1
|
Alnasser SM. Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications. BioData Min 2025; 18:33. [PMID: 40329377 PMCID: PMC12054138 DOI: 10.1186/s13040-025-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.
| |
Collapse
|
2
|
Ping S, Lin W, Ming R, He Y, Yin Y, Ren Y. Toxic effects of four cardiovascular drugs on the development and epigenetics of zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157360. [PMID: 35850353 DOI: 10.1016/j.scitotenv.2022.157360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Due to the prevalence of cardiovascular diseases, therapeutic drugs such as atenolol (ATE), metoprolol (MET), atorvastatin (ATO), and bezafibrate (BZB) have been widely used and thus frequently detected in surface water at ng·L-1-μg·L-1 level. In this study, the developmental toxicity of these drugs (0.5 μg·L-1-500 μg·L-1) to zebrafish, an aquatic model organism, was investigated; and the epigenetic toxicity of BZB was also explored. For all four drugs, the results showed that the drugs exposure could cause sublethal toxic effects on zebrafish larvae, such as decreases in hatching rate, body length, and heart rate. ATO also induced the swelling of the eyes of larvae by 5 %-15 %. Yolk sac edema, pericardial edema, bent spine, and tail malformation were observed in larvae exposed to the drugs, and yolk sac edema was the most common malformation. In addition, the spontaneous movement and free-swimming activity could be inhibited by the drugs. Combined with RNA-seq results, the adverse development of larvae in exposure groups may be caused by the disruption of lipid and carbohydrate metabolism, and the development and function of eye and nervous system. After a 30-day uptake period, the accumulation of BZB and the decrease of global DNA methylation level were observed in the liver, kidneys, gut, gills, and brain of adult zebrafish (4-month-old) exposed to 0.5 μg·L-1 to 500 μg·L-1 BZB. The liver was the main organ for BZB accumulation and the occurrence of DNA hypomethylation. In the liver, overexpression (1.5-7.6 times) of genes related to lipid metabolism (PPARα), DNA methylation (Dnmt1), and apoptosis (p53) was also observed. The results of the current study suggest that long-term exposure to low-concentrations of cardiovascular drugs may pose significant threats to aquatic ecosystems.
Collapse
Affiliation(s)
- Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Ruiliang Ming
- Guangzhou CAS Test Technical Services Co., Ltd, Guangzhou 510650, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yurong Yin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
3
|
Milošević M, Arsić A, Cvetković Z, Vučić V. Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Front Nutr 2021; 8:688086. [PMID: 34422879 PMCID: PMC8374314 DOI: 10.3389/fnut.2021.688086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Healthcare systems worldwide are seriously challenged by a rising prevalence of neurodegenerative diseases (NDDs), which mostly, but not exclusively, affect the ever-growing population of the elderly. The most known neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, but some viral infections of the brain and traumatic brain injury may also cause NDD. Typical for NDD are the malfunctioning of neurons and their irreversible loss, which often progress irreversibly to dementia and ultimately to death. Numerous factors are involved in the pathogenesis of NDD: genetic variability, epigenetic changes, extent of oxidative/nitrosative stress, mitochondrial dysfunction, and DNA damage. The complex interplay of all the above-mentioned factors may be a fingerprint of neurodegeneration, with different diseases being affected to different extents by particular factors. There is a voluminous body of evidence showing the benefits of regular exercise to brain health and cognitive functions. Moreover, the importance of a healthy diet, balanced in macro- and micro-nutrients, in preventing neurodegeneration and slowing down a progression to full-blown disease is evident. Individuals affected by NDD almost inevitably have low-grade inflammation and anomalies in lipid metabolism. Metabolic and lipid profiles in NDD can be improved by the Mediterranean diet. Many studies have associated the Mediterranean diet with a decreased risk of dementia and AD, but a cause-and-effect relationship has not been deduced. Studies with caloric restriction showed neuroprotective effects in animal models, but the results in humans are inconsistent. The pathologies of NDD are complex and there is a great inter-individual (epi)genetic variance within any population. Furthermore, the gut microbiome, being deeply involved in nutrient uptake and lipid metabolism, also represents a pillar of the gut microbiome-brain axis and is linked with the pathogenesis of NDD. Numerous studies on the role of different micronutrients (omega-3 fatty acids, bioactive polyphenols from fruit and medicinal plants) in the prevention, prediction, and treatment of NDD have been conducted, but we are still far away from a personalized diet plan for individual NDD patients. For this to be realized, large-scale cohorts that would include the precise monitoring of food intake, mapping of genetic variants, epigenetic data, microbiome studies, and metabolome, lipidome, and transcriptome data are needed.
Collapse
Affiliation(s)
- Maja Milošević
- Department of Neuroendocrinology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Arsić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Center Zemun, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Department of Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Torres T, Ruivo R, Santos MM. Epigenetic biomarkers as tools for chemical hazard assessment: Gene expression profiling using the model Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144830. [PMID: 33592472 DOI: 10.1016/j.scitotenv.2020.144830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Recent reports raise the concern that exposure to several environmental chemicals may induce persistent changes that go beyond the exposed organisms, being transferred to subsequent generations even in the absence of the original chemical insult. These changes in subsequent non-exposed generations have been related to epigenetic changes. Although highly relevant for hazard and risk assessment, biomarkers of epigenetic modifications that can be associated with adversity, are still not integrated into hazard assessment frameworks. Here, in order to validate new biomarkers of epigenetic modifications in a popular animal model, zebrafish embryos were exposed to different concentrations of Bisphenol A (0.01, 0.1, 1 and 10 mg/L) and Valproic Acid (0.8, 4, 20 and 100 mg/L), two chemicals reported to alter the modulation of the epigenome. Morphological abnormalities and epigenetic changes were assessed at 80 hours-post fertilization, including DNA global methylation and gene expression of both DNA and histone epigenetic modifications. Gene expression changes were detected at concentrations below those inducing morphological abnormalities. These results further support the importance of combining epigenetic biomarkers with apical endpoints to improve guidelines for chemical testing and hazard assessment, and favour the integration of new biomarkers of epigenetic modifications into the standardized OECD test guideline 236 with zebrafish embryos.
