1
|
Kim J, Song B, Kim KH, Moon Y. Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117645. [PMID: 39788032 DOI: 10.1016/j.ecoenv.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells. Through a combination of transcriptomic analysis and experimental models, we demonstrate that while RPL13A negatively regulates inflammation by enhancing the anti-inflammatory transcription factor ATF3, RPS3 acts as a proinflammatory driver, promoting chemokine production via activation of MAPK pathways, transcriptional upregulation of EGR-1, and stabilization of mRNA through cytosolic translocation of HuR. Our findings reveal a dynamic interplay between RPL13A and RPS3, wherein RPL13A counteracts the proinflammatory effects of RPS3, offering a finely tuned regulatory axis in the inflammatory response to environmental toxins. These insights provide potential molecular targets for therapeutic intervention in toxin-induced inflammatory diseases of the gut, highlighting the non-canonical roles of ribosomal proteins in modulating immune responses to environmental stressors.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea
| | - BoGyoung Song
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea.
| |
Collapse
|
2
|
Mi J, Tong Y, Zhang Q, Wang Q, Wang Y, Wang Y, Lin G, Ma Q, Li T, Huang S. Alginate Oligosaccharides Enhance Gut Microbiota and Intestinal Barrier Function, Alleviating Host Damage Induced by Deoxynivalenol in Mice. J Nutr 2024; 154:3190-3202. [PMID: 39357672 DOI: 10.1016/j.tjnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating pro-inflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS After a 1-wk acclimatization period, the mice were divided into 4 groups. For 3 wk, the AOS and AOS + DON groups were gavaged daily with 200 μL of AOS [200 mg/kg body weight (BW)], whereas the CON and DON groups received an equivalent volume of sterile Phosphate-Buffered Saline (PBS). Subsequently, for 1 wk, the DON and AOS + DON groups received 100 μL of DON (4.8 mg/kg BW) daily, whereas the control (CON) and AOS groups continued receiving PBS. RESULTS After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared with the CON group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared with the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by presupplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (claudin and occludin in the colon) and the mucin protein mucin 2, compared with the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared with the DON group. CONCLUSIONS This study unveils that AOS not only enhances gut microbiota and intestinal barrier function but also significantly mitigates DON-induced intestinal damage.
Collapse
Affiliation(s)
- Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yaoyi Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China.
| |
Collapse
|
3
|
Kim J, Jeong H, Ray N, Kim KH, Moon Y. Gut ribotoxic stress responses facilitate dyslipidemia via metabolic reprogramming: an environmental health prediction. Theranostics 2024; 14:1289-1311. [PMID: 38323314 PMCID: PMC10845207 DOI: 10.7150/thno.88586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Rationale: The gut and its accessory organ, the liver, are crucial determinants of metabolic homeostasis via the regulation of circulating lipids for cardiovascular health. In response to environmental insults, cells undergo diverse adaptation or pathophysiological processes via stress-responsive eukaryotic initiation factor 2 alpha (eIF2α) kinase signaling and subsequent cellular reprogramming. We noted that patients with inflammatory gut distress display enhanced levels of ribosomal stress-responsive eIF2α kinase, which is notably associated with lipid metabolic process genes. Based on an assumption that eukaryotic ribosomes are a promising stress-responsive module for molecular reprogramming, chemical ribosome-inactivating stressors (RIS) were assessed for their involvement in enterohepatic lipid regulation. Methods: Experimental assessment was based on prediction using the clinical transcriptome and single-cell RNA-sequencing analysis of inflammatory bowel diseases and obesity. The prediction was verified using RIS exposure models of mice, gut organoids, and intestinal cells. The lipidomic profiling was performed to address RIS-induced intracellular fat alterations. Biochemical processes of the mechanisms were evaluated using RT-PCR, western blot analysis, luciferase reporter assays, and confocal microscopy of genetically ablated or chemically inhibited mice, organoids, and cells. Results: Chemical RIS including deoxynivalenol promoted enterohepatic lipid sequestration while lowering blood LDL cholesterol in normal and diet-induced obese mice. Although ribosomal stress caused extensive alterations in cellular lipids and metabolic genes, the cholesterol import-associated pathway was notably modulated. In particular, ribosomal stress enhanced gut levels of the low-density lipoprotein receptor (LDLR) via both transcriptional and post-transcriptional regulation. Subsequently, LDLR facilitated enterohepatic cholesterol accumulation, leading to dyslipidemia in response to ribosomal stress. Moreover, genetic features of stress-responsive LDLR modulators were consistently proven in the inflammation- and obesity-associated gut model. Conclusion: The elucidated ribosome-linked gut lipid regulation provides predictive insights into stress-responsive metabolic rewiring in chronic human diseases as an environmental health prediction.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Hoyoung Jeong
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Ki-Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University, Busan, Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
- Biomedical Research Institute, Pusan National University, Busan, Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
4
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023; 65:193-205. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
5
|
Sun J, Kim J, Jeong H, Kwon D, Moon Y. Xenobiotic-induced ribosomal stress compromises dysbiotic gut barrier aging: A one health perspective. Redox Biol 2022; 59:102565. [PMID: 36470131 PMCID: PMC9720106 DOI: 10.1016/j.redox.2022.102565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Upon exposure to internal or environmental insults, ribosomes stand sentinel. In particular, stress-driven dysregulation of ribosomal homeostasis is a potent trigger of adverse outcomes in mammalians. The present study assessed whether the ribosomal insult affects the aging process via the regulation of sentinel organs such as the gut. Analyses of the human aging dataset demonstrated that elevated features of ribosomal stress are inversely linked to barrier maintenance biomarkers during the aging process. Ribosome-insulted worms displayed reduced lifespan, which was associated with the disruption of gut barriers. Mechanistically, ribosomal stress-activated Sek-1/p38 signaling, a central platform of ribosomal stress responses, counteracted the gut barrier deterioration through the maintenance of the gut barrier, which was consistent with the results in a murine insult model. However, since the gut-protective p38 signaling was attenuated with aging, the ribosomal stress-induced distress was exacerbated in the gut epithelia and mucosa of the aged animals, subsequently leading to increased bacterial exposure. Moreover, the bacterial community-based evaluation predicted concomitant increases in the abundance of mucosal sugar utilizers and mucin metabolic enzymes in response to ribosomal insult in the aged host. All of the present evidence on ribosomal insulting against the gut barrier integrity from worms to mammals provides new insights into organelle-associated translational modulation of biological longevity in a one health perspective.
