are lichenicolous. Lichenicolous lichens have a much higher incidence of coccoid (non-trentepohlioid) green algae, crustose growth-forms and sexual reproduction. A matrix of the 2762 species with phycobionts and some main ecological descriptors was subjected to ordination. Lichenicolous lichens occupy a well-defined portion of the ecological space, tending to grow on rocks in dry, well-lit habitats where a germinating spore is likely to have a short life-span, at all altitudes. This corroborates the hypothesis that at least some of them are not true "parasites", as they are often called, but gather the photobionts - which have already adapted to local ecological conditions - from their hosts, eventually developing an independent thallus.
Collapse
Affiliation(s)
- Pier Luigi Nimis
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| | - Elena Pittao
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| | - Monica Caramia
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| | - Piero Pitacco
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| | - Stefano Martellos
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| | - Lucia Muggia
- University of Trieste, Department of Life Sciences, via Giorgieri 10, 34127 Trieste, ItalyUniversity of TriesteTriesteItaly
| |
Collapse
|
11
|
Chakarwarti J, Anand V, Nayaka S, Srivastava S. In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema. Curr Microbiol 2024; 81:195. [PMID: 38809483 DOI: 10.1007/s00284-024-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi-Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC-MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC-MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.
Collapse
Affiliation(s)
- Jyotsna Chakarwarti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vandana Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, IFTM University, Moradabad, 244102, India
| | - Sanjeeva Nayaka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
12
|
Pushpavathi D, Krishnamurthy YL. Study on endolichenic fungal assemblage in Parmotrema and Heterodermia lichens of Shivamoga, Karnataka. Mol Biol Rep 2024; 51:549. [PMID: 38642168 DOI: 10.1007/s11033-024-09497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Lichen is a symbiotic association of algae and fungi, recognized as a self-sustaining ecosystem that constitutes an indeterminant number of bacteria, actinomycetes, fungi, and protozoa. We evaluated the endolichenic fungal assemblage given the dearth of knowledge on endolichenic fungi (ELFs), particularly from part of the Central Western Ghats, Karnataka, and conducted a phylogenetic analysis of xylariaceous fungi, the most diversified group of fungi using ITS and ITS+Tub2 gene set. RESULTS Out of 17 lichen thalli collected from 5 ecoregions, 42 morphospecies recovered, belong to the class Sordariomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes, Saccharomycetes. About 19 and 13 ELF genera have been reported from Parmotrema and Heterodermia thallus. Among the ecoregions EC2 showing highest species diversity (Parmotrema (1-D) = 0.9382, (H) = 2.865, Fisher-α = 8.429, Heterodermia (1-D) = 0.8038, H = 1.894, F-α = 4.57) followed the EC3 and EC1. Xylariales are the predominant colonizer reported from at least one thallus from four ecoregions. The morphotypes ELFX04, ELFX05, ELFX08 and ELFX13 show the highest BLAST similarity (> 99%) with Xylaria psidii, X. feejeensis, X. berteri and Hypoxylon fragiforme respectively. Species delimitation and phylogenetic position reveal the closest relation of Xylariaceous ELFs with plant endophytes. CONCLUSIONS The observation highlights that the deciduous forest harness a high number of endolichenic fungi, a dominant portion of these fungi are non-sporulating and still exist as cryptic. Overall, 8 ELF species recognized based on phylogenetic analysis, including the two newly reported fungi ELFX03 and ELFX06 which are suspected to be new species based on the present evidence. The study proved, that the lichen being rich source to establish fungal diversity and finding new species. Successful amplification of most phylogenetic markers like RPB2, building of comprehensive taxonomic databases and application of multi-omics data are further needed to understand the complex nature of lichen-fungal symbiosis.
Collapse
Affiliation(s)
- D Pushpavathi
- Department of PG Studies and Research in Applied Botany, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, 577451, India
| | - Y L Krishnamurthy
- Department of PG Studies and Research in Applied Botany, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, 577451, India.
| |
Collapse
|
13
|
Carvalho T, Belasen AM, Toledo LF, James TY. Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Curr Opin Microbiol 2024; 78:102435. [PMID: 38387210 DOI: 10.1016/j.mib.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anat M Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Poma-Angamarca RA, Rojas JR, Sánchez-Rodríguez A, Ruiz-González MX. Diversity of Leaf Fungal Endophytes from Two Coffea arabica Varieties and Antagonism towards Coffee Leaf Rust. PLANTS (BASEL, SWITZERLAND) 2024; 13:814. [PMID: 38592839 PMCID: PMC11154406 DOI: 10.3390/plants13060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Coffee has immense value as a worldwide-appreciated commodity. However, its production faces the effects of climate change and the spread of severe diseases such as coffee leaf rust (CLR). The exploration of fungal endophytes associated with Coffea sp. has already found the existence of nearly 600 fungal species, but their role in the plants remains practically unknown. We have researched the diversity of leaf fungal endophytes in two Coffea arabica varieties: one susceptible and one resistant to CLR. Then, we conducted cross-infection essays with four common endophyte species (three Colletotrichum sp. and Xylaria sp. 1) and Hemileia vastatrix (CLR) in leaf discs, to investigate the interaction of the endophytes on CLR colonisation success and severity of infection. Two Colletotrichum sp., when inoculated 72 h before H. vastatrix, prevented the colonisation of the leaf disc by the latter. Moreover, the presence of endophytes prior to the arrival of H. vastatrix ameliorated the severity of CLR. Our work highlights both the importance of characterising the hidden biodiversity of endophytes and investigating their potential roles in the plant-endophyte interaction.
