1
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
2
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
3
|
Li Y, Guo TL, Xie HQ, Xu L, Liu Y, Zheng L, Yu S, Chen G, Ji J, Jiang S, Xu D, Hang X, Zhao B. Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120141. [PMID: 36087894 DOI: 10.1016/j.envpol.2022.120141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4+ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
Collapse
Affiliation(s)
- Yunping Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyuan Yu
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Guomin Chen
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Jiajia Ji
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Shuai Jiang
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Xiaoming Hang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
5
|
Foxx CL, Nagy MR, King AE, Albin D, DeKrey GK. TCDD exposure alters fecal IgA concentrations in male and female mice. BMC Pharmacol Toxicol 2022; 23:25. [PMID: 35449084 PMCID: PMC9026712 DOI: 10.1186/s40360-022-00563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Activation of the aryl hydrocarbon receptor (AhR) can alter diurnal rhythms including those for innate lymphoid cell numbers, cytokine and hormone levels, and feeding behaviors. Because immune responses and antibody levels are modulated by exposure to AhR agonists, we hypothesized that some of the variation previously reported for the effects of AhR activation on fecal secretory immunoglobulin A (sIgA) levels could be explained by dysregulation of the diurnal sIgA rhythm. Methods C57Bl/6 J mice were exposed to peanut oil or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 10 or 40 μg/Kg) and fecal sIgA levels were determined in samples collected every 4 h over 4 days. Results Fecal sIgA concentrations were not significantly different between light and dark phases of the photoperiod in either male or female mice, and there were no significant circadian rhythms observed, but TCDD exposure significantly altered both fecal mesor sIgA and serum IgA concentrations, in parallel, in male (increased) and female (biphasic) mice. Conclusions AhR activation can contribute to the regulation of steady state IgA/sIgA concentrations. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00563-9.
Collapse
Affiliation(s)
- Christine L Foxx
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Madeline R Nagy
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Aspen E King
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Dreycey Albin
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Boulder, 80309, CO, USA
| | - Gregory K DeKrey
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
6
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
7
|
Kakutani H, Yuzuriha T, Nakao T, Ohta S. Long-term orally exposure of dioxins affects antigen-specific antibody production in mice. Toxicol Rep 2022; 9:53-57. [PMID: 35004181 PMCID: PMC8717457 DOI: 10.1016/j.toxrep.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
Antigen-specific (OVA) antibody production in the serum increased dose-dependently by TCDD concentrations below 500 ng/kg after long-term (10 weeks) exposure. Similar increases were seen in fecal and vaginal samples but were not significant. Th1 and Th2 lymphocyte responses, as determined by antibody and cytokine production, also significantly increased dose-dependently up to 500 ng/kg TCDD, and the Th1/Th2 balance was shifted toward Th1.
Dioxins are persistent environmental toxins that are still present in the food supply despite strong efforts to minimize exposure. Dioxins ingested by humans accumulate in fat and are excreted very slowly, so their long-term effects at low concentrations are a matter of concern. It is necessary to consider long-term, low-dose continuous administration under conditions that are as close as possible to a person's diet. In this study, we orally administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most common dioxin, at low doses in mice and observed the immunological effects. We found that antigen-specific (OVA) antibody production in the serum increased dose-dependently by TCDD concentrations below 500 ng/kg after long-term (10 weeks) exposure. Similar increases were seen in fecal and vaginal samples but were not significant. Th1 and Th2 lymphocyte responses, as determined by antibody and cytokine production, also significantly increased dose-dependently up to 500 ng/kg TCDD, and the Th1/Th2 balance was shifted toward Th1. These results indicate that low-dose, long-term TCDD exposure results in immunological abnormalities, perhaps by increasing antigen permeability. Different doses of dioxins may have opposing effects, being immunostimulatory at low doses (100 ng/kg/day) and immunosuppressive at high doses (500 ng/kg/day).
Collapse
Key Words
- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
- AhR, aryl hydrocarbon receptor
- EROD, ethoxyresorufin O-deethylase
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-13, interleukin-13
- IL-17, interleukin-17
- IL-2, interleukin-2
- IL-4, interleukin-4
- Ig, immunoglobulin
- OVA, ovalbumin
- OVA-specific antibody titer
- Subclinical oral exposure of TCDD
- TCDD, 2,3,7,8-tetrachlorobibenzo-p-dioxin
- TDI, tolerable daily intake
Collapse
Affiliation(s)
- Hideki Kakutani
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Tomohiro Yuzuriha
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Teruyuki Nakao
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Souichi Ohta
- Laboratory of Disease Prevention, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
8
|
Kahalehili HM, Newman NK, Pennington JM, Kolluri SK, Kerkvliet NI, Shulzhenko N, Morgun A, Ehrlich AK. Dietary Indole-3-Carbinol Activates AhR in the Gut, Alters Th17-Microbe Interactions, and Exacerbates Insulitis in NOD Mice. Front Immunol 2021; 11:606441. [PMID: 33552063 PMCID: PMC7858653 DOI: 10.3389/fimmu.2020.606441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The diet represents one environmental risk factor controlling the progression of type 1 diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which specific nutritional components promote or prevent the development of disease could be used to make dietary recommendations in prediabetic individuals. In the current study, we hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic (NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon receptor (AhR), a transcription factor that when systemically activated prevents T1D. In NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine but minimal systemic AhR activity. In the absence of this systemic response, the dietary intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic draining lymph nodes. Instead, dietary I3C increased the percentage of CD4+RORγt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer's patches of the small intestine. The immune modulation in the gut was accompanied by alterations to the intestinal microbiome, with changes in bacterial communities observed within one week of I3C supplementation. A transkingdom network was generated to predict host-microbe interactions that were influenced by dietary I3C. Within the phylum Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data demonstrate that site of AhR activation and subsequent interactions with the host microbiome are important considerations in developing AhR-targeted interventions for T1D.
