1
|
Chargui A, Hammami I, Hashem A, Al-Hazzani AA, Abd Allah EF, belaid A, Marzougui S, Elmay MV, Mograbi B. Cd stabilizes HIF-1α under normoxic conditions via lysine-63-linked ubiquitination and induces ER stress and cell proliferation. Toxicol Res 2025; 41:221-234. [PMID: 40291115 PMCID: PMC12021772 DOI: 10.1007/s43188-024-00266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 04/30/2025] Open
Abstract
Cadmium, a carcinogenic and toxic substance released into the environment, has emerged as a potent activator of lysine-63 ubiquitination, and lysine-63 is a crucial regulator of signal transduction pathways. Although critical, very little information is currently available about how the activation of lysine 63 ubiquitination by Cd might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cd stabilizes hypoxia-inducible factor-1-alpha, a transcription factor, under normoxic conditions via lysine 63 ubiquitination. Cd induces the accumulation of lysine 63 polyubiquitinated proteins. Importantly, Cd-induced ubiquitination does not prevent oxidative damage or proteasome impairment. Instead, we demonstrated that Cd activates lysine 63 ubiquitination and amplifies its accumulation by overloading the capacity of the autophagy pathway, thus promoting endoplasmic reticulum stress and cell death. At the molecular level, Cd-induced lysine 63 polyubiquitination is correlated with the stabilization of hypoxia-inducible factor-1-alpha, which translocates into the nucleus and promotes the expression of oncogenes such as interleukin 8 and vascular endothelial growth factor. Strikingly, prolonged cell exposure to high Cd concentrations induces increased lysine-63 polyubiquitination, which promotes aggresome formation, thus preventing this protein from interacting with its downstream nuclear targets. Our results showed that Cd is an activator of K63-linked ubiquitination that stabilizes and promotes the accumulation of HIF-1α, which blocks autophagy, thus resulting in endoplasmic reticulum stress. In addition, a small amount of HIF-1α was observed in the nucleus. We therefore propose that the aberrant activation of lysine 63 polyubiquitination by the carcinogen Cd could promote cell proliferation and inflammation at low levels, while high levels lead to cell death. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00266-9.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la durabilite des systemes de production agricoles du Nord-Ouest, 7119 Le Kef, Tunisia
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| | - Imen Hammami
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Amal A. Al-Hazzani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Amin belaid
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| | - Salem Marzougui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la durabilite des systemes de production agricoles du Nord-Ouest, 7119 Le Kef, Tunisia
| | - Michèle V. Elmay
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Baharia Mograbi
- Institute of Research on Cancer and Aging in Nice (IRCAN), CNRS, INSERM, FHU OncoAge Centre Antoine Lacassagne Université Côte d’Azur, 06189 Nice, France
| |
Collapse
|
2
|
Zhang X, Xu W, Li H, Ruan D, Chen S, Chu N, Zhen Q, Wang Y. Luteolin prevents cadmium-induced PC12 cell death by suppressing the Akt/mTOR signaling pathway. Medicine (Baltimore) 2024; 103:e40372. [PMID: 39496018 PMCID: PMC11537648 DOI: 10.1097/md.0000000000040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Cadmium (Cd) is an environmental pollutant that can cause neurodegenerative disorders. Luteolin (Lut) is a natural flavonoid compound. However, whether Lut protects against Cd-induced nerve cell death remains unclear. In the present study, PC12 cells were used to investigate the neuroprotective effect of Lut against Cd poisoning. Changes in cell viability, apoptosis, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein expression, and protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway activity were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst 33258 staining, flow cytometry, and western blotting. Lut markedly attenuated the Cd-induced reduction in cell viability, nuclear fragmentation, condensation, and the decrease in the Bcl-2/Bcl-2-associated X protein ratio in PC12 cells. Furthermore, Lut blocked the Cd-mediated activation of the Akt/mTOR signaling pathway. Moreover, inhibition of the Akt/mTOR signaling pathway with LY294002 (a PI3K inhibitor) enhanced the protective effect of Lut against Cd-induced cell death by suppressing Cd-induced activation of Akt, mTOR, and eukaryotic initiation factor 4E binding protein 1. The results showed that Lut prevented Cd-induced cell death partly by blocking the Akt/mTOR signaling pathway. Lut may be a potential agent for preventing Cd-induced nerve cell damage and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenjie Xu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Li
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Dapeng Ruan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Siyuan Chen
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Na Chu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yun Wang
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
3
|
Chargui A. Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis. Toxicol Res 2024; 40:349-360. [PMID: 38911543 PMCID: PMC11187039 DOI: 10.1007/s43188-024-00236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Cadmium is an environmental pollutant that constitutes a major danger to human health. It is considered a definite human carcinogen. The lung and kidney are the most sensitive organs for cancer development, and we recently provided the first evidence of direct upregulation of lysine-63-linked polyubiquitination by cadmium, particularly in response to environmentally relevant concentrations. Investigations of K63 polyubiquitination have greatly progressed, and various strategies have been reported for studying this molecular process in different biological systems under both physiological and stress conditions. Furthermore, the mechanisms underlying cadmium-induced accumulation of K63-polyubiquitinated proteins in lung and renal cells continue to be of interest given the unknown mechanism involved in the carcinogenesis of this metal. Cadmium is persistent within the cytosol and induces oxidative stress, which continuously damages proteins and causes K63 polyubiquitination, leading to the regulation/activation of different cellular signaling pathways. The aim of this review was to perform a critical analysis of the knowledge about K63 polyubiquitination induced by cadmium and its effect on selective autophagy, CYLD, the NF-KB pathway and Hif-1α. We also report data obtained in different experimental studies using cadmium, highlighting similarities in the induction of the ubiquitination system. A more detailed discussion will concern the role of K63 polyubiquitination in cadmium-exposed renal proximal convoluted tubules and lung cells since they are suitable model systems that are extremely sensitive to environmental stress, and cadmium is one of the most carcinogenic metals to which humans are exposed. We ultimately concluded that K63 polyubiquitination may be the origin of cadmium carcinogenesis in the lung and kidney. Graphical Abstract Pathways of cadmium carcinogenesis: Cadmium mimics zinc and induces Lysine-63-linked polyubiquitination, which promotes three intracellular processes: (1) accumulation of ubiquitinated proteins, (2) stabilization of hypoxic inducible factor-1α and (3) activation of the nuclear factor-kappaB pathway, which results in the blockade of selective autophagy, angiogenesis, inflammation and cell proliferation.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la Durabilité des Systèmes de Production Agricoles du Nord-Ouest, 7119 Le Kef, Tunisie
| |
Collapse
|
4
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Senwitz C, Butscher D, Holtmann L, Vogel M, Steudtner R, Drobot B, Stumpf T, Barkleit A, Heller A. Effect of Ba(II), Eu(III), and U(VI) on rat NRK-52E and human HEK-293 kidney cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171374. [PMID: 38432374 DOI: 10.1016/j.scitotenv.2024.171374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro. A combination of microscopic, biochemical, analytical, and spectroscopic methods was used to assess cell viability, cell death mechanisms, and intracellular metal uptake of exposed cells as well as metal speciation in cell culture medium and inside cells. For Eu(III) and U(VI), cytotoxicity and intracellular uptake are positively correlated and depend on concentration and exposure time. An enhanced apoptosis occurs upon Eu(III) exposure whereas U(VI) exposure leads to enhanced apoptosis and (secondary) necrosis. In contrast to that, Ba(II) exhibits no cytotoxic effect at all and its intracellular uptake is time-independently very low. In general, both cell lines give similar results with rat cells being more sensitive than human cells. The dominant binding motifs of Eu(III) in cell culture medium as well as cell suspensions are (organo-) phosphate groups. Additionally, a protein complex is formed in medium at low Eu(III) concentration. In contrast, U(VI) forms a carbonate complex in cell culture medium as well as each one phosphate and carbonate complex in cell suspensions. Using chemical microscopy, Eu(III) was localized in granular, vesicular compartments near the nucleus and the intracellular Eu(III) species equals the one in cell suspensions. Overall, this study contributes to a better understanding of the interactions of Ba(II), Eu(III), and U(VI) on a cellular and molecular level. Since Ba(II) and Eu(III) serve as inactive analogs of the radioactive Ra(II) and Am(III)/Cm(III), the results of this study are also of importance for the health risk assessment of these radionuclides.
