1
|
Menbari Oskouie I, Khatami F, Shiralizadeh Dezfuli A, Mashhadi R, Mirzaei A, Hashemi Dougaheh SN, Azodian Ghajar H, Heshmat R, Aghamir SMK. Reducing the effective dosage of flutamide on prostate cancer cell lines through combination with selenium nanoparticles: An in-vitro study. PLoS One 2025; 20:e0318483. [PMID: 40388455 PMCID: PMC12088047 DOI: 10.1371/journal.pone.0318483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVE Objective of the study was to evaluate the therapeutic potential of selenium nanoparticles (SeNPs) in combination with flutamide for treating prostate cancer (PCa) cell lines. The goal was to reduce the dosage of flutamide to decrease its side effects, especially hepatotoxicity. MATERIALS AND METHODS PC3, LnCAP, and DU145 cell lines were treated with varying concentrations of SeNPs and Flutamide to determine IC50 values using the MTT assay. Subsequently, the IC50 concentration of flutamide was reduced by 50% and different concentrations of SeNPs were added to determine new IC50 concentrations of the combinations. Annexin-V/ PI staining was performed to assess the apoptosis rate. The DNA cell cycle was analyzed using the PI staining technique. Migration, proliferative capability, and nucleus morphology of the cells were evaluated through the scratch-wound assay, colony-forming assay, and Hoechst staining, respectively. The expression of SNAIL, KLK3, E-cadherin, VEGF-C, HIF-1α, Bcl2, and BAX were examined using real-time PCR. RESULTS All treated groups significantly increased early and late apoptosis rate of the PCa cell lines, and induced SubG1/G1 arrest in the cell cycle assay, compared to the control group. Significant inhibition of migration potential and colony formation was observed in all treated groups. Our results suggest that the combination group (50% decrease of Flutamide dosage) treatment upregulated apoptosis-related genes and KLK3, and downregulated genes involved in angiogenesis and proliferation similar to Flutamide alone (p > 0.05). CONCLUSION It is suggested that simultaneous administration of SeNPs and flutamide could potentially reduce the effective dosage of flutamide and decrease its adverse effects.
Collapse
Affiliation(s)
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Shiralizadeh Dezfuli
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Oskouie IM, Amirzargar H, Dezfuli AS, Mashhadi R, Mirzaei A, Shamshirgaran A, Nikoofar P, Aghamir SMK. Reducing the effective dosage of Mitomycin C on a high-grade bladder cancer cell line through combination with selenium nanoparticles: An in vitro study. Med Oncol 2025; 42:207. [PMID: 40348879 DOI: 10.1007/s12032-025-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
This study aimed to assess the effectiveness of combining selenium nanoparticles (SeNPs) with mitomycin C (MMC) in treating the T24 high-grade bladder cancer cell line to decrease MMC dosage and alleviate its side effects. The T24 (EJ138) cell line was exposed to various concentrations of SeNPs and MMC to identify the IC50 values via the MTT assay. The IC50 of MMC was then lowered by 25%, 50%, and 75%, and different SeNPs concentrations were added, to find the new IC50 values of these combinations. Apoptosis rates were measured using Annexin-V/PI staining, while the DNA cell cycle was analyzed using the PI staining method. The scratch-wound assay, colony-forming assay, and Hoechst staining were employed to examine the cell migration, proliferative capacity, and nuclear morphology, respectively. Real-time PCR assessed the expression levels of SNAIL, E-cadherin, and genes related to angiogenesis and proliferation (VEGF-C and HIF-1α), alongside the apoptosis markers (Bcl-2 and BAX). The co-administration of SeNPs and MMC (178.8 µM SeNPs + 14.9 µM MMC) significantly increased the rate of early apoptosis in the T24 cell line compared to MMC alone (29.8 µM, p < 0.0001). Additionally, SeNPs and MMC induced cell cycle arrest at the SubG1/G1 and G2/M phases, respectively. This effect was observed in the combination group at both phases. Similar to MMC alone, the combination group inhibited cell proliferation, colony formation, and migration in T24 cells (p > 0.05). Our findings indicate that the treatment with the combination increased the expression of apoptosis-related genes and decreased angiogenesis and proliferation-related gene expression similar to MMC alone (p > 0.05). The combined administration of MMC and SeNPs enhances the antitumor efficacy on the T24 cell line. It is proposed that the concurrent use of SeNPs and MMC could effectively reduce the required dosage of MMC, thus minimizing its negative side effects.
Collapse
Affiliation(s)
- Iman Menbari Oskouie
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Hossein Amirzargar
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | | | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Amirreza Shamshirgaran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Parsa Nikoofar
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
- Section of Tissue Engineering and Stem Cells Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Tehran, Iran
| | - Seyed Mohammad Kazem Aghamir
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada.
- Urology Research Center, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave., Tehran, Iran.
| |
Collapse
|
3
|
Gorudko IV, Grigorieva DV, Gusakov GA, Baran LV, Reut VE, Sak EV, Baimler IV, Simakin AV, Dorokhov AS, Izmailov AY, Serov DA, Gudkov SV. Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils. Biochim Biophys Acta Gen Subj 2025; 1869:130777. [PMID: 39983791 DOI: 10.1016/j.bbagen.2025.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The influence of selenium (Se) nanoparticles in the form of rods (SeNrs) and spheres (SeSps), synthesized by laser ablation, on the structural and functional properties of human blood erythrocytes and neutrophils was studied for anticancer activity in vitro. SeNrs and SeSps do not have cytotoxicity towards neutrophils and do not cause hemolysis. The elastic modulus and resistance of erythrocytes to HOCl-induced hemolysis increased after binding of Se nanoparticles to the plasma membrane. The interaction of Se nanoparticles with neutrophils is accompanied by their actin-dependent macropinocytosis, triggering intracellular signaling processes leading to the assembly and activation of NADPH oxidase. Comparative analysis of the effects of SeNrs and SeSps on cells showed that they have similar effects. This may be due to the fact that SeNrs interact with the cell surface with their end faces, and, therefore, have the same initial contact with the plasma membrane as SeSps. However, SeSps and SeNrs showed chronic cytotoxicity after 48 h incubation, indicating the need to find ways to reduce their toxicity further. Further use of Se nanoparticles in anisotropic form in biomedical research for the development of therapeutic agents seems promising.
Collapse
Affiliation(s)
- Irina V Gorudko
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | | | - Grigory A Gusakov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova St. 7, 220045 Minsk, Belarus
| | - Lyudmila V Baran
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Veronika E Reut
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ekaterina V Sak
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexey S Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Andrey Yu Izmailov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia.
| |
Collapse
|
4
|
Zhao D, Yu S, Zang W, Ge J, Du R. Exopolysaccharide-selenium composite nanoparticle: Characterization, antioxidant properties and selenium release kinetics in simulated gastrointestinal conditions. Int J Biol Macromol 2025; 304:140809. [PMID: 39924015 DOI: 10.1016/j.ijbiomac.2025.140809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
An exopolysaccharide-selenium nanoparticles (EPS-SeNPs) was successfully synthesized by conjugating with Weissella confusa EPS through the reduction of SeO32-. The EPS-SeNPs composite was comprehensively characterized. These analyses confirmed that the EPS-SeNPs composite had an amorphous nature and a uniform size distribution of around 100 nm. The OH groups in EPS interacted with SeNPs, replacing intermolecular interactions in native EPS, which resulted in the stable dispersion of SeNPs within the EPS network. Furthermore, compared to native EPS, EPS-SeNPs with varying Se/EPS ratios demonstrated enhanced radical scavenging capabilities against ABTS, DPPH, superoxide anion radical (O2-), H2O2, and hydroxyl group radicals (OH·). This suggests that the conjugation of SeNP improved the antioxidant properties of EPS. Furthermore, the investigation delved into the dynamics and mechanism of selenium liberation from EPS-SeNPs under simulated gastric (SGF) and intestinal fluids (SIF). The EPS-SeNPs experienced a decrease in particle size from 223.03 ± 1.67 nm to 98.40 ± 5.57 nm. The release kinetics of selenium in SIF followed a conventional Fickian diffusion pattern. Notably, EPS-SeNPs demonstrated significant Se release following SIF digestion while exhibiting minimal release after SGF digestion, indicating their potential use as a controlled-release selenium-enriched supplement for addressing selenium deficiency.