Collapse
Affiliation(s)
- Junjie Sun
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Hoyoung Jeong
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Dasom Kwon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, 50612, South Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
6
|
Gaige S, Barbouche R, Barbot M, Boularand S, Dallaporta M, Abysique A, Troadec JD. Constitutively active microglial populations limit anorexia induced by the food contaminant deoxynivalenol. J Neuroinflammation 2022; 19:280. [PMID: 36403004 PMCID: PMC9675145 DOI: 10.1186/s12974-022-02631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.
Collapse
Affiliation(s)
- Stéphanie Gaige
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Rym Barbouche
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Manon Barbot
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Sarah Boularand
- Aix-Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, 13397, Marseille, France
| | - Michel Dallaporta
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Anne Abysique
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| | - Jean-Denis Troadec
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| |
Collapse
|
7
|
Li F, Yuan X, Huang L, Liu Q, Chen W, Wang C. Effects of deoxynivalenol on the histomorphology of the liver and kidneys and the expression of MAPKs in weaned rabbits. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is widely present in grain-based feeds and food. It has attracted great attention due to its high contamination rate and strong toxicity. The objective of this study was to analyse the toxic effects of DON on the liver and kidneys of weaned rabbits. 45 weaned male rabbits were allocated into control, low DON dose (0.5 mg/kg body weight), and high DON dose (1.5 mg/kg body weight) groups. Saline or DON was administrated intragastrically in the empty stomach of rabbits every morning. After 24 days of treatment, liver and kidney samples were collected for histological, reverse transcription-quantitative polymerase chain reaction (qRT-PCR), and immunohistochemistry analyses. Haematoxylin eosin staining showed that 0.5 mg/kg BW DON caused mild damage to the liver and kidney morphology, while 1.5 mg/kg body weight DON resulted in hepatic vacuolation and necrosis, as well as tubular stenosis and lesions. Data from qRT-PCR, Western blot, and immunohistochemistry revealed that the mRNA and protein expression and the distribution range of extracellular signal-regulated kinase, p38, and c-Jun NH2-terminal kinase were increased in the liver and kidneys. In conclusion, DON at the tested concentrations damaged the liver and kidneys of rabbits by affecting the expression of key proteins from the mitogen-activated protein kinase signalling pathway. The damage extent was proportional to the amount of DON ingested.
Collapse
Affiliation(s)
- F. Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - X. Yuan
- College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - L. Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - Q. Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - W. Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| | - C. Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China P.R
| |
Collapse
|
8
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
9
|
Sharma V, Patial V. Food Mycotoxins: Dietary Interventions Implicated in the Prevention of Mycotoxicosis. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1717-1739. [DOI: 10.1021/acsfoodscitech.1c00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 (U.P.), India
| |
Collapse
|
10
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Gu C, Gao X, Guo D, Wang J, Wu Q, Nepovimova E, Wu W, Kuca K. Combined Effect of Deoxynivalenol (DON) and Porcine Circovirus Type 2 (Pcv2) on Inflammatory Cytokine mRNA Expression. Toxins (Basel) 2021; 13:toxins13060422. [PMID: 34199278 PMCID: PMC8231776 DOI: 10.3390/toxins13060422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
A host’s immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning and porcine circovirus type 2 (PCV2) infections, which affect the host’s natural immune function. Pro-inflammatory cytokines, IL-1β and IL-6, are important regulators in the process of natural immune response, which participate in inflammatory response and enhance immune-mediated tissue damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK signaling pathway. Here, we explored whether the mRNA expression of IL-1β and IL-6, induced by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of IL-1β and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway on IL-1β and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated with DON or PCV2 induced the mRNA expression of IL-1β and IL-6 in a time- and dose-dependent manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression of IL-1β and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1β and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1β and IL-6 mRNA expression when induced by both DON and PCV2.