Collapse
Affiliation(s)
- Christian Senwitz
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, SG 4.6 Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Daniel Butscher
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Linus Holtmann
- Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, 30419 Hannover, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Anne Heller
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, SG 4.6 Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany.
| |
Collapse
|
6
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Alhusaini AM, Alhumaidan SA, Alharbi GM, Alzahrani EA, Sarawi WS, Alomar HA, Alanazi AM, Mattar DS, Hasan IH. Cross-Regulation between Autophagy and Apoptosis Induced by Vitamin E and Lactobacillus Plantarum through Beclin-1 Network. Int J Mol Sci 2022; 23:ijms232315305. [PMID: 36499631 PMCID: PMC9736033 DOI: 10.3390/ijms232315305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are two important regulatory mechanisms for how the body can respond to diseases. This study was designed to investigate the protective actions of vitamin E (Vit-E) and lactobacillus plantarum (Lac-B) against mercuric chloride (HgCl2)-induced kidney injury. Thirty albino rats were divided into five groups: group 1 served as the normal group; rats in group 2 received high doses of HgCl2; rats in groups 3, 4 and 5 were given Vit-E, Lac-B and the combination of Vit-E and Lac-B, respectively along with HgCl2 for two weeks. HgCl2 provoked renal injury, manifested by elevation in serum urea, urea nitrogen and creatinine. Kidney levels of oxidative stress and inflammation were markedly increased post HgCl2 administration. Moreover, HgCl2 significantly elevated the gene expression levels of VCAM-1 and cystatin C, while podocin was downregulated. Additionally, it markedly decreased the protein expression of Beclin-1 and Bcl-2. Histopathological examination revealed massive degeneration with congested blood vessels following HgCl2 administration. Treatment with Vit-E or/and Lac-B restored the normal levels of the previously mentioned parameters, as well as improved the morphology of kidney tissues. Both Vit-E and Lac-B provided a protective effect against HgCl2-induced kidney damage by regulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (A.M.A.); (I.H.H.)
| | - Sara A. Alhumaidan
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ghaida M. Alharbi
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Eman A. Alzahrani
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Dareen S. Mattar
- Department of Physiology, College of Medicine, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (A.M.A.); (I.H.H.)
| |
Collapse
|
8
|
Vimal N, Angmo N, Sengupta M, Seth RK. Radiation Hormesis to Improve the Quality of Adult Spodoptera litura (Fabr.). INSECTS 2022; 13:933. [PMID: 36292881 PMCID: PMC9604102 DOI: 10.3390/insects13100933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mass rearing of insects of high biological quality is a crucial attribute for the successful implementation of sterile insect release programs. Various ontogenetic stages of Spodoptera litura (Fabr.) were treated with a range of low doses of ionizing radiation (0.25-1.25 Gy) to assess whether these gamma doses could elicit a stimulating effect on the growth and viability of developing moths. Doses in the range of 0.75 Gy to 1.0 Gy administered to eggs positively influenced pupal weight, adult emergence, and growth index, with a faster developmental period. The enhanced longevity of adults derived from eggs treated with 0.75 Gy and 1.0 Gy, and for larvae and pupae treated with 1.0 Gy, indicated a hormetic effect on these life stages. Furthermore, the use of these hormetic doses upregulated the relative mRNA expression of genes associated with longevity (foxo, sirtuin 2 like/sirt1, atg8) and viability/antioxidative function (cat and sod), suggesting a positive hormetic effect at the transcriptional level. These results indicated the potential use of low dose irradiation (0.75-1 Gy) on preimaginal stages as hormetic doses to improve the quality of the reared moths. This might increase the efficiency of the inherited sterility technique for the management of these lepidopteran pests.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kumar Seth
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Diindolylmethane Inhibits Cadmium-Induced Autophagic Cell Death via Regulation of Oxidative Stress in HEL299 Human Lung Fibroblasts. Molecules 2022; 27:molecules27165215. [PMID: 36014455 PMCID: PMC9414701 DOI: 10.3390/molecules27165215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd), a harmful heavy metal, can lead to various pulmonary diseases, including chronic obstructive pulmonary disease (COPD), by inducing cytotoxicity and disturbing redox homeostasis. The aim of the present study was to investigate Cd-mediated cytotoxicity using human lung fibroblasts and the therapeutic potential of 3,3′-diindolylmethane (DIM). Cadmium significantly reduced the cell viability of human embryonic lung (HEL299) cells accompanied by enhanced oxidative stress as evidenced by the increased expression of autophagy-related proteins such as LC3B and p62. However, treatment with DIM significantly suppressed autophagic cell death in Cd-induced HEL299 fibroblasts. In addition, DIM induced antioxidant enzyme activity and decreased intracellular reactive oxygen species (ROS) levels in Cd-damaged HEL299 cells. This study suggests that DIM effectively suppressed Cd-induced lung fibroblast cell death through the upregulation of antioxidant systems and represents a potential agent for the prevention of various diseases related to Cd exposure.
Collapse
|
10
|
Renoprotective and Oxidative Stress-Modulating Effects of Taxifolin against Cadmium-Induced Nephrotoxicity in Mice. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081150. [PMID: 36013329 PMCID: PMC9409698 DOI: 10.3390/life12081150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is an inessential trace metal that accumulates in the kidney and may lead to renal toxicity by mediating oxidative stress (OS), inflammatory reactions, and apoptosis. The main objective of this experiment was to inspect the protecting potential of taxifolin (TA) on Cd-induced renal toxicity. Adult male mice were allocated into equal five groups as follows: control, TA-treated (50 mg/kg, oral), CdCl2-treated (4 mg/kg body weight (BW), p.o.), pretreated with TA (25 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.), and pretreated with TA (50 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.) for 14 days. Cd-intoxicated mice revealed higher serum urea and creatinine levels and notable histopathological alterations in the renal tissues. Malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappa B (NF-κB) p65, tumor necrosis factor-α (TNF-α), and IL-1β were increased. In contrast, glutathione levels, catalase and superoxide dismutase activities, and IL-10 levels were decreased under Cd-administered effects. Conversely, the TA pre-treatment highly protected tissues from Cd-toxicity, improved renal function, decreased MDA and NO levels, attenuated inflammation, and improved redox status in the renal tissues of Cd-intoxicated mice. The TA pre-treatment of Cd-intoxicated mice showed down-regulation of both Bax and caspase-3 protein and up-regulation of Bcl-2 protein expression in the kidney. Furthermore, TA pre-treatment induced higher upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in kidney cells of Cd-intoxicated mice. Therefore, TA can protect renal tissues against Cd-induced nephrotoxicity via improving redox status, modulating inflammation, diminishing cell apoptosis, and activating the Nrf2/HO-1 signaling pathway.