Collapse
Affiliation(s)
- Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shan Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenjiang Zang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| |
Collapse
|
5
|
He H, Chen L, Peng J, Guo J, Xiao X, Dou C, Chen H, Zhan S, Han X, Yao W. ROS-responsive nanoparticles with selenomethionine for ferroptosis modulation in abdominal aortic aneurysm. iScience 2025; 28:111880. [PMID: 40104069 PMCID: PMC11914196 DOI: 10.1016/j.isci.2025.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Oxidative stress, particularly ROS accumulation, plays a key role in the development of abdominal aortic aneurysm (AAA). Surgical treatments and current drugs for AAA have limitations, including lack of specificity and significant side effects. This study constructed ROS-responsive nanoparticles using phenylthio-modified dendritic polylysine (PDP) loaded with selenomethionine (PDPs-Se) for AAA treatment, and elucidated its mechanism of action. In-vitro studies revealed that PDPs-Se enhanced the clearance of ROS by increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) while reducing malondialdehyde (MDA) levels. Furthermore, PDPs-Se upregulated the expression levels of GPX4, SLC7A11, and FTH1 to suppress ferroptosis and modulate the differentiation of vascular smooth muscle cells (VSMCs) from a synthetic to a contractile phenotype. In-vivo experiments revealed that PDPs-Se attenuated the progression of AAA by inhibiting oxidative stress responses and improving the aortic wall thickness, indicating its potential as an approach for AAA therapy.
Collapse
Affiliation(s)
- Haipeng He
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxin Peng
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinyan Guo
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Xiao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chaoxun Dou
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huining Chen
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Songbiao Zhan
- Department of Vascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue Han
- Department of Anesthesia, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weifeng Yao
- Department of Anesthesia, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Khalid A, Satti S, Ayyub A, Nawab F, Tahir M, Naz S, Almutairi MH, Alrefaei AF, Khan RU, Ibiwoye DI. Blood, feathers, and eggs as bioindicators of selenium sources and their impact on DNA damage in Japanese quails (Coturnix japonica). Res Vet Sci 2025; 185:105556. [PMID: 39889452 DOI: 10.1016/j.rvsc.2025.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
Selenium nanoparticles (Se-NPs), a nanoscale form of selenium, and sodium selenite (SS), an inorganic selenium compound, were incorporated into poultry feed to assess their effects on bioaccumulation, DNA damage, and cellular health. This study compared the effects of Se-NPs and SS on selenium bioaccumulation in blood, feathers, and eggs, along with their potential impact on DNA damage in quails. A total of 480 quails (14-day-old) were distributed into 5 groups. Each group consisted of 96 birds, arranged into 6 replicates (16 quails per replicate) with sex ratio 1 male: 3 females, 1st group as control, fed by basal diet; 2nd and 3rd group were supplemented with Se-NPs (0.2 mg/kg and 0.4 mg/kg), 4th and 5th groups were fed with SS (0.2 mg/kg and 0.4 mg/kg), respectively. The results showed that highest bioaccumulation occurred in blood, feathers, eggshells, and egg content in quails fed with higher doseage of Se-NPs. Maximum selenium bioaccumulation was found in eggshells due to their porous structure. Quails treated with Se-NPs (0.4 mg/kg) and SS (0.2 mg/kg and 0.4 mg/kg) exhibited DNA damage, with more pronounced adverse effects observed in groups receiving SS. The correlation between groups and DNA damage was noted, there is positive correlation between Length of Head (LHead), Length of Tail (LTail) and Length of Comet (LComet) parameters related to different groups of quails. The study indicated that while Se-NPs led to the highest bioaccumulation, they were less harmful in terms of DNA damage compared to SS.
Collapse
Affiliation(s)
- Aimen Khalid
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Sania Satti
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Anqash Ayyub
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Faisal Nawab
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Muhammad Tahir
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Mikhlid H Almutairi
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Rifat Ullah Khan
- Physiology Lab, College of Veterinary Sciences, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | | |
Collapse
|
7
|
Raturi P, Ahmad N, Rawat N, Singhvi N. Synthesis and Biomedical Based Applications of Selenium Nanoparticles: A Comprehensive Review. Indian J Microbiol 2025; 65:204-215. [PMID: 40371022 PMCID: PMC12069214 DOI: 10.1007/s12088-024-01302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2025] Open
Abstract
Selenium nanoparticles (SeNPs) captivate researchers due to their unique properties and promise in biomedicine. This review explores SeNP synthesis methods, emphasizing how they influence functionality in diverse applications. Chemical, physical, and biological approaches tailor SeNP size, shape, and surface chemistry, impacting their biocompatibility and potential for drug delivery, imaging, and therapy. SeNPs' remarkable electrochemical and optical properties position them for advancements in biosensing and diagnostics. However, challenges in consistent production, large-scale synthesis, and potential toxicity demand attention. We provide a concise analysis of current SeNP research, encompassing synthesis strategies, characterization techniques, and a broad spectrum of biomedical applications, while also addressing ongoing challenges and future directions in this rapidly evolving field. Graphical Abstract The multifaceted biological roles of Se NPs encompass orchestrating cellular processes, targeted drug delivery, enhancing chemotherapy efficacy, and providing protective effects against treatment-related toxicity.
Collapse
Affiliation(s)
- Pratishtha Raturi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Neha Rawat
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007 India
| |
Collapse
|
8
|
Taromsari S, Eidi A, Mortazavi P, Modaresi M. Effect of Nano Selenium on Cadmium Chloride-Induced Infertility in Male Wistar Rats. J Biochem Mol Toxicol 2025; 39:e70179. [PMID: 39959944 DOI: 10.1002/jbt.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
Selenium (Se) is an essential trace element with well-documented health benefits, including antioxidative, anti-inflammatory, antiapoptotic, and anticarcinogenic properties. Selenium nanoparticles (nano-Se) represent an advanced Se delivery system characterized by superior bioavailability and a reduced risk of Se-related toxicity. This study investigates the protective efficacy of nano-Se against cadmium chloride (CdCl2)-induced infertility in adult male Wistar rats. The experimental design involved random allocation of the rats into nine groups: a healthy control group, a vehicle control group, three groups receiving nano-Se alone at 0.05, 0.1, and 0.2 mg/kg b.w./day, a group exposed to CdCl2 to induce infertility, and three CdCl2-exposed groups treated with nano-Se. After 30 days of treatment, the animals were euthanized for biochemical and histopathological assessments. The findings revealed that nano-Se administration ameliorated the detrimental effects of treatment CdCl2 on serum testosterone levels. Additionally, nano-Se significantly reduced malondialdehyde levels and enhanced the activity of antioxidant enzymes in testicular homogenates. Histological analyses further demonstrated that nano-Se preserved the structural integrity of testicular tissue in the CdCl2-induced fertility model. Nano-Se modulated apoptotic pathways, as evidenced by the suppression of Bax expression and upregulation of Bcl2 expression in testicular tissue. Furthermore, nano-Se mitigated the overexpression of aquaporin-9 in CdCl2-exposed rats. Collectively, these results provide robust biochemical, histological, and biochemical evidence supporting the potential therapeutic utility of nano-Se in mitigating testicular dysfunction.
Collapse
Affiliation(s)
- Shahrbano Taromsari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Modaresi
- Department of Animal Biology, Faculty of Biological Sciences, Islamic Azad University of Khorasgan Branch, Esfahan, Iran
| |
Collapse
|
9
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Sendani AA, Farmani M, Jahankhani K, Kazemifard N, Ghavami SB, Houri H, Ashrafi F, Sadeghi A. Exploring the Anti-Inflammatory and Antioxidative Potential of Selenium Nanoparticles Biosynthesized by Lactobacillus casei 393 on an Inflamed Caco-2 Cell Line. Cell Biochem Biophys 2024; 82:3265-3276. [PMID: 39261390 DOI: 10.1007/s12013-024-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei (L. casei) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and L. casei in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by L. casei 393 under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of L. casei bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from L. casei, its supernatant, commercial selenium, and L. casei probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. L. casei successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with L. casei-SeNPs and selenium increased TGF-β expression. Moreover, L. casei-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of L. casei-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of L. casei-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of L. casei as a source of selenium. These insights hold significant promise for the development of SeNPs derived from L. casei as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.