Collapse
Affiliation(s)
- Ruth A. Poma-Angamarca
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Jacqueline R. Rojas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Mario X. Ruiz-González
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
- SENESCYT is the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación from the Government of Ecuador, Proyecto Prometeo SENESCYT, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
15
|
Iacovelli R, He T, Allen JL, Hackl T, Haslinger K. Genome sequencing and molecular networking analysis of the wild fungus Anthostomella pinea reveal its ability to produce a diverse range of secondary metabolites. Fungal Biol Biotechnol 2024; 11:1. [PMID: 38172933 PMCID: PMC10763133 DOI: 10.1186/s40694-023-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level. RESULTS In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays. CONCLUSIONS Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.
Collapse
Affiliation(s)
- R Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - T He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - J L Allen
- Department of Biology, Eastern Washington University, Cheney, WA, 99004, USA
| | - T Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - K Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
16
|
Rakotondraibe HLR, Spjut RW, Addo EM. Chemical Constituents Isolated from the Lichen Biome of Selected Species Native to North America. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:185-233. [PMID: 39101985 DOI: 10.1007/978-3-031-59567-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A lichen is a symbiotic association composed of a primary mycobionts and one or more photobionts living mutualistically together, forming a distinct morphological entity beneficial to their partnership and to other associated fungi, photobionts, and bacteria that collectively make up the lichen biome. The taxonomic identification of a lichen species often requires determination of the primary mycobiont's secondary metabolites, the key morphological characteristics of the thallus, and how it relates to other lichen species as seen in DNA phylogeny. This chapter covers lichens and their bionts, taxonomic identification, and their chemical constituents as exemplified by what is found in lichen biomes, especially those endemic to North America. Extraction and isolation, as well as updates on dereplication methods using mass spectrometric GNPS and NMR spectroscopic spin network fingerprint procedures, and marker-based techniques to identify lichens are discussed. The isolation and structure elucidation of secondary metabolites of an endolichenic Penicillium species that produces bioactive compounds will be described in detail.
Collapse
Affiliation(s)
| | | | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
17
|
Fjelde MO, Timdal E, Haugan R, Bendiksby M. Paraphyly and cryptic diversity unveils unexpected challenges in the "naked lichens" (Calvitimela, Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 2024; 190:107944. [PMID: 37844854 DOI: 10.1016/j.ympev.2023.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Molecular phylogenetics has revolutionized the taxonomy of crustose lichens and revealed an extensive amount of cryptic diversity. Resolving the relationships between genera in the crustose lichen family Tephromelataceae has proven difficult and the taxon limits within the genus Calvitimela are only partly understood. In this study, we tested the monophyly of Calvitimela and investigated phylogenetic relationships at different taxonomic levels using an integrative taxonomic approach. We performed a global sampling of all species currently assigned to Calvitimela and conducted additional sampling of C. melaleuca sensu lato across Norway. We included 108 specimens and produced more than 300 sequences from five different loci (ITS, LSU, MCM7, mtSSU, TEF1-α). We inferred phylogenetic relationships and estimated divergence times in Calvitimela. Moreover, we analyzed chemical and morphological characters to test their diagnostic values in the genus. Our molecular phylogenetic results show evolutionarily old and deeply divergent lineages in Calvitimela. The morphological characters are overlapping between divergent subgenera within this genus. Chemical characters, however, are largely informative at the level of subgenera, but are often homoplastic at the species level. The subgenus Calvitimela is found to include four distinct genetic lineages. Detailed morphological examinations of C. melaleuca s. lat. reveal differences between taxa previously assumed to be morphologically cryptic. Furthermore, young evolutionary ages and signs of gene tree discordance indicate a recent divergence and possibly incomplete lineage sorting in the subgenus Calvitimela. Phylogenetic analysis and morphological observations revealed that C. austrochilensis and C. uniseptata are extraneous to Calvitimela (Tephromelataceae). We also found molecular evidence supporting C. septentrionalis being sister to C. cuprea. In the subgenus Severidea, one new grouping is recovered as a highly supported sister to C. aglaea. Lastly, two fertile specimens were found to be phylogenetically nested within the sorediate species C. cuprea. We discuss the need for an updated classification of Calvitimela and the evolution of cryptic species. Through generic circumscription and species delimitation we propose a practical taxonomy of Calvitimela.
Collapse
Affiliation(s)
- Markus Osaland Fjelde
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway; Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Norway.
| | - Einar Timdal
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Reidar Haugan
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Mika Bendiksby
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway; NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Adams JN, Escalona M, Marimuthu MPA, Fairbairn CW, Beraut E, Seligmann W, Nguyen O, Chumchim N, Stajich JE. The reference genome assembly of the bright cobblestone lichen, Acarospora socialis. J Hered 2023; 114:707-714. [PMID: 37740386 PMCID: PMC10650946 DOI: 10.1093/jhered/esad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023] Open
Abstract
Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California.