Collapse
|
11
|
Zhang H, Liu X, Zheng Y, Zha X, Elsabagh M, Zhang Y, Ma Y, Loor JJ, Wang M, Wang H. Effects of the maternal gut microbiome and gut-placental axis on melatonin efficacy in alleviating cadmium-induced fetal growth restriction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113550. [PMID: 35487173 DOI: 10.1016/j.ecoenv.2022.113550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a major environmental stressor that induces fetal growth restriction (FGR). Also, changes in gut microbiome diversity-which can be modulated positively by melatonin (Mel) have implications on fetal development and placental functions. Therefore, this study aimed to explore whether the role of Mel in counteracting the Cd-induced FGR by regulating placental barrier injury, endoplasmic reticulum stress (ERS) and mitophagy in pregnant mice is mediated-in part- via the gut microbiota modulations. Pregnant mice were intraperitoneally injected with CdCl2 (5 mg/kg) and Mel (5 mg/kg) once daily, respectively, at the same time from gestational day (GD) 8 to GD18, and then the maternal colon and placental tissues were collected for detection. To investigate the inner relationship between intestinal flora and the protection of Mel on FGR caused by Cd, gut microbiota transplantation (GMT) was carried out from GD0 to GD18 after the removal of intestinal microbiota by antibiotics. Results indicated that Mel relieved barrier injury, ERS and mitophagy in the placenta, and reversed the maternal gut microbiota dysbiosis. The GMT approach suggested a role of intestinal microbiota in placental barrier injury, ERS and mitophagy induced by Cd. Overall, the results highlighted that the intestinal microbiota and gut-placental axis play a central role in the protective effect of Mel against Cd-induced FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
12
|
Upamalika SWAM, Wannige CT, Vidanagamachchi SM, Gunasekara SC, Kolli RT, De Silva PMCS, Kulasiri D, Jayasundara N. A review of molecular mechanisms linked to potential renal injury agents in tropical rural farming communities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103850. [PMID: 35301132 DOI: 10.1016/j.etap.2022.103850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The chronic kidney disease of unknown etiology (CKDu) is a global health concern primarily impacting tropical farming communities. Although the precise etiology is debated, CKDu is associated with environmental exposures including heat stress and chemical contaminants such as fluoride, heavy metals, and herbicide glyphosate. However, a comprehensive synthesis is lacking on molecular networks underpinning renal damage induced by these factors. Addressing this gap, here we present key molecular events associated with heat and chemical exposures. We identified that caspase activation and lipid peroxidation are common endpoints of glyphosate exposure, while vasopressin and polyol pathways are associated with heat stress and dehydration. Heavy metal exposure is shown to induce lipid peroxidation and endoplasmic reticulum stress from ROS activated MAPK, NFĸB, and caspase. Collectively, we identify that environmental exposure induced increased cellular oxidative stress as a common mechanism mediating renal cell inflammation, apoptosis, and necrosis, likely contributing to CKDu initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | - Ramya Tulasi Kolli
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| | | | - Don Kulasiri
- Department of Molecular Biosciences, and Centre for Advanced Computational Solutions (C-fACS), Lincoln University, New Zealand.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| |
Collapse
|
13
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
14
|
Luzio A, Parra S, Costa B, Santos D, Álvaro AR, Monteiro SM. Copper impair autophagy on zebrafish (Danio rerio) gill epithelium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103674. [PMID: 34029728 DOI: 10.1016/j.etap.2021.103674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an essential element for organism's metabolism, being controversially listed as a priority pollutant. Importantly, the toxicity of Cu has been linked to several cell death pathways. Thus, this study aimed to assess if macroautophagic pathways are triggered by Cu in zebrafish gill, the main target of waterborne pollutants. The electron microscopy findings indicated that Cu induced profound impacts on zebrafish gill structure and functions, being this tissue a biomarker sensitive enough to indicate early toxic effects. The findings also support a clear impairment of autophagy, througth the absence of phagossomes and the significant down-regulation mRNA transcript levels of microtubule-associated protein light chain 3 (LC3). The reduction of LC3 levels was often associated to an increase of apoptotic activation, indicating that the inhibition of macroautophagy triggers apoptosis in zebrafish gills. This study highlighted that the autophagic down-regulation might be affected through the activation of other cell death signaling pathway.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| | - S Parra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - B Costa
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - D Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504, Coimbra, Portugal
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| |
Collapse
|
15
|
Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F. Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 2021; 459:152855. [PMID: 34252479 DOI: 10.1016/j.tox.2021.152855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
16
|
Chargui A, Belaid A, Ndiaye PD, Imbert V, Samson M, Guigonis JM, Tauc M, Peyron JF, Poujeol P, Brest P, Hofman P, Mograbi B. The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy. Cancers (Basel) 2021; 13:2490. [PMID: 34065348 PMCID: PMC8161291 DOI: 10.3390/cancers13102490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.
Collapse
Affiliation(s)
- Abderrahman Chargui
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Higher School of Agriculture of Kef, University Jendouba, Le Kef and Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine Tunis, 7110 Le Kef, Tunisia
| | - Amine Belaid
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Papa Diogop Ndiaye
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Véronique Imbert
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Michel Samson
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Jean-Marie Guigonis
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Michel Tauc
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Jean-François Peyron
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Philippe Poujeol
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Patrick Brest
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Université Côte d’Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, F-06001 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| |
Collapse
|
17
|
So KY, Park BH, Oh SH. Cytoplasmic sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium-induced kidney toxicity. Cell Biol Toxicol 2021; 37:193-207. [PMID: 32394328 DOI: 10.1007/s10565-020-09528-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Sirtuin 6 (Sirt6) is important for maintaining kidney homeostasis and function. Cd exposure increases the risk of developing kidney diseases. However, the role of Sirt6 in kidney disease mechanisms is unclear. Here, we evaluated the role of Sirt6 in Cd-induced kidney toxicity. After Cd exposure, p62/sequestosome-1 (SQSTM1), an autophagy substrate, accumulated in mouse kidney mesangial cells in monomeric and polyubiquitinated (polyUb) forms. Sirt6 accumulated in response to Cd treatment at concentrations below the half-maximal inhibitory concentration and decreased after 12 h of treatment. Sirt6 and p62 co-localized in the nucleus and redistributed to the cytosol after Cd treatment. Sirt6 was mainly present in nuclei-rich membrane fractions. Sirt6 interacted with p62. Ub, and microtubule-associated protein light chain 3 (LC3). Knockdown of p62 promoted Sirt6 nuclear accumulation and inhibited apoptosis. Sirt6 overexpression altered levels of polyUb-p62 and apoptosis. At earlier times during Cd treatment, polyubiquitination of p62 and apoptosis were reduced. Cytoplasmic translocation of Sirt6 occurred later, with increased polyubiquitination of p62 and apoptosis. Bafilomycin 1 (BaF1) treatment promoted cytosolic Sirt6 accumulation, increasing cell death. Silencing autophagy related 5 (Atg5) increased nuclear Sirt6 levels, reduced polyUb-p62, and inhibited cell death, indicating that autophagy was necessary for Sirt6 redistribution. Cd resistance was associated with reduced polyUb-p62 and persistent Sirt6 expression. Cd treatment in mice for 4 weeks promoted p62, Sirt6, and LC3-II accumulation, inducing apoptosis in kidney tissues. Overall, our findings show that polyUb-p62 targeted Sirt6 to autophagosomes, playing a crucial role in Cd-induced cell death and kidney damage.
Collapse
Affiliation(s)
- Keum-Young So
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, South Korea.
| |
Collapse
|
18
|
Ansari MN, Rehman NU, Karim A, Imam F, Hamad AM. Protective Effect of Thymus serrulatus Essential Oil on Cadmium-Induced Nephrotoxicity in Rats, through Suppression of Oxidative Stress and Downregulation of NF-κB, iNOS, and Smad2 mRNA Expression. Molecules 2021; 26:molecules26051252. [PMID: 33652584 PMCID: PMC7956168 DOI: 10.3390/molecules26051252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of the research was to examine the protective effect of essential oil from Thymus serrulatus Hochst. ex Benth. (TSA oil) against cadmium (Cd)-induced renal toxicity. The experimental protocol was designed using 30 healthy adult Wistar albino rats allocated into five groups containing six animals in each group. Group 1 was treated as normal control and groups 2, 3, 4, and 5 were treated with cadmium chloride (CdCl2, 3 mg/kg, IP) for 7 days. Group 3 was also treated with silymarin (100 mg/kg, PO) as a standard group, while groups 4 and 5 were administered with TSA oil at doses of 100 and 200 mg/kg PO, respectively. The nephrotoxicity was measured with various parameters such as kidney function markers, oxidative stress markers (glutathione (GSH) and malondialdehyde (MDA)), and messenger ribonucleic acid (mRNA) expression levels of inflammatory factors. The histological studies were also evaluated in the experimental protocol. The CdCl2-treated groups showed a significant increase in the levels of serum kidney function markers along with MDA levels in kidney homogenate. However, renal GSH level was found to be reduced significantly. It was found that CdCl2 significantly upregulated the nuclear factor levels of kappaB (NF-κB p65), inducible nitric oxide synthase (iNOS), and small mothers against decapentaplegic (Smad2) as compared to the normal control group. On the other hand, TSA oil significantly improved the increased levels of serum kidney function markers, non-enzymatic antioxidants, and lipid peroxidation. In addition, TSA oil significantly downregulated the increased expression of NF-κB p65, iNOS, and Smad2 in Cd-intoxicated rats. Moreover, the histological changes in the tissue samples of the kidney of Cd-treated groups were significantly ameliorated in the silymarin- and TSA-oil-treated groups. The present study reveals that TSA oil ameliorates Cd-induced renal injury, and it is also proposed that the observed nephroprotective effect could be due to the antioxidant potential of TSA oil and healing due to its anti-inflammatory action.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Najeeb Ur Rehman
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Abubaker M. Hamad
- Department of Basic Sciences, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
19
|
Zhuang J, Nie G, Hu R, Wang C, Xing C, Li G, Hu G, Yang F, Zhang C. Inhibition of autophagy aggravates molybdenum-induced mitochondrial dysfunction by aggravating oxidative stress in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111771. [PMID: 33348253 DOI: 10.1016/j.ecoenv.2020.111771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Excessive molybdenum (Mo) has adverse effects on animals. To elucidate the effects of autophagy on Mo-induced nephrotoxicity, the duck renal tubular epithelial cells were cultured in medium in absence and presence of (NH4)6Mo7O24.4H2O (0, 480, 720, 960 μM Mo), 3-Methyladenine (3-MA) (2.5 μM), and the combination of Mo and 3-MA for 12 h. After 12 h exposure, the MDC staining, morphologic observation, LC3 puncta, cell viability, autophagy-related genes mRNA and proteins levels, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, antioxidant indices, mitochondrial membrane potential (MMP), mitochondrial mass, mitochondrial respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) were determined. The results showed that excessive Mo exposure significantly elevated the number of autophagosome and LC3 puncta, upregulated Beclin-1, Atg5, LC3A and LC3B mRNA levels, and LC3II/LC3I and Beclin-1 protein levels, decreased mTOR, p62 and Dynein mRNA levels and p62 protein level. Besides, co-treatment with Mo and 3-MA dramatically increased LDH release, ROS level, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents as well as cell dam age, reduced cell viability, the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), MMP, mitochondrial mass, mitochondrial RCR and OPR compared to treatment with Mo alone. Taken together, these results suggest that excessive Mo exposure can induce autophagy in duck renal tubular epithelial cells, inhibition of autophagy aggravates Mo-induced mitochondrial dysfunction by regulating oxidative stress.