Collapse
Affiliation(s)
- Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mrwad AA, El-Shafey SE, Said NM. Chitosan-encapsulated selenium nanoparticles alleviate CCl 4 induced hepatotoxicity through synergistically modulating NF-κB and Nrf2 signaling pathways and regulating Bcl-2 and Caspase-3 expression: A comprehensive study with multiple regression analysis. J Trace Elem Med Biol 2024; 86:127563. [PMID: 39547053 DOI: 10.1016/j.jtemb.2024.127563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The delivery of selenium in a nano-form (Se-NPs) is a promising modality of treatment for various oxidative stress-induced diseases. OBJECTIVE This study aims to investigate the conceivable effects of selenium nanoparticles either alone (Se-NPs) or encapsulated with chitosan (Se-CS-NPs) on toxicity induced by CCl4 in rats. METHODS Eighty albino rats were divided equally into eight groups. The first group was the placebo. The second group was a positive control, while the third and the fourth groups got orally (Se-NPs 5 mg/Kg) and (Se-CS-NPs 225 mg/Kg) respectively. The fifth and sixth groups were protective groups in which Se-NPs or Se-CS-NPs were given simultaneously. The seventh and eighth groups were therapeutic as they received either Se-NPs or Se-CS-NPs after stopping the CCl4 injection for 4 weeks more. RESULTS Our results showed that the protective and therapeutic groups showed an increase in caspase-3 gene expression with a decline in the expression of Bcl-2, Nrf2, and AFP genes. Histopathological and immunohistochemical investigations showed the role of selenium nanoparticles either alone or coated with chitosan in decreasing fibrotic marker collagen I positive reaction CONCLUSION: Selenium nanoparticles showed an excellent effect in counteracting the toxic effect of carbon tetrachloride on liver functions, inflammation reactions, and apoptosis process. Moreover, using selenium nanoparticles has a strong role in preserving the liver architecture with its normal constituents. No additional benefit was observed when the selenium nanoparticles were encapsulated with chitosan.
Collapse
Affiliation(s)
| | - Shaymaa E El-Shafey
- Physical Chemistry Department, Surface and Catalysis Lab., National Research Center, El-Bohouth St. 33, Dokki, Giza, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
12
|
Hosseintabar-Ghasemabad B, Kvan OV, Sheida EV, Bykov AV, Zigo F, Seidavi A, Elghandour MMMY, Cipriano-Salazar M, Lackner M, Salem AZM. Nano selenium in broiler feeding: physiological roles and nutritional effects. AMB Express 2024; 14:117. [PMID: 39495406 PMCID: PMC11535084 DOI: 10.1186/s13568-024-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Using nanotechnology, while improving the health of broiler chickens, it is possible to control and reduce the conflict of minerals in the intestines, and toxicity of and pollution by these elements. It could be shown that the antioxidant and immune modulation effects of nano selenium are significantly superior compared to other sources of selenium. In addition, improving the quality of meat products with the use of nano selenium has promising results in the future perspective of quality improvement and food safety. Nutrition of permitted and optimal levels is very important in the consumption of nano selenium form and as it can have significant beneficial functional and health effects, in case of errors in the selected levels and doses, irreparable side effects and adverse results can occur. In this review report, an attempt has been made to introduce the position and importance of selenium and the approach of smart consumption of its nano form in the nutrition of broiler chickens. The novelty of using nanotechnology in feeding broiler chickens can be a unique opportunity to improve the bioavailability of important and rare elements such as selenium.
Collapse
Affiliation(s)
| | - Olga Vilorievna Kvan
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Elena Vladimirovna Sheida
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Artem Vladimirovich Bykov
- Department of Food Biotechnology, FSBEI HE "Orenburg State University", Pobedy Avenue, 13, Orenburg, Russia
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Alireza Seidavi
- Department of Animal Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | | | - Moises Cipriano-Salazar
- Facultad de Medicina Veterinaria y Zootecnia No. 1, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna, 1200, Austria.
| | | |
Collapse
|
13
|
Liu Y, Zhang J, Bu L, Huo W, Pei C, Liu Q. Effects of nanoselenium supplementation on lactation performance, nutrient digestion and mammary gland development in dairy cows. Anim Biotechnol 2024; 35:2290526. [PMID: 38085574 DOI: 10.1080/10495398.2023.2290526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this experiment was to evaluate the influence of nanoselenium (NANO-Se) addition on milk production, milk fatty acid synthesis, the development and metabolism regulation of mammary gland in dairy cows. Forty-eight Holstein dairy cows averaging 720 ± 16.8 kg of body weight, 66.9 ± 3.84 d in milk (dry matter intake [DIM]) and 35.2 ± 1.66 kg/d of milk production were divided into four treatments blocked by DIM and milk yields. Treatments were control group, low-Se (LSe), medium-Se (MSe) and high-Se (HSe) with 0, 0.1, 0.2 and 0.3 mg Se, respectively, from NANO-Se per kg dietary dry matter (DM). Production of energy- and fat-corrected milk (FCM) and milk fat quadratically increased (p < 0.05), while milk lactose yields linearly increased (p < 0.05) with increasing NANO-Se addition. The proportion of saturated fatty acids (SFAs) linearly decreased (p < 0.05), while proportions of monounsaturated fatty acids (MUFAs) linearly increased and polyunsaturated fatty acids (PUFAs) quadratically increased. The digestibility of dietary DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) quadratically increased (p < 0.05). Ruminal pH quadratically decreased (p < 0.01), while total VFA linearly increased (p < 0.05) with increasing NANO-Se addition. The acetic to propionic ratio decreased (p < 0.05) linearly due to the unaltered acetic molar percentage and a quadratical increase in propionic molar percentage. The activity of CMCase, xylanase, cellobiase and pectinase increased linearly (p < 0.05) following NANO-Se addition. The activity of α-amylase increased linearly (p < 0.01) with an increase in NANO-Se dosage. Blood glucose, total protein, estradiol, prolactin, IGF-1 and Se linearly increased (p < 0.05), while urea nitrogen concentration quadratically decreased (p = 0.04). Moreover, the addition of Se at 0.3 mg/kg from NANO-Se promoted (p < 0.05) mRNA and protein expression of PPARγ, SREBP1, ACACA, FASN, SCD, CCNA2, CCND1, PCNA, Bcl-2 and the ratios of p-ACACA/ACACA and BCL2/BAX4, but decreased (p < 0.05) mRNA and protein expressions of Bax, Caspase-3 and Caspase-9. The results suggest that milk production and milk fat synthesis increased by NANO-Se addition by stimulating rumen fermentation, nutrients digestion, gene and protein expressions concerned with milk fat synthesis and mammary gland development.
Collapse
Affiliation(s)
- Yapeng Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Lijun Bu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, PR China
| |
Collapse
|
14
|
Xie F, Liu X, Liu N, Feng X, He Z, Din ZU, Cheng S, Luo Y, Cai J. Effect of degree of substitution of octenyl succinate on starch micelles for synthesis and stability of selenium nanoparticles: Towards selenium supplements. Int J Biol Macromol 2024; 280:135586. [PMID: 39276897 DOI: 10.1016/j.ijbiomac.2024.135586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
To develop a promising selenium supplement that overcomes the instability and poor water dispersibility of selenium nanoparticles (SeNPs), we synthesized a series of amphiphilic octenyl succinic anhydride starch (OSAS) through esterification. As the degree of substitution (DS) increased, the particle size of OSAS micelles and the critical micelle concentration (CMC) decreased. FTIR and XRD analysis confirmed the successful introduction of octenyl succinic anhydride groups onto starch. Subsequently, OSAS micelles were used as carriers to synthesize SeNPs via in situ chemical reduction, forming SeNPs-loaded self-assembled starch nano-micelles (OSAS-SeNPs). The OSAS-SeNPs exhibited spherical dispersion in water with an average diameter of 116.1 ± 2.3 nm, contributed to enhanced hydrophobic interactions. TEM images showed a core-shell structure with SeNPs as the core and OSAS as the shell. FTIR results indicated hydrogen bonding interactions between OSAS and SeNPs. Due to the negatively charged OSAS shell and hydrogen bonding (OH⋯Se), OSAS-SeNPs remained non-aggregated for one month at room temperature, demonstrating remarkable stability. This study suggests that using OSAS can address the synthesis and stability issues of SeNPs, making it a potential selenium supplement candidate for further evaluation as an anticancer agent.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Nian Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaofang Feng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Microbiology & Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
15
|
Yao K, Peng Y, Tang Q, Liu K, Peng C. Human Serum Albumin/Selenium Complex Nanoparticles Protect the Skin from Photoaging Injury. Int J Nanomedicine 2024; 19:9161-9174. [PMID: 39258006 PMCID: PMC11383846 DOI: 10.2147/ijn.s446090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Photoaging-induced skin damage leads to appearance issues and dermatoma. Selenium nanoparticles (SeNPs) possess high antioxidant properties but are prone to inactivation. In this study, human serum albumin/SeNPs (HSA-SeNPs) were synthesized for enhanced stability. Methods HSA-SeNPs were prepared by self-assembling denatured human serum albumin and inorganic selenite. The cytotoxicity of HSA-SeNPs was assessed using the MTT method. Cell survival and proliferation rates were tested to observe the protective effect of HSA-SeNPs on human skin keratinocytes against photoaging. Simultaneously, ICR mice were used for animal experiments. H&E and Masson trichromatic staining were employed to observe morphological changes in skin structure and collagen fiber disorders after UVB irradiation. Quantitative RT-PCR was utilized to measure changes in mRNA expression levels of factors related to collagen metabolism, inflammation, oxidative stress regulation, and senescence markers. Results The HSA-SeNPs group exhibited significantly higher survival and proliferation rates of UVB-irradiated keratinocytes than the control group. Following UVB irradiation, the back skin of ICR mice displayed severe sunburn with disrupted collagen fibers. However, HSA-SeNPs demonstrated superior efficacy in alleviating these symptoms compared to SeNPs alone. In a UVB-irradiated mice model, mRNA expression of collagen type I and III was dysregulated while MMP1, inflammatory factors, and p21 mRNA expression were upregulated; concurrently Nrf2 and Gpx1 mRNA expression were downregulated. In contrast, HSA-SeNPs maintained the mRNA expression of those factors to be stable In addition, the level of SOD decreased, and MDA elevated significantly in the skin after UVB irradiation, but no significant differences in SOD and MDA levels between the HSA-SeNPs group with UVB irradiation and the UVB-free untreated group. Discussion HSA-SeNPs have more anti-photoaging effects on the skin than SeNPs, including the protective effects on skin cell proliferation, cell survival, and structure under photoaging conditions. HSA-SeNPs can be used to protect skin from photoaging and repair skin injury caused by UVB exposure.