Collapse
MESH Headings
- Animals
- Bacteria/drug effects
- Bacteria/immunology
- Bacteria/metabolism
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dietary Exposure
- Disease Models, Animal
- Disease Progression
- Dysbiosis
- Gastrointestinal Microbiome/drug effects
- Host-Pathogen Interactions
- Indoles/toxicity
- Intestine, Small/drug effects
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Heather M. Kahalehili
- Department of Environmental Toxicology, University of California, Davis, CA, United States
| | - Nolan K. Newman
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Jamie M. Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Siva K. Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Nancy I. Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Allison K. Ehrlich
- Department of Environmental Toxicology, University of California, Davis, CA, United States
| |
Collapse
|
9
|
Neamah WH, Busbee PB, Alghetaa H, Abdulla OA, Nagarkatti M, Nagarkatti P. AhR Activation Leads to Alterations in the Gut Microbiome with Consequent Effect on Induction of Myeloid Derived Suppressor Cells in a CXCR2-Dependent Manner. Int J Mol Sci 2020; 21:ijms21249613. [PMID: 33348596 PMCID: PMC7767008 DOI: 10.3390/ijms21249613] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR and a known carcinogen. While AhR activation by TCDD leads to significant immunosuppression, how this translates into carcinogenic signal is unclear. Recently, we demonstrated that activation of AhR by TCDD in naïve C57BL6 mice leads to massive induction of myeloid derived-suppressor cells (MDSCs). In the current study, we investigated the role of the gut microbiota in TCDD-mediated MDSC induction. TCDD caused significant alterations in the gut microbiome, such as increases in Prevotella and Lactobacillus, while decreasing Sutterella and Bacteroides. Fecal transplants from TCDD-treated donor mice into antibiotic-treated mice induced MDSCs and increased regulatory T-cells (Tregs). Injecting TCDD directly into antibiotic-treated mice also induced MDSCs, although to a lesser extent. These data suggested that TCDD-induced dysbiosis plays a critical role in MDSC induction. Interestingly, treatment with TCDD led to induction of MDSCs in the colon and undetectable levels of cysteine. MDSCs suppressed T cell proliferation while reconstitution with cysteine restored this response. Lastly, blocking CXC chemokine receptor 2 (CXCR2) impeded TCDD-mediated MDSC induction. Our data demonstrate that AhR activation by TCDD triggers dysbiosis which, in turn, regulates, at least in part, induction of MDSCs.
Collapse
|
10
|
Shan A, Leng L, Li J, Luo XM, Fan YJ, Yang Q, Xie QH, Chen YS, Ni CS, Guo LM, Tang H, Chen X, Tang NJ. TCDD-induced antagonism of MEHP-mediated migration and invasion partly involves aryl hydrocarbon receptor in MCF7 breast cancer cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122869. [PMID: 33027880 DOI: 10.1016/j.jhazmat.2020.122869] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Evidence has shown that the activation of AhR (aryl hydrocarbon receptor) can promote cancer cell metastasis. However, limited studies have been carried out on mixed exposure to endocrine-disrupting chemicals (EDCs), especially in human breast cancer. Therefore, using MCF7 human breast cancer cells, we investigated the effects of coexposure to MEHP (mono 2-ethylhexyl phthalate) and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on cell migration and invasion, as well as the roles of AhR and the MMP/slug pathway. Our data suggest that MEHP or TCDD can induce migration and invasion in MCF7 cells, and the promotion is partly AhR dependent. We also observed that MEHP antagonized TCDD to reduce AhR-mediated CYP1A1 expression. Subsequently, we revealed that MEHP recruited AhR to dioxin response element (DRE) sequences and decreased TCDD-induced AhR-DRE binding in CYP1A1 genes. Overall, MEHP is a potential AHR agonist, capable of decreasing TCDD-induced AhR-DRE binding in CYP1A1 genes. The antagonizing effect of coexposure led to the inhibition of the epithelial-mesenchymal transition (EMT) in MCF7 cells. Our study provides new evidence for the potential mechanisms involved in EDCs exposure and their interactions in EMT.
Collapse
Affiliation(s)
- Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Ling Leng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Cell Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Xiu-Mei Luo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Ya-Jiao Fan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Qun-Hui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yang-Sheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chun-Sheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Li-Ming Guo
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Hua Tang
- Tianjin Life Science Research Center, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
11
|
Liu WC, Shyu JF, Lin YF, Chiu HW, Lim PS, Lu CL, Zheng CM, Hou YC, Chen PH, Lu KC. Resveratrol Rescue Indoxyl Sulfate-Induced Deterioration of Osteoblastogenesis via the Aryl Hydrocarbon Receptor /MAPK Pathway. Int J Mol Sci 2020; 21:ijms21207483. [PMID: 33050571 PMCID: PMC7589702 DOI: 10.3390/ijms21207483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin derived from dietary tryptophan metabolism by the gut microbiota, is an endogenous aryl hydrocarbon receptor (AhR) agonist and a key player in bone remodeling. Resveratrol (RSV), an AhR antagonist, plays a protective role in shielding against AhR ligands. Our study explored the impact of IS on osteoblast differentiation and examined the possible mechanism of IS in controlling the expression of osteoblastogenesis markers through an in-depth investigation of AhR signaling. In vivo, we found histological architectural disruption of the femoral bones in 5/6 nephrectomies of young adult IS exposed mice, including reduced Runx2 antigen expression. RSV improved the diaphysis architecture, Runx2 expression, and trabecular quality. In vitro data suggest that IS at 500 and 1000 μM disturbed osteoblastogenesis through suppression of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways, which were found to be downstream of AhR. RSV proved to ameliorate the anti-osteoblastogenic effects of IS through the inhibition of AhR and downstream signaling. Taken together, we demonstrated that the IS/AhR/MAPK signaling pathway plays a crucial role in the inhibition of osteoblastogenesis, and RSV has a potential therapeutic role in reversing the IS-induced decline in osteoblast development and suppressing abnormal bone turnover in chronic kidney disease patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Paik Seong Lim
- Division of Nephrology, Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan
| | - Po-Han Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: ; Tel.: +886-9-3573-4537
| |
Collapse
|
12
|
Hwang WB, Kim DJ, Oh GS, Park JH. Aryl Hydrocarbon Receptor Ligands Indoxyl 3-sulfate and Indole-3-carbinol Inhibit FMS-like Tyrosine Kinase 3 Ligand-induced Bone Marrow-derived plasmacytoid Dendritic Cell Differentiation. Immune Netw 2018; 18:e35. [PMID: 30402330 PMCID: PMC6215903 DOI: 10.4110/in.2018.18.e35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) regulates both innate and adaptive immune responses by sensing a variety of small synthetic and natural chemicals, which act as its ligands. AhR, which is expressed in dendritic cells (DCs), regulates the differentiation of DCs. However, effects of AhR on the differentiation of DCs are variable due to the heterogeneity of DCs in cell surface marker expression, anatomical location, and functional responses. The plasmacytoid DCs (pDCs), one of DC subsets, not only induce innate as well as adaptive immune responses by secreting type I interferons and pro-inflammatory cytokines, but also induce IL-10 producing regulatory T cell or anergy or deletion of antigen-specific T cells. We showed here that AhR ligands indoxyl 3-sulfate (I3S) and indole-3-carbinol (I3C) inhibited the development of pDCs derived from bone marrow (BM) precursors induced by FMS-like tyrosine kinase 3 ligand (Flt3L). I3S and I3C downregulated the expression of signal transducer and activator of transcription 3 (STAT3) and E2-2 (Tcf4). In mice orally treated with I3S and I3C, oral tolerance to dinitrofluorobenzene was impaired and the proportion of CD11c+B220+ cells in mesenteric lymph nodes was reduced. These data demonstrate that AhR negatively regulates the development of pDCs from BM precursors induced by Flt3L, probably via repressing the expression of STAT3.