Collapse
Affiliation(s)
- Chao Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China;
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Correspondence: (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (W.W.); (K.K.)
| |
Collapse
|
13
|
Wang P, Huang L, Yang W, Liu Q, Li F, Wang C. Deoxynivalenol Induces Inflammation in the Small Intestine of Weaned Rabbits by Activating Mitogen-Activated Protein Kinase Signaling. Front Vet Sci 2021; 8:632599. [PMID: 33604367 PMCID: PMC7884333 DOI: 10.3389/fvets.2021.632599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Deoxynivalenol (DON) can activate related signaling pathways and induce gastrointestinal disorders. Based on the results of previous studies, this study tried to explore the relationship between DON-induced intestinal inflammation of weaned rabbits and the ERK-p38 signaling pathway. Forty-five weaned rabbits were divided into three treatments: control, LD and HD group. All rabbits were treated with diet containing a same nutrient content, but animals in the LD and HD groups were additionally administered DON via drinking water at 0.5 and 1.5 mg/kg b.w./d, respectively. The protocol consisted of a total feeding period of 31 days, including a pre-feeding period of 7 days. Western blotting, qRT-PCR, and immunohistochemistry were applied for analysis the expression of protein and mRNA of extracellular signal-regulated kinase (ERK), p38, double-stranded RNA-activated protein kinase (PKR), and hematopoietic cell kinase (Hck) in the duodenum, jejunum, and ileum of rabbits, as well as the distribution of positive reactants. The results proved that DON intake could enhance the levels of inflammatory factors in serum and damage the intestinal structure barrier of rabbits. Meanwhile, DON addition can stimulate the protein and mRNA expression for ERK, p38, PKR, and Hck in the intestine of rabbits, especially in the duodenum, as well as expand the distribution of positive reactants, in a dose-dependent manner.
Collapse
Affiliation(s)
- Pengwei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Wanying Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| |
Collapse
|
14
|
Holanda DM, Yiannikouris A, Kim SW. Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins (Basel) 2020; 12:toxins12080504. [PMID: 32781569 PMCID: PMC7472238 DOI: 10.3390/toxins12080504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.
Collapse
Affiliation(s)
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence:
| |
Collapse
|
15
|
Wu Q, Yue J, Zhang H, Kuca K, Wu W. Anorexic responses to trichothecene deoxynivalenol and its congeners correspond to secretion of tumor necrosis factor-α and interleukin-1β. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103371. [PMID: 32171072 DOI: 10.1016/j.etap.2020.103371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Type B trichothecene mycotoxins comprise deoxynivalenol ("Vomitoxin", DON) and four structually related congeners: 15-acetyl- and 3-acetyl-deoxynivalenol (15-ADON and 3-ADON), nivalenol (NIV), 4-acetyl-nivalenol (fusarenon X, FX). These foodborne mycotoxins has been linked to food poisoning leading to anorexic response in human and several animal species. However, the pathophysiological basis for anorexic effect is relatively unclear. The goal of this research was to compare anorexic effect to type B trichothecenes and relate these effects to two common cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) following oral and IP exposure. Both cytokines were increased within 1-2 h in plasma and returned to basal concentrations at 6 h following exposure to DON and ADONs. FX evoked both cytokines with initial time and duration at 1-2 h and > 6 h, respectively. Elevation of TNF-α and IL-1β induced by orally exposure to NIV did not occur until 2 h and recovered to basal concentrations at 6 h. Both cytokines were elevated at 1 h and lasted more than 6 h following IP exposure to NIV. Type B trichothecenes stimulated plasma secretion of both cytokines that were consistent with reduction of food intake. In conclusion, our findings demonstrate that TNF-α and IL-1β act critical roles in type B trichothecenes-induced anorexic response.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Jianming Yue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
16
|
ZAKα Recognizes Stalled Ribosomes through Partially Redundant Sensor Domains. Mol Cell 2020; 78:700-713.e7. [PMID: 32289254 DOI: 10.1016/j.molcel.2020.03.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Impairment of ribosome function activates the MAPKKK ZAK, leading to activation of mitogen-activated protein (MAP) kinases p38 and JNK and inflammatory signaling. The mechanistic basis for activation of this ribotoxic stress response (RSR) remains completely obscure. We show that the long isoform of ZAK (ZAKα) directly associates with ribosomes by inserting its flexible C terminus into the ribosomal intersubunit space. Here, ZAKα binds helix 14 of 18S ribosomal RNA (rRNA). An adjacent domain in ZAKα also probes the ribosome, and together, these sensor domains are critically required for RSR activation after inhibition of both the E-site, the peptidyl transferase center (PTC), and ribotoxin action. Finally, we show that ablation of the RSR response leads to organismal phenotypes and decreased lifespan in the nematode Caenorhabditis elegans (C. elegans). Our findings yield mechanistic insight into how cells detect ribotoxic stress and provide experimental in vivo evidence for its physiological importance.