Collapse
Affiliation(s)
- Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yongbo Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiyu Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Kaixuan Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
16
|
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection. Drug Resist Updat 2024; 76:101102. [PMID: 38936006 DOI: 10.1016/j.drup.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.
Collapse
Affiliation(s)
- Qingyue Bu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yangyang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yunqing Deng
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| | - Ligeng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Reda FM, Alagawany M, Salah AS, Mahmoud MA, Azzam MM, Di Cerbo A, El-Saadony MT, Elnesr SS. Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota. Biol Trace Elem Res 2024; 202:4191-4202. [PMID: 38110606 DOI: 10.1007/s12011-023-03996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.
Collapse
Affiliation(s)
- Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Milan, Matelica, Italy
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Shaaban S Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
18
|
Vasanthakumar S, Manikandan M, Arumugam M. Green synthesis, characterization and functional validation of bio-transformed selenium nanoparticles. Biochem Biophys Rep 2024; 39:101760. [PMID: 39026564 PMCID: PMC11254533 DOI: 10.1016/j.bbrep.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Selenium, an essential micronutrient with potent anticancer and antioxidant properties, the inorganic form of selenium is highly toxic, while organic and elemental nanoforms are more bioavailable and less toxic and have gained attention owing to their dietary and clinical relevance. This study aims to optimize conditions for the biosynthesis and production of elemental selenium nanoparticles for selenium supplements using marine microalgae, Nannochloropsis oceanica CASA CC201. The 10 mM precursor solution treated with 1 % of the algal extract (10:1 ratio of precursor and algal extract, respectively) was shown to be the optimal concentration for synthesizing highly stable selenium nanoparticles with a size of 183 nm and a zeta potential of -38.5 mV. AFM and TEM analysis suggest that the spherical-shaped nanoparticles with smooth surfaces were polydispersely distributed. The nanoparticles are well characterized using various analytical and advanced techniques, including Raman spectroscopy and X-ray photoelectron spectroscopy. FT-IR analyses reveal the presence of microalgae proteins and peptides as stabilizing and fabricating agents of Se-NPs to further understand the mode of bioreduction. The synthesized elemental nanoform (Se0) has been validated for its biological functions, showing enhanced radical scavenging activity (74 % in a concentration-dependent manner). Subsequently, algal-mediated selenite reduction and nanoparticle synthesis is an eco-friendly, non-toxic, and sustainable method for the large-scale production of highly stable Se-NPs for niche applications as dietary and feed supplements.
Collapse
Affiliation(s)
- S. Vasanthakumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, Kerala, India
| | - M. Manikandan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, Kerala, India
| | - Muthu Arumugam
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
19
|
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, Ristić N, Stefanović R, Stevanović M, Filipović N, Stojsavljević A, Pavlović S. Antioxidant Response of Maternal and Fetal Rat Liver to Selenium Nanoparticle Supplementation Compared to Sodium Selenite: Sex Differences between Fetuses. Antioxidants (Basel) 2024; 13:756. [PMID: 39061825 PMCID: PMC11274326 DOI: 10.3390/antiox13070756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
To compare the effects of organic selenium nanoparticles (SeNPs, Se0) and inorganic sodium selenite (NaSe, Na2SeO3, Se4+) on the antioxidant response in maternal and fetal rat liver, pregnant females were treated with two forms of selenium (Se) at equivalent doses during gestation (0.5 mg SeNPs or 0.5 mg NaSe/kg body weight/day). Structural parameters of the liver of gravid females and their fetuses were examined in a sex-specific manner. The oxidative stress parameters superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (GSH) and sulfhydryl groups (SH) were established. In addition, the Se concentration was determined in the blood, liver, urine and feces of the gravid females and in the liver of the fetuses. The structure of the liver of gravid females remained histologically the same after supplementation with both forms of Se, while the oxidative stress in the liver was significantly lower after the use of SeNPs compared to NaSe. Immaturity of fetal antioxidant defenses and sex specificity were demonstrated. This study provides a detailed insight into the differences in the bioavailability of the nano form of Se compared to sodium selenite in the livers of pregnant females and fetuses.
Collapse
Affiliation(s)
- Milica Manojlović-Stojanoski
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Nataša Nestorović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Nataša Ristić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| | - Radomir Stefanović
- Department of Pathology and Medical Citology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, dr Koste Todorovića 26, 11000 Belgrde, Serbia
| | - Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (M.S.); (N.F.)
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (M.S.); (N.F.)
| | - Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.B.-M.); (N.N.); (N.R.); (S.P.)
| |
Collapse
|
20
|
Li K, Zhang J, Zhang S, Xu Q, Guo Y. Identification and Functional Characterization of a Surfactant-like Protein Region in Flagellin FliC for Stabilizing Selenium Nanoparticles and Enhancing Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12673-12684. [PMID: 38772747 DOI: 10.1021/acs.jafc.4c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Biogenic selenium nanoparticles (SeNPs) are the most favorable Se form for nutritional supplementation due to their high stability, low toxicity, and high activity. However, the interaction between the surface-binding proteins and their stable biogenic SeNPs, as well as their impact on the stability and bioavailability of SeNPs, remains to be understood. In vitro stabilization experiments revealed an amino acid segment (F(235-386)) in Rahnella aquatilis' flagellin FliC, with surfactant-like properties, stabilizing SeNPs under harsh conditions. FliC and F(235-386) were employed as stabilizers to synthesize SeNPs (FliC@SeNPs and F(235-386)@SeNPs), and surface chemistry analysis revealed coordination reactions between the proteins and Se atoms on the surface of SeNPs. Both FliC and F(235-386) enhanced SeNPs uptake in wheat seedlings but reduced it in bacteria and yeast. This study highlights FliC's core function in stabilizing SeNPs and enhancing their bioavailability, paving the way for agricultural and nutritional applications.
