1
|
Gorla NBM, Nieves M, Ferré DM. Genotoxicity in Unconventional Mammalian Models of Wild, Urban, and Agricultural Ecosystems: A Systematic Review Under the One Health Approach. Genes (Basel) 2025; 16:525. [PMID: 40428347 PMCID: PMC12111151 DOI: 10.3390/genes16050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: This systematic review evaluates unconventional mammalian models from wild, agricultural, and urban/domestic ecosystems for genotoxicity assessment under the One Health framework. Non-human primates (NHPs), cattle, and domestic dogs are analyzed as sentinel species due to their distinct environmental niches, unique human interactions, and species-specific traits. In conjunction with this, evidence is presented about the in vitro use of cells of these mammals for the genotoxicological evaluation of different chemical substances, such as veterinary drugs, environmental pollutants, and pesticides. The synthesis focuses on standardized genetic toxicology assays (e.g., chromosomal aberrations, micronucleus, comet assay) aligned with Organization for Economic Cooperation and Development (OECD) guidelines. Methods: A structured search of international literature identified studies employing OECD-compliant genotoxicity assays in NHPs, cattle, dogs, and others not listed in OECD. Data was categorized by species, assay type, chemical class evaluated, environmental context (wild, agricultural, urban), and merits of the papers. Results: NHPs, despite their phylogenetic proximity to humans, show limited genotoxicity data in contrast to biomedical research, which has been constrained by ethical concerns and fieldwork logistics. Cattle emerge as robust models in agricultural settings due to the abundance of studies on the genotoxic capacity of pesticides, veterinary drug, and environmental biomonitoring, with direct implications for food safety. Domestic dogs are recognized as powerful sentinels for human health due to shared exposomes, physiological similarities (e.g., shorter cancer latency), and reduced lifestyle confounders; however, genotoxicity studies in dogs remain sparse compared to chemical exposure monitoring or cancer research. Conclusions: This review advocates for expanded, integrated use of these models to address genotoxic threats across ecosystems, which would benefit both animal and human health. In the application of biomonitoring studies with sentinel animals, a critical gap persists: the frequent lack of integration between xenobiotic quantification in environmental and biological samples, along with genotoxicity biomarkers evaluation in sentinel populations, which hinders comprehensive environmental risk assessment.
Collapse
Affiliation(s)
- Nora Bibiana M. Gorla
- Laboratorio de Genética, Ambiente y Reproducción (GenAR), Universidad Juan Agustín Maza (UMaza), Mendoza C5519, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C2290, Argentina
| | - Mariela Nieves
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C2290, Argentina
- Grupo de Estudios en Arquitectura Genómica de Mamíferos (arGENma), Dirección de Investigaciones Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1431, Argentina;
| | - Daniela Marisol Ferré
- Laboratorio de Genética, Ambiente y Reproducción (GenAR), Universidad Juan Agustín Maza (UMaza), Mendoza C5519, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C2290, Argentina
| |
Collapse
|
2
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
3
|
Chen Y, Huo J, Liu Y, Zeng Z, Zhu X, Chen X, Wu R, Zhang L, Chen J. Development of a novel flow cytometry-based approach for reticulocytes micronucleus test in rat peripheral blood. J Appl Toxicol 2020; 41:595-606. [PMID: 33067908 DOI: 10.1002/jat.4068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The micronucleus test (MNT) is the most widely applied short-term assay to detect clastogens or spindle disruptors. The use of flow cytometry (FCM) has been reported for micronucleated erythrocytes scoring in peripheral blood. The aim of this study was to develop a novel and practical protocol for MNT in rat peripheral blood by FCM, with the method validation. CD71-fluorescein isothiocyanate and DRAQ5 were adopted for the fluorescent staining of proteins and DNA, respectively, to detect micronuclei. To validate the method, groups of male Sprague-Dawley rats (five per group) received two oral gavage doses at 0 and 24 h of six chemicals (four positive mutagens: ethyl methanesulphonate [EMS], cyclophosphamide [CP], colchicine [COL], and ethyl nitrosourea [ENU]; two nongenotoxic chemicals: sodium saccharin and eugenol). Blood samples were collected from the tail vein before and on the five continuous days after treatments; all of which were analyzed for micronuclei presence by both the manual (Giemsa staining) and FCM methods. The FCM-based method consistently demonstrated highly sensitive responses for micronucleus detection at all concentrations and all time points for EMS, CP, COL, and ENU. Sodium saccharin and eugenol could be identified as negative in this protocol. Results obtained with the FCM-based method correlated well with the micronucleus frequencies (r = 0.659-0.952), and the proportion of immature erythrocytes (r = 0.915-0.981) tested by Giemsa staining. The method reported here, with easy operation, low background, and requirement for a regular FCM, could be an efficient system for micronucleus scoring.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jiao Huo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yunjie Liu