Collapse
|
17
|
Jiang Q, Wu J, Yao K, Yin Y, Gong MM, Yang C, Lin F. Paper-Based Microfluidic Device (DON-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sens 2019; 4:3072-3079. [PMID: 31713421 DOI: 10.1021/acssensors.9b01895] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycotoxin contamination causes over $5 billion of economic loss per year in the North American food and feed industry. A rapid, low-cost, portable, and reliable method for on-site detection of deoxynivalenol (DON), a representative mycotoxin predominantly occurring in grains, would be helpful to control mycotoxin contamination. In this study, a paper-based microfluidic chip capable of measuring DON (DON-Chip) in food, feed, and feed ingredients was developed. The DON-Chip incorporated a colorimetric competitive immunoassay into a paper microfluidic device and used gold nanoparticles as a signal indicator. Furthermore, a novel ratiometric analysis method was proposed to improve detection resolvability. Detection of DON in the aqueous extracts from solid food, feed, or feed ingredients was successfully validated with a detection range of 0.01-20 ppm (using dilution factors from 10 to 104). Compared with conventional methods, the DON-Chip method could greatly reduce the cost and time of mycotoxin detection in the food and feed industry.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | | | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Max M. Gong
- Bock Department of Biomedical Engineering, Trine University, One University Avenue, Angola, Indiana 46703, United States
| | | | | |
Collapse
|
18
|
Lee JY, Lim W, Park S, Kim J, You S, Song G. Deoxynivalenol induces apoptosis and disrupts cellular homeostasis through MAPK signaling pathways in bovine mammary epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:879-887. [PMID: 31203115 DOI: 10.1016/j.envpol.2019.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON), a fungus-derived mycotoxin, also known as vomitoxin, is found in a wide range of cereal grains and grain-based food products. The biological toxicity of DON has been described in various species, but its toxicity and functional effects in mammary epithelial cells are unclear. In this study, we investigated the effect of DON on bovine mammary epithelial (MAC-T) cells using mechanistic approaches. We detected DON-induced cell cycle abrogation and calcium deficiency, leading to apoptotic cell death via MAPK signaling pathways. Moreover, we studied the transcriptional activation of blood and milk junctional regulators as well as inflammatory cytokines in response to DON. The results of this study contribute to a comprehensive understanding of DON-associated toxicity mechanisms in bovine mammary epithelial cells, which may facilitate the enhancement of milk stabilization in parallel with the establishment of safety profiles to protect against DON contamination in livestock farms and in the food industry.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Kim TS, Kim HD, Park YJ, Kong E, Yang HW, Jung Y, Kim Y, Kim J. JNK activation induced by ribotoxic stress is initiated from 80S monosomes but not polysomes. BMB Rep 2019. [PMID: 30670151 PMCID: PMC6726213 DOI: 10.5483/bmbrep.2019.52.8.273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Translation is a costly, but inevitable, cell maintenance process. To reduce unnecessary ATP consumption in cells, a fine-tuning mechanism is needed for both ribosome biogenesis and translation. Previous studies have suggested that the ribosome functions as a hub for many cellular signals such as ribotoxic stress response, mammalian target of rapamycin (mTOR), and ribosomal S6 kinase (RSK) signaling. Therefore, we investigated the relationship between ribosomes and mitogen-activated protein kinase (MAPK) activation under ribotoxic stress conditions and found that the activation of c-Jun N-terminal kinases (JNKs) was suppressed by ribosomal protein knockdown but that of p38 was not. In addition, we found that JNK activation is driven by the association of inactive JNK in the 80S monosomes rather than the polysomes. Overall, these data suggest that the activation of JNKs by ribotoxic stress is attributable to 80S monosomes. These 80S monosomes are active ribosomes that are ready to initiate protein translation, rather than polysomes that are already acting ribosomes involved in translation elongation.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex Building, Korea University, Seoul 02841, Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - EunBin Kong
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - YongJoong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex Building, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
22
|
Guerrero-Netro HM, Estienne A, Chorfi Y, Price CA. The mycotoxin metabolite deepoxy- deoxynivalenol increases apoptosis and decreases steroidogenesis in bovine ovarian theca cells†. Biol Reprod 2017; 97:746-757. [DOI: 10.1093/biolre/iox127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
|
23
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
24
|
Yu M, Chen L, Peng Z, Nüssler AK, Wu Q, Liu L, Yang W. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges. Toxicol In Vitro 2017; 41:150-158. [PMID: 28286114 DOI: 10.1016/j.tiv.2017.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models.
Collapse
Affiliation(s)
- Miao Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
25
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
26
|
Wan D, Wang X, Wu Q, Lin P, Pan Y, Sattar A, Huang L, Ahmad I, Zhang Y, Yuan Z. Integrated Transcriptional and Proteomic Analysis of Growth Hormone Suppression Mediated by Trichothecene T-2 Toxin in Rat GH3 Cells. Toxicol Sci 2015; 147:326-38. [PMID: 26141394 DOI: 10.1093/toxsci/kfv131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chronic exposure to trichothecenes is known to disturb insulin-like growth factor 1 and signaling of insulin and leptin hormones and causes considerable growth retardation in animals. However, limited information was available on mechanisms underlying trichothecene-induced growth retardation. In this study, we employed an integrated transcriptomics, proteomics, and RNA interference (RNAi) approach to study the molecular mechanisms underlying trichothecene cytotoxicity in rat pituitary adenoma GH3 cells. Our results showed that trichothecenes suppressed the synthesis of growth hormone 1 (Gh1) and inhibited the eukaryotic transcription and translation initiation by suppressing aminoacyl-tRNA synthetases transcription, inducing eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and reducing eukaryotic translation initiation factor 5 a. The sulfhydryl oxidases , protein disulfide isomerase,and heat shock protein 90 (were greatly reduced, which resulted in adverse regulation of protein processing and folding. Differential genes and proteins associated with a decline in energy metabolism and cell cycle arrest were also found in our study. However, use of RNAi to interfere with hemopoietic cell kinase (Hck) and EIF2AK2 transcriptions or use of chemical inhibitors of MAPK, p38, Ras, and JNK partially reversed the reduction of Gh1 levels induced by trichothecenes. It indicated that the activation of MAPKs, Hck, and EIF2AK2 were important for trichothecene-induced growth hormone suppression. Considering the potential hazards of exposure to trichothecenes, our findings could help to improve our understanding regarding human and animal health implications.