Collapse
Affiliation(s)
- Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jingrui Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Thirumurugan S, Muthiah KS, Lin YC, Dhawan U, Liu WC, Wang AN, Liu X, Hsiao M, Tseng CL, Chung RJ. NIR-Responsive Methotrexate-Modified Iron Selenide Nanorods for Synergistic Magnetic Hyperthermic, Photothermal, and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25622-25636. [PMID: 38739745 PMCID: PMC11129116 DOI: 10.1021/acsami.3c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Kayalvizhi Samuvel Muthiah
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre
for the Cellular Microenvironment, Division of Biomedical Engineering,
James Watt School of Engineering, Mazumdar-Shaw Advanced Research
Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Wai-Ching Liu
- Faculty
of Science and Technology, Technological
and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - An-Ni Wang
- Scrona
AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Xinke Liu
- College
of Materials Science and Engineering, Chinese Engineering and Research
Institute of Microelectronics, Shenzhen
University, Shenzhen 518060, China
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
and Graduate Institute of Veterinary Medicine, School of Veterinary
Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Li Tseng
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Cell Therapy and Regenerative Medicine, College of
Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
22
|
Mahmoud R, Salama B, Safhi FA, Pet I, Pet E, Ateya A. Assessing the Impacts of Different Levels of Nano-Selenium on Growth Performance, Serum Metabolites, and Gene Expression in Heat-Stressed Growing Quails. Vet Sci 2024; 11:228. [PMID: 38921975 PMCID: PMC11209059 DOI: 10.3390/vetsci11060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Nano-minerals are employed to enhance mineral bioavailability thus promoting the growth and well-being of animals. In recent times, nano-selenium (nano-Se) has garnered significant attention within the scientific community owing to its potential advantages in the context of poultry. This study was conducted to explore the impact of using variable levels of nano-Se on the growth performance, carcass characteristics, serum constituents, and gene expression in growing Japanese quails under both thermoneutral and heat stress conditions. A randomized experimental design was used in a 2 × 3 factorial, with 2 environmental conditions (thermoneutral and heat stress) and 3 nano-Se levels (0, 0.2, and 0.5 mg/kg of diet. The findings revealed that heat stress negatively affected the growth and feed utilization of quails; indicated by the poor BWG and FCR. Additionally, oxidative stress was aggravated under heat stress condition; indicated by increased lipids peroxidation and decreased antioxidant enzymes activities. The addition of nano-Se, especially at the level of 0.2 mg/kg of diet, significantly improved the performance of heat stressed quails and restored blood oxidative status. The expression profile of inflammatory and antioxidant markers was modulated by heat stress and/or 0.2 and 0.5 nano-Se in conjunction with environmental temperature in quail groups. In comparison to the control group, the heat stress-exposed quails' expression profiles of IL-2, IL-4, IL-6, and IL-8 showed a notable up-regulation. Significantly lower levels of the genes for IL-2, IL-4, IL-6, and IL-8 and higher levels of the genes for SOD and GPX as compared to the heat stress group demonstrated the ameliorative impact of 0.2 nano-Se. The expression profiles of IL-2, IL-4, IL-6, and IL-8 are dramatically elevated in quails exposed to 0.5 nano-Se when compared to the control group. SOD and GPX markers, on the other hand, were markedly down-regulated. It was concluded that nano-Se by low level in heat stressed growing quails provides the greatest performance and its supplementation can be considered as a protective management practice in Japanese quail diets to reduce the negative impact of heat stress.
Collapse
Affiliation(s)
- Rania Mahmoud
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Elena Pet
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, Calea Aradului no.119, 30064 Timisoara, Romania;
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
23
|
Al-Bassam L, Shearman GC, Brocchini S, Alany RG, Williams GR. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024; 16:631. [PMID: 38794293 PMCID: PMC11125443 DOI: 10.3390/pharmaceutics16050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium's antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions.
Collapse
Affiliation(s)
- Lulwah Al-Bassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Gemma C. Shearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Raid G. Alany
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| |
Collapse
|
24
|
Vijayaram S, Razafindralambo H, Sun YZ, Piccione G, Multisanti CR, Faggio C. Synergistic interaction of nanoparticles and probiotic delivery: A review. JOURNAL OF FISH DISEASES 2024; 47:e13916. [PMID: 38226408 DOI: 10.1111/jfd.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Hary Razafindralambo
- ProBioLab, Campus Universitaire de la Faculté de Gembloux Agro-Bio Tech/Université de Liège, Gembloux, Belgium
| | - Yun Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
25
|
Shinde V, Desai K. Selenium-Methionine-Folic Acid Nanoparticles (SeMetFa NPs) and Its In Vivo Efficacy Against Rheumatoid Arthritis. Biol Trace Elem Res 2024; 202:2184-2198. [PMID: 37682396 DOI: 10.1007/s12011-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Selenium nanoparticles can be beneficial against rheumatoid arthritis, with limitations in dosage formulation due to their toxicity and low bioavailability. In the present study, we investigated the bioavailability and in vivo efficiency of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) in chronic inflammatory arthritis in rats. The purpose of this study was to develop a therapeutic agent that is of low toxicity and readily available for the maintenance of rheumatoid arthritis. SeMetFa NPs were synthesised by a wet chemical method (precipitation using a reducing agent). The apparent permeability (Papp) of NPs was investigated to be 10 × 10-6 cm/s. The effect of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) on rats was investigated for oxidative status, anti-inflammatory markers, physical characteristics, radiography of the paw region, and histopathology. Groups with 250 and 500 mg/kg b.w SeMetFa NPs acted as a potent anti-inflammatory agent with reduced (p < 0.05) arthritis-induced parameters in a 21-day study on Wistar rats. The antioxidant enzyme levels in the liver, kidney, and spleen were restored significantly at 500 and 750 mg/kg b.w. Concluding SeMetFa NPs at a concentration of 500 mg/kg b.w. can be a potential therapeutic agent as compared to dextrin-coated nanoparticles.
Collapse
Affiliation(s)
- Vrundali Shinde
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-Be) University, Mumbai, 400056, India
| | - Krutika Desai
- SVKM's Mithibai College of Arts Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Mumbai, 400056, India.
| |
Collapse
|
26
|
Sadeghmanesh F, Eidi A, Mortazavi P, Oryan S. Nanoselenium attenuates renal ischemia-reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2297-2310. [PMID: 37819388 DOI: 10.1007/s00210-023-02723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Using selenium (Se) nanoparticles has received attention in recent years because of their therapeutic benefits due to their anticancer, antioxidant, anti-inflammatory, and anti-diabetic effects. This research was conducted to evaluate the possible protective impact of nano-Se on renal unilateral ischemia/reperfusion injury (uIRI) in adult male Wistar rats. Using clamping of the left renal pedicle within 45 min uIRI was induced. The animals were randomly divided into nine groups of control, nano-Se (0.25, 0.5, and 1 mg/kg bw/day) alone, uIRI control, and uIRI rats administrated with nano-Se. At 30 days after treatment, the animals were sacrificed to be assessed biochemically and histopathologically. Nano-Se in uIRI groups have significantly decreased serum creatinine, urea levels, renal histological damage, and increased antioxidant status. Also, our findings demonstrated that the administration of nano-Se caused a significant decrease in the immunoreactivity level of the epidermal growth factor (EGF) and EGFR expression (EGF receptor) in the renal tissue of the uIRI rats. Therefore, nano-Se possesses renoprotective effects, and this effect might be attributable to its antioxidant and free radical scavenger effects. These renoprotective effects may depend on the decreased EGF immunoreactivity level and EGFR expression in the kidney tissue and improve the structure of the kidney tissue. Thus, our research provided biochemical and histological data supporting the potential clinical use of nano-Se for the treatment of certain kidney disorders.
Collapse
Affiliation(s)
- Farzaneh Sadeghmanesh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
27
|
Xiang R, Xiao X, Liu J, Guo Z, He H, Wang X, Wen X, Angelo V, Han J. Protective effects of functional Nano-Selenium supplementation on spleen injury through regulation of p38 MAPK and NF-κB protein expression. Int Immunopharmacol 2024; 130:111574. [PMID: 38367461 DOI: 10.1016/j.intimp.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
Selenium (Se) is a trace element necessary for humans to maintain normal physiological activities, and Se deficiency may lead to splenic injury, while Se supplementation can alleviate splenic injury. However, the mechanism is unclear. In this study, we constructed a Se deficiency animal model by feeding Sprague-Dawley (SD) rats with low Se feed. Meanwhile, we observed the repairing effect of Se supplementation on splenic injury with two doses of novel nano-selenium (Nano-Se) supplement by gavage. We measured the Se content in the spleens of the rats by atomic fluorescence spectroscopy (AFS) method and combined the results of hematoxylin-eosin (HE) and Masson staining to observe the splenic injury, comprehensively evaluating the construction of the animal model of low selenium-induced splenic injury. We measured the mRNA and protein expression levels of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa-B (NF-κB), and interleukin-6 (IL-6) in the spleen by Real-time quantitative polymerase chain reaction (qPCR), western blot (WB), and immunohistochemistry (IHC). We found that the Se deficiency group exhibited lower Se content, splenic fibrosis, and high expression of p38 MAPK, NF-κB, and IL-6 compared to the normal group. The Se supplement groups exhibited higher Se content, attenuated splenic injury, and down-regulated expression of p38 MAPK, NF-κB, and IL-6 relative to the Se deficiency group. This study suggests that Se deficiency leads to splenic injury in rats, and Se supplementation may attenuate splenic injury by inhibiting the expression of p38 MAPK, NF-κB and IL-6.
Collapse
Affiliation(s)
- Rongqi Xiang
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xiang Xiao
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Jiaxin Liu
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Ziwei Guo
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Xi'an Gem Flower Chang Qing Hospital, Xi'an 710200, China.
| | - Huifang He
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xining Wang
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xinyue Wen
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Viscardi Angelo
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jing Han
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
28
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in research on the anti-tumor mechanism of Astragalus polysaccharides. Front Oncol 2024; 14:1334915. [PMID: 38515577 PMCID: PMC10955345 DOI: 10.3389/fonc.2024.1334915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.