Collapse
Affiliation(s)
- Won-Bhin Hwang
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Da-Jeong Kim
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Gap-Soo Oh
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140, Korea
| |
Collapse
|
13
|
Suh KS, Choi EM, Jung WW, Park SY, Chin SO, Rhee SY, Pak YK, Chon S. 27-Deoxyactein prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular damage in MC3T3-E1 osteoblastic cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:561-570. [PMID: 29364047 DOI: 10.1080/10934529.2018.1428275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that exerts its toxicity through a variety of signaling mechanisms. The present study evaluated the effects of 27-deoxyactein, one of the major constituents isolated from Cimicifuga racemosa, on TCDD-induced toxicity in osteoblastic MC3T3-E1 cells. TCDD reduced cell survival, markedly increased apoptosis, and enhanced autophagy activity. However, pre-treatment with 27-deoxyactein attenuated all TCDD-induced effects and significantly decreased intracellular calcium (Ca2+) concentrations, the collapse of the mitochondrial membrane potential (MMP), the level of reactive oxygen species (ROS), and cardiolipin peroxidation compared to the TCDD-treated controls. Additionally, TCDD-induced increases in the levels of aryl hydrocarbon receptor (AhR), cytochrome P450 1A1 (CYP1A1), and extracellular signal-regulated kinase (ERK) were significantly inhibited by 27-deoxyactein. The mRNA levels of superoxide dismutase (SOD), ERK1, and nuclear factor kappa B (NF-κB) were also effectively restored by pre-treatment with 27-deoxyactein. Furthermore, 27-deoxyactein significantly increased the expressions of genes associated with osteoblast differentiation, including alkaline phosphatase (ALP), osteocalcin, bone sialoprotein (BSP), and osterix. Taken together, the present findings demonstrate the preventive effects of 27-deoxyactein on TCDD-induced damage in osteoblasts.
Collapse
Affiliation(s)
- Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Woon-Won Jung
- b Department of Biomedical Laboratory Science , College of Health Sciences, Cheongju University , Cheongju , Chungbuk , Republic of Korea
| | - So Young Park
- c Department of Medicine , Graduate School, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Ouk Chin
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- d Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
14
|
Park JH, Lee JM, Lee EJ, Hwang WB, Kim DJ. Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently. Mol Cells 2018; 41:290-300. [PMID: 29562732 PMCID: PMC5935097 DOI: 10.14348/molcells.2018.2167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/27/2022] Open
Abstract
Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of α-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated β-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140,
Korea
| | - Jeong-Min Lee
- Department of Biology, Changwon National University, Changwon 51140,
Korea
| | - Eun-Jin Lee
- Department of Biology, Changwon National University, Changwon 51140,
Korea
| | - Won-Bhin Hwang
- Department of Biology, Changwon National University, Changwon 51140,
Korea
| | - Da-Jeong Kim
- Department of Biology, Changwon National University, Changwon 51140,
Korea
| |
Collapse
|
15
|
Suh KS, Choi EM, Kim HS, Park SY, Chin SO, Rhee SY, Pak YK, Choe W, Ha J, Chon S. Xanthohumol ameliorates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular toxicity in cultured MC3T3-E1 osteoblastic cells. J Appl Toxicol 2018. [DOI: 10.1002/jat.3613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 360-764 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University, College of Medicine; Seoul 130-701 Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| |
Collapse
|
16
|
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:255-266. [PMID: 28433458 DOI: 10.1016/j.pnpbp.2017.04.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Abstract
The pathophysiological underpinnings of neuroprogressive processes in recurrent major depressive disorder (rMDD) are reviewed. A wide array of biochemical processes underlie MDD presentations and their shift to a recurrent, neuroprogressive course, including: increased immune-inflammation, tryptophan catabolites (TRYCATs), mitochondrial dysfunction, aryl hydrocarbonn receptor activation, and oxidative and nitrosative stress (O&NS), as well as decreased sirtuins and melatonergic pathway activity. These biochemical changes may have their roots in central, systemic and/or peripheral sites, including in the gut, as well as in developmental processes, such as prenatal stressors and breastfeeding consequences. Consequently, conceptualizations of MDD have dramatically moved from simple psychological and central biochemical models, such as lowered brain serotonin, to a conceptualization that incorporates whole body processes over a lifespan developmental timescale. However, important hubs are proposed, including the gut-brain axis, and mitochondrial functioning, which may provide achievable common treatment targets despite considerable inter-individual variability in biochemical changes. This provides a more realistic model of the complexity of MDD and the pathophysiological processes that underpin the shift to rMDD and consequent cognitive deficits. Such accumulating data on the pathophysiological processes underpinning MDD highlights the need in psychiatry to shift to a classification system that is based on biochemical processes, rather than subjective phenomenology.