Collapse
Affiliation(s)
- Julia N Adams
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, United States
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, United States
| | - Colin W Fairbairn
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, United States
| |
Collapse
|
19
|
Ndinga-Muniania C, Wornson N, Fulcher MR, Borer ET, Seabloom EW, Kinkel L, May G. Cryptic functional diversity within a grass mycobiome. PLoS One 2023; 18:e0287990. [PMID: 37471328 PMCID: PMC10358963 DOI: 10.1371/journal.pone.0287990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicholas Wornson
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael R Fulcher
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Frederick, Maryland, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Linda Kinkel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
20
|
García-Breijo FJ, Molins A, Reig-Armiñana J, Barreno E. The Tripartite Lichen Ricasolia virens: Involvement of Cyanobacteria and Bacteria in Its Morphogenesis. Microorganisms 2023; 11:1517. [PMID: 37375019 DOI: 10.3390/microorganisms11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Ricasolia virens is an epiphytic lichen-forming fungus mainly distributed in Western Europe and Macaronesia in well-structured forests with ecological continuity that lack eutrophication. It is considered to be threatened or extinct in many territories in Europe (IUCN). Despite its biological and ecological relevance, studies on this taxon are scarce. The thalli are tripartite, and the mycobiont has a simultaneous symbiotic relationship with cyanobacteria and green microalgae, which represent interesting models to analyse the strategies and adaptations resulting from the interactions of lichen symbionts. The present study was designed to contribute to a better understanding of this taxon, which has shown a clear decline over the last century. The symbionts were identified by molecular analysis. The phycobiont is Symbiochloris reticulata, and the cyanobionts (Nostoc) are embedded in internal cephalodia. Light, transmission electron and low-temperature scanning microscopy techniques were used to investigate the thallus anatomy, ultrastructure of microalgae and ontogeny of pycnidia and cephalodia. The thalli are very similar to its closest relative, Ricasolia quercizans. The cellular ultrastructure of S. reticulata by TEM is provided. Non-photosynthetic bacteria located outside the upper cortex are introduced through migratory channels into the subcortical zone by the splitting of fungal hyphae. Cephalodia were very abundant, but never as external photosymbiodemes.
Collapse
Affiliation(s)
- Francisco J García-Breijo
- Departamento de Ecosistemas Agroforestales, ETSIAMN, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Arantzazu Molins
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departamento de Biología, Universitat de les Illes Balears (UIB), Ctra. Valldemossa Km.7., 07122 Palma de Malllorca, Spain
| | - José Reig-Armiñana
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Eva Barreno
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| |
Collapse
|
21
|
La Torre RD, Ramos D, Mejía MD, Neyra E, Loarte E, Orjeda G. Survey of Lichenized Fungi DNA Barcodes on King George Island (Antarctica): An Aid to Species Discovery. J Fungi (Basel) 2023; 9:jof9050552. [PMID: 37233263 DOI: 10.3390/jof9050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 05/27/2023] Open
Abstract
DNA barcoding is a powerful method for the identification of lichenized fungi groups for which the diversity is already well-represented in nucleotide databases, and an accurate, robust taxonomy has been established. However, the effectiveness of DNA barcoding for identification is expected to be limited for understudied taxa or regions. One such region is Antarctica, where, despite the importance of lichens and lichenized fungi identification, their genetic diversity is far from characterized. The aim of this exploratory study was to survey the lichenized fungi diversity of King George Island using a fungal barcode marker as an initial identification tool. Samples were collected unrestricted to specific taxa in coastal areas near Admiralty Bay. Most samples were identified using the barcode marker and verified up to the species or genus level with a high degree of similarity. A posterior morphological evaluation focused on samples with novel barcodes allowed for the identification of unknown Austrolecia, Buellia, and Lecidea s.l. species. These results contribute to better represent the lichenized fungi diversity in understudied regions such as Antarctica by increasing the richness of the nucleotide databases. Furthermore, the approach used in this study is valuable for exploratory surveys in understudied regions to guide taxonomic efforts towards species recognition and discovery.
Collapse
Affiliation(s)
- Renato Daniel La Torre
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Daniel Ramos
- Herbario Sur Peruano-Instituto Científico Michael Owen Dillon, Jorge Chavez 610, Arequipa 04001, Peru
| | - Mayra Doris Mejía
- Dirección de Investigación en Glaciares, Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Centenario 2656, Huaraz 02002, Peru
| | - Edgar Neyra
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
- Unidad de Investigación Genómica, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Honorio Delgado 430, Lima 15102, Peru
| | - Edwin Loarte
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Centenario 200, Huaraz 02002, Peru
| | - Gisella Orjeda
- Laboratorio de Genómica y Bioinformática para la Biodiversidad, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, German Amezaga 375, Lima 15081, Peru
| |
Collapse
|
22
|
Aursnes M, Primdahl KG, Liwara D, Solum EJ. A Modular Strategy for the Synthesis of Dothideopyrones E and F, Secondary Metabolites from an Endolichenic Fungus. JOURNAL OF NATURAL PRODUCTS 2023; 86:804-811. [PMID: 37001015 PMCID: PMC10152449 DOI: 10.1021/acs.jnatprod.2c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 05/04/2023]
Abstract
Endolichenic fungi are a rich source of natural products with a wide range of potent bioactivities. Herein, syntheses of the two naturally occurring α-pyrones dothideopyrone E and F are presented. These natural products were isolated from a culture of the endolichenic fungus Dothideomycetes sp. EL003334. The outlined strategy includes a Fu-Suzuki akyl-alkyl cross-coupling, a MacMillan α-oxyamination, and a Sato's pericyclic cascade process to construct the 4-hydroxy-2-pyrone ring system. All the obtained data on the synthesized compounds matched with that of the isolated material.
Collapse
Affiliation(s)
- Marius Aursnes
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Karoline Gangestad Primdahl
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - David Liwara
- Department
of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Ecole
Centrale de Marseille, 13013 Marseille, France
| | - Eirik Johansson Solum
- Department
of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Faculty
of Health Sciences, Nord University, 8026 Bodø, Norway
| |
Collapse
|
23
|
Davis EL, Weatherhead E, Koide RT. The potential saprotrophic capacity of foliar endophytic fungi from Quercus gambelii. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
25
|
Almer J, Resl P, Gudmundsson H, Warshan D, Andrésson ÓS, Werth S. Symbiont-specific responses to environmental cues in a threesome lichen symbiosis. Mol Ecol 2023; 32:1045-1061. [PMID: 36478478 DOI: 10.1111/mec.16814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.