Collapse
Affiliation(s)
- Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W. Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 2021; 153:112251. [PMID: 33961929 DOI: 10.1016/j.fct.2021.112251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Mycotoxins contaminate all types of food and feed, threatening human and animal health through food chain accumulation, producing various toxic effects. Increasing attention is being focused on the molecular mechanism of mycotoxin-induced toxicity in all kinds of in vivo and in vitro models. Epigenetic alterations, including DNA methylation, non-coding RNAs (ncRNAs), and protein post-translational modifications (PTMs), were identified as being involved in various types of mycotoxin-induced toxicity. In this review, the emphasis was on summarizing the epigenetic alterations induced by mycotoxin, including aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and deoxynivalenol (DON). This review summarized and analyzed the roles of DNA methylation, ncRNAs, and protein PTMs after mycotoxin exposure based on recently published papers. Moreover, the main research methods and their deficiencies were determined, while some remedial suggestions are proposed. In summary, this review helps to understand better the epigenetic alterations induced by the non-genotoxic effects of mycotoxin.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
6
|
Cho Y, Song MK, Ryu JC. DNA methylome signatures as epigenetic biomarkers of hexanal associated with lung toxicity. PeerJ 2021; 9:e10779. [PMID: 33604181 PMCID: PMC7868067 DOI: 10.7717/peerj.10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Numerous studies have investigated the relationship of environmental exposure, epigenetic effects, and human diseases. These linkages may contribute to the potential toxicity mechanisms of environmental chemicals. Here, we investigated the epigenetic pulmonary response of hexanal, a major indoor irritant, following inhalation exposure in F-344 rats. Methods Based on DNA methylation profiling in gene promoter regions, we identified hexanal-characterized methylated sites and target genes using an unpaired t-test with a fold-change cutoff of ≥ 3.0 and a p-value < 0.05. We also conducted an integrated analysis of DNA methylation and mRNA expression data to identify core anti-correlated target genes of hexanal exposure. To further investigate the potential key biological processes and pathways of core DNA methylated target genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed. Results Thirty-six dose-dependent methylated genes and anti-correlated target genes of DNA methylation and mRNA in lung tissue of hexanal exposed F-344 rats were identified. These genes were involved in diverse biological processes such as neuroactive ligand-receptor interaction, protein kinase cascade, and intracellular signaling cascade associated with pulmonary toxicity. These results suggest that novel DNA methylation-based epigenetic biomarkers of exposure to hexanal and elucidate the potential pulmonary toxicological mechanisms of action of hexanal.
Collapse
Affiliation(s)
- Yoon Cho
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Mi-Kyung Song
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Jae-Chun Ryu
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kong FC, Ma CL, Zhong MK. Epigenetic Effects Mediated by Antiepileptic Drugs and their Potential Application. Curr Neuropharmacol 2020; 18:153-166. [PMID: 31660836 PMCID: PMC7324883 DOI: 10.2174/1570159x17666191010094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Vorobyeva OV, Samoylova TA, Yusupov VI. Effects of Photobiomodulation on Daphnia magna Straus and their Sensitivity to Toxicant. Photochem Photobiol 2020; 96:1116-1123. [PMID: 32119122 DOI: 10.1111/php.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
This paper deals with the effect of photobiomodulation (PBM) on Daphnia magna S. and their sensitivity to cadmium sulfate, a known high toxic pollutant. In a first series of experiments, the effect of different He-Ne laser fluences irradiation (range 0.9-4300 mJ cm-2 ) on the fertility of both parent and filial generations (F1-F3) of the crustacean was studied. It was found that PBM in some cases significantly influenced the fertility of both irradiated crustaceans and their nonirradiated offspring. By selecting two fluences (9 ± 2 mJ cm-2 reducing fertility and 4.3 ± 0.9 J cm-2 increasing it), the effect of these on toxicity of cadmium sulfate was evaluated. These experiments have shown that prior irradiation with low-intensity light of a helium-neon laser with 632.8 nm wavelength can change the sensitivity of aquatic organisms to toxin cadmium sulfate. The degree and direction of changes depend on the toxicant concentration and the irradiation dose.
Collapse
Affiliation(s)
- Olga V Vorobyeva
- Lomonosov Moscow State University, Moscow, Russia.,VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Tatyana A Samoylova
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Vladimir I Yusupov
- Institute of Photon Technologies, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J, Chen Q, Cai J, Chen S, Wei Y, Xu X, Tang X, Zou Y, Qin J. Association of liver and kidney functions with Klotho gene methylation in a population environment exposed to cadmium in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:38-48. [PMID: 30714826 DOI: 10.1080/09603123.2019.1572106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Exposure to the heavy metal cadmium has adverse effects on human health, including DNA methylation. This study aimed to investigate the effects of cadmium on liver and kidney functions and Klotho gene methylation and to explore the relationship of methylation level with indicators of liver and kidney functions. Graphite furnace atomic absorption spectrometry was conducted to determine urinary cadmium, and an automatic biochemical analyzer was used to detect indices of liver and kidney functions. PCR pyrosequencing was performed to detect the methylation rate of Klotho. One-way ANOVA was adopted to compare the differences between groups, and the linear correlation to variables was analyzed. Cadmium exposure was negatively correlated with albumin level (r=-0.143, p=0.021) and positively correlated with urinary β2-microglobulin level (r=0.229, p<0.001). However, the methylation levels of Klotho gene was decreased and increased by low and high doses of cadmium exposure, respectively. And Klothomethylation levels were negatively correlated with albumin levels and positively correlated with β2-microglobulin levels.In this study, cadmium exposure affects liver and kidney functions as well as Klotho methylation levels, but the effect on Klotho methylation levels is not linear. Klotho methylation levels also influence liver and kidney functions.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guoqi Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingzhi Lei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiexia Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiangsheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Yi Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Fatma Karaman E, Caglayan M, Sancar-Bas S, Ozal-Coskun C, Arda-Pirincci P, Ozden S. Global and region-specific post-transcriptional and post-translational modifications of bisphenol A in human prostate cancer cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113318. [PMID: 31610501 DOI: 10.1016/j.envpol.2019.