- Graduate Department, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuxi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Thybaud V, Kasper P, Sobol Z, Elhajouji A, Fellows M, Guerard M, Lynch AM, Sutter A, Tanir JY. Genotoxicity assessment of peptide/protein-related biotherapeutics: points to consider before testing. Mutagenesis 2016; 31:375-84. [DOI: 10.1093/mutage/gew013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Inter-laboratory validation of the in-vivo flow cytometric micronucleus analysis method (MicroFlow®) in China. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:6-13. [PMID: 25308541 DOI: 10.1016/j.mrgentox.2014.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/23/2022]
Abstract
Although inter-laboratory validation efforts of the in-vivo micronucleus (MN) assay based on flow cytometry (FCM) have taken place in the EU and US, none have been organized in China. Therefore, an inter-laboratory study that included eight laboratories in China and one experienced reference laboratory in the US was coordinated to validate the in-vivo FCM MicroFlow(®) method to determine the frequency of micro-nucleated reticulocytes (MN-RETs) in rat blood. Assay reliability and reproducibility were evaluated with four known genotoxicants, and the results obtained with the FCM method were compared with the outcome of the traditional evaluation of bone-marrow micronuclei by use of microscopy. Each of the four chemicals was tested at three sites (two in China and the one US reference laboratory). After three consecutive daily exposures to a genotoxicant, blood and bone-marrow samples were obtained from rats 24h after the third dose. MN-RET frequencies were measured in 20,000 RET in blood by FCM, and micro-nucleated polychromatic erythrocyte (MN-PCE) frequencies were measured in 2,000 PCEs in bone marrow by microscopy. For both methods, each genotoxicant was shown to induce a statistically significant increase in the frequency of MN after treatment with at least one dose. Where more doses than one caused an increase, responses occurred in a dose-dependent manner. Spearman's correlation coefficient (rs) for FCM-based MN-RET vs microscopy-based MN-PCE measurements (eight experiments, 200 paired measurements) was 0.723, indicating a high degree of correspondence between methods and compartments. The rs value for replicate FCM MN-RET measurements performed at the eight collaborative laboratories was 0.940 (n=200), and between the eight FCM laboratories with the reference laboratory was 0.933 (n=200), suggesting that the automated method is very well transferable between laboratories. The FCM micronucleus analysis method is currently used in many countries worldwide, and these data support its use for evaluating the in-vivo genotoxic potential of test chemicals in China.
Collapse
|
6
|
Comparison of three-colour flow cytometry and slide-based microscopy for the scoring of micronucleated reticulocytes in rat bone-marrow and peripheral blood. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:12-7. [DOI: 10.1016/j.mrgentox.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/11/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
|
7
|
Cervantes-Ríos E, Ortiz-Muñiz R, Martínez-Hernández AL, Cabrera-Rojo L, Graniel-Guerrero J, Rodríguez-Cruz L. Malnutrition and infection influence the peripheral blood reticulocyte micronuclei frequency in children. Mutat Res 2012; 731:68-74. [PMID: 22119781 DOI: 10.1016/j.mrfmmm.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 10/25/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
Malnutrition is a serious public health problem that affects approximately one third of all children. Developing countries have the highest incidence of malnourished children, and approximately 60% of deaths that occur in children under five are directly related to malnutrition and associated diseases. The relationship between malnutrition and genetic damage has been widely studied in humans and animal models. The micronucleus (MN) assay is useful in detecting chromosome damage induced by several factors. The aim of this study was to evaluate the effects of infection and malnutrition on the frequency of MN in erythrocytes from the peripheral blood of well-nourished, uninfected (WN) and well-nourished, infected (WNI) children, and moderately malnourished (UNM) and severely malnourished (UNS) children, both with infection, using a flow cytometric analysis technique. The percentage of reticulocytes (RETs) was significantly higher (1.5-fold) in WNI children than well-nourished controls. In addition, the UNS group had a 2.2-fold increase in the percentage of RETs compared to the WNI group. The frequency of micronucleated reticulocytes (MN-RETs) was 2.5 times greater, in WNI group compared to the WN group. These frequencies were significantly higher (1.7- and 2.1-fold) in UNM and UNS, respectively, compared to the WNI group. The results suggest that infection and malnutrition induce DNA damage in children.