Collapse
Affiliation(s)
- Jasmin Almer
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Hörður Gudmundsson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Denis Warshan
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
27
|
Lichen and Lichenicolous Fungal Communities Tested as Suitable Systems for the Application of Cross-Taxon Analysis. DIVERSITY 2023. [DOI: 10.3390/d15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Lichens are outstanding examples of fungal symbioses that form long-lived structures, the lichen thalli, in which a multiplicity of other microorganisms are hosted. Among these, microfungi seem to establish diverse trophic relationships with their lichen hosts. The most specialised of these fungi are the parasitic lichenicolous fungi, of which the diversity has hardly been explained as a proxy for the diversity of lichen species. Here, we used an exemplar dataset of a well-studied alpine lichen community composed of 63 lichen and 41 lichenicolous fungal species and tested it to verify the strength of the co-occurrences of the two species groups with predictive co-correspondence analyses. The results showed that the distribution of lichen abundances affects the abundance and variation of lichenicolous fungi and supports our hypothesis to use lichens as surrogates for lichenicolous fungi in surrogacy analysis.
Collapse
|
28
|
Younginger BS, Stewart NU, Balkan MA, Ballhorn DJ. Stable coexistence or competitive exclusion? Fern endophytes demonstrate rapid turnover favouring a dominant fungus. Mol Ecol 2023; 32:244-257. [PMID: 36218009 DOI: 10.1111/mec.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are critical members of the plant microbiome, but their community dynamics throughout an entire growing season are underexplored. Additionally, most fungal endophyte research has centred on seed-reproducing hosts, while spore-reproducing plants also host endophytes and may be colonized by unique community members. In order to examine annual fungal endophyte community dynamics in a spore-reproducing host, we explored endophytes in a single population of ferns, Polystichum munitum, in the Pacific Northwest. Through metabarcoding, we characterized the community assembly and temporal turnover of foliar endophytes throughout a growing season. From these results, we selected endophytes with outsized representations in sequence data and performed in vitro competition assays. Finally, we inoculated sterile fern gametophytes with dominant fungi observed in the field and determined their effects on host performance. Sequencing demonstrated that ferns were colonized by a diverse community of fungal endophytes in newly emerged tissue, but diversity decreased throughout the season leading to the preponderance of a single fungus in later sampling months. This previously undescribed endophyte appears to abundantly colonize the host to the detriment of other microfungi. Competition assays on a variety of media types failed to demonstrate that the dominant fungus was competitive against other fungi isolated from the same hosts, and inoculation onto sterile fern gametophytes did not alter growth compared to sterile controls, suggesting its effects are not antagonistic. The presence of this endophyte in the fern population probably demonstrates a case of repeated colonization driving competitive exclusion of other fungal community members.
Collapse
Affiliation(s)
| | - Nathan U Stewart
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Mehmet A Balkan
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Daniel J Ballhorn
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|
29
|
Tissue Cultivation, Preparation, and Extraction of High Molecular Weight DNA for Single-Molecule Genome Sequencing of Plant-Associated Fungi. Methods Mol Biol 2022; 2605:79-102. [PMID: 36520390 DOI: 10.1007/978-1-0716-2871-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.
Collapse
|
30
|
Arnold AE. Mycology: Metagenomes illuminate evolutionary relationships and reframe symbiotic interactions. Curr Biol 2022; 32:R1304-R1306. [PMID: 36473438 DOI: 10.1016/j.cub.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An intriguing new study leverages newly generated metagenomes to remap the evolution of the most species-rich clade of fungi, highlighting how some of the most intriguing and visible manifestations of symbioses - lichens - may arise.
Collapse
Affiliation(s)
- A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA. arnold,@,ag.arizona.edu
| |
Collapse
|
31
|
Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Češka O, Hawksworth DL, Huereca A, Knudsen K, Kocourková J, Lücking R, Resl P, Spribille T. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Curr Biol 2022; 32:5209-5218.e5. [PMID: 36423639 DOI: 10.1016/j.cub.2022.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Ascomycota account for about two-thirds of named fungal species.1 Over 98% of known Ascomycota belong to the Pezizomycotina, including many economically important species as well as diverse pathogens, decomposers, and mutualistic symbionts.2 Our understanding of Pezizomycotina evolution has until now been based on sampling traditionally well-defined taxonomic classes.3,4,5 However, considerable diversity exists in undersampled and uncultured, putatively early-diverging lineages, and the effect of these on evolutionary models has seldom been tested. We obtained genomes from 30 putative early-diverging lineages not included in recent phylogenomic analyses and analyzed these together with 451 genomes covering all available ascomycete genera. We show that 22 of these lineages, collectively representing over 600 species, trace back to a single origin that diverged from the common ancestor of Eurotiomycetes and Lecanoromycetes over 300 million years BP. The new clade, which we recognize as a more broadly defined Lichinomycetes, includes lichen and insect symbionts, endophytes, and putative mycorrhizae and encompasses a range of morphologies so disparate that they have recently been placed in six different taxonomic classes. To test for shared hidden features within this group, we analyzed genome content and compared gene repertoires to related groups in Ascomycota. Regardless of their lifestyle, Lichinomycetes have smaller genomes than most filamentous Ascomycota, with reduced arsenals of carbohydrate-degrading enzymes and secondary metabolite gene clusters. Our expanded genome sample resolves the relationships of numerous "orphan" ascomycetes and establishes the independent evolutionary origins of multiple mutualistic lifestyles within a single, morphologically hyperdiverse clade of fungi.