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA), as synthetic monomer used in the production of polycarbonate plastic and epoxy resins, has endocrine disruptor properties and high risk on human health. Epigenetic alterations could act an important role in BPA-induced toxicity, but its mechanism has not been fully understood. We investigated the effects of BPA on gene expression of chromatin modifying enzymes, promoter methylation of tumor suppressor genes and histone modifications in human prostate carcinoma cells (PC-3). IC50 value of BPA was determined as 217 and 190 μM in PC-3 cells by MTT and NRU tests, respectively. We revealed an increase in global levels of 5-methylcytocine and 5-hydroxymethylcytocine at 10 μM of BPA for 96 h. We observed a significant increase on promoter DNA methylation and decrease on gene expression of p16 gene while no change was observed for Cyclin D2 and Rassf1. Significant changes were observed in global histone modifications (H3K9ac, H3K9me3, H3K27me3, and H4K20me3) in PC-3 cells. According to these results, we investigated wide-range epigenetic modifications using PCR arrays. After 96 h BPA exposure, chromatin modifying enzymes including KDM5B and NSD1 were significantly downregulated. Also, promoter methylation of tumor suppressor genes including BCR, GSTP1, LOX, MGMT, NEUROG1, PDLIM4, PTGS2, PYCARD, TIMP3, TSC2 and ZMYDN10 altered significantly. ChIP results showed that H3K9ac, H3K9me3 and H3K27me3 modifications on p16 gene showed significant increases after 1 and 10 μM of BPA exposure. In conclusion, epigenetic signatures such as DNA methylation and histone modifications could be proposed as molecular biomarkers of BPA-induced prostate cancer progression.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Mine Caglayan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Serap Sancar-Bas
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Cansu Ozal-Coskun
- Section of Biology, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Pelin Arda-Pirincci
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
11
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
12
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
13
|
Fuso A, Lucarelli M. CpG and Non-CpG Methylation in the Diet–Epigenetics–Neurodegeneration Connection. Curr Nutr Rep 2019; 8:74-82. [DOI: 10.1007/s13668-019-0266-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Ghosh M, Öner D, Poels K, Tabish AM, Vlaanderen J, Pronk A, Kuijpers E, Lan Q, Vermeulen R, Bekaert B, Hoet PH, Godderis L. Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology 2017; 11:1195-1210. [PMID: 29191063 DOI: 10.1080/17435390.2017.1406169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.
Collapse
Affiliation(s)
- Manosij Ghosh
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Deniz Öner
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Katrien Poels
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Ali M Tabish
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Jelle Vlaanderen
- b Division of Environmental Epidemiology, Institute for Risk Assessment Sciences , Utrecht University , Utrecht , The Netherlands
| | - Anjoeka Pronk
- c TNO, Netherlands Organisation for Applied Scientific Research , Zeist , The Netherlands
| | - Eelco Kuijpers
- c TNO, Netherlands Organisation for Applied Scientific Research , Zeist , The Netherlands
| | - Qing Lan
- d Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | - Roel Vermeulen
- b Division of Environmental Epidemiology, Institute for Risk Assessment Sciences , Utrecht University , Utrecht , The Netherlands
| | - Bram Bekaert
- e Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology , University Hospitals Leuven , Leuven , Belgium
| | - Peter Hm Hoet
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium
| | - Lode Godderis
- a Department of Public Health and Primary Care, Centre Environment & Health , KU Leuven , Leuven , Belgium.,f External Service for Prevention and Protection at Work , Idewe , Heverlee , Belgium
| |
Collapse
|
15
|
Thomson JP, Ottaviano R, Buesen R, Moggs JG, Schwarz M, Meehan RR. Defining baseline epigenetic landscapes in the rat liver. Epigenomics 2017; 9:1503-1527. [PMID: 29130343 PMCID: PMC5957268 DOI: 10.2217/epi-2017-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Characterization of the hepatic epigenome following exposure to chemicals and therapeutic drugs provides novel insights into toxicological and pharmacological mechanisms, however appreciation of genome-wide inter- and intra-strain baseline epigenetic variation, particularly in under-characterized species such as the rat is limited. Material & methods To enhance the utility of epigenomic endpoints safety assessment, we map both DNA modifications (5-methyl-cytosine and 5-hydroxymethyl-cytosine) and enhancer related chromatin marks (H3K4me1 and H3K27ac) across multiple male and female rat livers for two important outbred laboratory rat strains (Sprague–Dawley and Wistar). Results & conclusion Integration of DNA modification, enhancer chromatin marks and gene expression profiles reveals clear gender-specific chromatin states at genes which exhibit gender-specific transcription. Taken together this work provides a valuable baseline liver epigenome resource for rat strains that are commonly used in chemical and pharmaceutical safety assessment.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Roland Buesen
- BASF SE, Experimental Toxicology & Ecology, 67056 Ludwigshafen, Germany
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, CH-4057 Basel, Switzerland
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Richard R Meehan
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
16
|
Battershill JM. The Multiple Chemicals and Actions Model of carcinogenesis. A possible new approach to developing prevention strategies for environmental carcinogenesis. Hum Exp Toxicol 2016; 24:547-58. [PMID: 16323570 DOI: 10.1191/0960327105ht559oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The number of definite and probable human chemical carcinogens identified by IARC approaches between 1987 and June 2004 is reported to be 50 agents. However, overall, given the rapid expansion in the number of chemicals in use, the throughput of the current approach to identifying potential environmental carcinogens is low. The long-term rodent bioassay, a key part of the current approach, identifies many chemicals which eventually turn out to be irrelevant for human health with regard to cancer. A new approach is suggested which focuses on identifying the potency of environmental mixtures for induction of toxicological changes relevant to carcinogenesis (e.g., cell proliferation, chronic inflammation, inhibition of apoptosis, mutagenicity). Details regarding a suggested strategy for prioritization of mixtures are provided with more detailed information regarding mutagenicity as an end point. The long-term rodent bioassay is not included in the proposal (although it is acknowledged that it will continue to be important in premarketing regulatory schemes) for hazard identification. The Multiple Chemicals and Actions Model (MCAM) is developed. In this model the chemical mixtures in the environment act via a number of mechanisms as ‘effectors’ or ‘inhibitors’ of a multistage carcinogenic process. Identifying effectors and inhibitors of the rate-limiting step would be important for preventive strategies. Genetic polymorphisms act as modulators of effector and inhibitor mixtures. It is suggested that the MCAM model could be used in public education programmes to help inform on public health issues regarding cancer and to help avoid future scares which tend to focus on single chemicals. It is acknowledged that there would need to be basic research undertaken to generate appropriate data to support the application of the proposal before it could be used in cancer prevention strategies.