Collapse
Affiliation(s)
- Dan Wan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China; Research Center of Healthy Livestock Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xu Wang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Qinghua Wu
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; College of Life Science, Yangtze University, Jingzhou, Hubei, China; and Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pingping Lin
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Adeel Sattar
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Lingli Huang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Ijaz Ahmad
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Zonghui Yuan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China;
| |
Collapse
|
27
|
The Food Contaminant Mycotoxin Deoxynivalenol Inhibits the Swallowing Reflex in Anaesthetized Rats. PLoS One 2015; 10:e0133355. [PMID: 26192767 PMCID: PMC4507856 DOI: 10.1371/journal.pone.0133355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/26/2015] [Indexed: 12/04/2022] Open
Abstract
Deoxynivalenol (DON), one of the most abundant mycotoxins found on cereals, is known to be implicated in acute and chronic illnesses in both humans and animals. Among the symptoms, anorexia, reduction of weight gain and decreased nutrition efficiency were described, but the mechanisms underlying these effects on feeding behavior are not yet totally understood. Swallowing is a major motor component of ingestive behavior which allows the propulsion of the alimentary bolus from the mouth to the esophagus. To better understand DON effects on ingestive behaviour, we have studied its effects on rhythmic swallowing in the rat, after intravenous and central administration. Repetitive electrical stimulation of the superior laryngeal nerve or of the tractus solitarius, induces rhythmic swallowing that can be recorded using electromyographic electrodes inserted in sublingual muscles. Here we provide the first demonstration that, after intravenous and central administration, DON strongly inhibits the swallowing reflex with a short latency and in a dose dependent manner. Moreover, using c-Fos staining, a strong neuronal activation was observed in the solitary tract nucleus which contains the central pattern generator of swallowing and in the area postrema after DON intravenous injection. Our data show that DON modifies swallowing and interferes with central neuronal networks dedicated to food intake regulation.
Collapse
|
28
|
Hassan YI, Watts C, Li XZ, Zhou T. A novel Peptide-binding motifs inference approach to understand deoxynivalenol molecular toxicity. Toxins (Basel) 2015; 7:1989-2005. [PMID: 26043274 PMCID: PMC4488686 DOI: 10.3390/toxins7061989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in cereals and grains world-wide. The low-tolerated levels of this mycotoxin, especially in mono-gastric animals, reflect its bio-potency. The toxicity of DON is conventionally attributed to its ability to inhibit ribosomal protein biosynthesis, but recent advances in molecular tools have elucidated novel mechanisms that further explain DON’s toxicological profile, complementing the diverse symptoms associated with its exposure. This article summarizes the recent findings related to novel mechanisms of DON toxicity as well as how structural modifications to DON alter its potency. In addition, it explores feasible ways of expanding our understating of DON-cellular targets and their roles in DON toxicity, clearance, and detoxification through the utilization of computational biology approaches.
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Christena Watts
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Xiu-Zhen Li
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
29
|
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014; 6:3406-25. [PMID: 25521494 PMCID: PMC4280541 DOI: 10.3390/toxins6123406] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
30
|
Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka JJ. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 2014; 278:107-15. [PMID: 24793808 DOI: 10.1016/j.taap.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kaiyu He
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Hui-Ren Zhou
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Dept. of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yoshiko Sugita-Konishi
- Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara, Kanagawa Pref., 252-5201, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Anthony Krantis
- Dept. of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Dept. of Chemistry, University of Ottawa, Canada
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - James J Pestka
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
31
|
Korsnes MS, Røed SS, Tranulis MA, Espenes A, Christophersen B. Yessotoxin triggers ribotoxic stress. Toxicol In Vitro 2014; 28:975-81. [PMID: 24780217 DOI: 10.1016/j.tiv.2014.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
This work tests the hypothesis that the marine algal toxin yessotoxin (YTX) can trigger ribotoxic stress response in L6 and BC3H1 myoblast cells. YTX exposure at a concentration of 100 nM displays the characteristics of a ribotoxic stress response in such cells. The exposure leads to activation of the p38 mitogen-activated protein kinase, the stress-activated protein kinase c-jun, and the double-stranded RNA-activated protein kinase (PKR). YTX treatment also causes ribosomal RNA cleavage and inhibits protein synthesis. These observations support the idea that YTX can act as a ribotoxin.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Campus Ås, P.O. Box 5003, NO-1432 ÅS, Norway.
| | - Susan Skogtvedt Røed
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Michael A Tranulis
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Arild Espenes
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Berit Christophersen
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| |
Collapse
|
32
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
33
|
Hayman TJ, Wahba A, Rath BH, Bae H, Kramp T, Shankavaram UT, Camphausen K, Tofilon PJ. The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells. Clin Cancer Res 2014; 20:110-9. [PMID: 24198241 PMCID: PMC3947297 DOI: 10.1158/1078-0432.ccr-13-2136] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines. EXPERIMENTAL DESIGN Clonogenic survival was used to determine the effects of INK128 on in vitro radiosensitivity of three pancreatic carcinoma cell lines and a normal fibroblast cell line with mTOR activity defined using immunoblots. DNA double-strand breaks were evaluated according to γH2AX foci. The influence of INK128 on radiation-induced gene translation was determined by microarray analysis of polysome-bound mRNA. Leg tumor xenografts grown from pancreatic carcinoma cells were evaluated for mTOR activity, eIF4F cap complex formation, and tumor growth delay. RESULTS INK128, while inhibiting mTOR activity in each of the cell lines, enhanced the in vitro radiosensitivity of the pancreatic carcinoma cells but had no effect on normal fibroblasts. The dispersal of radiation-induced γH2AX foci was inhibited in pancreatic carcinoma cells by INK128 as were radiation-induced changes in gene translation. Treatment of mice with INK128 resulted in an inhibition of mTOR activity as well as cap complex formation in tumor xenografts. Whereas INK128 alone had no effect of tumor growth rate, it enhanced the tumor growth delay induced by single and fractionated doses of radiation. CONCLUSION These results indicate that mTOR inhibition induced by INK128 enhances the radiosensitivity of pancreatic carcinoma cells and suggest that this effect involves the inhibition of DNA repair.