Collapse
Affiliation(s)
- David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dan Vanderpool
- National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E Beckwith, Missoula, MT 59812, USA
| | - Carmen C G Allen
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | | | - David L Hawksworth
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Alejandro Huereca
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kerry Knudsen
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Jana Kocourková
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 129, Praha-Suchdol 165 00, Czech Republic
| | - Robert Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
32
|
Miral A, Jargeat P, Mambu L, Rouaud I, Tranchimand S, Tomasi S. Microbial community associated with the crustose lichen Rhizocarpon geographicum L. (DC.) living on oceanic seashore: A large source of diversity revealed by using multiple isolation methods. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:856-872. [PMID: 35860838 PMCID: PMC9796121 DOI: 10.1111/1758-2229.13105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 05/13/2023]
Abstract
Recently, the study of the interactions within a microcosm between hosts and their associated microbial communities drew an unprecedented interest arising from the holobiont concept. Lichens, a symbiotic association between a fungus and an alga, are redefined as complex ecosystems considering the tremendous array of associated microorganisms that satisfy this concept. The present study focuses on the diversity of the microbiota associated with the seashore located lichen Rhizocarpon geographicum, recovered by different culture-dependent methods. Samples harvested from two sites allowed the isolation and the molecular identification of 68 fungal isolates distributed in 43 phylogenetic groups, 15 bacterial isolates distributed in five taxonomic groups and three microalgae belonging to two species. Moreover, for 12 fungal isolates belonging to 10 different taxa, the genus was not described in GenBank. These fungal species have never been sequenced or described and therefore non-studied. All these findings highlight the novel and high diversity of the microflora associated with R. geographicum. While many species disappear every day, this work suggests that coastal and wild environments still contain an unrevealed variety to offer and that lichens constitute a great reservoir of new microbial taxa which can be recovered by multiplying the culture-dependent techniques.
Collapse
Affiliation(s)
- Alice Miral
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Patricia Jargeat
- UMR 5174 UPS‐CNRS‐IRD Laboratoire Evolution et Diversité Biologique, EDBUniversité Toulouse‐3, Bât 4R1ToulouseFrance
| | - Lengo Mambu
- EA 7500 Laboratoire PEIRENE, Faculté de PharmacieUniversité de LimogesLimoges CedexFrance
| | - Isabelle Rouaud
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226Université de RennesRennesFrance
| | - Sophie Tomasi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)‐UMR 6226RennesFrance
| |
Collapse
|
33
|
Chiva S, Moya P, Barreno E. Lichen phycobiomes as source of biodiversity for microalgae of the Stichococcus-like genera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThe term phycobiome was recently introduced to designate all the microalgae (primary or non-primary) associated with lichen symbioses. Abundant non-primary symbiotic microalgae are usually obtained from lichen isolations, confirming that thalli are a source of biodiversity and new species. In this study, microalgae were isolated from thalli of Buellia zoharyi, Ramalina farinacea and Parmotrema pseudotinctorum collected in the Iberian Peninsula and the Canary Islands. Excluding Trebouxia phycobionts, 17 strains similar to Stichococcus (Prasiola clade) were obtained. Molecular identification was carried out by nuclear ITS sequencing, and a phylogenetic tree was generated from these sequences, and grouping them into 4 clades: Diplosphaera chodatti, Diplosphaera sp.1. Deuterostichocuccus sp.1. and Tritostichococcus coniocybes. It is also noteworthy that Diplosphaera sp.1 was detected and isolated from three phylogenetically distant lichenized fungi (B. zoharyi, R. farinacea and P. pseudotinctorum), which were sampled in ecologically different localities, namely Tenerife, La Gomera and Castellón. These results reinforce the idea of the constant presence of certain microalgae associated with the lichen thalli which, despite not being the main primary photobiont, probably form part of the lichen’s phycobiomes.
Collapse
|
34
|
Tanunchai B, Schroeter SA, Ji L, Wahdan SFM, Hossen S, Lehnert AS, Grünberg H, Gleixner G, Buscot F, Schulze ED, Noll M, Purahong W. More than you can see: Unraveling the ecology and biodiversity of lichenized fungi associated with leaves and needles of 12 temperate tree species using high-throughput sequencing. Front Microbiol 2022; 13:907531. [PMID: 36187953 PMCID: PMC9523249 DOI: 10.3389/fmicb.2022.907531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Currently, lichen surveys are generally based on the examination of fruiting bodies. Lichens in the mycelial stage, in spores, or awaiting conditions for fruiting body formation are usually overlooked, even though they are important for maintaining biodiversity and ecosystem functions. This study aimed to explore the lichenized fungal community composition and richness associated with leaves and needles of 12 temperate tree species using Illumina MiSeq-based amplicon sequencing of the internal transcribed spacer (ITS) 2 region. Picea abies harbored the highest richness and number of lichenized fungal species. We found that the lichenized fungus Physcia adscendens dominated the leaves and needles of the most temperate tree species. Eleven lichenized fungal species detected in this study were recorded for the first time on leaves and needles. In addition, we identified Athallia cerinella, Fellhanera bouteillei, and Melanohalea exasperata that are on the German national red lists. Lichenized fungal richness was higher in conifer compared to broadleaf trees. Overall, tree species (within coniferous trees) and tree types (broadleaved vs. coniferous trees) harbored significantly different lichenized fungal community compositions pointing out the importance of host species. Diversity and community composition patterns of lichenized fungi were correlated mainly with tree species. Our study demonstrates that the diversity of foliicolous lichens associated with leaves and needles of 12 temperate tree species can be appropriately analyzed and functionally assigned using the ITS-based high-throughput sequencing. We highlighted the importance of conifers for maintaining the biodiversity of foliicolous lichens. Based on the discovery of many red list lichens, our methodological approach and results are important contributions to subsequent actions in the bio-conversation approaches.