Collapse
Affiliation(s)
- Elsa Cervantes-Ríos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
McKeon M, Xu Y, Kirkland D, Schmuck G, Krebsfänger N, Avlasevich SL, Dertinger SD. Cyclophosphamide and etoposide canine studies demonstrate the cross-species potential of the flow cytometric peripheral blood micronucleated reticulocyte endpoint. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:79-83. [DOI: 10.1016/j.mrgentox.2011.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 12/01/2022]
|
9
|
Strategies in case of positive in vivo results in genotoxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:121-8. [DOI: 10.1016/j.mrgentox.2010.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023]
|
10
|
Improvement of in vivo genotoxicity assessment: Combination of acute tests and integration into standard toxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:108-20. [DOI: 10.1016/j.mrgentox.2010.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/10/2010] [Indexed: 01/15/2023]
|
11
|
Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KYF, Toscano NP, Jacob DS, Fanton JK, Casper RF, Dertinger SD, Tilly JL. In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril 2011; 95:1440-5.e1-7. [PMID: 21316047 PMCID: PMC3063448 DOI: 10.1016/j.fertnstert.2011.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether sphingosine-1-phosphate (S1P), or the S1P mimetic FTY720 shields ovaries of adult female rhesus monkeys from damage caused by 15 Gy of targeted radiotherapy, allowing for the retention of long-term fertility, and to evaluate whether S1P protects human ovarian tissue (xenografted into mice) from radiation-induced damage. DESIGN Research animal study. SETTING Research laboratory and teaching hospital. PATIENT(S) Adult female rhesus macaques (8-14 years of age; n = 21) and two women (24 and 27 years of age) undergoing gynecologic surgery for benign reasons, after informed consent and approval. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Ovarian histologic analysis, ovarian reserve measurements, and fertility in mating trials. RESULT(S) Rapid ovarian failure was induced in female macaques by ovarian application of 15 Gy of radiation. Females given S1P or FTY720 by direct intraovarian cannulation for 1 week before ovarian irradiation rapidly resumed menstrual cycles because of maintenance of follicles, with greater beneficial effects achieved using FTY720. Monkeys given the S1P mimetic before ovarian irradiation also became pregnant in mating trials. Offspring conceived and delivered by radioprotected females developed normally and showed no evidence of genomic instability, as measured by micronucleus frequency in reticulocytes. Adult human ovarian cortical tissue xenografted into mice also exhibited a reduction in radiation-induced primordial oocyte depletion when preexposed to S1P. CONCLUSION(S) S1P and its analogs hold clinical promise as therapeutic agents to preserve ovarian function and fertility in female cancer patients exposed to cytotoxic treatments.
Collapse
Affiliation(s)
- Mary B. Zelinski
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - Mark K. Murphy
- Battelle Pacific Northwest Division, Richland, Washington
| | - Maralee S. Lawson
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - Andrea Jurisicova
- Departments of Obstetrics and Gynecology, and Physiology, University of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - K. Y. Francis Pau
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - Natalia P. Toscano
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - Darla S. Jacob
- Division of Animal Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - John K. Fanton
- Division of Animal Sciences, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon
| | - Robert F. Casper
- Departments of Obstetrics and Gynecology, and Physiology, University of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Jonathan L. Tilly
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Dertinger SD, Torous DK, Hayashi M, MacGregor JT. Flow cytometric scoring of micronucleated erythrocytes: an efficient platform for assessing in vivo cytogenetic damage. Mutagenesis 2010; 26:139-45. [DOI: 10.1093/mutage/geq055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
13
|
Heddle JA, Fenech M, Hayashi M, MacGregor JT. Reflections on the development of micronucleus assays. Mutagenesis 2010; 26:3-10. [PMID: 20980366 DOI: 10.1093/mutage/geq085] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
These are personal reflections on the development of methods to use micronuclei as a measure of genetic damage and their use in research and in toxicology by four people who have been intimately involved with this work, a personal rather than a comprehensive history. About 6000 papers have been published using such methods in many tissues in vivo or in cultured cells of many organisms from plants to humans, but the majority of the work has been on mammalian erythrocytes and human lymphocytes, the areas in which we have worked primarily. Although this is by no means a complete history, those working in the field may be interested in some of the personal events that lie behind the development and acceptance of methods that are now standard.