Collapse
|
17
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Pak YK, Chon S. Actein alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated cellular dysfunction in osteoblastic MC3T3-E1 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2455-2470. [PMID: 28836330 DOI: 10.1002/tox.22459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to affect bone metabolism. We evaluated the protective effects of the triterpene glycoside actein from the herb black cohosh against TCDD-induced toxicity in MC3T3-E1 osteoblastic cells. We found that TCDD significantly reduced cell viability and increased apoptosis and autophagy in MC3T3-E1 osteoblastic cells (P < .05). In addition, TCDD treatment resulted in a significant increase in intracellular calcium concentration, mitochondrial membrane potential collapse, reactive oxygen species (ROS) production, and cardiolipin peroxidation, whereas pretreatment with actein significantly mitigated these effects (P < .05). The effects of TCDD on extracellular signal-related kinase (ERK), aryl hydrocarbon receptor, aryl hydrocarbon receptor repressor, and cytochrome P450 1A1 levels in MC3T3-E1 cells were significantly inhibited by actein. The levels of superoxide dismutase, ERK1, and nuclear factor kappa B mRNA were also effectively restored by pretreatment with actein. Furthermore, actein treatment resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblastic differentiation (ALP, type I collagen, osteoprotegerin, bone sialoprotein, and osterix). This study demonstrates the underlying molecular mechanisms of cytoprotection exerted by actein against TCDD-induced oxidative stress and osteoblast damage.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
18
|
Nguyen CH, Nakahama T, Dang TT, Chu HH, Van Hoang L, Kishimoto T, Nguyen NT. Expression of aryl hydrocarbon receptor, inflammatory cytokines, and incidence of rheumatoid arthritis in Vietnamese dioxin-exposed people. J Immunotoxicol 2017; 14:196-203. [DOI: 10.1080/1547691x.2017.1377323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chi Hung Nguyen
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Truong Tien Dang
- Anatomy Department, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Ha Chu
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Luong Van Hoang
- Biopharmaceutical Medical Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Nam Trung Nguyen
- National Key Laboratory of Gene Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
19
|
Stedtfeld RD, Chai B, Crawford RB, Stedtfeld TM, Williams MR, Xiangwen S, Kuwahara T, Cole JR, Kaminski NE, Tiedje JM, Hashsham SA. Modulatory Influence of Segmented Filamentous Bacteria on Transcriptomic Response of Gnotobiotic Mice Exposed to TCDD. Front Microbiol 2017; 8:1708. [PMID: 28936204 PMCID: PMC5594080 DOI: 10.3389/fmicb.2017.01708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
Environmental toxicants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR), are known to induce host toxicity and structural shifts in the gut microbiota. Key bacterial populations with similar or opposing functional responses to AhR ligand exposure may potentially help regulate expression of genes associated with immune dysfunction. To examine this question and the mechanisms for AhR ligand-induced bacterial shifts, C57BL/6 gnotobiotic mice were colonized with and without segmented filamentous bacteria (SFB) – an immune activator. Mice were also colonized with polysaccharide A producing Bacteroides fragilis – an immune suppressor to serve as a commensal background. Following colonization, mice were administered TCDD (30 μg/kg) every 4 days for 28 days by oral gavage. Quantified with the nCounter® mouse immunology panel, opposing responses in ileal gene expression (e.g., genes associated with T-cell differentiation via the class II major histocompatibility complex) as a result of TCDD dosing and SFB colonization were observed. Genes that responded to TCDD in the presence of SFB did not show a significant response in the absence of SFB, and vice versa. Regulatory T-cells examined in the mesenteric lymph-nodes, spleen, and blood were also less impacted by TCDD in mice colonized with SFB. TCDD-induced shifts in abundance of SFB and B. fragilis compared with previous studies in mice with a traditional gut microbiome. With regard to the mouse model colonized with individual populations, results indicate that TCDD-induced host response was significantly modulated by the presence of SFB in the gut microbiome, providing insight into therapeutic potential between AhR ligands and key commensals.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, East LansingMI, United States
| | - Benli Chai
- Center for Microbial Ecology, Michigan State University, East LansingMI, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East LansingMI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East LansingMI, United States
| | - Tiffany M Stedtfeld
- Department of Civil and Environmental Engineering, East LansingMI, United States
| | - Maggie R Williams
- Department of Civil and Environmental Engineering, East LansingMI, United States
| | - Shao Xiangwen
- Department of Civil and Environmental Engineering, East LansingMI, United States
| | - Tomomi Kuwahara
- Department of Molecular Bacteriology, Institute of Health Biosciences, University of Tokushima Graduate SchoolTokushima, Japan
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East LansingMI, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East LansingMI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East LansingMI, United States
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East LansingMI, United States
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, East LansingMI, United States.,Center for Microbial Ecology, Michigan State University, East LansingMI, United States
| |
Collapse
|
20
|
Hammerschmidt-Kamper C, Biljes D, Merches K, Steiner I, Daldrup T, Bol-Schoenmakers M, Pieters RHH, Esser C. Indole-3-carbinol, a plant nutrient and AhR-Ligand precursor, supports oral tolerance against OVA and improves peanut allergy symptoms in mice. PLoS One 2017; 12:e0180321. [PMID: 28666018 PMCID: PMC5493375 DOI: 10.1371/journal.pone.0180321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022] Open
Abstract
In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
Collapse
Affiliation(s)
| | - Daniel Biljes
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katja Merches
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Irina Steiner
- Institute of Legal Medicine, Department of Forensic Toxicology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Thomas Daldrup
- Institute of Legal Medicine, Department of Forensic Toxicology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Raymond H. H. Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Esser
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
21
|
Biljes D, Hammerschmidt-Kamper C, Merches K, Esser C. The aryl hydrocarbon receptor in T cells contributes to sustaining oral tolerance against ovalbumin in a mouse model. EXCLI JOURNAL 2017; 16:291-301. [PMID: 30233276 PMCID: PMC6141817 DOI: 10.17179/excli2017-168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Abstract
Oral tolerance (OT) towards antigens encountered in the gut is a vital immune function of gut immunity. Experimental models can demonstrate OT efficacy by feeding of a protein followed by peripheral immunization and measuring the specific antibody titer. We had previously shown that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a xenobiotic high-affinity aryl hydrocarbon receptor (AhR)-ligand, destabilized OT against ovalbumin (OVA) in mice. AhR is involved in the development, differentiation and function of immune cells, and highly expressed in gut epithelial cells and gut immune cells. We here used AhR-deficient mice to study the role of AhR in OT further. We show that complete AhR-deficiency undermines the stability of oral tolerance against OVA upon multiple immunizations, despite no renewed oral encounter with the antigen. This OT destabilization is accompanied by significant changes in IL10 and TGFβ RNA in the gut tissue. Using conditional AhR-deficient mouse lines, we identify T cells as the major responsible immune cell type in this context. Our findings add to knowledge that lack of AhR signaling in the gut impairs important gut immune functions.