Collapse
|
17
|
Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure. Toxicol Appl Pharmacol 2015; 289:203-12. [DOI: 10.1016/j.taap.2015.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
|
18
|
Qian Y, Wang X, Lv Z, Guo C, Han M, Wu J, Yang Y, Yang Y, Jiang Y, Wei Y, Nie J, Liang B, Zhang J, Wang X. A novel quantification method for the total demethylation potential of aquatic sample extracts from Bohai Bay using the EGFP reporter gene. BMC Biotechnol 2015; 15:107. [PMID: 26610601 PMCID: PMC4660669 DOI: 10.1186/s12896-015-0224-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/13/2015] [Indexed: 12/13/2022] Open
Abstract
Background The demethylation potential of environmental pollutants is possibly an innate part of their comprehensive health risk. This paper develops a novel method called TDQ to quantify the demethylation epigenetic toxicity, termed the 5-AZA-CdR demethylation toxic equivalency, of aquatic samples from the heavily polluted Bohai Bay using Hep G2 cell lines transiently transfected with the pEGFP-C3 plasmid containing a methylated promoter of the EGFP reporter gene inserted artificially in vitro. Results If the aquatic sample extract has strong total demethylation potential to the promoter, its methylation level will decrease, and increased green fluorescence will be observed under microscopy after TDQ co-incubation. The 5-AZA-CdR was selected as a representative demethylation agent to validate the principle of the TDQ method on three levels: significant dose–response relationships between the concentration of 5-AZA-CdR and the methylation level of promoters, mRNA expression level of the EGFP gene, and the fluorescence intensity of EGFP proteins. Twenty extracts from aquatic samples are successfully quantified with the TDQ test. Eight of them return meaningful results ranging from 0.00004 to 0.20053 μM 5-AZA-CdR toxicity equivalents. Conclusions The TDQ method is a reliable and rapid assay for the quantification of the DNA demethylation potential of aquatic sample extracts, which may shed light on the safety evaluation of food material. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0224-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Zhanlu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Mei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jiabing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. .,School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Yongjian Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Yan Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Nie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bao Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. .,School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Jinliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xianliang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. .,Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
19
|
Thomas CR. Epigenetics and Child Psychiatry: Ethical and Legal Issues. BEHAVIORAL SCIENCES & THE LAW 2015; 33:644-652. [PMID: 26358684 DOI: 10.1002/bsl.2207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Epigenetics has the potential to revolutionize diagnosis and treatment in psychiatry, especially child psychiatry, as it may offer the opportunity for early detection and prevention, as well as development of new treatments. As with the previous introduction of genetic research in psychiatry, there is also the problem of unrealistic expectations and new legal and ethical problems. This article reviews the potential contributions and problems of epigenetic research in child psychiatry. Previous legal and ethical issues in genetic research serve as a guide to those in epigenetic research. Recommendations for safeguards and guidelines on the use of epigenetics with children and adolescents are outlined based on the identified issues.
Collapse
|
20
|
CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol 2015; 286:207-15. [DOI: 10.1016/j.taap.2015.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
|
21
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
22
|
Han Y, Zhao H, Jiang Q, Gao H, Wang C. Chemopreventive mechanism of polypeptides from Chlamy Farreri (PCF) against UVB-induced malignant transformation of HaCaT cells. Mutagenesis 2015; 30:287-96. [PMID: 25392149 DOI: 10.1093/mutage/geu071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
To investigate polypeptide from Chlamy Farreri (PCF)'s protective effect against skin cancer, we used a cellular model of ultraviolet B (UVB)-induced malignant transformation. The human keratinocyte cell line HaCaT was repeatly exposed to UVB (10 mJ/cm(2), 20 times) and malignant transformation was confirmed by Gimesa staining, cell cycle analysis and various assays [anchorage independent growth, matrix metalloproteinase-9 (MMP9) activity, plating efficiency]. The malignant transformation was found to be effectively prevented by PCF pretreatment (2.84mM for 2h prior to each UVB exposure). We investigated the mechanism of PCF-mediated action by determining its effect on DNA methylation status of the tumour suppressor genes [P16 and ras association domain family 1 A (RASSF1A)] in the UVB-transformed cells. Both genes were found to be hypermethylated by chronic UVB exposure. The expression levels of P16, RASSF1A, DNA methyltransferases (DNMTs) and DNA damage inducible protein a (GADD45a) were measured by reverse transcriptase-polymerase chain reaction and western blotting. While chronic UVB exposure was found to suppress the expression of P16 and RASSF1A, it enhanced the expression of DNMT3b. In the early phase of UVB-induced malignant transformation, the GADD45a expression was increased, however, it declined with a continued irradiation of the cells. The UVB-induced DNA hypermethylation of P16 and RASSF1A and subsequent gene silencing was reversed by PCF treatment. The inhibition of DNMTs expression suggested that PCF blocked DNA methylation and thereby the silencing of tumour suppressor genes. Furthermore, the PCF-mediated substantial increase in GADD45a expression indicated that PCF promoted demethylation of tumour suppressor genes via GADD45a induction.