Collapse
Affiliation(s)
- John A Heddle
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
14
|
Assessment of genotoxicity associated with hydroxyurea therapy in children with sickle cell anemia. Mutat Res 2010; 698:38-42. [PMID: 20230905 DOI: 10.1016/j.mrgentox.2010.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
Hydroxyurea induces fetal hemoglobin, improves laboratory parameters, and ameliorates clinical complications of sickle cell anemia (SCA), but its long-term efficacy and safety in this patient population remain incompletely defined. Although generally considered non-DNA reactive, an important safety concern is that hydroxyurea may indirectly cause genotoxic damage. To better address this safety issue of hydroxyurea in patients with SCA, we measured the production of micronuclei (MN) in red blood cells (RBCs) as a marker of genotoxicity. Blood samples were collected from children with SCA enrolled in the Hydroxyurea Study of Long-term Effects (ClinicalTrials.gov NCT00305175). Flow cytometry quantified circulating MN-containing erythrocyte sub-populations before and during hydroxyurea exposure. The frequency of micronucleated reticulocytes (MN-CD71(+)) and micronucleated mature erythrocytes (MN-RBC) was then tested for associations with laboratory and clinical data. In cross-sectional analysis of 293 blood samples from 105 children with SCA and a median of 2 years of hydroxyurea therapy, exposure to hydroxyurea was associated with significantly increased frequencies of MN-CD71(+) and MN-RBC compared to baseline. The increases were evident by 3 months of therapy, and did not escalate further with up to 12 years of continuous drug exposure. In prospective longitudinal analysis, substantial inter-individual variation in the effect of hydroxyurea on %MN-CD71(+) was observed that was associated with the expected laboratory effects of hydroxyurea. In conclusion, clinically relevant exposure to hydroxyurea is associated with increased MN production consistent with erythroblast genotoxicity but with substantial inter-patient variability. Associations between increased %MN-CD71(+) and laboratory benefits suggest that hydroxyurea effects on MN production may be related to individual patient sensitivity to hydroxyurea within the bone marrow.
Collapse
|
15
|
Chen Y, Tsai Y, Nowak I, Wang N, Hyrien O, Wilkins R, Ferrarotto C, Sun H, Dertinger SD. Validating high-throughput micronucleus analysis of peripheral reticulocytes for radiation biodosimetry: benchmark against dicentric and CBMN assays in a mouse model. HEALTH PHYSICS 2010; 98:218-227. [PMID: 20065686 DOI: 10.1097/hp.0b013e3181abaae5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Automation of radiation biodosimetry is one of the top priority tasks considered by the Office of Science and Technology Policy and the Homeland Security Council in preparation for the nation's readiness for a possible radionuclear terrorist attack. The Center for Biophysical Assessment and Risk Management Following Irradiation, a consortium of researchers and institutions centered at the University of Rochester, has been investigating automated scoring of radiation-induced micronucleus formation in reticulocytes for high-throughput radiation biodosimetry. The collaborative project is based on a commercially-available product by Litron Laboratories in Rochester, New York. The study was designed to validate the flow-cytometry based analysis of micronucleated reticulocyte expression for radiation biodosimetry by benchmarking against the standard lymphocyte-based biodosimetry methods in a mouse model. C57B1/6 mice and C3H mice were exposed to Cs total-body radiation from 0-3 Gy. Blood samples were subsequently analyzed for CD71+ micronucleated reticulocyte and reticulocyte frequencies by flow cytometry. Results showed a linear dose-response of MN-RET up to 1 Gy for C57B1/6 and 2 Gy for C3H mice. On the other hand, robust and good dose-response curves were obtained with lymphocyte-based dicentric assay and cytokinesis-block micronucleus assay up to 3 Gy. High-throughput, automated analyses of micronucleated reticulocytes is a sensitive and reproducible method for detecting recent radiation exposure. In mice, the dose range of detection is useful up to 1 Gy (C57Bl/6) and 2 Gy (C3H) but not reliable beyond these dose limits. The utilization of this automated analysis for human radiation biodosimetry is currently under investigation.
Collapse
Affiliation(s)
- Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Reduction of use of animals in regulatory genotoxicity testing: Identification and implementation opportunities—Report from an ECVAM workshop. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 680:31-42. [DOI: 10.1016/j.mrgentox.2009.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/28/2009] [Accepted: 08/27/2009] [Indexed: 11/23/2022]
|
17
|
The genetic toxicology of methylphenidate hydrochloride in non-human primates. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 673:59-66. [DOI: 10.1016/j.mrgentox.2008.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 02/06/2023]
|
18
|
Vikram A, Tripathi D, Pawar A, Ramarao P, Jena G. Pre-bled-young-rats in genotoxicity testing: A model for peripheral blood micronucleus assay. Regul Toxicol Pharmacol 2008; 52:147-57. [DOI: 10.1016/j.yrtph.2008.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 11/25/2022]
|