Collapse
Affiliation(s)
- Thomas J. Hayman
- University of South Florida Morsani College of Medicine, Tampa, FL
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Amy Wahba
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Barbara H. Rath
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Heekyong Bae
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | | | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
34
|
Wu W, Zhang H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 2014; 39:875-86. [DOI: 10.2131/jts.39.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
35
|
Pan X, Whitten DA, Wilkerson CG, Pestka JJ. Dynamic changes in ribosome-associated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol Sci 2013; 138:217-33. [PMID: 24284785 DOI: 10.1093/toxsci/kft270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates cereal-based food, interacts with the ribosome to cause translation inhibition and activate stress kinases in mononuclear phagocytes via the ribotoxic stress response (RSR). The goal of this study was to test the hypothesis that the ribosome functions as a platform for spatiotemporal regulation of translation inhibition and RSR. Specifically, we employed stable isotope labeling of amino acids in cell culture (SILAC)-based proteomics to quantify the early (≤ 30 min) DON-induced changes in ribosome-associated proteins in RAW 264.7 murine macrophage. Changes in the proteome and phosphoproteome were determined using off-gel isoelectric focusing and titanium dioxide chromatography, respectively, in conjunction with LC-MS/MS. Following exposure of RAW 264.7 to a toxicologically relevant concentration of DON (250 ng/ml), we observed an overall decrease in translation-related proteins interacting with the ribosome, concurrently with a compensatory increase in proteins that mediate protein folding, biosynthesis, and cellular organization. Alterations in the ribosome-associated phosphoproteome reflected proteins that modulate translational and transcriptional regulation, and others that converged with signaling pathways known to overlap with phosphorylation changes characterized previously in intact RAW 264.7 cells. These results suggest that the ribosome plays a central role as a hub for association and phosphorylation of proteins involved in the coordination of early translation inhibition as well as recruitment and maintenance of stress-related proteins-both of which enable cells to adapt and respond to ribotoxin exposure. This study provides a template for elucidating the molecular mechanisms of DON and other ribosome-targeting agents.
Collapse
Affiliation(s)
- Xiao Pan
- * Department of Biochemistry and Molecular Biology
| | | | | | | |
Collapse
|
36
|
Flannery BM, He K, Pestka JJ. Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 2013; 221:9-14. [PMID: 23707852 DOI: 10.1016/j.toxlet.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
The trichothecene deoxynivalenol (DON), a potent ribotoxic mycotoxin produced by the cereal blight fungus Fusarium graminearum, commonly contaminates grain-based foods. Oral exposure to DON causes decreased food intake, reduced weight gain and body weight loss in experimental animals - effects that have been linked to dysregulation of hormones responsible for mediating satiety at the central nervous system level. When diet-induced obese (DIO) mice are fed DON, they consume less food, eventually achieving body weights of control diet-fed mice. Here, we extended these findings by characterizing: (1) reversibility of DON-induced body weight loss and anorexia in DIO mice and (2) the role of double-stranded RNA-activated protein kinase (PKR) which has been previously linked to initiation of the ribotoxic stress response. The results demonstrated that DON-induced weight loss was reversible in DIO mice and this effect corresponded to initiation of a robust hyperphagic response. When DIO mice deficient in PKR were exposed to DON, they exhibited weight suppression similar to DIO wild-type fed the toxin, suggesting the toxin's weight effects were not dependent on PKR. Taken together, DON's effects on food consumption and body weight are not permanent and, furthermore, PKR is not an essential signaling molecule for DON's anorectic and weight effects.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
37
|
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage. Toxicol Appl Pharmacol 2013; 268:201-11. [PMID: 23352502 DOI: 10.1016/j.taap.2013.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 11/27/2022]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤30min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at both known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
38
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
39
|
Schmeits PCJ, Volger OL, Zandvliet ET, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics. Toxicol Lett 2012; 217:1-13. [PMID: 23253260 DOI: 10.1016/j.toxlet.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
A toxicogenomics approach was applied to assess the usefulness of the mouse cytotoxic T cell line CTLL-2 for in vitro immunotoxicity testing. CTLL-2 cells were exposed for 6 h to two model immunotoxic compounds: (1) the mycotoxin deoxynivalenol (DON, 1 and 2 μM), a ribotoxic stress inducer, and (2) the organotin compound tributyltin oxide (TBTO, 100 and 200 nM), an endoplasmic reticulum (ER) stress inducer. Effects on whole-genome mRNA expression were assessed by microarray analysis. The biological interpretation of the microarray data indicated that TBTO (200 nM) induced genes involved in T cell activation, ER stress, NFκB activation and apoptosis, which agreed very well with results obtained before on TBTO exposed Jurkat cells and mouse primary thymocytes. Remarkably, DON (2 μM) downregulated genes involved in T cell activation, ER stress and apoptosis, which is opposite to results obtained before for DON-exposed Jurkat cells and mouse primary thymocytes. Furthermore, the results for DON in CTLL-2 cells are also opposite to the results obtained for TBTO in CTLL-2 cells. In agreement with the lack of induction of ER stress and apoptosis, viability assays showed that CTLL-2 cells are much more resistant to the toxicity of DON than Jurkat cells and primary thymocytes. We propose that CTLL-2 cells lack the signal transduction that induces ER stress and apoptosis in response to ribotoxic stress. Based on the results for TBTO and DON, the CTLL-2 cell line does not yield an added value for immunotoxicity compared to the human Jurkat T cell line.