Collapse
Affiliation(s)
- Yantao Han
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Huihui Zhao
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Qixiao Jiang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Hui Gao
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Chunbo Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| |
Collapse
|
23
|
Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, Caruso G, Caffo M, Teti D, Venza I. Epigenetic effects of cadmium in cancer: focus on melanoma. Curr Genomics 2015; 15:420-35. [PMID: 25646071 PMCID: PMC4311387 DOI: 10.2174/138920291506150106145932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Agliano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Morabito
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Maria Caffo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
25
|
Hoenerhoff MJ, Hartke J. Overview of the "epigenetic end points in toxicologic pathology and relevance to human health" session of the 2014 Society Of Toxicologic Pathology Annual Symposium. Toxicol Pathol 2014; 43:98-100. [PMID: 25330923 DOI: 10.1177/0192623314553475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The theme of the Society of Toxicologic Pathology 2014 Annual Symposium was "Translational Pathology: Relevance of Toxicologic Pathology to Human Health." The 5th session focused on epigenetic end points in biology, toxicity, and carcinogenicity, and how those end points are relevant to human exposures. This overview highlights the various presentations in this session, discussing integration of epigenetics end points in toxicologic pathology studies, investigating the role of epigenetics in product safety assessment, epigenetic changes in cancers, methodologies to detect them, and potential therapies, chromatin remodeling in development and disease, and epigenomics and the microbiome. The purpose of this overview is to discuss the application of epigenetics to toxicologic pathology and its utility in preclinical or mechanistic based safety, efficacy, and carcinogenicity studies.
Collapse
Affiliation(s)
- Mark J Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
26
|
Global DNA hypomethylation: A potential mechanism in King pigeon nerve tissue damage induced by avermectin. Chem Biol Interact 2014; 219:113-22. [DOI: 10.1016/j.cbi.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
|
27
|
Analysis of trichloroethylene-induced global DNA hypomethylation in hepatic L-02 cells by liquid chromatography-electrospray ionization tandem mass spectrometry. Biochem Biophys Res Commun 2014; 446:590-5. [PMID: 24632203 DOI: 10.1016/j.bbrc.2014.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Trichloroethylene (TCE), a major occupational and environmental pollutant, has been recently associated with aberrant epigenetic changes in experimental animals and cultured cells. TCE is known to cause severe hepatotoxicity; however, the association between epigenetic alterations and TCE-induced hepatotoxicity are not yet well explored. DNA methylation, catalyzed by enzymes known as DNA methyltransferases (DNMT), is a major epigenetic modification that plays a critical role in regulating many cellular processes. In this study, we analyzed the TCE-induced effect on global DNA methylation and DNMT enzymatic activity in human hepatic L-02 cells. A sensitive and quantitative method combined with liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was validated and utilized for assessing the altered DNA methylation in TCE-induced L-02 cells. Quantification was accomplished in multiple reaction monitoring (MRM) mode by monitoring a transition pair of m/z 242.1 (molecular ion)/126.3 (fragment ion) for 5-mdC and m/z 268.1/152.3 for dG. The correlation coefficient of calibration curves between 5-mdC and dG was higher than 0.9990. The intra-day and inter-day relative standard derivation values (RSD) were on the range of 0.53-7.09% and 0.40-2.83%, respectively. We found that TCE exposure was able to significantly decrease the DNA methylation and inhibit DNMT activity in L-02 cells. Our results not only reveal the association between TCE exposure and epigenetic alterations, but also provide an alternative mass spectrometry-based method for rapid and accurate assessment of chemical-induced altered DNA methylation in mammal cells.
Collapse
|
28
|
Thomson JP, Moggs JG, Wolf CR, Meehan RR. Epigenetic profiles as defined signatures of xenobiotic exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:3-9. [PMID: 24001620 DOI: 10.1016/j.mrgentox.2013.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
With the advent of high resolution sequencing technologies there has been increasing interest in the study of genome-wide epigenetic modification patterns that govern the underlying gene expression events of a particular cell or tissue type. There is now mounting evidence that perturbations to the epigenetic landscape occur during a host of cellular processes including normal proliferation/differentiation and aberrant outcomes such as carcinogenesis. Furthermore, epigenetic perturbations have been associated with exposure to a range of drugs and toxicants, including non-genotoxic carcinogens (NGCs). Although a variety of epigenetic modifications induced by NGCs have been studied previously, recent genome-wide integrated epigenomic and transcriptomic studies reveal for the first time the extent and dynamic nature of the epigenetic perturbations resulting from xenobiotic exposure. The interrogation and integration of one such epigenetic mark, the newly discovered 5-hydroxymethylcytosine (5hmC) modification, reveals that drug treatment associated perturbations of the epigenome can result in unique epigenetic signatures. This review focuses on how recent advances in the field of epigenetics can enhance our mechanistic understanding of xenobiotic exposure and provide novel safety biomarkers.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jonathan G Moggs
- Discovery & Investigative Safety, Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
29
|
Thomson JP, Hunter JM, Lempiäinen H, Müller A, Terranova R, Moggs JG, Meehan RR. Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver. Nucleic Acids Res 2013; 41:5639-54. [PMID: 23598998 PMCID: PMC3675467 DOI: 10.1093/nar/gkt232] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant DNA methylation is a common feature of neoplastic lesions, and early detection of such changes may provide powerful mechanistic insights and biomarkers for carcinogenesis. Here, we investigate dynamic changes in the mouse liver DNA methylome associated with short (1 day) and prolonged (7, 28 and 91 days) exposure to the rodent liver non-genotoxic carcinogen, phenobarbital (PB). We find that the distribution of 5mC/5hmC is highly consistent between untreated individuals of a similar age; yet, changes during liver maturation in a transcriptionally dependent manner. Following drug treatment, we identify and validate a series of differentially methylated or hydroxymethylated regions: exposure results in staged transcriptional responses with distinct kinetic profiles that strongly correlate with promoter proximal region 5hmC levels. Furthermore, reciprocal changes for both 5mC and 5hmC in response to PB suggest that active demethylation may be taking place at each set of these loci via a 5hmC intermediate. Finally, we identify potential early biomarkers for non-genotoxic carcinogenesis, including several genes aberrantly expressed in liver cancer. Our work suggests that 5hmC profiling can be used as an indicator of cell states during organ maturation and drug-induced responses and provides novel epigenetic signatures for non-genotoxic carcinogen exposure.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Benigni R, Bossa C, Tcheremenskaia O. Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts. Chem Rev 2013; 113:2940-57. [PMID: 23469814 DOI: 10.1021/cr300206t] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Romualdo Benigni
- Istituto Superiore di Sanita' Environment and Health Department, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
31
|
Rothstein MA. Epigenetic exceptionalism. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2013; 41:733-736. [PMID: 24088164 DOI: 10.1111/jlme.12083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This article considers the distinctive features of epigenetics and discusses whether, as a matter of ethics and law, epigenetics should be considered separate from genetics.