Collapse
Affiliation(s)
- Jionghan Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
20
|
Zinc and Cadmium in the Aetiology and Pathogenesis of Osteoarthritis and Rheumatoid Arthritis. Nutrients 2020; 13:nu13010053. [PMID: 33375344 PMCID: PMC7824316 DOI: 10.3390/nu13010053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are inflammatory articular conditions with different aetiology, but both result in joint damage. The nutritionally essential metal zinc (Zn2+) and the non-essential metal cadmium (Cd2+) have roles in these arthritic diseases as effectors of the immune system, inflammation, and metabolism. Despite both metal ions being redox-inert in biology, they affect the redox balance. It has been known for decades that zinc decreases in the blood of RA patients. It is largely unknown, however, whether this change is only a manifestation of an acute phase response in inflammation or relates to altered availability of zinc in tissues and consequently requires changes of zinc in the diet. As a cofactor in over 3000 human proteins and as a signaling ion, zinc affects many pathways relevant for arthritic disease. How it affects the diseases is not just a question of zinc status, but also an issue of mutations in the many proteins that maintain cellular zinc homoeostasis, such as zinc transporters of the ZIP (Zrt-/Irt-like protein) and ZnT families and metallothioneins, and the multiple pathways that change the expression of these proteins. Cadmium interferes with zinc's functions and there is increased uptake under zinc deficiency. Remarkably, cadmium exposure through inhalation is now recognized in the activation of macrophages to a pro-inflammatory state and suggested as a trigger of a specific form of nodular RA. Here, we discuss how these metal ions participate in the genetic, metabolic, and environmental factors that lead to joint destruction. We conclude that both metal ions should be monitored routinely in arthritic disease and that there is untapped potential for prognosis and treatment.
Collapse
|
21
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of cadmium is known to cause nephrotoxicity by targeting renal proximal tubular epithelial cells. Studies showed an essential role of autophagy in cadmium-induced nephrotoxicity; however, its underlying mechanisms accompanied by autophagy are incompletely understood. Using an HK-2 human renal proximal tubular epithelial cell line as a study model, sustained exposure of cadmium chloride (CdCl2) was shown to cause cell viability loss, which was alleviated by inhibitors of autophagy but not apoptosis. Data from molecular and biochemical studies revealed an induction of autophagy proteins, intracellular acidic vesicles, and autophagic flux in CdCl2-treated cells. However, there was little sign of apoptosis-related changes. Pharmacological and genetic studies indicated an elevation of Endoplasmic Reticulum (ER) stress, Forkhead Box Class O (FoxO3a), Bcl-2 Interacting Protein 3 (Bnip3), and Beclin1, as well as their involvement in cadmium-induced autophagy and autophagic cell death. Renal injury, histological changes, and molecular marker of ER stress, FoxO3a, Bnip3, and autophagy were observed in the kidney cortex of CdCl2-exposed Sprague-Dawley rats. These observations indicate that ER stress, FoxO3a, Bnip3, and autophagy signaling were actively involved in cadmium-induced nephrotoxicity. Additionally, FoxO3a may act as a linking molecule to convey ER stress signals to Bnip3 and autophagy machinery upon cadmium exposure.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Financial Engineering, Providence University, Taichung, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
22
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
23
|
Zhang C, Wang LL, Cao CY, Li N, Talukder M, Li JL. Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114613. [PMID: 32504893 DOI: 10.1016/j.envpol.2020.114613] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal and widespread in environment and food, which is adverse to human and animal health. Food intervention is a hot topic because it has no side effects. Selenium (Se) is an essential trace element, found in various fruits and vegetables. Many previous papers have described that Se showed ameliorative effects against Cd. However, the underlying mechanism of antagonistic effect of Se against Cd-induced cytotoxicity in avian leghorn male hepatoma (LMH) cells is unknown, the molecular mechanism of Se antagonistic effect on Cd-induced and calcium (Ca2+) homeostasis disorder and crosstalk of ER stress and autophagy remain to be explored. In order to confirm the antagonistic effect of Se on Cd-induced LMH cell toxicity, LMH cells were treated with CdCl2 (2.5 μM) and Na2SeO3 (1.25 and 2.5 μM) for 24 h. In this study, Cd exposure induced cell death, disrupted intracellular Ca2+ homeostasis and Ca2+ homeostasis related regulatory factors, interfered with the cycle of cadherin (CNX)/calreticulin (CRT), and triggered ER stress and autophagy. Se intervention inhibited Cd-induced LDH release and crosstalk of ER stress and autophagy via regulating intracellular Ca2+ homeostasis. Moreover, Se mitigated Cd-induced Intracellular Ca2+ overload by Ca2+/calmodulin (CaM)/calmodulin kinase IV (CaMK-IV) signaling pathway. Herein, CNX/CRT cycle played a critical role for the protective effect of Se on Cd-induced hepatotoxicity. Based on these findings, we demonstrated that the application of Se is beneficial for prevention and alleviation of Cd toxicity.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medcine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China
| | - Li-Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Chang-Yu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Life Science, Foshan University, Foshan, 528231, Guangdong, PR China
| | - Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Wang J, Zhu H, Wang K, Yang Z, Liu Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25278-25286. [PMID: 32347499 DOI: 10.1007/s11356-020-08947-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), a highly toxic heavy metal, adversely affects human and animal health. Quercetin (Que) is a kind of flavonoid that can protect many tissues from the toxic effect of heavy metals. Although many studies have explored the adverse effects of cadmium on rats and other animals, the mechanism of Cd-induced testicular autophagy and the antagonistic effect of Que on cadmium remain unclear. In this study, Sprague-Dawley rats were treated with Cd, Que or Cd, and Que supplements to explore the mechanisms of Que-alleviated testis injury caused by Cd exposure. The rat body weight and relative testicular weight were measured. Morphological changes in testes and indices of oxidative stress were also examined. The expression levels of autophagy-related genes were detected as well. Results showed that Cd decreased the rat body weight and relative testicular weight and induced pathological changes in testes. Conversely, Que alleviated these changes. We also found that Cd increased the malondialdehyde content and decreased the contents of total superoxide dismutase, glutathione peroxidase, catalase, and glutathione. Moreover, the protein expression levels of P62 and LC3-II increased under Cd exposure conditions. Conversely, Que obviously alleviated these toxic activities induced by Cd. Overall, this study showed that Cd accumulated in rat testes, leading to oxidative stress and autophagy. Que can reduce cadmium toxicity by reducing oxidative stress and inhibiting autophagy. The specific mechanism of Que antagonizing Cd toxicity can provide new insights into countering cadmium toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China.