Collapse
Affiliation(s)
- Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Simon Andreas Schroeter
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- School of Forestry, Central South of Forestry and Technology, Changsha, China
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ann-Sophie Lehnert
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Gerd Gleixner
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Ernst-Detlef Schulze
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Matthias Noll
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- *Correspondence: Witoon Purahong
| |
Collapse
|
35
|
Meng Y, Zhang Q, Shi G, Liu Y, Du G, Feng H. Can nitrogen supersede host identity in shaping the community composition of foliar endophytic fungi in an alpine meadow ecosystem? Front Microbiol 2022; 13:895533. [PMID: 36071969 PMCID: PMC9441931 DOI: 10.3389/fmicb.2022.895533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The availability of limiting nutrients plays a crucial role in shaping communities of endophytes. Moreover, whether fungal endophytes are host-specific remains controversial. We hypothesized that in a harsh and nitrogen (N)-deficient area, diversity and community composition of foliar endophytic fungi (FEFs) varied substantially among plots with experimentally elevated levels of macronutrients, and thus, N availability, instead of host species identity, would have a greater influence in structuring fungal communities at different scales. We also expected an important subset of taxa shared among numerous host species and N gradients to form a community-wide core microbiome. We measured the leaf functional traits and community structures of FEFs of three commonly seen species in an alpine meadow nested with a long-term N fertilization experiment. We found that host plant identity was a powerful factor driving the endophytic fungal community in leaves, even in habitats where productivity was strongly limited by nitrogen (p < 0.001). We also found that within the same host, nitrogen was an important driving force for the composition of the endophytic fungi community (p < 0.05). In addition, the leaf carbon content was the most important functional trait that limited the diversity of endophytic fungi (p < 0.001). Finally, we documented a distinct core microbiome shared among our three focal species and N gradients.
Collapse
Affiliation(s)
- Yiming Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Qi Zhang
| | - Guoxi Shi
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Yongjun Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Guozhen Du
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Arid and Grassland Ecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- Huyuan Feng
| |
Collapse
|
36
|
Borgato L, Ertz D, Van Rossum F, Verbeken A. The Diversity of Lichenized Trentepohlioid Algal (Ulvophyceae) Communities is Driven by Fungal Taxonomy and Ecological Factors. JOURNAL OF PHYCOLOGY 2022; 58:582-602. [PMID: 35460260 DOI: 10.1111/jpy.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Trentepohliales are a group of both free-living and lichenized algae, with most diversity occurring in tropical regions. Recent studies showed that the abundance of lichens with a trentepohlioid photobiont has been increasing in temperate habitats, probably because of global warming, which makes them an interesting study case. A detailed molecular study of the diversity of lichenized Trentepohliales, epiphytic as well as epilithic, was performed in three forests of north-western Europe. Additional samples of lichens of the Arthoniales order (associating essentially with a trentepohlioid photobiont) from other European regions and from other continents were also sequenced. A total of 195 algal sequences were obtained. Phylogenetic analyses with rbcL and ITS loci were performed and associations between phylogenetic distances of photobionts and ecological factors (substratum, climate or Wirth indices, mycobiont taxonomy, and geographic location) were tested by variation partitioning and phylogenetic signal analyses. The high number of rbcL algal haplotypes found in some lichens or on different substrata revealed that the Trentepohliales diversity in extratropical regions was underestimated. The phylogenetic patterns showed selectivity of some photobionts in their fungal partner choice and vice-versa, while others were linked with several haplotypes. Photobionts seemed to be less selective than mycobionts. The main factors influencing lichenized algal community were climate and mycobiont species. Coevolution between mycobionts and photobionts as well as switching between free living and lichenized lifestyles appeared to drive the evolution of Trentepohliales and might explain the high cryptic diversity observed, which might be changing in some regions due to climate change.
Collapse
Affiliation(s)
- Luca Borgato
- Research Group Mycology, Ghent University, K.L. Ledeganckstraat 35, Gent, BE-9000, Belgium
- Research Department, Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium
| | - Damien Ertz
- Research Department, Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium
- Fédération Wallonie-Bruxelles, Service Général de l'Enseignement Supérieur et de la Recherche Scientifique, rue A. Lavallée 1, Bruxelles, BE-1080, Belgium
| | - Fabienne Van Rossum
- Research Department, Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium
- Fédération Wallonie-Bruxelles, Service Général de l'Enseignement Supérieur et de la Recherche Scientifique, rue A. Lavallée 1, Bruxelles, BE-1080, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Ghent University, K.L. Ledeganckstraat 35, Gent, BE-9000, Belgium
| |
Collapse
|
37
|
Tellez PH, Arnold AE, Leo AB, Kitajima K, Van Bael SA. Traits along the leaf economics spectrum are associated with communities of foliar endophytic symbionts. Front Microbiol 2022; 13:927780. [PMID: 35966664 PMCID: PMC9366602 DOI: 10.3389/fmicb.2022.927780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf traits of plants worldwide are classified according to the Leaf Economics Spectrum (LES), which links leaf functional traits to evolutionary life history strategies. As a continuum ranging from thicker, tough leaves that are low in nitrogen (N) to thinner, softer, leaves that are high in N, the LES brings together physical, chemical, and ecological traits. Fungal endophytes are common foliar symbionts that occur in healthy, living leaves, especially in tropical forests. Their community composition often differs among co-occurring host species in ways that cannot be explained by environmental conditions or host phylogenetic relationships. Here, we tested the over-arching hypothesis that LES traits act as habitat filters that shape communities of endophytes both in terms of composition, and in terms of selecting for endophytes with particular suites of functional traits. We used culture-based and culture-free surveys to characterize foliar endophytes in mature leaves of 30 phylogenetically diverse plant species with divergent LES traits in lowland Panama, and then measured functional traits of dominant endophyte taxa in vitro. Endophytes were less abundant and less diverse in thick, tough, leaves compared to thin, softer, leaves in the same forest, even in closely related plants. Endophyte communities differed according to leaf traits, including leaf punch strength and carbon and nitrogen content. The most common endophyte taxa in leaves at different ends of the LES differ in their cellulase, protease, chitinase, and antipathogen activity. Our results extend the LES framework for the first time to diverse and ecologically important endophytes, opening new hypotheses regarding the degree to which foliar symbionts respond to, and extend, the functional traits of leaves they inhabit.