Collapse
Affiliation(s)
- Mark A Rothstein
- Herbert F. Boehl Chair of Law and Medicine and the Director of the Institute for Bioethics, Health Policy and Law at the University of Louisville School of Medicine in Kentucky.
| |
Collapse
|
32
|
Billack B, Serio R, Silva I, Kinsley CH. Epigenetic changes brought about by perinatal stressors: A brief review of the literature. J Pharmacol Toxicol Methods 2012; 66:221-31. [DOI: 10.1016/j.vascn.2012.08.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022]
|
33
|
Thomson JP, Lempiäinen H, Hackett JA, Nestor CE, Müller A, Bolognani F, Oakeley EJ, Schübeler D, Terranova R, Reinhardt D, Moggs JG, Meehan RR. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol 2012; 13:R93. [PMID: 23034186 PMCID: PMC3491421 DOI: 10.1186/gb-2012-13-10-r93] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. RESULTS Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. CONCLUSIONS Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.
Collapse
|
34
|
Priestley CC, Anderton M, Doherty AT, Duffy P, Mellor HR, Powell H, Roberts R. Epigenetics – relevance to drug safety science. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx00003b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Epigenetics describes the study of heritable changes in gene expression that occur in the absence of a change to the DNA sequence. Specific patterns of epigenetic signatures can be stably transmitted through mitosis and cell division and form the molecular basis for developmental stage- and cell type-specific gene expression. Associations have been observed that endogenous and exogenous stimuli can change the epigenetic control of both somatic and stem cell differentiation and thus influence phenotypic behaviours and/or disease progression. In relation to drug safety, DNA methylation changes have been identified in many stages of tumour development following exposure to non-genotoxic carcinogens. However, it is not clear whether DNA methylation changes cause cancer, or arise as a consequence of the transformed state. Toxic agents could act at different levels, by directly modifying the epigenome or indirectly by altering signalling pathways. These alterations in chromatin structure may or may not be heritable but are probably reversible. That said, there is currently insufficient data to support inclusion of epigenetic profiling into pre-clinical evaluation studies. Several international collaborations aim to generate data to determine whether epigenetic modifications are causal links in disease and/or tumour progression. It will only be when an understanding of chemical mode-of-action is required that evaluation of epigenetic changes might be considered. The current toxicological testing battery is expected to identify any potential adverse effects regardless of the mechanism, epigenetic or otherwise. It is recommended that toxicologists keep a close watch of new developments in this field, in particular identification of early epigenetic markers for non-genotoxic carcinogenicity. Scientific collaborations between academia and industry will help to understand inter-individual variations in response to drug and toxin exposure to be able to distinguish between adverse and non-adverse epigenetic changes.
Collapse
Affiliation(s)
- Catherine C. Priestley
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Mark Anderton
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ann T. Doherty
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Paul Duffy
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Howard R. Mellor
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Helen Powell
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ruth Roberts
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| |
Collapse
|
35
|
Palbykin B, Borg J, Caldwell PT, Rowles J, Papoutsis AJ, Romagnolo DF, Selmin OI. Trichloroethylene Induces Methylation of the Serca2 Promoter in H9c2 Cells and Embryonic Heart. Cardiovasc Toxicol 2011; 11:204-14. [DOI: 10.1007/s12012-011-9113-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Lempiäinen H, Müller A, Brasa S, Teo SS, Roloff TC, Morawiec L, Zamurovic N, Vicart A, Funhoff E, Couttet P, Schübeler D, Grenet O, Marlowe J, Moggs J, Terranova R. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice. PLoS One 2011; 6:e18216. [PMID: 21455306 PMCID: PMC3063791 DOI: 10.1371/journal.pone.0018216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Müller
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sarah Brasa
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Soon-Siong Teo
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Laurent Morawiec
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natasa Zamurovic
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Axel Vicart
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Enrico Funhoff
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Grenet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jennifer Marlowe
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rémi Terranova
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Benigni R, Bossa C. Mechanisms of Chemical Carcinogenicity and Mutagenicity: A Review with Implications for Predictive Toxicology. Chem Rev 2011; 111:2507-36. [PMID: 21265518 DOI: 10.1021/cr100222q] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Romualdo Benigni
- Istituto Superiore di Sanita’, Environment and Health Department, Viale Regina Elena, 299 00161 Rome, Italy
| | - Cecilia Bossa
- Istituto Superiore di Sanita’, Environment and Health Department, Viale Regina Elena, 299 00161 Rome, Italy
| |
Collapse
|
38
|
Mirbahai L, Williams TD, Zhan H, Gong Z, Chipman JK. Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis. BMC Genomics 2011; 12:3. [PMID: 21205313 PMCID: PMC3027158 DOI: 10.1186/1471-2164-12-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/04/2011] [Indexed: 01/07/2023] Open
Abstract
Background DNA methylation is an epigenetic mechanism associated with regulation of gene expression and it is modulated during chemical carcinogenesis. The zebrafish is increasingly employed as a human disease model; however there is a lack of information on DNA methylation in zebrafish and during fish tumorigenesis. Results A novel CpG island tiling array containing 44,000 probes, in combination with immunoprecipitation of methylated DNA, was used to achieve the first comprehensive methylation profiling of normal adult zebrafish liver. DNA methylation alterations were detected in zebrafish liver tumors induced by the environmental carcinogen 7, 12-dimethylbenz(a)anthracene. Genes significantly hypomethylated in tumors were associated particularly with proliferation, glycolysis, transcription, cell cycle, apoptosis, growth and metastasis. Hypermethylated genes included those associated with anti-angiogenesis and cellular adhesion. Of 49 genes that were altered in expression within tumors, and which also had appropriate CpG islands and were co-represented on the tiling array, approximately 45% showed significant changes in both gene expression and methylation. Conclusion The functional pathways containing differentially methylated genes in zebrafish hepatocellular carcinoma have also been reported to be aberrantly methylated during tumorigenesis in humans. These findings increase the confidence in the use of zebrafish as a model for human cancer in addition to providing the first comprehensive mapping of DNA methylation in the normal adult zebrafish liver.