| | - Huali Zhu
- Law hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
25
|
Zhong P, Liu J, Li H, Lin S, Zeng L, Luo L, Wu M, Zhang W. MicroRNA-204-5p regulates apoptosis by targeting Bcl2 in rat ovarian granulosa cells exposed to cadmium†. Biol Reprod 2020; 103:608-619. [PMID: 32500147 DOI: 10.1093/biolre/ioaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate whether cadmium (Cd) cytotoxicity in rat ovarian granulosa cells (OGCs) is mediated through apoptosis or autophagy and to determine the role of microRNAs (miRNAs) in Cd cytotoxicity. To test this hypothesis, rat OGCs were exposed to 0, 10, and 20 μM CdCl2 in vitro. As the Cd concentration increased, OGC apoptosis increased. In addition, Cd promoted apoptosis by decreasing the mRNA and protein expression levels of inhibition of B-cell lymphoma 2 (Bcl2). However, under our experimental conditions, no autophagic changes in rat OGCs were observed, and the mRNA and protein expression levels of the autophagic markers microtubule-associated protein 1 light chain 3 alpha (Map1lc3b) and Beclin1 (Becn1) were not changed. Microarray chip analysis, miRNA screening, and bioinformatics approaches were used to further explore the roles of apoptosis regulation-related miRNAs. In total, 19 miRNAs putatively related to Cd-induced apoptosis in rat OGCs were identified. Notably, miR-204-5p, which may target Bcl2, was identified. Then, rat OGCs were cultured in vitro and used to construct the miR-204-5p-knockdown cell line LV2-short hairpin RNA (shRNA). LV2-shRNA cells were exposed to 20 μM Cd for 12 h, and the mRNA and protein expression levels of Bcl2 were increased. Our findings suggest that Cd is cytotoxic to rat OGCs, and mitochondrial apoptosis rather than autophagy mediates Cd-induced damage to OGCs. Cd also affects apoptosis-related miRNAs, and the underlying apoptotic mechanism may involve the Bcl2 gene.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong Li
- Department of Health Management, Fujian Health College, Fuzhou, Fujian, China
| | - Senbin Lin
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingfeng Luo
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Minxia Wu
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
26
|
Zhuang J, Nie G, Yang F, Cao H, Xing C, Dai X, Hu G, Zhang C. Molybdenum and Cadmium co-induced the levels of autophagy-related genes via adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney. Poult Sci 2020; 98:6533-6541. [PMID: 31424537 PMCID: PMC8913950 DOI: 10.3382/ps/pez477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate Molybdenum (Mo) and Cadmium (Cd) co-induced the levels of autophagy-related genes via AMPK/mTOR signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney, 60 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses on the basal diet for 120 d. Kidney samples were collected on day 120 to determine the mRNA expression levels of adenosine 5′-monophosphate (AMP)-activated protein kinase α1 (AMPKα1), mammalian target of rapamycin (mTOR), Beclin-1, autophagy-related gene-5 (Atg5), microtubule-associated protein light chain A (LC3A), microtubule-associated protein light chain B (LC3B), sequestosome-1, and Dynein by real-time quantitative polymerase chain reaction. Meanwhile, ultrastructural changes of the kidney were observed. The results indicated that the mTOR and P62 mRNA expression levels were significantly downregulated, but the Atg5 and Beclin-1 mRNA levels were remarkably upregulated in all treated groups compared to control group, and their changes were greater in joint groups. Additionally, compared to control group, the Dynein mRNA expression level was apparently downregulated in co-treated groups, the LC3B, LC3A, and AMPKα1 expression levels were dramatically upregulated in single treated groups and they were not obviously different in co-treated groups. Ultrastructural changes showed that Mo and Cd could markedly increase the number of autophagosomes. Taken together, it suggested that dietary Mo and Cd might induce autophagy via AMPK/mTOR signaling pathway in duck kidney, and it showed a possible synergistic relationship between the 2 elements.
Collapse
Affiliation(s)
- Jionghan Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, Economic and Technological Development District, Nanchang 330032, Jiangxi, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| |
Collapse
|
27
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
28
|
Long Term Pharmacological Perturbation of Autophagy in Mice: Are HCQ Injections a Relevant Choice? Biomedicines 2020; 8:biomedicines8030047. [PMID: 32121613 PMCID: PMC7148514 DOI: 10.3390/biomedicines8030047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process whose loss-of-function has been linked to a growing list of pathologies. Knockout mouse models of key autophagy genes have been instrumental in the demonstration of the critical functions of autophagy, but they display early lethality, neurotoxicity and unwanted autophagy-independent phenotypes, limiting their applications for in vivo studies. To avoid problems encountered with autophagy-null transgenic mice, we investigated the possibility of disturbing autophagy pharmacologically in the long term. Hydroxychloroquine (HCQ) ip injections were done in juvenile and adult C57bl/6j mice, at range doses adapted from the human malaria prophylactic treatment. The impact on autophagy was assessed by western-blotting, and juvenile neurodevelopment and adult behaviours were evaluated for four months. Quite surprisingly, our results showed that HCQ treatment in conditions used in this study neither impacted autophagy in the long term in several tissues and organs nor altered neurodevelopment, adult behaviour and motor capabilities. Therefore, we recommend for future long-term in vivo studies of autophagy, to use genetic mouse models allowing conditional inhibition of selected Atg genes in appropriate lineage cells instead of HCQ treatment, until it could be successfully revisited using higher HCQ doses and/or frequencies with acceptable toxicity.
Collapse
|
29
|
Hirano S, Kanno S. Relevance of autophagy markers to cytotoxicity of zinc compounds in macrophages. Toxicol In Vitro 2020; 65:104816. [PMID: 32126253 DOI: 10.1016/j.tiv.2020.104816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Autophagy molecules such as microtubule-associated protein light chain 3 (LC3) and p62/SQSTM1 have been used as biomarkers of protective or conversely adverse effects of exposure to toxicants. In the present study we show changes in LC3-II (a lipidated form of LC3-I) and p62 levels in response to zinc compounds and some other toxicants in J774.1 murine macrophages. The cytotoxicity of either ZnO or ZnSO4 largely depended on the concentration of FBS or albumin in the culture medium. Accordingly, these authophagy markers were more remarkably increased when the cells were exposed to ZnO or ZnSO4 in the absence of FBS. We next addressed lysosomal function impairment and changes in LC3-II and p62 levels following exposure to TiO2, ZnO, and ZnSO4. Lysosomal pH was quickly decreased by autolysosome inhibitors such as bafilomycin A1 and chloroquine, while TiO2, ZnO and ZnSO4 did not decrease lysosomal pH. However, the amounts of LC3-II and p62 and the LC3-II/LC3-I ratio were increased either by the lysosomal inhibitors and the Zn compounds. LC3-II and p62 levels were increased after exposure to arsenite and lipopolysaccharide (LPS). The p62 and phospho-p62 levels were also increased by either ZnSO4 and bafilomycin A1 in HEK293 cells stably expressing RFP-LC3. The current observations suggest that LC3-II and p62 levels were increased as consequences of early effects of toxicants without changing lysosomal pH.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Sanae Kanno
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
30
|
Determination of cadmium induced acute and chronic reproductive toxicity with Raman spectroscopy. Lasers Med Sci 2020; 35:1919-1926. [PMID: 32026165 DOI: 10.1007/s10103-020-02976-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is one of the toxic heavy metals which is confirmed to be related to male sterile. Here, confocal Raman spectroscopy was employed to detect biomolecular composition and changes in testis under acute and chronic Cd treatment. Specific Raman shifts associated with mitochondria, nucleic acids, proteins, lipids, and cholesterol were identified which were distinguishing among groups undergoing different Cd treatment times. Supporting evidences were provided by conventional experimental detections. The relevant biochemical parameters, pathological changes, and protein expression related to testosterone synthesis were all changed and consistent with Raman spectrum information. In conclusion, confocal Raman spectroscopy presents a reliable data and provides a novel method which is expected to be a promising strategy in reproduction toxicity research.
Collapse
|
31
|
Wang X, Jiang Y, Zhu L, Cao L, Xu W, Rahman SU, Feng S, Li Y, Wu J. Autophagy protects PC12 cells against deoxynivalenol toxicity via the Class III PI3K/beclin 1/Bcl-2 pathway. J Cell Physiol 2020; 235:7803-7815. [PMID: 31930515 DOI: 10.1002/jcp.29433] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
Deoxynivalenol (DON) is a major mycotoxin from the trichothecene family of mycotoxins produced by Fusarium fungi. It can cause a variety of adverse effects on human and farm animal health. Here, we determined the effect of DON on the Class III phosphatidylinositol 3-kinase (PIK3C3)/beclin 1/B cell lymphoma-2 (Bcl-2) pathway in PC12 cells and the relationship between autophagy and apoptosis. The effects of DON were evaluated based on the apoptosis ratio; the typical indicators of autophagy, including cellular morphology, acridine orange- and monodansylcadaverine-labeled vacuoles, green fluorescent protein-microtubule associated protein 1 light chain 3 (LC3) localization, and LC3 immunofluorescence; and the expression of key autophagy-related genes and proteins, that is, PIK3C3, beclin 1, Bcl-2, LC3, and p62. The relationship between autophagy and apoptosis was analyzed by western blot analysis and flow cytometry. DON-induced PC12 cell morphological changes and autophagy significantly. PIK3C3, beclin 1, and LC3 increased in tandem with the DON concentration used; Bcl-2 and p62 expression decreased as DON concentrations increased. Moreover, the PIK3C3/beclin 1/Bcl-2 signaling pathway played a role in DON-induced autophagy. Our findings suggest that DON can induce autophagy by activating the PIK3C3/beclin 1/Bcl-2 signaling pathway and that autophagy may play a positive role in reducing DON-induced apoptosis.