Collapse
Affiliation(s)
| | | | - Qinyuan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
29
|
Li K, Li J, Zhang S, Zhang J, Xu Q, Xu Z, Guo Y. Amorphous structure and crystal stability determine the bioavailability of selenium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133287. [PMID: 38141318 DOI: 10.1016/j.jhazmat.2023.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium, often reducing selenite/selenate to elemental selenium nanoparticles (SeNPs). These SeNPs typically exist in an amorphous structure but can transform into a trigonal allotrope. However, the crystal structural transition process and its impact on selenium bioavailability have not been well studied. To shed light on this, we prepared chemosynthetic and biogenic SeNPs and investigated the stability of their crystal structure. We found that biogenic SeNPs exhibited a highly stable amorphous structure in various conditions, such as lyophilization, washing, and laser irradiation, whereas chemosynthetic SeNPs transformed into a trigonal structure in the same conditions. Additionally, a core-shell structure was observed in biogenic SeNPs after electron beam irradiation. Further analysis revealed that biogenic SeNPs showed a coordination reaction between Se atoms and surface binding biomacromolecules, indicating that the outer layer of Se-biomacromolecules complex prevented the SeNPs from crystallizing. We also investigated the effects of SeNPs crystal structures on the bioavailability in bacteria, yeast, and plants, finding that the amorphous structure of SeNPs determined Se bioavailability.
Collapse
Affiliation(s)
- Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jingrui Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Xu YR, Talukder M, Li CX, Zhao YX, Zhang C, Ge J, Li JL. Nano-selenium alleviates cadmium-induced neurotoxicity in cerebrum via inhibiting gap junction protein connexin 43 phosphorylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1163-1174. [PMID: 37860879 DOI: 10.1002/tox.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Collapse
Affiliation(s)
- Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
31
|
Niu T, Shi X, Liu X, Wang H, Liu K, Xu Y. Porous Se@SiO 2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Mol Med 2024; 30:24. [PMID: 38321393 PMCID: PMC10848509 DOI: 10.1186/s10020-024-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1β of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1β, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1β, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
32
|
Kaewsatuan P, Morawong T, Lu P, Kamkaew A, Molee A, Molee W. In ovo feeding of l-arginine and selenium nanoparticles influences post-hatch growth, muscle development, antioxidant status, and meat quality in slow-growing chickens. J Anim Sci 2024; 102:skae290. [PMID: 39315561 PMCID: PMC11503214 DOI: 10.1093/jas/skae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
This study investigated the effects of in ovo feeding (IOF) of l-arginine (L-Arg), selenium nanoparticles (SeNP), and a combination of L-Arg and SeNP on the hatchability, post-hatch growth, muscle development, antioxidant status, and meat quality of slow-growing chickens. On day 18 of incubation, a total of 960 fertilized eggs with similar weights were randomly assigned to 4 treatment groups with 4 replicates of 60 eggs each: (1) non-injected control group (Control), (2) injected with 1% of L-Arg (IOF_L-Arg), (3) injected with 0.3 µg/egg of SeNP (IOF_SeNP), and (4), injected with 1% of L-Arg and 0.3 µg/egg of SeNP (IOF_L-Arg + SeNP). A completely randomized design was used. After hatching, 640 mixed-sex chicks were allocated to 4 treatment groups and split into 4 replicate pens (40 birds per pen). All groups of chicks were fed with commercial feed ad libitum until they reached 63 d of age and were subsequently weighed and slaughtered. The results of the present study showed that hatchability was similar among treatments. Final BW or breast muscle yield was not affected (P > 0.05) by IOF treatment. Chickens treated with IOF_L-Arg + SeNP exhibited decreased feed conversion ratio, drip loss, and increased protein content in breast meat (P < 0.05). The IOF_L-Arg + SeNP group exhibited a higher density of breast muscle fibers than the control group (P < 0.05). Overall, in ovo feeding of L-Arg combined with SeNP resulted in improved feed efficiency and enhanced antioxidant capacity at hatch without any adverse effects on chicken hatchability, health, or subsequent growth. Furthermore, meat from chickens in the IOF_L-Arg + SeNP group exhibited a preferable texture with a higher protein content.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thanidtha Morawong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panpan Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
33
|
Ryabova YV, Sutunkova MP, Minigalieva IA, Shabardina LV, Filippini T, Tsatsakis A. Toxicological effects of selenium nanoparticles in laboratory animals: A review. J Appl Toxicol 2024; 44:4-16. [PMID: 37312419 DOI: 10.1002/jat.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
This paper provides a comprehensive summary of the main toxicological studies conducted on selenium nanoparticles (NPs) using laboratory animals, up until February 28, 2023. A literature search revealed 17 articles describing experimental studies conducted on warm-blooded animals. Despite some uncertainties, in vivo studies have demonstrated that selenium NPs have an adverse effect on laboratory animals, as evidenced by several indicators of general toxic action. These effects include reductions of body mass, changes in hepatotoxicity indices (increased enzyme activity and accumulation of selenium in the liver), and the possibility of impairment of fatty acid, protein, lipid, and carbohydrate metabolisms. However, no specific toxic action attributable solely to selenium has been identified. The LOAEL and NOAEL values are contradictory. The NOAEL was 0.22 mg/kg body weight per day for males and 0.33 mg/kg body weight per day for females, while the LOAEL was assumed to be a dose of 0.05 mg/kg of nanoselenium. This LOAEL value is much higher for rats than for humans. The relationship between the adverse effects of selenium NPs and exposure dose is controversial and presents a wide typological diversity. Further research is needed to clarify the absorption, metabolism, and long-term toxicity of selenium NPs, which is critical to improving the risk assessment of these compounds.
Collapse
Affiliation(s)
- Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Yekaterinburg, Russian Federation
| | - Lada V Shabardina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation
| | - Tommaso Filippini
- CREAGEN Research Center for Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
34
|
Satpathy S, Panigrahi LL, Arakha M. The Role of Selenium Nanoparticles in Addressing Diabetic Complications: A Comprehensive Study. Curr Top Med Chem 2024; 24:1327-1342. [PMID: 38561614 DOI: 10.2174/0115680266299494240326083936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic β-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
35
|
Ye S, Sun S, Cai J, Jiang J. Advances in the Synthesis and Bioactivity of Polysaccharide Selenium Nanoparticles: A Review. Mini Rev Med Chem 2024; 24:1535-1554. [PMID: 38425115 DOI: 10.2174/0113895575302440240219053006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Selenium, an essential trace element of the human body, is pivotal in human health and disease prevention. Nevertheless, the narrow therapeutic index of selenium, where the toxic and therapeutic doses are close, limits its clinical utility. Significantly, nanoscale selenium synthesized by different methods using polysaccharides as stabilizers has low toxicity properties and exhibits excellent bioactivity. Its biological activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, and immune function enhancement, are improved compared with traditional organic and inorganic selenium compounds, conferring greater potential for application in biomedicine. Therefore, this review evaluates the advancements in various synthesis methodologies for polysaccharide selenium nanoparticles (Se NPs) and their biological activities. It aims to provide a comprehensive theoretical basis and research directions for the future development of highly efficient, minimally toxic, and biocompatible polysaccharide-Se NPs and the application of polysaccharide-Se NPs in biomedicine.