Collapse
Affiliation(s)
- Peter H Tellez
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Ashton B Leo
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Kaoru Kitajima
- Smithsonian Tropical Research Institute, Panama City, Panama
- Division of Forest and Biomaterial Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sunshine A Van Bael
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
38
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
39
|
Zhang T, Zhang X, Yang Q, Wei X. Hidden Species Diversity was Explored in Two Genera of Catapyrenioid Lichens (Verrucariaceae, Ascomycota) from the Deserts of China. J Fungi (Basel) 2022; 8:729. [PMID: 35887484 PMCID: PMC9319096 DOI: 10.3390/jof8070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Verrucariaceae is the third-largest lichen family with high species diversity. However, this diversity has not been well-explored in China. We carried out a wide-scale field investigation in the arid and semi-arid regions of Northwest China from 2017 to 2021. A large number of lichen groups, especially those commonly distributed in deserts, were collected. Based on molecular phylogeny using ITS and nuLSU sequences by Bayesian and maximum likelihood analyses, combining morphological characters, seven taxa of catapyrenioid lichens in Verricariaceae were found in this study, including one genus (Clavascidium) and one species (Clavascidium lacinulatum) new to China; one genus (Placidium) new to the mainland of China; and four species (Clavascidium sinense, Placidium nitidulum, Placidium nigrum, and Placidium varium) new to science. It enriched our understanding of the high species diversity in Verrucariaceae and the lichen flora of Chinese arid and semi-arid deserts.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.Z.); (X.Z.); (Q.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.Z.); (X.Z.); (Q.Y.)
- College of Plant Sciences, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Qiuxia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.Z.); (X.Z.); (Q.Y.)
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (T.Z.); (X.Z.); (Q.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Allen JL, Lendemer JC. A call to reconceptualize lichen symbioses. Trends Ecol Evol 2022; 37:582-589. [PMID: 35397954 DOI: 10.1016/j.tree.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022]
Abstract
Several decades of research across disciplines have overturned historical perspectives of symbioses dominated by binary characterizations of highly specific species-species interactions. This paradigm shift has unlocked the previously underappreciated and overlooked dynamism of fungal mutualisms such as mycorrhizae. Lichens are another example of important fungal mutualisms where reconceptualization is urgently needed to realize their potential as model systems. This reconceptualization requires both an objective synthesis of new data and envisioning a revised integrative approach that unifies the spectrum of ecology and evolution. We propose a ten-theme framework that if pursued would propel lichens to the vanguard of symbiotic theory.
Collapse
Affiliation(s)
- Jessica L Allen
- Eastern Washington University, Biology Department, Cheney, WA 99004, USA.
| | - James C Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, USA.
| |
Collapse
|
41
|
The yeast lichenosphere: High diversity of basidiomycetes from the lichens Tephromela atra and Rhizoplaca melanophthalma. Fungal Biol 2022; 126:587-608. [DOI: 10.1016/j.funbio.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/26/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023]
|
42
|
Zhao L, Kim JC, Hur JS. 7-Hydroxy-2-octenoic acid-ethyl ester mixture as an UV protectant secondary metabolite of an endolichenic fungus isolated from Menegazzia terebrata. Arch Microbiol 2022; 204:395. [PMID: 35705862 DOI: 10.1007/s00203-022-02997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
Enodolichenic fungi (ELF) are considered a promising bio-resource since they produce a variety of novel secondary metabolites with bioactivities. Ultraviolet (UV) radiation in sunlight containing UVA and UVB can cause acute and chronic skin diseases, and the demand for UV protectants in sunscreens has been increasing. Such situations evoke the strong interest of researchers in seeking effective UV protectants from natural products. In this study, we obtained partially purified 7-hydroxy-2-octenoic acid-ethyl ester (7E) from the secondary metabolites of ELF000548, which has UVA absorption activity. The antioxidant properties were performed by in vitro tests. The superoxide anion scavenging activity and inhibition of linoleic acid peroxidation of the 7E mixture were higher than ascorbic acid (ASA) and butyl hydroxyl anisole (BHA). Furthermore, the compound recovered the damage caused by UVB irradiation and inhibited melanin synthesis. Additionally, the 7E mixture exhibited no cytotoxicity toward the mouse melanoma cell lines, B16F1 and B16F10, except for the normal cell line, HaCaT. In general, these results are the first report about bioactivities of 7E, and those demonstrated that this compound might be a UV protectant to go further study.
Collapse
Affiliation(s)
- Lu Zhao
- Central Laboratory, Weifang People's Hospital/The First Affiliated Hospital of Weifang Medical Unviersity, Weifang, 261000, People's Republic of China.,Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Shandong Laibo Biotechnology Co., Ltd., Jinan, 250101, People's Republic of China
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, 57922, Korea.