Collapse
Affiliation(s)
- Xichun Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunjing Jiang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Li Cao
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Sajid Ur Rahman
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shibin Feng
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
32
|
Reactive oxygen species, not Ca
2+
, mediates methotrexate‐induced autophagy and apoptosis in spermatocyte cell line. Basic Clin Pharmacol Toxicol 2019; 126:144-152. [DOI: 10.1111/bcpt.13306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
|
33
|
Role of Autophagy on Heavy Metal-Induced Renal Damage and the Protective Effects of Curcumin in Autophagy and Kidney Preservation. ACTA ACUST UNITED AC 2019; 55:medicina55070360. [PMID: 31295875 PMCID: PMC6681384 DOI: 10.3390/medicina55070360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Curcumin is a hydrophobic polyphenol compound extracted from the rhizome of turmeric. The protective effect of curcumin on kidney damage in multiple experimental models has been widely described. Its protective effect is mainly associated with its antioxidant and anti-inflammatory properties, as well as with mitochondrial function maintenance. On the other hand, occupational or environmental exposure to heavy metals is a serious public health problem. For a long time, heavy metals-induced nephrotoxicity was mainly associated with reactive oxygen species overproduction and loss of endogenous antioxidant activity. However, recent studies have shown that in addition to oxidative stress, heavy metals also suppress the autophagy flux, enhancing cell damage. Thus, natural compounds with the ability to modulate and restore autophagy flux represent a promising new therapeutic strategy. Furthermore, it has been reported in other renal damage models that curcumin’s nephroprotective effects are related to its ability to regulate autophagic flow. The data indicate that curcumin modulates autophagy by classic signaling pathways (suppression of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and/or by stimulation of adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-dependent kinase (ERK) pathways). Moreover, it allows lysosomal function preservation, which is crucial for the later stage of autophagy. However, future studies of autophagy modulation by curcumin in heavy metals-induced autophagy flux impairment are still needed.
Collapse
|
34
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
35
|
Satarug S, Vesey DA, Nishijo M, Ruangyuttikarn W, Gobe GC. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. ENVIRONMENTAL RESEARCH 2019; 173:40-47. [PMID: 30889420 DOI: 10.1016/j.envres.2019.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 05/22/2023]
Abstract
Urinary β2-microgroblin (β2-MG) excretion levels above 300 μg/g creatinine are used to indicate defective tubular reabsorption. Arguably, increased urinary β2-MG excretion could also reflect glomerular filtration rate decline. Thus, we investigated an association between urinary β2-MG and estimated glomerular filtration rate (eGFR). We studied 527 subjects, aged 30-87 years (mean 51.2), who lived in a rural area of Thailand polluted with cadmium (Cd). Of this cohort, 10.3% had urinary Cd levels <2 μg/g creatinine and 53.5% had urinary Cd levels ≥5 μg/g creatinine. Half (53.1%) of the participants had urinary β2-MG levels ≥ 300 μg/g creatinine, and 11.6% had low GFR, defined as eGFR <60 mL/min/1.73 m2. Lower eGFR values were associated with older age (β = -0.568, P < 0.001), higher urinary β2-MG (β = -0.170, P < 0.001), higher urinary Cd (β = -0.103, P = 0.005) and diabetes (β = 0.074, P = 0.032). An inverse association between eGFR and urinary β2-MG was evident in subjects with low GFR (β = -0.332, P = 0.033), but not in those with GFR >90 mL/min/1.73 m2 (β = -0.008, P = 0.896). These findings suggested Cd-induced nephron loss and reduced tubular reabsorption in low eGFR subjects. Urinary β2-MG levels <300 μg/g creatinine were associated with 4.66 (95% CI: 1.92, 11.32) fold increase in the POR for low GFR, compared with urinary β2-MG levels <100 μg/g creatinine. Findings in the present study cast doubt on a cut-off value for urinary β2-MG, while lending support to the notion that elevated urinary β2-MG excretion could indicate a fall of GFR.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, The University of Queensland, Faculty of Medicine and Translational Research Institute, Brisbane, 4102, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, The University of Queensland, Faculty of Medicine and Translational Research Institute, Brisbane, 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, 4075, Australia
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Werawan Ruangyuttikarn
- Division of Toxicology, Department of Forensic Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, The University of Queensland, Faculty of Medicine and Translational Research Institute, Brisbane, 4102, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia; NHMRC Centre of Research Excellence for CKD, QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, 4029, Australia
| |
Collapse
|
36
|
Lv YJ, Wei QZ, Zhang YC, Huang R, Li BS, Tan JB, Wang J, Ling HT, Wu SX, Yang XF. Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:620-628. [PMID: 30933759 DOI: 10.1016/j.envpol.2019.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/02/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated till date. This study aimed to assess the association between rat mesenchymal stem cells (MSCs) and long-term Cd exposure through 38-week intake of CdCl2 at 1 and 2 mg/kg body weight (bw). Increased gene expression of receptor activator of NF-κB ligand (RANKL) and decreased gene expression of osteoprotegerin (OPG) were observed. Fold change of RANKL gene expression (fold change = 1.97) and OPG gene expression (fold change = 1.72) showed statistically significant differences at dose 2 mg/kg bw. Decreased expression of key genes was observed during the early osteogenic differentiation of MSCs. The gene expression of Osterix in 1 mg/kg bw group was decreased by 3.70-fold, and the gene expressions of Osterix, Osteopontin, collagen type I alpha 2 chain (COL1a2) and runt-related transcription factor 2 (RUNX2) in 2 mg/kg bw group were decreased by 1.79, 1.67, 1.45 and 1.35-folds, respectively. Exposure to CdCl2 induced an increase in the renal Cd load, but only an adaptive response was observed, including increased expression of autophagy-related proteins LC3B and Beclin-1, autophagy receptor p62, and heme oxygenase 1 (HO-1), which is an inducible isoform that releases in response to stress. There were no significant changes in the urinary low molecular weight proteins including N-acetyl-b-D-glucosaminidase (NAG), β2-microglobulin and albumin (U-Alb). Urinary calcium (Ca) excretion showed no increase, and no obvious renal histological changes. Taken together, these results indicated that the chronic CdCl2 exposure directly act on MSCs through RANKL/OPG pathway and downregulate the key genes involved in osteogenic differentiation of MSCs. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity.
Collapse
Affiliation(s)
- Ying-Jian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang-Cong Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Bai-Sheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jian-Bin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hai-Tuan Ling
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Shi-Xuan Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
38
|
Ansari MN, Aloliet RI, Ganaie MA, Khan TH, Najeeb-ur-Rehman, Imam F, Hamad AM. Roflumilast, a phosphodiesterase 4 inhibitor, attenuates cadmium-induced renal toxicity via modulation of NF-κB activation and induction of NQO1 in rats. Hum Exp Toxicol 2019; 38:588-597. [DOI: 10.1177/0960327119829521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: In the present study, the protective effect of Roflumilast (ROF, a selective phosphodiesterase (PDE-4) inhibitor) was investigated against cadmium (Cd)-induced nephrotoxicity in rats. Methods: A total of 24 rats were selected and randomly divided into four groups ( n = 6). Group 1 served as the control; groups 2–4 administered with CdCl2 (3 mg/kg, i.p.) for 7 days; groups 3 and 4 were co-administered with ROF in doses of 0.5 and 1.5 mg/kg, orally for 7 consecutive days. Nephrotoxicity was evaluated by measuring urine volume, urea and creatinine levels in urine and serum. Oxidative stress was confirmed by measuring malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels in kidney tissue followed by histopathological studies. Results: CdCl2 administration results in a significant ( p < 0.01) decrease in urine volume, urea, and creatinine levels in urine, as well as GSH, SOD, and CAT levels in renal tissue. In addition, Cd also produced significantly increased ( p < 0.01) urea and creatinine levels in serum and TBARS levels in renal tissues. Rats treated with ROF significantly ( p < 0.01) restore the altered levels of kidney injury markers, nonenzymatic antioxidant, as well as depleted enzymes in dose-dependent manner. An increased expression of NF-κB p65 and decreased expression of GST and NQO1 in the Cd only treated group were significantly reversed by high dose of ROF (1.5 mg/kg). Histopathological changes were also ameliorated by ROF administration in Cd-treated groups. Conclusion: In conclusion, ROF treatment showed protective effect against renal damage and increased oxidative stress induced by Cd administration.