Collapse
Affiliation(s)
- Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China. Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
36
|
Hu W, Yao X, Li Y, Li J, Zhang J, Zou Z, Kang F, Dong S. Injectable hydrogel with selenium nanoparticles delivery for sustained glutathione peroxidase activation and enhanced osteoarthritis therapeutics. Mater Today Bio 2023; 23:100864. [PMID: 38024839 PMCID: PMC10679772 DOI: 10.1016/j.mtbio.2023.100864] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen burst in articular chondrocytes is a major contributor to osteoarthritis progression. Although selenium is indispensable role in the antioxidant process, the narrow therapeutic window, delicate toxicity margins, and lack of an efficient delivery system have hindered its translation to clinical applications. Herein, transcriptomic and biochemical analyses revealed that osteoarthritis was associated with selenium metabolic abnormality. A novel injectable hydrogel to deliver selenium nanoparticles (SeNPs) was proposed to intervene selenoprotein expression for osteoarthritis treatment. The hydrogels based on oxidized hyaluronic acid (OHA) cross-linked with hyaluronic acid-adipic acid dihydrazide (HA-ADH) was formulated to load SeNPs through a Schiff base reaction. The hydrogels were further incorporated with SeNPs, which exhibited minimal toxicity, mechanical properties, self-healing capability, and sustained drug release. Encapsulated with SeNPs, the hydrogels facilitated cartilage repair through synergetic effects of scavenging reactive oxygen species (ROS) and depressing apoptosis. Mechanistically, the hydrogel restored redox homeostasis by targeting glutathione peroxidase-1 (GPX1). Therapeutic outcomes of the SeNPs-laden hydrogel were demonstrated in an osteoarthritis rat model created by destabilization of the medial meniscus, including cartilage protection, subchondral bone sclerosis improvement, inflammation attenuation, and pain relief were demonstrated. These results highlight therapeutic potential of OHA/HA-ADH@SeNPs hydrogels, providing fundamental insights into remedying selenium imbalance for osteoarthritis biomaterial development.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Xuan Yao
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
- Department of Clinical Hematology Faculty of Laboratory Medicine, Army Medical, University (Third Military Medical University), Chongqing, PR China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
37
|
Tendenedzai JT, Chirwa EMN, Brink HG. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci Rep 2023; 13:20379. [PMID: 37989844 PMCID: PMC10663618 DOI: 10.1038/s41598-023-47616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Selenium, an essential micronutrient for plants and animals, can cause selenium toxicity as an oxyanion or at elevated doses. However, the toxic selenite (SeO32-) oxyanion, can be converted into less harmful elemental nano-selenium (Se0), with various practical applications. This research aimed to investigate two methods for reducing SeO32-: abiotic reduction using cell-free extract from Enterococcus spp. (abiotic-SeNPs) and chemical reduction involving L-ascorbic acid (chemical-SeNPs). Analysis with XPS confirmed the presence of Se0, while FTIR analysis identified surface functional groups on all SeNPs. The study evaluated the effects of SeO32-, abiotic-SeNPs, and chemical-SeNPs at different concentrations on the growth and germination of Pisum sativum L. seeds. SeO32- demonstrated detrimental effects on germination at concentrations of 1 ppm (germination index (GI) = 0.3). Conversely, both abiotic- and chemical-SeNPs had positive impacts on germination, with GI > 120 at 10 ppm. Through the DPPH assay, it was discovered that SeNPs exhibited superior antioxidant capabilities at 80 ppm, achieving over 70% inhibition, compared to SeO32- (less than 20% inhibition), therefore evidencing significant antioxidant properties. This demonstrates that SeNPs have the potential to be utilized as an agricultural fertilizer additive, benefiting seedling germination and development, while also protecting against oxidative stress.
Collapse
Affiliation(s)
- Job T Tendenedzai
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Hendrik G Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
38
|
Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C. Selenium nanoparticles: Enhanced nutrition and beyond. Crit Rev Food Sci Nutr 2023; 63:12360-12371. [PMID: 35848122 DOI: 10.1080/10408398.2022.2101093] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selenium is a trace nutrient that has both nutritional and nutraceutical functions, whereas narrow nutritional range of selenium intake limits its use. Selenium nanoparticles (SeNPs) are less toxic and more bioavailable than traditional forms of selenium, suggesting that SeNPs have the potential to replace traditional selenium in food industries and/or biomedical fields. From the perspective of how SeNPs can be applied in health area, this review comprehensively discusses SeNPs in terms of its preparation, nutritional aspect, detoxification effect of heavy metals, nutraceutical functions and anti-pathogenic microorganism effects. By physical, chemical, or biological methods, inorganic selenium can be transformed into SeNPs which have increased stability and bioavailability as well as low toxicity. SeNPs are more effective than traditional selenium form in synthesizing selenoproteins like glutathione peroxidases. SeNPs can reshape the digestive system to facilitate digestion and absorption of nutrients. SeNPs have shown excellent potential to adjunctively treat cancer patients, enhance immune system, control diabetes, and prevent rheumatoid arthritis. Additionally, SeNPs have good microbial anti-pathogenic effects and can be used with other antimicrobial agents to fight against pathogenic bacteria, fungi, or viruses. Development of novel SeNPs with enhanced functions can greatly benefit the food-, nutraceutical-, and biomedical industries.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wei Zhang
- Weihai Baihe Biology Technological Co., Ltd, Rongcheng, Shandong, China
| | - Yutong Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Naicheng Xin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongdi Wei
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| |
Collapse
|
39
|
Xu K, Huang P, Wu Y, Liu T, Shao N, Zhao L, Hu X, Chang J, Peng Y, Qu S. Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage. ACS NANO 2023; 17:19961-19980. [PMID: 37807265 PMCID: PMC10604087 DOI: 10.1021/acsnano.3c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopamine (DA) neurons in the midbrain substantia nigra pars compacta (SNpc). While existing therapeutic strategies can alleviate PD symptoms, they cannot inhibit DA neuron loss. Herein, a tailor-made human serum albumin (HSA)-based selenium nanosystem (HSA/Se nanoparticles, HSA/Se NPs) to treat PD that can overcome the intestinal epithelial barrier (IEB) and blood-brain barrier (BBB) is described. HSA, a transporter for drug delivery, has superior biological characteristics that make it an ideal potential drug delivery substance. Findings reveal that HSA/Se NPs have lower toxicity and higher efficacy than other selenium species and the ability to overcome the IEB and BBB to enrich DA neurons, which then protect MN9D cells from MPP+-induced neurotoxicity and ameliorate both behavioral deficits and DA neuronal death in MPTP-model mice. Thus, a therapeutic drug delivery system composed of orally gavaged HSA/Se NPs for the treatment of PD is described.
Collapse
Affiliation(s)
- Kai Xu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yixuan Wu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Teng Liu
- Department
of Neonatology and Pediatrics, Xiangya Hospital
of Central South University, Changsha, Hunan 410008, China
| | - Ningyi Shao
- Cancer
Centre, Faculty of Health Sciences, University
of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Lulu Zhao
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Hu
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
- University
of Chinese Academy of Sciences, Beijing 100864, China
| | - Junlei Chang
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
| | - Yongbo Peng
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shaogang Qu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department
of Neurology, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
40
|
Takahashi K, Ochi A, Mihara H, Ogra Y. Comparison of Nutritional Availability of Biogenic Selenium Nanoparticles and Chemically Synthesized Selenium Nanoparticles. Biol Trace Elem Res 2023; 201:4861-4869. [PMID: 36648599 DOI: 10.1007/s12011-023-03567-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an essential micronutrient, and animals biosynthesize selenoproteins from various selenocompounds such as inorganic salts and organic selenocompounds as a Se source. In addition to the inorganic and organic forms of Se, it is also known that elemental Se is biologically synthesized at the nanoscale in nature. Biologically synthesized Se nanoparticles (Se-NPs), i.e., biogenic Se-NPs (Se-BgNPs), have not been fully investigated as a Se source compared with the other forms of Se. In this study, we evaluated the nutritional availability of Se-BgNPs biosynthesized in E. coli and revealed that Se-BgNPs were less assimilated into selenoproteins in rats as a Se source than inorganic Se salt or chemically synthesized Se-NPs. Se-BgNPs showed tolerance toward digestion and low absorbability in gut, which resulted in the low nutritional availability. Se-BgNPs seem to be coated with a biomaterial that functions to reduce their toxicity toward E. coli and at the same time lowers their availability to animals.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
- Graduate School of Horticulture, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Anna Ochi
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hisaaki Mihara
- Laboratory of Applied Molecular Microbiology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan.
| |
Collapse
|
41
|
Sumana SL, Chen H, Shui Y, Zhang C, Yu F, Zhu J, Su S. Effect of Dietary Selenium on the Growth and Immune Systems of Fish. Animals (Basel) 2023; 13:2978. [PMID: 37760378 PMCID: PMC10525757 DOI: 10.3390/ani13182978] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary selenium (Se) is an essential component that supports fish growth and the immune system. This review attempts to provide insight into the biological impacts of dietary Se, including immunological responses, infection defense, and fish species growth, and it also identifies the routes via which it enters the aquatic environment. Dietary Se is important in fish feed due to its additive, antioxidant, and enzyme properties, which aid in various biological processes. However, excessive intake of it may harm aquatic ecosystems and potentially disrupt the food chain. This review explores the diverse natures of dietary Se, their impact on fish species, and the biological methods for eliminating excesses in aquatic environments. Soil has a potential role in the distribution of Se through erosion from agricultural, industrial, and mine sites. The research on dietary Se's effects on fish immune system and growth can provide knowledge regarding fish health, fish farming strategies, and the health of aquatic ecosystems, promoting the feed industry and sustainable aquaculture. This review provides data and references from various research studies on managing Se levels in aquatic ecosystems, promoting fish conservation, and utilizing Se in farmed fish diets.