Collapse
Affiliation(s)
- Daniel Biljes
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | | | - Katja Merches
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| |
Collapse
|
22
|
Anderson G, Maes M. Interactions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int J Tryptophan Res 2017; 10:1178646917691738. [PMID: 28469467 PMCID: PMC5398327 DOI: 10.1177/1178646917691738] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022] Open
Abstract
Recent work indicates an intimate interaction of the tryptophan catabolite (TRYCAT) pathways with the melatonergic pathways, primarily via TRYCAT pathway induction taking tryptophan away from the production of serotonin, which is a necessary precursor for the melatonergic pathways. The alpha 7 nicotinic receptor may be significantly modulated by this interaction, given its inactivation by the TRYCAT, kynurenic acid, and its induction by melatonin. Similarly, the aryl hydrocarbon receptor is activated by both kynurenic acid and kynurenine, leading to CYP1A2 and melatonin metabolism, whereas melatonin may act to inhibit the aryl hydrocarbon receptor. These 2 receptors and pathways may therefore be intimately linked, with relevance to a host of intracellular processes of clinical relevance. In this article, these interactions are reviewed. Interestingly, mitochondria may be a site for direct interactions of these pathways and receptors, suggesting that their differential induction may not only be modulating neuronal, glia, and immune cell processes and activity but also be directly acting to regulate mitochondrial functioning. This is likely to have significant consequences as to how an array of diverse central nervous system and psychiatric conditions are conceptualized and treated.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
23
|
del Cornò M, Scazzocchio B, Masella R, Gessani S. Regulation of Dendritic Cell Function by Dietary Polyphenols. Crit Rev Food Sci Nutr 2017; 56:737-47. [PMID: 24941314 DOI: 10.1080/10408398.2012.713046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Marked changes in socioeconomic status, cultural traditions, population growth, and agriculture have been affecting diets worldwide. Nutrition is known to play a pivotal role in the pathogenesis of several chronic diseases, and the use of bioactive food compounds at pharmacologic doses is emerging as a preventive and/or therapeutic approach to target metabolic dysregulations occurring in aging, obesity-related chronic diseases, and cancer. Only recently have data on the effects of specific nutrients or food on the immune system become available, and studies regarding the human immune system are still in their infancy. Beyond providing essential nutrients, diet can actively influence the immune system. Understanding how diet and nutritional status influence the innate and adaptive arms of our immune system represents an area of scientific need, opportunity, and challenge. The insights gleaned should help to address several pressing global health problems. Recently, biologically active polyphenols, which are widespread constituents of fruit and vegetables, have gained importance as complex regulators of various cellular processes, critically involved in the maintenance of body homeostasis. This review outlines the potential effects of polyphenols on the function of dendritic cells (DCs), key players in the orchestration of the immune response. Their effects on different aspects of DC biology including differentiation, maturation, and DC capacity to shift immune response toward tolerance or immune activation will be outlined.
Collapse
Affiliation(s)
- Manuela del Cornò
- a Department of Hematology , Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | - Beatrice Scazzocchio
- b Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Roberta Masella
- b Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Sandra Gessani
- a Department of Hematology , Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
24
|
Park JH, Choi AJ, Kim SJ, Cheong SW, Jeong SY. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:44-53. [PMID: 26950395 DOI: 10.1016/j.etap.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea.
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Seon-Woo Cheong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| |
Collapse
|
25
|
Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells. Mediators Inflamm 2016; 2016:3104727. [PMID: 27034589 PMCID: PMC4789473 DOI: 10.1155/2016/3104727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions.
Collapse
|
26
|
Park JH, Choi AJ, Kim SJ, Jeong SY. 3,3'-Diindolylmethane Inhibits Flt3L/GM-CSF-induced-bone Marrow-derived CD103(+) Dendritic Cell Differentiation Regulating Phosphorylation of STAT3 and STAT5. Immune Netw 2015; 15:278-90. [PMID: 26770182 PMCID: PMC4700404 DOI: 10.4110/in.2015.15.6.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 01/05/2023] Open
Abstract
The intestinal immune system maintains oral tolerance to harmless antigens or nutrients. One mechanism of oral tolerance is mediated by regulatory T cell (Treg)s, of which differentiation is regulated by a subset of dendritic cell (DC)s, primarily CD103+ DCs. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, plays an important role in regulating immunity. The intestines are exposed to various AhR ligands, including endogenous metabolites and phytochemicals. It was previously reported that AhR activation induced tolerogenic DCs in mice or in cultures of bone marrow-derived DCs. However, given the variety of tolerogenic DCs, which type of tolerogenic DCs is regulated by AhR remains unknown. In this study, we found that AhR ligand 3,3'-diindolylmethane (DIM) inhibited the development of CD103+ DCs from mouse bone marrow cells stimulated with Flt3L and GM-CSF. DIM interfered with phosphorylation of STAT3 and STAT5 inhibiting the expression of genes, including Id2, E2-2, IDO-1, and Aldh1a2, which are associated with DC differentiation and functions. Finally, DIM suppressed the ability of CD103+ DCs to induce Foxp3+ Tregs.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon 51140, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon 51140, Korea
| |
Collapse
|
27
|
Influence of nutrient-derived metabolites on lymphocyte immunity. Nat Med 2015; 21:709-18. [PMID: 26121194 DOI: 10.1038/nm.3894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Abstract
Organisms need to protect themselves against potential dangers from their surroundings, yet they require constant and intimate interactions with the same environment for their survival. The immune system is instrumental for protection against invading organisms and their toxins. The immune system consists of many cell types and is highly integrated within other tissues. Immune activity is particularly enriched at surfaces that separate the host from its environment, such as the skin and the gastrointestinal tract. This enables protection at sites directly at risk but also enables environmental factors to influence the maturation and function of immune structures and cells. Recent work has indicated that the diet in particular is able to influence the immune system and thus affect the development of inflammatory disease. This review aims to highlight recent work on how external factors, with a focus on those derived from the diet such as vitamin A, can have a direct or indirect deterministic influence on the activity and function of immunity.