Collapse
Affiliation(s)
- MN Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - RI Aloliet
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - MA Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - TH Khan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Najeeb-ur-Rehman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - F Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - AM Hamad
- Department of Basic Sciences, Preparatory year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
39
|
Nodular rheumatoid arthritis (RA): A distinct disease subtype, initiated by cadmium inhalation inducing pulmonary nodule formation and subsequent RA–associated autoantibody generation. Med Hypotheses 2019; 122:48-55. [DOI: 10.1016/j.mehy.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/30/2022]
|
40
|
Mascarenhas S, Mutnuri S, Ganguly A. Silica - A trace geogenic element with emerging nephrotoxic potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:297-317. [PMID: 30029111 DOI: 10.1016/j.scitotenv.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Silica is a trace-geogenic compound with limited-bioavailability. It inflicts health-perils like pulmonary-silicosis and chronic kidney disease (CKD), when available via anthropogenic-disturbances. Amidst silica-imposed pathologies, pulmonary toxicological-mechanisms are well-described, ignoring the renal-pathophysiological mechanisms. Hence, the present-study aimed to elucidate cellular-cum-molecular toxicological-mechanisms underlying silica-induced renal-pathology in-vitro. Various toxicity-assessments were used to study effects of silica on the physiological-functions of HK-cells (human-kidney proximal-tubular cells - the toxin's prime target) on chronic (1-7 days) sub-toxic (80 mg/L) and toxic (100-120 mg/L) dosing. Results depicted that silica triggered dose-cum-time dependent cytotoxicity/cell-death (MTT-assay) that significantly increased on long-term dosing with ≥100 mg/L silica; establishing the nephrotoxic-potential of this dose. Contrarily, insignificant cell-death on sub-toxic (80 mg/L) dosing was attributed to rapid intracellular toxin-clearance at lower-doses preventing toxic-effects. The proximal-tubular (HK-cells) cytotoxicity was found to be primarily mediated by silica-triggered incessant oxidative-stress (elevated ROS).·This enhanced ROS inflicted severe inflammation and subsequent fibrosis, evident from increased pro-inflammatory-cum-fibrogenic cytokines generation (IL-1β, IL-2, IL-6, TNF-α and TGF-β). Simultaneously, ROS induced persistent DNA-damage (Comet-assay) that stimulated G2/M arrest for p53-mediated damage-repair, aided by checkpoint-promoter (Chk1) activation and mitotic-inducers (i.e. Cdc-25, Cdk1, cyclinB1) inhibition. However, DNA-injuries surpassed the cellular-repair, which provoked the p53-gene to induce mitochondrial-mediated apoptotic cell-death via activation of Bax, cytochrome-c and caspase-cascade (9/3). This persistent apoptotic cell-death and simultaneous incessant inflammation culminated in the development of tubular-atrophy and fibrosis, the major pathological-manifestations of CKD. These findings provided novel-insights into the pathological-mechanisms (cellular and molecular) of silica-induced CKD, inflicted on chronic toxic-dosing (≥100 mg/L).Thereby, encouraging the development of therapeutic-strategies (e.g. anti-oxidant treatment) for specific molecular-targets (e.g. ROS) to retard silica-induced CKD-progression, for reduction in the global-CKD burden.
Collapse
Affiliation(s)
- Starlaine Mascarenhas
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Srikanth Mutnuri
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| |
Collapse
|
41
|
Wang S, Xu Z, Yin H, Min Y, Li S. Alleviation Mechanisms of Selenium on Cadmium-Spiked in Chicken Ovarian Tissue: Perspectives from Autophagy and Energy Metabolism. Biol Trace Elem Res 2018; 186:521-528. [PMID: 29679350 DOI: 10.1007/s12011-018-1341-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) is a kind of toxic heavy metal and it can cause damage to organs and tissues. Selenium (Se) can antagonize some metal element toxicity including Cd. The present study was designed to investigate Cd-induced damage to chicken ovary by autophagy and the protective mechanism of Se on Cd-induced damage. Administration of Cd for 12 weeks led to energy metabolism disorder of the chicken ovarian tissues, which resulted in autophagy. In addition, the mRNA expression of glucose-related genes including hexokinase II (HK2), pyruvate kinase (PK), pyruvate dehydrogenase complex (PDHX), and succinate dehydrogenase (SDH) and the activities of ATPase, including Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, were all downregulated remarkably compared with the control. However, combined with oral administration of Se at 2 mg/kg, the mRNA expression of glucose-related genes and the activities of ATPase increased. The mRNA expression of the autophagy-related genes by Cd treatment, including microtubule-associated protein light chain 3 (LC3), dynein, autophagy-related gene 5 (Atg5), and Beclin 1, was remarkably enhanced, whereas mammalian target of rapamycin (mTOR) was downregulated. However, besides mTOR, their levels displayed a downregulated trend beyond simultaneous Se treatment. The protein expression of autophagy genes was similar to those of mRNA. In conclusion, Cd toxicity affect energy metabolism and induce autophagy, which causes damage to chicken ovary, whereas Se could protect effectively this injury induced by Cd.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
42
|
Mostafa DG, Ahmed SF, Hussein OA. Protective effect of tetrahydrobiopterin on hepatic and renal damage after acute cadmium exposure in male rats. Ultrastruct Pathol 2018; 42:516-531. [PMID: 30595070 DOI: 10.1080/01913123.2018.1559566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/29/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most important environmental and industrial pollutants. This study investigated the impact of acute exposure to Cd on oxidative stress and the inflammatory marker interleukin-6 (IL-6) in the plasma of rats and the histological picture of liver and kidney, as well as to examine the potential protective effect of tetrahydrobiopterin (BH4). METHODS Rats were divided into control group, Cd group that received a single intraperitoneal (i.p.) dose of 4 mg/kg b.w. of CdCl2 and BH4+ Cd group that received a single dose of BH4 (20 mg/kg, i.p.) and subsequently exposed to a single dose of Cd 24 h after the BH4 treatment. RESULTS Cd increased the plasma levels of hepatic enzymes (ALT and AST), urea, creatinine, malondialdehyde (MDA), and IL-6 and decreased the superoxide dismutase (SOD) activity. Also, it induced histopathological alterations in the liver with severe degeneration, especially in centrilobular zones. Renal tubular epithelium showed vacuolated cytoplasm and dense nuclei. VEGF expression was mild. Ultrastuctural changes were seen in some renal tubules. The nuclei appeared distorted with electron dense chromatin. Mitochondria with destructed cristae were observed. BH4 pretreatment had protective effects, since it significantly reduced the levels of IL-6 and ameliorated the alteration in oxidative status biomarkers induced by Cd. Improvement of histopathological alterations was observed in Cd-groups. The nuclei were vesicular euchromatic, intact mitochondria and normal appearance of the filtration membrane. Moderate expression of VEGF was noted. CONCLUSION This study has provided clear evidence for the protective efficacy of BH4 against experimental Cd toxicity.
Collapse
Affiliation(s)
- Dalia G Mostafa
- a Department of Medical Physiology, Faculty of Medicine , Assiut University , Assiut , Egypt
- b Department of Medical Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Salwa Fares Ahmed
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ola A Hussein
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
43
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
44
|
Liu R, Jia T, Cui Y, Lin H, Li S. The Protective Effect of Selenium on the Chicken Pancreas against Cadmium Toxicity via Alleviating Oxidative Stress and Autophagy. Biol Trace Elem Res 2018; 184:240-246. [PMID: 28994040 DOI: 10.1007/s12011-017-1186-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/02/2017] [Indexed: 12/26/2022]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can affect human and animal health. Selenium (Se) is an essential microelement that can protect various organs against toxic heavy metals. Although many studies have investigated the adverse effect of Cd in rats and several other animals, little is known regarding the mechanisms of Cd-induced autophagy in the chicken pancreas and the antagonistic effect of Se on Cd. In the current study, we fed chickens Se, Cd, or Se and Cd supplements to establish the Se and Cd interaction model and to measure the concentrations of Se and Cd in the chicken pancreas. The ultrastructure changes of the chicken pancreas were also observed, and we detected oxidative stress indexes in each group. The expression levels of autophagy-related genes were also examined. We found that Cd exposure could increase the concentration of Cd, the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); and the total antioxidant capacity (T-AOC) content in the chicken pancreas. The protein expression levels of dynein, Beclin1, LC3-1, LC3-2, and Atg5 were increased and that of TOR was decreased under Cd exposure conditions. However, the changes induced by Cd were significantly alleviated by Se. This study suggested that Cd could accumulate in the chicken pancreas and lead to oxidative stress and autophagy. Se was shown to antagonize Cd toxicity though reducing Cd accumulation, alleviating oxidative stress, and inhibiting autophagy. This study revealed a concrete mechanism for the Se antagonism of Cd and might provide a new clue for the detoxification of Cd poisoning.