Collapse
Affiliation(s)
- Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
| | - Huangen Chen
- Jiangsu Fishery Technology Promotion Center, Nanjing 210017, China;
| | - Yan Shui
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Fan Yu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| |
Collapse
|
42
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
43
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
44
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
45
|
Debata NR, Sethy K, Swain RK, Mishra SK, Panda N, Maity S. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Trop Anim Health Prod 2023; 55:260. [PMID: 37402941 DOI: 10.1007/s11250-023-03678-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
The present experiment was aimed at finding the optimal supplemental dose of nano-selenium in broiler chicken during the summer season for better performance in terms of growth, blood metabolites, immune response, antioxidant status, and selenium concentration in vital organs. Three-hundred-day-old Vencobb broiler chicks were randomly distributed into five dietary treatment groups with six replicates of 10 chicks each. The dietary treatments were as follows: T1 (control group), basal diet; T2, basal diet with 0.0375 ppm of nano-Se; T3, basal diet with 0.075 ppm of nano-Se; T4, basal diet with 0.15 ppm of nano-Se; T5, basal diet with 0.3 ppm of nano-Se. The experiment was carried out for 35 days. The average gain and feed conversion ratio were best observed in T4 and T5. The antibody titres were significantly higher (P < 0.05) in the treated birds. At the 5th week, erythrocytic glutathione peroxidase, catalase, and superoxide dismutase activities were significantly (P < 0.05) higher and lipid peroxidation values were significantly (P < 0.05) lower in all the nano-Se-treated groups. The Se levels in the liver, breast muscle, kidney, brain, and gizzard were significantly (P < 0.05) increased with increased dietary nano-Se. Histological studies of the liver and kidney in the highest nano-Se-treated groups (T4 and T5) did not show any abnormal changes. It is concluded that supplementation of nano-selenium at 0.15 ppm over and above the basal level improved the performance and protect the birds from summer stress without any adverse effect on the vital organs of chicken.
Collapse
Affiliation(s)
- N R Debata
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - K Sethy
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India.
| | - R K Swain
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S K Mishra
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - N Panda
- Department of Animal Nutrition, C.V.Sc. &A.H., OUAT, Bhubaneswar, India
| | - S Maity
- Centre Coordinator, GIET University, Raygada, Gunupur, Odisha, India
| |
Collapse
|
46
|
Yuan Q, Xiao R, Afolabi M, Bomma M, Xiao Z. Evaluation of Antibacterial Activity of Selenium Nanoparticles against Food-Borne Pathogens. Microorganisms 2023; 11:1519. [PMID: 37375021 DOI: 10.3390/microorganisms11061519] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. Selenium nanoparticles (SeNPs) have been shown to demonstrate antioxidant and antimicrobial activity. The objective of this study was to explore whether SeNPs have the potential to be used as food preservatives with which to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite (Na2SeO3) in the presence of bovine serum albumin (BSA) as a capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation with an average diameter of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antibacterial activity of these SeNPs against ten common food-borne bacteria. A colony-forming unit assay showed that SeNPs exhibited inhibition on the growth of Listeria Monocytogens (ATCC15313) and Staphylococcus epidermidis (ATCC 700583) starting at 0.5 µg/mL, but higher concentrations were required to slow down the growth of Staphylococcus aureus (ATCC12600), Vibrio alginolyticus (ATCC 33787), and Salmonella enterica (ATCC19585). No inhibition was observed on the growth of the other five test bacteria in our study. Our data suggested that the chemically synthesized SeNPs were able to inhibit the growth of some food-borne bacteria. The size and shape of SeNPs, method of synthesis, and combination of SeNPs with other food preservatives should be considered when SeNPs are to be used for the prevention of bacteria-mediated food spoilage.
Collapse
Affiliation(s)
- Qunying Yuan
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Rong Xiao
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Mojetoluwa Afolabi
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Manjula Bomma
- Department of Biological and Environmental Science, Alabama A&M University, Huntsville, AL 35762, USA
| | - Zhigang Xiao
- Department of Electrical Engineering and Computer Science, Alabama A&M University, Huntsville, AL 35762, USA
| |
Collapse
|
47
|
Li Y, Zhu S, Luo J, Tong Y, Zheng Y, Ji L, He Z, Jing Q, Huang J, Zhang Y, Bi Q. The Protective Effect of Selenium Nanoparticles in Osteoarthritis: In vitro and in vivo Studies. Drug Des Devel Ther 2023; 17:1515-1529. [PMID: 37249927 PMCID: PMC10216853 DOI: 10.2147/dddt.s407122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration. OA usually manifests as joint pain, limited mobility, and joint effusion. Currently, the primary OA treatment is non-steroidal anti-inflammatory drugs (NSAIDs). Although they can alleviate the disease's clinical symptoms and signs, the drugs have some side effects. Selenium nanoparticles (SeNPs) may be an alternative to relieve OA symptoms. Materials and Results We confirmed the anti-inflammatory effect of selenium nanoparticles (SeNPs) in vitro and in vivo experiments for OA disease in this study. In vitro experiments, we found that SeNPs could significantly reduce the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the major inflammatory factors, and had significant anti-inflammatory and anti-arthritic effects. SeNPs can inhibit reactive oxygen species (ROS) production and increased glutathione peroxidase (GPx) activity in interleukin-1beta (IL-1β)-stimulated cells. Additionally, SeNPs down-regulated matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) expressions, while up-regulated type II collagen (COL-2) and aggrecan (ACAN) expressions stimulated by IL-1β. The findings also indicated that SeNPs may exert their effects through suppressing the NF-κB p65 and p38/MAPK pathways. In vivo experiments, the prevention of OA development brought on by SeNPs was demonstrated using a DMM model. Discussion Our results suggest that SeNPs may be a potential anti-inflammatory agent for treating OA.
Collapse
Affiliation(s)
- Yong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Senbo Zhu
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Junchao Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yu Tong
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yixuan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Lichen Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Zeju He
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qiangan Jing
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Jiaqing Huang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yinjun Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qing Bi
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
48
|
Nirmala C, Sridevi M, Aishwarya A, Perara R, Sathiyanarayanan Y. Pharmacological Prospects of Morin Conjugated Selenium Nanoparticles-Evaluation of Antimicrobial, Antioxidant, Thrombolytic, and Anticancer Activities. BIONANOSCIENCE 2023; 13:1-14. [PMID: 37361102 PMCID: PMC10169122 DOI: 10.1007/s12668-023-01116-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Abstract Selenium nanoparticles (SeNPs) have gained wide importance in the scientific community and have emerged as an optimistic therapeutic carrier agent for targeted drug delivery. In the present study, the effectiveness of nano selenium conjugated with Morin (Ba-SeNp-Mo) produced from endophytic bacteria Bacillus endophyticus reported in our earlier research was tested against various Gram-positive, Gram-negative bacterial pathogens and fungal pathogens that showed good zone of inhibition against all selected pathogens. Antioxidant activities of these NPs were studied by 1, 1-diphenyl-2- picrylhydrazyl (DPPH), 2,2'-Azino-bis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS), hydrogen peroxide (H2O2), superoxide (O2-), and nitric oxide (NO) radical scavenging assays that exhibited dose-dependent free radical scavenging activity with IC50 values 6.92 ± 1.0, 16.85 ± 1.39, 31.60 ± 1.36, 18.87 ± 1.46, and 6.95 ± 1.27 μg/mL. The efficiency of DNA cleavage and thrombolytic activity of Ba-SeNp-Mo were also studied. The antiproliferative effect of Ba-SeNp-Mo was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in COLON-26 cell lines that resulted in IC50 value of 63.11 μg/mL. Further increased intracellular reactive oxygen species (ROS) levels up to 2.03 and significant early, late and necrotic cells were also observed in AO/EtBr assay. CASPASE 3 expression was upregulated to 1.22 (40 μg/mL) and 1.85 (80 μg/mL) fold. Thus, the current investigation suggested that the Ba-SeNp-Mo has offered remarkable pharmacological activity. Graphical Abstract
Collapse
Affiliation(s)
- C. Nirmala
- Department of Biotechnology, Paavai Engineering College, Paavai Institutions, Namakkal, Tamilnadu India
| | - M. Sridevi
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - A. Aishwarya
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Richard Perara
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Y. Sathiyanarayanan
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| |
Collapse
|
49
|
Ban Q, Chi W, Wang X, Wang S, Hai D, Zhao G, Zhao Q, Granato D, Huang X. (-)-Epigallocatechin-3-Gallate Attenuates the Adverse Reactions Triggered by Selenium Nanoparticles without Compromising Their Suppressing Effect on Peritoneal Carcinomatosis in Mice Bearing Hepatocarcinoma 22 Cells. Molecules 2023; 28:molecules28093904. [PMID: 37175313 PMCID: PMC10180376 DOI: 10.3390/molecules28093904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenjing Chi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiqiong Wang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hai
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuyan Zhao
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Xianqing Huang
- College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
50
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|