Collapse
Affiliation(s)
- Peter C J Schmeits
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Park SH, Moon Y. Integrated stress response-altered pro-inflammatory signals in mucosal immune-related cells. Immunopharmacol Immunotoxicol 2012; 35:205-14. [PMID: 23237490 DOI: 10.3109/08923973.2012.742535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various cells are associated with the integrated stress response (ISR) that leads to translation arrest via phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Pathogenic insults or nutritional imbalance in the mucosal tissues including the intestinal, airway, and genitourinary epithelia can cause ISRs, which have been linked to different mucosal inflammatory responses and subsequent systemic diseases. In particular, translational arrest caused by the early recognition of luminal microbes as well as nutritional status allows the human body to mount appropriate responses and maintain homeostasis both at the cellular and systemic levels. However, an over- or reduced ISR can create pathogenic conditions such as inflammation and carcinogenesis. This present review explores the association between eIF2α kinase-linked pathways and mucosal or systemic pro-inflammatory signals activated by xenobiotic insults (such as ones caused by microbes or nutritional abnormalities). Understanding ISR-modulated cellular alterations will provide progressive insights into approaches for treating human mucosal inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | | |
Collapse
|
41
|
Bonnet MS, Roux J, Mounien L, Dallaporta M, Troadec JD. Advances in deoxynivalenol toxicity mechanisms: the brain as a target. Toxins (Basel) 2012. [PMID: 23202308 PMCID: PMC3509700 DOI: 10.3390/toxins4111120] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions. DON consumption may result in intoxication, the severity of which is dose-dependent and may lead to different symptoms including anorexia, vomiting, reduced weight gain, neuroendocrine changes, immunological effects, diarrhea, leukocytosis, hemorrhage or circulatory shock. During the last two decades, many studies have described DON toxicity using diverse animal species as a model. While the action of the toxin on peripheral organs and tissues is well documented, data illustrating its effect on the brain are significantly less abundant. Yet, DON is known to affect the central nervous system. Recent studies have provided new evidence and detail regarding the action of the toxin on the brain. The purpose of the present review is to summarize critical studies illustrating this central action of the toxin and to suggest research perspectives in this field.
Collapse
Affiliation(s)
- Marion S. Bonnet
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Julien Roux
- Biomeostasis, Contract Research Organization, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Marseilles 13397, France;
| | - Lourdes Mounien
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Michel Dallaporta
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Jean-Denis Troadec
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
- Author to whom correspondence should be addressed; ; Tel: +33-491-288-948; Fax: +33-491-288-885
| |
Collapse
|
42
|
Leyva-Illades D, Cherla RP, Lee MS, Tesh VL. Regulation of cytokine and chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012; 80:2109-20. [PMID: 22431646 PMCID: PMC3370584 DOI: 10.1128/iai.06025-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023] Open
Abstract
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | | | | | | |
Collapse
|
43
|
He K, Zhou HR, Pestka JJ. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci 2012; 127:382-90. [PMID: 22491426 PMCID: PMC3355321 DOI: 10.1093/toxsci/kfs134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/21/2012] [Indexed: 01/07/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.
Collapse
Affiliation(s)
- Kaiyu He
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
44
|
Lee HY, Park JH, Lee CH, Yan B, Ahn JH, Lee YJ, Park CW, Cho JH, Choi SY, Won MH. Changes of ribosomal protein S3 immunoreactivity and its new expression in microglia in the mice hippocampus after lipopolysaccharide treatment. Cell Mol Neurobiol 2012; 32:577-86. [PMID: 22274408 PMCID: PMC11498381 DOI: 10.1007/s10571-012-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
Abstract
Lipopolysaccharide (LPS) has been used as a reagent for a model of systemic inflammatory response. Ribosomal protein S3 (rpS3) is a multi-functional protein that is involved in transcription, metastasis, DNA repair, and apoptosis. In the present study, we examined the changes of rpS3 immunoreactivity in the mouse hippocampus after systemic administration of 1 mg/kg of LPS. From 6 h after LPS treatment, rpS3 immunoreactivity was decreased in pyramidale cells of the hippocampus proper (CA1-CA3 regions) and in granule cells of the dentate gyrus. At this point in time, rpS3 immunoreactivity began to increase in non-pyramidal cells and non-granule cells. From 1 day after LPS treatment, rpS3 immunoreactivity in pyramidal and granule cells was hardly detected; however, strong rpS3 immunoreactivity was shown in non-pyramidal and non-granule cells. Based on double immunofluorescence staining for rpS3/ionized calcium-binding adapter 1 (Iba-1, a marker for microglia) and glial fibrillary acidic protein (GFAP, a marker for astrocytes), strong rpS3 immunoreactivity was expressed in Iba-1-immunoreactive microglia, not in GFAP-immunoreactive astrocytes, at 1 and 2 days after LPS treatment. These results indicate that rpS3 immunoreactivity changes only in pyramidal and granule cells, and rpS3 is expressed only in activated microglia after LPS treatment: this may be associated with the neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Hui Young Lee
- Department of Internal Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Joon Ha Park
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Bingchun Yan
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Daegu, 712-714 South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul, 140-743 South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
45
|
Abstract
Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.