Collapse
Affiliation(s)
- Ruohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tiantian Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
45
|
ERK1/2 MAPK promotes autophagy to suppress ER stress-mediated apoptosis induced by cadmium in rat proximal tubular cells. Toxicol In Vitro 2018; 52:60-69. [PMID: 29870746 DOI: 10.1016/j.tiv.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal and its toxic mechanism is not entirely clear. The goal of the present study was to investigate the toxic mechanism of Cd on rPT cells, and to elucidate the role of ERK1/2 signaling pathway in mediating the relationship between apoptosis and autophagy. We evaluated the cell morphology, cell cycle distribution, apoptosis rates, and the expression of related proteins. We observed that increased Cd concentration disrupted cell morphology, increased apoptosis and induced autophagy. Additionally, activation of JNK1/2 and p38 MAPK promoted apoptosis, while activation of ERK1/2 inhibited apoptosis. Upon inhibition of autophagy, apoptosis rate and the expression of ER proteins related to the apoptosis were increased. Following inhibition of the ERK1/2 signaling pathway, the number of LC3 aggregates, the rate of LC3II/LC3I and the expression of Beclin-1were decreased, but the expression level of ER proteins related to apoptosis were increased. Our results indicated that Cd exposure damages cells also induces apoptosis and autophagy, meanwhile demonstrate that the ERK1/2 signaling pathway plays an important role in this process. Besides, these data suggest that autophagy can inhibit Cd-induced apoptosis and the ERK1/2 signaling pathway can suppress ER stress-mediated apoptosis by activating autophagy.
Collapse
|
46
|
Liu Y, Yu H, Zhang X, Wang Y, Song Z, Zhao J, Shi H, Li R, Wang Y, Zhang LW. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology 2018; 12:586-601. [PMID: 29732938 DOI: 10.1080/17435390.2018.1466932] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bismuth is widely used in metallurgy, cosmetic industry, and medical diagnosis and recently, bismuth nanoparticles (NPs) (BiNP) have been made and proved to be excellent CT imaging agents. Previously, we have synthesized bovine serum albumin based BiNP for imaging purpose but we found a temporary kidney injury by BiNP. Due to the reported adverse events of bismuth on human health, we extended our studies on the mechanisms for BiNP induced nephrotoxicity. Blood biochemical analysis indicated the increase in creatinine (CREA) and blood urea nitrogen (BUN), and intraluminal cast formation with cell apoptosis/necrosis was evident in proximal convoluted tubules (PCTs) of mice. BiNP induced acute kidney injury (AKI) was associated with an increase in LC3II, while the autophagic flux indicator p62 remained unchanged. Chloroquine and rapamycin were used to evaluate the role of autophagy in AKI caused by BiNP. Results showed that BiNP induced AKI was further attenuated by rapamycin, while AKI became severe when chloroquine was applied. In vitro studies further proved BiNP induced autophagy in human embryonic kidney cells 293, presented as autophagic vacuole (AV) formation along with increased levels of autophagy-related proteins including LC3II, Beclin1, and Atg12. Specifically, reactive oxygen species (ROS) generated by BiNP could be the major inducer of autophagy, because ROS blockage attenuated autophagy. Autophagy induced by BiNP was primarily regulated by AMPK/mTOR signal pathway and partially regulated by Akt/mTOR. Our study provides fundamental theory to better understand bismuth induced nephrotoxicity for better clinical application of bismuth related compounds.
Collapse
Affiliation(s)
- Yongming Liu
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Huan Yu
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Xihui Zhang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Yong Wang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Zhentao Song
- b State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Jian Zhao
- b State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Haibin Shi
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Ruibin Li
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Yangyun Wang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Leshuai W Zhang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| |
Collapse
|
47
|
Shen R, Liu D, Hou C, Liu D, Zhao L, Cheng J, Wang D, Bai D. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food Funct 2018; 8:3636-3646. [PMID: 28905953 DOI: 10.1039/c7fo00495h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this research was to investigate the antioxidant and anti-apoptotic activities of Potentilla anserina polysaccharide (PAP) on kidney damage induced by cadmium (Cd) in vitro and in vivo. PAP has been suggested to have anti-oxidation, anti-apoptosis, immunoregulation, antimicrobial, antitussive, and expectorant abilities. In this study, PAP was extracted and the major components of PAP were analyzed. It was shown that PAP pretreatment remarkably improved redox homeostasis, both in human embryonic kidney 293 (HEK293) cells and in BALB/c mice. Administration of PAP attenuated the mitochondrial dysfunction, degeneration, and fibrosis of kidney induced by Cd. Furthermore, PAP exhibited anti-apoptotic activity, which involved regulating both the mitochondria-mediated intrinsic apoptotic pathway and the death receptor-initiated extrinsic pathway. These results suggest that PAP is a potential therapeutic agent for Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rong Shen
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Shen C, Zhang X, Yu H, Wang F, Wang Y, Zhang LW. Exposure and nephrotoxicity concern of bismuth with the occurrence of autophagy. Toxicol Ind Health 2018; 34:188-199. [PMID: 29506455 DOI: 10.1177/0748233717746810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal nanoparticles or metal-based compounds have drawn attention in various fields ranging from industry to medicine because of their unique physicochemical properties. Bismuth (Bi) compounds and nanomaterials have been commonly used in alloys, electronic industry, batteries, and as flame retardants as well as for anti- Helicobacter pylori therapy, while the nanomaterial form has great potential for computed tomography imaging and thermotherapy, both of which will be introduced in this review. Although Bi was used for several decades, there is a lack of detailed information concerning their toxicity and mechanisms on human health. We described the toxicity of Bi on the kidney that seemed to be relatively known by researchers, while the mechanisms remain unclear. Recently, our group has found that Bi compounds, including bismuth nitrate (BN) and Bi nanomaterials, can induce autophagy in kidney cells. We also extended our findings by selecting five Bi compounds, and the results showed that BN, bismuth oxychloride, bismuth citrate, colloidal bismuth subcitrate, and Bi nanomaterials all induced slight cytotoxicity accompanied with autophagy. Although the role of autophagy in Bi-induced cytotoxicity and kidney injury is under investigation by us, autophagy may help with the exploration of the mechanisms of nephrotoxicity by Bi.
Collapse
Affiliation(s)
- Yongming Liu
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Chen Shen
- 2 Department of Oncology, No.100 Hospital of PLA, Suzhou, Jiangsu, China
| | - Xihui Zhang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Huan Yu
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Fujun Wang
- 3 Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yangyun Wang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Leshuai W Zhang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Wang X, Bao R, Fu J. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue. Biol Trace Elem Res 2018; 181:331-339. [PMID: 28510033 DOI: 10.1007/s12011-017-1041-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
50
|
Fujishiro H, Liu Y, Ahmadi B, Templeton DM. Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 2017; 92:619-631. [PMID: 29218509 DOI: 10.1007/s00204-017-2103-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Cadmium damages renal cells, and in particular may cause mesangial cell death by necrosis or apoptosis, depending on exposure conditions in cultured cells. However, there is an uncertainty as to whether Cd2+-induced autophagy can protect mesangial cells against these other mechanisms of cell death. We have used autophagy-incompetent mouse embryonic fibroblast (MEF) cells lacking the Atg16 gene, as well as cultured rat mesangial cells (RMC) in which Atg16 has been silenced, to examine this issue. Measuring the processing of LC3-I to LC3-II and expression of sequestosome-1 (p62), we define conditions under which RMC can be induced to undergo autophagy in response to 0-20 µM CdCl2. Similarly, Cd2+ can initiate autophagy in MEF cells. However, when autophagy is compromised, either by gene knockout in MEF cells or by RNA silencing in RMC, cell viability is decreased, and concomitantly a Cd2+ dose-dependent increase in pro-caspase-3 cleavage indicates the initiation of apoptotic cell death. In contrast to some previous reports, Cd2+-induced autophagy is not correlated with increased levels of cellular reactive oxygen species but, among a panel of kinases investigated, is suppressed by inhibition of the Jun kinase. We conclude that concentrations of Cd2+ that initiate autophagy may afford renal mesangial cells some degree of protection against other modes (apoptosis, necrosis) of cell death.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Bilal Ahmadi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Douglas M Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|