Collapse
Affiliation(s)
- Leda Mirbahai
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | |
Collapse
|
39
|
Nagao T, Takada N, Onoda N. Transgenerational Teratogenesis by Prenatal Exposure to Endocrine Disrupting Chemicals. Genes Environ 2011. [DOI: 10.3123/jemsge.33.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Strömqvist M, Tooke N, Brunström B. DNA methylation levels in the 5' flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)--sex and tissue differences and effects of 17alpha-ethinylestradiol exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:275-281. [PMID: 20346522 DOI: 10.1016/j.aquatox.2010.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
Vitellogenin is produced in the liver of sexually mature female fish in response to endogenous estrogens. Exogenous estrogens also induce synthesis of vitellogenin in the liver of male and juvenile fish and vitellogenin is a frequently used biomarker for estrogen exposure. The epigenetic state, e.g. histone acetylation and DNA methylation, in the region of a gene or in its 5' flanking region influences the gene expression. DNA methylation positions in multicellular eukaryotes are mostly found on cytosine bases located 5' to guanine, i.e. in CpG sites. Here, we have for the first time analyzed the DNA methylation levels of three CpG sites located in the 5' flanking region of the vitellogenin I gene in liver and brain from adult zebrafish (Danio rerio) utilizing Pyrosequencing technology. This sequencing technique allows determination of methylation levels of multiple individual CpG sites. Our purpose was to assess any differences in methylation levels related to sex, tissue and exposure to estrogen. Out of the seven vitellogenin genes identified in the zebrafish, vitellogenin I is the most highly expressed during vitellogenesis. We found that the methylation levels of all three CpG sites were higher in male liver than in female liver. In brain, which does not express vitellogenin, females and males showed similar, high methylation levels in the analyzed CpG positions. Exposure of adult zebrafish to 17alpha-ethinylestradiol (100 ng/L) for 14 days decreased the methylation levels in the 5' flanking region of vitellogenin I in the liver in both females and males. These results suggest that induced expression of vitellogenin in fish following exposure to estrogens might involve alterations in DNA methylation.
Collapse
Affiliation(s)
- Marie Strömqvist
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Nigel Tooke
- QIAGEN AB, Frösundaviks Allé 15, SE-169 70 Solna, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
41
|
Kostka G, Urbanek-Olejnik K, Wiadrowska B. Di-butyl phthalate-induced hypomethylation of the c-myc gene in rat liver. Toxicol Ind Health 2010; 26:407-16. [PMID: 20504828 DOI: 10.1177/0748233710369124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peroxisome proliferators (PPs)-induced DNA hypomethylation has been proposed as a mechanism of their toxicity, including carcinogenic action. The effect of di-butyl phthalate (DBP), a known peroxisome proliferators, on the methylation level of the c-myc promoter region in rat liver was studied. Changes in the methylation status of the c-myc gene were correlated with changes in DNA synthesis, DNA methyltransferase (DNMTs) activity and liver weight. Male Wistar rats received DBP in one, three or fourteen daily oral doses of 1800 mg/kg body weight (b.w.) x day(-1) (this dose is close to the dose that increases the numbers of peroxisomes in male Wistar rats). We have demonstrated that DBP decreased the methylation of the c-myc gene. Cytosine hypomethylation in the analyzed CpG sites of the c-myc gene promoter occurred during the whole period of study, although after 14 doses of DBP the difference from control was only on the borderline of significance (p = 0.066). An increase in DNA synthesis was only observed after 24 hours of treatment with DBP, and it preceded liver growth. We hypothesize that DBP-induced demethylation of the c-myc gene was an active mechanism, not associated with DNMTs activity and DNA replication.
Collapse
Affiliation(s)
- Grazyna Kostka
- Department of Environmental Toxicology, National Institute of Public Health-National Institute of Hygiene, Chocimska, Warsaw, Poland.
| | | | | |
Collapse
|
42
|
Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev 2010; 68:87-98. [PMID: 20137054 DOI: 10.1111/j.1753-4887.2009.00265.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complex traits, including those involved in diet-related diseases, are determined by multiple genes and environmental influences. Factors influencing the development of complex traits should be expanded to include epigenetic factors, such as DNA methylation, which occurs in utero. Epigenetic factors regulate gene expression and thereby cell differentiation and organogenesis. The process of epigenotype establishment is sensitive to environmental conditions, with nutrition being one of the most important related factors. For example, DNA methylation depends on the availability of several nutrients including methionine and vitamins B(6), B(12), and folate. Epidemiological studies show that undernutrition during fetal life is associated with increased susceptibility to complex diseases. Numerous studies have been conducted on prenatal caloric and protein undernutrition. A reduction in the number of cells and changes in the structure and functioning of organs, as well as permanent changes in DNA methylation and gene expression, have been considered the molecular mechanisms responsible for metabolism programming.