| |
Collapse
|
43
|
Chen KH, Liao HL, Arnold AE, Korotkin HB, Wu SH, Matheny PB, Lutzoni F. Comparative transcriptomics of fungal endophytes in co-culture with their moss host Dicranum scoparium reveals fungal trophic lability and moss unchanged to slightly increased growth rates. THE NEW PHYTOLOGIST 2022; 234:1832-1847. [PMID: 35263447 DOI: 10.1111/nph.18078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Mosses harbor fungi whose interactions within their hosts remain largely unexplored. Trophic ranges of fungal endophytes from the moss Dicranum scoparium were hypothesized to encompass saprotrophism. This moss is an ideal host to study fungal trophic lability because of its natural senescence gradient, and because it can be grown axenically. Dicranum scoparium was co-cultured with each of eight endophytic fungi isolated from naturally occurring D. scoparium. Moss growth rates, and gene expression levels (RNA sequencing) of fungi and D. scoparium, were compared between axenic and co-culture treatments. Functional lability of two fungal endophytes was tested by comparing their RNA expression levels when colonizing living vs dead gametophytes. Growth rates of D. scoparium were unchanged, or increased, when in co-culture. One fungal isolate (Hyaloscyphaceae sp.) that promoted moss growth was associated with differential expression of auxin-related genes. When grown with living vs dead gametophytes, Coniochaeta sp. switched from having upregulated carbohydrate transporter activity to upregulated oxidation-based degradation, suggesting an endophytism to saprotrophism transition. However, no such transition was detected for Hyaloscyphaceae sp. Individually, fungal endophytes did not negatively impact growth rates of D. scoparium. Our results support the long-standing hypothesis that some fungal endophytes can switch to saprotrophism.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, 1692 McCarty Drive, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA
| | - Hailee B Korotkin
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - Steven H Wu
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| | - François Lutzoni
- Department of Biology, Duke University, 130 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
44
|
Spribille T, Resl P, Stanton DE, Tagirdzhanova G. Evolutionary biology of lichen symbioses. THE NEW PHYTOLOGIST 2022; 234:1566-1582. [PMID: 35302240 DOI: 10.1111/nph.18048] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 05/28/2023]
Abstract
Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.
Collapse
Affiliation(s)
- Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 3, Graz, 8010, Austria
| | - Daniel E Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
45
|
Bioprospecting of an Endolichenic Fungus Phanerochaete sordida Isolated from Mangrove-Associated Lichen Bactrospora myriadea. J CHEM-NY 2022. [DOI: 10.1155/2022/3193689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bioassay-guided fractionation of the ethyl acetate extract of Phanerochaete sordida, an endolichenic fungus (ELF) isolated from the host lichen Bactrospora myriadea, collected from Negombo lagoon, Sri Lanka, led to the isolation of a bioactive compound. Following the identification of the fungus using morphological and DNA barcoding techniques, the pure compound was isolated using column chromatography, preparative TLC, and semipreparative HPLC. The structure elucidation was carried out using IR, HR-ESI-MS and 1H, 13C & 2D NMR spectroscopic methods. The in vitro bioassays conducted revealed that compound 1 has a high antioxidant activity with ABTS•+ (IC50
), moderate anti-inflammatory activity (IC50
), comparable antibacterial activity against the oral-bacterial strain Streptococcus mutans (MIC 898.79 μM and MLC 1797.58 μM), moderate tyrosinase inhibition (IC50
), and moderate cytotoxicity against oral cancer (IC50
), in comparison with respective positive controls. The in silico experiments conducted for tyrosinase inhibition and cytotoxicity using Schrödinger revealed results in line with the in vitro results, thus confirming the bioactivities. The molecule also satisfies the key features of drug likeliness according to pharmacokinetic studies.
Collapse
|
46
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
47
|
Abstract
Alternaria alternata is a common species of fungus frequently isolated from plants as both an endophyte and a pathogen. Although the current definition of A. alternata rests on a foundation of morphological, genetic and genomic analyses, doubts persist regarding the scope of A. alternata within the genus due to the varied symbiotic interactions and wide host range observed in these fungi. These doubts may be due in large part to the history of unstable taxonomy in Alternaria, based on limited morphological characters for species delimitation and host specificity associated with toxins encoded by genes carried on conditionally dispensable chromosomes. This review explores the history of Alternaria taxonomy, focusing in particular on the use of nutritional mode and host associations in species delimitation, with the goal of evaluating A. alternata as it currently stands based on taxonomic best practice. Given the recombination detected among isolates of A. alternata, different symbiotic associations in this species should not be considered phylogenetically informative.
Collapse
Affiliation(s)
- Mara DeMers
- Plant and Microbial Biology Department, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
- *Correspondence: Mara DeMers,
| |
Collapse
|
48
|
Healy RA, Arnold AE, Bonito G, Huang YL, Lemmond B, Pfister DH, Smith ME. Endophytism and endolichenism in Pezizomycetes: the exception or the rule? THE NEW PHYTOLOGIST 2022; 233:1974-1983. [PMID: 34839525 DOI: 10.1111/nph.17886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Rosanne A Healy
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yu-Ling Huang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biology, National Museum of Natural Science, Taichung, 404, Taiwan
| | - Benjamin Lemmond
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Farlow Herbarium, Harvard University, 22 Divinity Ave, Cambridge, MA, 02138-2020, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
49
|
Yang JH, Oh SY, Kim W, Hur JS. Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum. MYCOBIOLOGY 2022; 50:55-65. [PMID: 35291596 PMCID: PMC8890557 DOI: 10.1080/12298093.2022.2040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 05/31/2023]
Abstract
Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture- and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.
Collapse
Affiliation(s)
- Ji Ho Yang
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
50
|
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh HM, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U'Ren JM. Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. THE NEW PHYTOLOGIST 2022; 233:1317-1330. [PMID: 34797921 DOI: 10.1111/nph.17873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.
Collapse
Affiliation(s)
- Mario E E Franco
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Ahrendt
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lillian P Moore
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Katharine E Eastman
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen J Mondo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sajeet Haridas
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Juying Yan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine Adam
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRAE, Marseille, 13288, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Huei-Mei Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Youens-Clark
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Igor V Grigoriev
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jana M U'Ren
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|