Collapse
|
28
|
Culbreath C, Tanner SM, Yeramilli VA, Berryhill TF, Lorenz RG, Martin CA. Environmental-mediated intestinal homeostasis in neonatal mice. J Surg Res 2015; 198:494-501. [PMID: 25940157 DOI: 10.1016/j.jss.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Immunoglobulin A (IgA) plays a key role in coating luminal antigens and preventing translocation of harmful bacteria. The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor that when stimulated activates factors important for barrier function and intestinal homeostasis. We hypothesize that AhR signaling is critical for establishment of intestinal homeostasis in neonates. MATERIAL AND METHODS Mice: C57BL/6 (B6) AhR+/+ wild type (WT), B6.AhR-/- Aryl-hydrocarbon receptor knockout (KO), and B6.AhR+/+ raised on an AhR ligand-free diet (AhR LF). Enzyme-linked immunosorbent assay was used to measure fecal and serum IgA levels. Bacterial translocation was measured by culturing the mesenteric lymph nodes. RESULTS Two week old KO mice had significantly less fecal IgA compared with WT (and AhR LF, P value = 0.0393. The amount of IgA from the gastric contents of 2-wk-old mice was not significantly different. At age 8 wk, AhR LF mice had significantly less fecal IgA than WT and KO P value = 0.0077. At 2 wk, KO mice had significantly higher levels of bacterial translocation and at 8 wk AhR LF had significantly higher levels of bacterial translocation compared with WT. CONCLUSIONS In neonatal mice, the lack of AhR signaling is associated with loss of intestinal homeostasis, evidenced by decreased levels of IgA and increased bacterial translocation. In adult mice, exogenous AhR ligand and not receptor signaling is necessary for maintenance of intestinal integrity.
Collapse
Affiliation(s)
- Courtney Culbreath
- Department of Surgery, University of Alabama, Children's of Alabama, Birmingham, Alabama
| | - Scott M Tanner
- Department of Biological, Earth, and Physical Sciences, Limestone College, Gaffney, South Carolina
| | - Venkata A Yeramilli
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor F Berryhill
- Department of Surgery, University of Alabama, Children's of Alabama, Birmingham, Alabama
| | - Robin G Lorenz
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colin A Martin
- Department of Surgery, University of Alabama, Children's of Alabama, Birmingham, Alabama.
| |
Collapse
|
29
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
30
|
The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway. Toxicol Appl Pharmacol 2014; 280:502-10. [DOI: 10.1016/j.taap.2014.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 01/06/2023]
|
31
|
Jin GB, Winans B, Martin KC, Paige Lawrence B. New insights into the role of the aryl hydrocarbon receptor in the function of CD11c⁺ cells during respiratory viral infection. Eur J Immunol 2014; 44:1685-1698. [PMID: 24519489 DOI: 10.1002/eji.201343980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has garnered considerable attention as a modulator of CD4(+) cell lineage development and function. It also regulates antiviral CD8(+) T-cell responses, but via indirect mechanisms that have yet to be determined. Here, we show that during acute influenza virus infection, AHR activation skews dendritic-cell (DC) subsets in the lung-draining lymph nodes, such that there are fewer conventional CD103(+) DCs and CD11b(+) DCs. Sorting DC subsets reveals AHR activation reduces immunostimulatory function of CD103(+) DCs in the mediastinal lymph nodes, and decreases their frequency in the lung. DNA-binding domain Ahr mutants demonstrate that alterations in DC subsets require the ligand-activated AHR to contain its inherent DNA-binding domain. To evaluate the intrinsic role of AHR in DCs, conditional knockouts were created using Cre-LoxP technology, which revealed that AHR in CD11c(+) cells plays a key role in controlling the acquisition of effector CD8(+) T cells in the infected lung. However, AHR within other leukocyte lineages contributes to diminished naïve CD8(+) T-cell activation in the draining lymphoid nodes. These findings indicate DCs are among the direct targets of AHR ligands in vivo, and AHR signaling modifies host responses to a common respiratory pathogen by affecting the complex interplay of multiple cell types.
Collapse
Affiliation(s)
- Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kyle C Martin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
32
|
New insights into the aryl hydrocarbon receptor as a modulator of host responses to infection. Semin Immunopathol 2013; 35:615-26. [PMID: 23963494 DOI: 10.1007/s00281-013-0395-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/16/2013] [Indexed: 12/23/2022]
Abstract
The host response to infection is known to be influenced by many factors, including genetics, nutritional status, age, as well as drug and chemical exposures. Recent advances reveal that the aryl hydrocarbon receptor (AhR) modulates aspects of the innate and adaptive immune response to viral, bacterial, and parasitic organisms. Although many of these observations were made using the high affinity but poorly metabolized AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), not all of the effects are detrimental to the host. Sometimes AhR activation, even with TCDD, was beneficial and improved host resistance and survival. A similar dichotomy is observed in infected AhR-deficient mice, wherein absence of functional AhR sometimes, but not always, alters host resistance. When examined in their totality, current data indicate that AhR controls multiple regulatory pathways that converge with infection-associated signals and depending on the context (e.g., type of pathogen, site of infection), lead to distinct outcomes. This creates numerous exciting opportunities to harness the immunomodulatory action of AhR to transform host responses to infection. Moreover, since many of the mechanisms cued in response to infectious agents are pivotal in the context of other diseases, there is much to be learned about AhR's cellular targets and molecular mechanisms of action.
Collapse
|
33
|
Schulz V, van Roest M, Bol-Schoenmakers M, van Duursen M, van den Berg M, Pieters R, Smit J. Aryl hydrocarbon receptor activation affects the dendritic cell phenotype and function during allergic sensitization. Immunobiology 2013; 218:1055-62. [DOI: 10.1016/j.imbio.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
|
34
|
Schulz VJ, Smit JJ, Pieters RHH. The aryl hydrocarbon receptor and food allergy. Vet Q 2013; 33:94-107. [PMID: 23745732 DOI: 10.1080/01652176.2013.804229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune system is important for protection against pathogens and malignant cells. However, malfunction of the immune system can also result in detrimental auto-immune diseases, inflammatory diseases, cancers and allergies. The aryl hydrocarbon receptor (AhR), present in numerous tissues and cell subsets, including cells of the immune system, plays an important role in the functioning of the immune system. Activation of the AhR is for example associated with various effects on dendritic cells (DCs), regulatory T cells and the Th1/Th2 cell balance. These cells play a major role in the development of food allergy. Food allergy is an increasing health problem in both humans and animals. Despite the knowledge in risk factors and cellular mechanisms for food allergy, no approved treatments are available yet. Recently, it has been shown that activation of the AhR by dioxin-like compounds suppresses allergic sensitization by suppressing the absolute number of precursor and effector T cells, by preserving CD4(+)CD25(+)Foxp3(+) Treg cells and by affecting DCs and their interaction with effector T cells. Future research should elucidate whether and how AhR activation can be used to interfere in food allergic responses in humans and in animals. This may lead to new prevention strategies and therapeutic possibilities for food allergy.