Collapse
Affiliation(s)
- Agata Chmurzynska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, Poznan, Poland.
| |
Collapse
|
43
|
Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation. Comp Biochem Physiol C Toxicol Pharmacol 2009; 151:278-85. [PMID: 19961956 DOI: 10.1016/j.cbpc.2009.11.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 12/14/2022]
Abstract
The purpose of this study is to investigate (1) the induction of epigenetic effects in the crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. Daphnids were exposed to chemical substances known to affect DNA methylation in mammals: vinclozolin, 5-azacytidine, 2'-deoxy-5-azacytidine, genistein and biochanin A. Effects on overall DNA cytosine methylation, body length and reproduction were evaluated in 21day experiments. Using a multi-generational experimental design these endpoints were also evaluated in the F(1) and F(2) generation of both exposed and non-exposed offspring from F(0) daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA methylation was consistently observed in daphnids exposed to vinclozolin and 5-azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the two subsequent non-exposed generations. A concurrent reduction in body length at day 7 was observed in these treatments. For the first time, exposure to environmental chemicals was shown to affect DNA methylation in the parental generation of D. magna. We also demonstrated a transgenerational alteration in an epigenetic system in D. magna, which indicates the possibility of transgenerational inheritance of environment-induced epigenetic changes in non-exposed subsequent generations.
Collapse
|
44
|
Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology 2009; 260:7-15. [PMID: 19464564 DOI: 10.1016/j.tox.2009.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/13/2009] [Accepted: 03/02/2009] [Indexed: 12/23/2022]
Abstract
The development of early biomarkers, both of exposure and effect, would substantially improve science-based risk assessment with regard to cigarette smoke (CS)-associated toxicity. Altered DNA methylation, an epigenetic mechanism, is linked to CS-induced lung tumorigenesis. We have taken an unbiased approach (i.e. genomic regions are not pre-selected) to assess early methylation changes within lung DNA from female SENCAR mice treated with a single dose of 7,12-dimethylbenz[a]anthracene (DMBA), and then exposed to air alone, or CS for 4 or 8 weeks. Regions of altered DNA methylation (RAMs) were detected in mice treated with DMBA alone, or DMBA+0.16, 0.32 or 0.48 mg wet total particulate matter per liter (WTPM/L) CS, using methylation-sensitive restriction digestion, arbitrarily primed PCR and capillary electrophoresis. Comparison of the RAMs that formed in different treatment groups revealed: (1) RAMs which "carried forward" across time (i.e. occurred at both 4 and 8 weeks) in a particular dose group, in addition to unique RAMs observed only at 8 weeks, and (2) RAMs which "carried forward" across dose (i.e. occurred in at least 2 dose groups at a particular time point), in addition to unique RAMs observed only in 1 dose group. Furthermore, a subset of RAMs was observed, at both 4 and 8 weeks, in DMBA-treated and DMBA+CS-exposed groups; the presence of unique RAMs in the latter suggest that combined DMBA+CS treatment more than just "magnifies" a subset of cell populations bearing the methylation changes induced by DMBA alone. Importantly, only minimal histopathological changes were observed in the lungs of CS-treated mice. This study is the first to demonstrate changes in lung DNA methylation at early times following exposure to CS, e.g., prior to overt histopathology. Thus, altered methylation might serve as a biomarker of CS exposure, and, in light of the fact that methylation changes are linked to CS-induced lung tumorigenesis, might also be useful as biomarkers of effect.
Collapse
|
45
|
Marlowe J, Teo SS, Chibout SD, Pognan F, Moggs J. Mapping the epigenome--impact for toxicology. EXS 2009; 99:259-88. [PMID: 19157065 DOI: 10.1007/978-3-7643-8336-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in technological approaches for mapping and characterizing the epigenome are generating a wealth of new opportunities for exploring the relationship between epigenetic modifications, human disease and the therapeutic potential of pharmaceutical drugs. While the best examples for xenobiotic-induced epigenetic perturbations come from the field of non-genotoxic carcinogenesis, there is growing evidence for the relevance of epigenetic mechanisms associated with a wide range of disease areas and drug targets. The application of epigenomic profiling technologies to drug safety sciences has great potential for providing novel insights into the molecular basis of long-lasting cellular perturbations including increased susceptibility to disease and/or toxicity, memory of prior immune stimulation and/or drug exposure, and transgenerational effects.
Collapse
Affiliation(s)
- Jennifer Marlowe
- Novartis Pharma AG, Investigative Toxicology, Preclinical Safety, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
47
|
Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr J 2009; 56:131-9. [PMID: 18997445 DOI: 10.1507/endocrj.k08e-239] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Perinatal exposure to diethylstilbestrol (DES) can have numerous adverse effects on the reproductive organs later in life, such as vaginal clear-cell adenocarcinoma. Epigenetic processes including DNA methylation may be involved in the mechanisms. We subcutaneously injected DES to neonatal C57BL/6 mice. At days 5, 14, and 30, expressions of DNA methyltransferases (Dnmts) Dnmt1, Dnmt3a, and Dnmt3b, and transcription factors Sp1 and Sp3 were examined. We also performed restriction landmark genomic scanning (RLGS) to detect aberrant DNA methylation. Real-time RT-PCR revealed that expressions of Dnmt1, Dnmt3b, and Sp3 were decreased at day 5 in DES-treated mice, and that those of Dnmt1, Dnmt3a, and Sp1 were also decreased at day 14. RLGS analysis revealed that 5 genomic loci were demethylated, and 5 other loci were methylated by DES treatment. Two loci were cloned, and differential DNA methylation was quantified. Our results indicated that DES altered the expression levels of Dnmts and DNA methylation.
Collapse
Affiliation(s)
- Koji Sato
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore 632002, India
| |
Collapse
|
49
|
Tsay GJ, Zouali M. Toxicogenomics — A novel opportunity to probe lupus susceptibility and pathogenesis. Int Immunopharmacol 2008; 8:1330-7. [DOI: 10.1016/j.intimp.2008.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 12/19/2022]
|
50
|
Alexiadou DK, Ioannou AK, Kouidou-Andreou SA, Voulgaropoulos AN, Girousi ST. Electroanalytical study of proflavine intercalation in 5-methyl or inosine-containing amplicons. Anal Bioanal Chem 2008; 392:533-9. [DOI: 10.1007/s00216-008-2285-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/30/2022]
|