Collapse
|
46
|
Abstract
Shiga toxin-producing bacteria cause widespread outbreaks of bloody diarrhoea that may progress to life-threatening systemic complications. Shiga toxins (Stxs), the main virulence factors expressed by the pathogens, are ribosome-inactivating proteins which inhibit protein synthesis by removing an adenine residue from 28S rRNA. Recently, Stxs were shown to activate multiple stress-associated signalling pathways in mammalian cells. The ribotoxic stress response is activated following the depurination reaction localized to the α-sarcin/ricin loop of eukaryotic ribosomes. The unfolded protein response (UPR) may be initiated by toxin unfolding within the endoplasmic reticulum, and maintained by production of truncated, misfolded proteins following intoxication. Activation of the ribotoxic stress response leads to signalling through MAPK cascades, which appears to be critical for activation of innate immunity and regulation of apoptosis. Precise mechanisms linking ribosomal damage with MAPK activation require clarification but may involve recognition of ribosomal conformational changes and binding of protein kinases to ribosomes, which activate MAP3Ks and MAP2Ks. Stxs appear capable of activating all ER membrane localized UPR sensors. Prolonged signalling through the UPR induces apoptosis in some cell types. The characterization of stress responses activated by Stxs may identify targets for the development of interventional therapies to block cell damage and disease progression.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
47
|
Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2011; 125:382-91. [PMID: 22048643 DOI: 10.1093/toxsci/kfr299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B, Mounien L, Trouslard J, Jean A, Dallaporta M, Troadec JD. Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: a PGE2-independent mechanism. Toxicol Sci 2011; 124:179-91. [PMID: 21873375 DOI: 10.1093/toxsci/kfr219] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deoxynivalenol (DON), one of the most abundant trichothecenes found on cereals, has been implicated in mycotoxicoses in both humans and farm animals. Low-dose toxicity is characterized by reduced weight gain, diminished nutritional efficiency, and immunologic effects. The levels and patterns of human food commodity contamination justify that DON consumption constitutes a public health issue. DON stability during processing and cooking explains its large presence in human food. We characterized here DON intoxication by showing that the toxin concomitantly affects feeding behavior, body temperature, and locomotor activity after both per os and central administration. Using c-Fos expression mapping, we identified the neuronal structures activated in response to DON and observed that the pattern of neuronal populations activated by the toxin resembled those induced by inflammatory signals. By real-time PCR, we report the first evidences for a DON-induced central inflammation, attested by the strong upregulation of interleukin-1β, interleukin-6, tumor necrosis factor-α, cyclooxygenase-2, and microsomal prostaglandin synthase-1 (mPGES-1) messenger RNA. However, silencing prostaglandins E2 signaling pathways using mPGES-1 knockout mice, which are resistant to cytokine-induced sickness behavior, did not modify the responses to the toxin. These results reveal that, despite strong similarities, behavioral changes observed after DON intoxication differ from classical sickness behavior evoked by inflammatory cytokines.
Collapse
Affiliation(s)
- Clémence Girardet
- Département de Physiologie Neurovégétative, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, Université Paul Cézanne, INRA USC 2027, CNRS UMR 6231, 13397 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu F, Bhatnagar D, Bui-Klimke T, Carbone I, Hellmich R, Munkvold G, Paul P, Payne G, Takle E. Climate change impacts on mycotoxin risks in US maize. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2010.1246] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To ensure future food security, it is crucial to understand how potential climate change scenarios will affect agriculture. One key area of interest is how climatic factors, both in the near- and the long-term future, could affect fungal infection of crops and mycotoxin production by these fungi. The objective of this paper is to review the potential impact of climate change on three important mycotoxins that contaminate maize in the United States, and to highlight key research questions and approaches for understanding this impact. Recent climate change analyses that pertain to agriculture and in particular to mycotoxigenic fungi are discussed, with respect to the climatic factors – temperature and relative humidity – at which they thrive and cause severe damage. Additionally, we discuss how climate change will likely alter the life cycles and geographic distribution of insects that are known to facilitate fungal infection of crops.
Collapse
Affiliation(s)
- F. Wu
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - D. Bhatnagar
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd Bldg 001, New Orleans, LA 70124, USA
| | - T. Bui-Klimke
- Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - R. Hellmich
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Ames, IA 50011, USA
| | - G. Munkvold
- Department of Plant Pathology, Iowa State University, Seed Science Building, Ames, IA 50011, USA
| | - P. Paul
- Department of Plant Pathology, Ohio State University, Selby Hall, Wooster, OH 43210, USA
| | - G. Payne
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - E. Takle
- Department of Geological and Atmospheric Science and Department of Agronomy, Iowa State University, 3010 Agronomy Hall, Ames, IA 50011
| |
Collapse
|
50
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|