Collapse
Affiliation(s)
- V J Schulz
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
35
|
The aryl hydrocarbon receptor: a novel target for immunomodulation in organ transplantation. Transplantation 2013; 95:983-90. [PMID: 23263608 DOI: 10.1097/tp.0b013e31827a3d1d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aryl hydrocarbon receptor (AHR), which has been central to studies in toxicology for years as the receptor for the toxicant dioxin, is rapidly gaining interest in immunology based on its ability to influence T-cell differentiation. Multiple studies have documented that binding of this receptor with certain ligands favors T-cell differentiation toward regulatory T cells, and paradoxically, binding of this same receptor with different ligands enhances Th17 effector cell differentiation. This finding has been confirmed in both in vitro and in vivo models, where different ligands are able to either ameliorate or conversely aggravate autoimmunity in experimental autoimmune encephalomyelitis. The AHR has both an endogenous role that is important in development and normal physiology and an exogenous role as a receptor for manmade toxicants, with their binding leading to transcription of cytochrome P450 enzymes that metabolize these same ligands. Based on recent reports that will be summarized in this overview, we will consider the role that the AHR might play as a sensor to the outside environment, leading to alteration of the acquired immune system that might have relevance in transplantation or other medical conditions. In addition to describing the data in normal physiology and T-cell differentiation, we will present examples of the importance of this receptor in preclinical models of disease and highlight specific ligands that target the AHR and will have efficacy in treating transplant rejection and in tolerance protocols.
Collapse
|
36
|
Shindo T, Kanazawa Y, Saito Y, Kojima K, Ohsawa M, Teshima R. Effective induction of oral anaphylaxis to ovalbumin in mice sensitized by feeding of the antigen with aid of oil emulsion and salicylate. J Toxicol Sci 2012; 37:307-15. [PMID: 22467021 DOI: 10.2131/jts.37.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is important to evaluate the ability of novel proteins in food crops and products to elicit potentially harmful immunologic responses, including allergic hypersensitivity. We developed a novel mouse model of food allergy involving an oral challenge of a protein antigen after feeding of the antigen in combination with modulating factors often ingested in daily life, namely, dietary oil emulsion and salicylate. In the model, BALB/c mice were sensitized orally for three weeks with ovalbumin (OVA) in linoleic acid/lecithin emulsion, followed immediately by intraperitoneal injection of sodium salicylate. At the end of the sensitization, the incidence of mice positive for serum OVA-specific IgG1 but not IgE had significantly increased in the combined-sensitization group. After the 3-week sensitization, a single or double oral challenge with OVA effectively and significantly caused severe anaphylaxis, as compared with the groups sensitized with OVA in the emulsion or the vehicle alone. Moderate increase of plasma histamine and intestinal abnormality in histology was found only in the combined-sensitization group. Anaphylaxis symptoms in the sensitized mice were induced more by oral challenge than by intravenous challenge, suggesting a critical role for the mucosal system. This is the first model for successful induction of oral anaphylaxis in mice sensitized by feeding of food protein without adjuvant. It will be useful to elucidate the mechanism of food allergy and to detect modulating factors of oral allergy at sensitization using this model, which simulates real life conditions.
Collapse
Affiliation(s)
- Tomoko Shindo
- Hatano Research Institute, Food and Drug Safety Center, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Kiss EA, Diefenbach A. Role of the Aryl Hydrocarbon Receptor in Controlling Maintenance and Functional Programs of RORγt(+) Innate Lymphoid Cells and Intraepithelial Lymphocytes. Front Immunol 2012; 3:124. [PMID: 22666222 PMCID: PMC3364460 DOI: 10.3389/fimmu.2012.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/02/2012] [Indexed: 12/14/2022] Open
Abstract
Mucosal retinoic receptor-related orphan receptor (ROR)γt-expressing innate lymphoid cells (ILC) play an important role in the defense against intestinal pathogens and in promoting epithelial homeostasis and adaptation, thereby effectively protecting the vertebrate host against intestinal inflammatory disorders. The functional activity of RORγt(+) ILC is under the control of environmental cues. However, the molecular sensors for such environmental signals are largely unknown. Recently, the aryl hydrocarbon receptor (AhR) has emerged as a master regulator for the postnatal maintenance of intestinal RORγt(+) ILC and intraepithelial lymphocytes. AhR is a highly conserved transcription factor whose activity is regulated by environmental and dietary small molecule ligands. Here, we review the role of AhR signaling for the maintenance of intestinal immune cells and its impact on the immunological protection against intestinal infections and debilitating chronic inflammatory disorders.
Collapse
Affiliation(s)
- Elina A Kiss
- Institute of Medical Microbiology and Hygiene, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
38
|
Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2012; 109:4479-84. [PMID: 22392998 DOI: 10.1073/pnas.1118467109] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered systemic levels of 6-formylindolo[3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low. At very low concentrations FICZ influences circadian rhythms, responses to UV light, homeostasis associated with pro- and anti-inflammatory processes, and genomic stability. Here, we demonstrate that, if its metabolic clearance is compromised, femtomolar background levels of this compound in cell-culture medium are sufficient to up-regulate CYP1A1 mRNA and enzyme activity. The oxidants UVB irradiation and hydrogen peroxide and the model AHR antagonist 3'-methoxy-4'-nitroflavone all inhibited induction of CYP1A1 enzyme activity by FICZ or 2,3,7,8-tetrachlorodibenzo-p-dioxin, thereby subsequently elevating intracellular levels of FICZ and activating AHR. Taken together, these findings support an indirect mechanism of AHR activation, indicating that AHR activation by molecules with low affinity actually may reflect inhibition of FICZ metabolism and raising questions about the reported promiscuity of the AHR. Accordingly, we propose that prolonged induction of AHR activity through inhibition of CYP1 disturbs feedback regulation of FICZ levels, with potential detrimental consequences.
Collapse
|
39
|
Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 2011; 32:412-9. [PMID: 21816673 DOI: 10.1016/j.it.2011.06.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023]
Abstract
CD103(+) dendritic cells (DCs) in the intestinal mucosa play a crucial role in tolerance to commensal bacteria and food antigens. These cells originate in the lamina propria (LP) and migrate to the mesenteric lymph nodes (MLNs), where they drive the differentiation of gut-homing FoxP3(+) regulatory T cells by producing retinoic acid from dietary vitamin A. Local 'conditioning' factors in the LP might also contribute to this tolerogenic profile of CD103(+) DCs. Considerably less is understood about the generation of active immunity or inflammation in the intestinal mucosa. This might require alterations in pre-existing CD103(+) DCs, arrival of new DCs, or the action of a distinct DC population. Here, we discuss our current knowledge of this as yet incompletely understood population.
Collapse
Affiliation(s)
- Charlotte L Scott
- Institute of Infection, Immunology and Inflammation, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | |
Collapse
|
40
|
Abstract
The gut-associated lymphoid tissue is the largest immune organ in the body and is the primary route by which we are exposed to antigens. Tolerance induction is the default immune pathway in the gut, and the type of tolerance induced relates to the dose of antigen fed: anergy/deletion (high dose) or regulatory T-cell (Treg) induction (low dose). Conditioning of gut dendritic cells (DCs) by gut epithelial cells and the gut flora, which itself has a major influence on gut immunity, induces CD103(+) retinoic acid-dependent DC that induces Tregs. A number of Tregs are induced at mucosal surfaces. Th3 type Tregs are transforming growth factor-β dependent and express latency-associated peptide (LAP) on their surface and were discovered in the context of oral tolerance. Tr1 type Tregs (interleukin-10 dependent) are induced by nasal antigen and forkhead box protein 3(+) iTregs are induced by oral antigen and by oral administration of aryl hydrocarbon receptor ligands. Oral or nasal antigen ameliorates autoimmune and inflammatory diseases in animal models by inducing Tregs. Furthermore, anti-CD3 monoclonal antibody is active at mucosal surfaces and oral or nasal anti-CD3 monoclonal antibody induces LAP(+) Tregs that suppresses animal models (experimental autoimmune encephalitis, type 1 and type 2 diabetes, lupus, arthritis, atherosclerosis) and is being tested in humans. Although there is a large literature on treatment of animal models by mucosal tolerance and some positive results in humans, this approach has yet to be translated to the clinic. The successful translation will require defining responsive patient populations, validating biomarkers to measure immunologic effects, and using combination therapy and immune adjuvants to enhance Treg induction. A major avenue being investigated for the treatment of autoimmunity is the induction of Tregs and mucosal tolerance represents a non-toxic, physiologic approach to reach this goal.
Collapse
Affiliation(s)
- Howard L Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
41
|
Schulz VJ, Smit JJ, Willemsen KJ, Fiechter D, Hassing I, Bleumink R, Boon L, van den Berg M, van Duursen MBM, Pieters RHH. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci 2011; 123:491-500. [PMID: 21804081 DOI: 10.1093/toxsci/kfr175] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Food allergy is an increasing health problem in Western countries. Previously, it has been shown that the intensity of food allergic reactions can be regulated by regulatory T (T(reg)) cells. In addition, it has been shown that activation of the aryl hydrocarbon receptor (AhR) regulates T-cell responses by induction of T(reg) cells. Therefore, we hypothesized that activation of the AhR pathway can suppress development of food allergic responses through the induction of T(reg) cells. This was investigated by using a mouse model for peanut allergy. C3H/HeOuJ mice (AhR(b)(-2)) were sensitized to peanut by administering peanut extract (PE) by gavage in the presence of cholera toxin and were treated with the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.6, 1.7, 5, and 15 μg/kg body weight) on days 3 and 11 orally. The functional role of CD4(+)CD25(+)Foxp3(+) T(reg) cells was investigated by depleting these cells with anti-CD25 mAb during sensitization to PE. TCDD treatment dose dependently suppressed sensitization to peanut (PE-specific IgE, IgG1, and IgG2a and PE-induced IL-5, IL-10, and IL-13, respectively). The percentage, but not the number, of CD4(+)CD25(+)Foxp3(+) T(reg) cells dose dependently increased by AhR activation in both spleen and mesenteric lymph nodes. Depletion of CD4(+)CD25(+)Foxp3(+) T(reg) cells markedly reversed the suppressive effect of TCDD on PE-specific antibody levels and PE-induced IL-5, IL-10, and IL-13 cytokine production. Present data demonstrate for the first time that activation of the AhR by TCDD suppressed the development of Th2-mediated food allergic responses. A functional shift within the CD4(+) cell population toward CD4(+)CD25(+)Foxp3(+) T(reg) cells appeared to underlie this effect. This suggests that the AhR pathway might provide potential therapeutic targets to treat food allergic diseases.
Collapse
Affiliation(s)
- V J Schulz
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Multiple mechanisms of tolerance are induced by oral antigen. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral antigen induces T-helper 2 [interleukin (IL)-4/IL-10] and Th3 [transforming growth factor (TGF)-beta] T cells plus CD4+CD25+ regulatory cells and latency-associated peptide+ T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-beta, cholera toxin B subunit, Flt-3 ligand, and anti-CD40 ligand. Oral (and nasal) antigen administration suppresses animal models of autoimmune diseases including experimental autoimmune encephalitis, uveitis, thyroiditis, myasthenia, arthritis, and diabetes in the non-obese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, graft rejection, allergy, colitis, stroke, and models of Alzheimer's disease. Oral tolerance has been tested in human autoimmune diseases including multiple sclerosis (MS), arthritis, uveitis, and diabetes and in allergy, contact sensitivity to dinitrochlorobenzene (DNCB), and nickel allergy. Although positive results have been observed in phase II trials, no effect was observed in phase III trials of CII in rheumatoid arthritis or oral myelin and glatiramer acetate (GA) in MS. Large placebo effects were observed, and new trials of oral GA are underway. Oral insulin has recently been shown to delay onset of diabetes in at-risk populations, and confirmatory trials of oral insulin are being planned. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time, and antigen-specific mechanisms of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy, and early therapy.
Collapse
Affiliation(s)
- Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Pires da Cunha
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Wu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|