1
|
Skjølberg C, Degani L, Sileikaite-Morvaközi I, Hawkins CL. Oxidative modification of extracellular histones by hypochlorous acid modulates their ability to induce β-cell dysfunction. Free Radic Biol Med 2025; 230:209-221. [PMID: 39956473 DOI: 10.1016/j.freeradbiomed.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Histones are nuclear proteins that play a key role in chromatin assembly and regulation of gene expression by their ability to bind to DNA. Histones can also be released from cells owing to necrosis or extracellular trap release from neutrophils (NETs) and other immune cells. The presence of histones in the extracellular environment has implications for many pathologies, including diabetes mellitus, owing to the cytotoxic nature of these proteins, and their ability to promote inflammation. NETs also contain myeloperoxidase, a defensive enzyme that produces hypochlorous acid (HOCl), to kill pathogens, but also readily damages host proteins. In this study, we examined the reactivity of histones with and without HOCl modification, with a pancreatic β-cell model. Exposure of β-cells to histones resulted in a loss of metabolic activity and cell death by a combination of apoptosis and necrosis. This toxicity was increased on pretreatment of the β-cells with tumour necrosis factor α and interleukin 1β. Histones upregulated endoplasmic reticulum (ER) stress genes, including the pro-apoptotic transcription factor CHOP. There was also evidence for alterations to the cellular redox environment and upregulation of antioxidant gene expression. However, downregulation of insulin-associated genes and insulin was observed. Interestingly, modification of the histones with HOCl reduced their toxicity and altered the patterns of gene expression observed, and a further decrease in the expression of insulin-associated genes was observed. These findings could be relevant to the development of Type 2 diabetes, where low-grade inflammation favours NET release, resulting in elevated histones in the circulation.
Collapse
Affiliation(s)
- Clara Skjølberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Laura Degani
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Inga Sileikaite-Morvaközi
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
2
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Zhu J, Li G, Huang Q, Wen J, Deng Y, Jiang J. TET3-mediated DNA demethylation and chromatin remodeling regulate T-2 toxin-induced human CYP1A1 expression and cytotoxicity in HepG2 cells. Biochem Pharmacol 2023; 211:115506. [PMID: 36948362 DOI: 10.1016/j.bcp.2023.115506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
T-2 toxin is a hazardous environmental pollutant that poses a risk to both farm animals and humans. Our previous research has reported that T-2 toxin highly induced the expression of human cytochrome P450 1A1 (CYP1A1), which may be a representative inducible marker of T-2 toxin and mediate the toxicity of T-2 toxin. In this study, we found that T-2 toxin decreased the DNA methylation levels of the CpG islands on the CYP1A1 promoter by inducing the expression of eleven translocation family protein 3 (TET3) and facilitating its binding to the promoter. These DNA methylation changes then generated an activated chromatin structure on the CYP1A1 promoter by releasing the repressor complex methyl-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2), increasing the active histone modification markers, including H3K4ac, H3K9ac and H3K14ac, and facilitating RNA pol II and NRF1/Sp1 recruitment, which ultimately led to the transcriptional activation of CYP1A1. Interestingly, TET3-mediated CYP1A1 induction enhanced the cytotoxicity of T-2 toxin through inhibiting cell proliferation. Our results demonstrate that T-2 toxin-induced CYP1A1 expression is detrimental to cells and clearly show how T-2 toxin inhibits cell proliferation through regulating CYP1A1 expression from an epigenetic perspective. The findings broaden our current knowledge of the epigenetic mechanisms regulating environmental factors-induced CYP1A1 expression and cytotoxicity. TET3 may serve as a potential new target for toxicogenic detoxification.
Collapse
Affiliation(s)
- Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Guihong Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qiang Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
| |
Collapse
|
4
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
5
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Kim JH, Matsubara T, Lee J, Fenollar-Ferrer C, Han K, Kim D, Jia S, Chang CJ, Yang H, Nagano T, Krausz KW, Yim SH, Gonzalez FJ. Lysosomal SLC46A3 modulates hepatic cytosolic copper homeostasis. Nat Commun 2021; 12:290. [PMID: 33436590 PMCID: PMC7804329 DOI: 10.1038/s41467-020-20461-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023] Open
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes hepatic toxicity associated with prominent lipid accumulation in humans. Here, the authors report that the lysosomal copper transporter SLC46A3 is induced by TCDD and underlies the hepatic lipid accumulation in mice, potentially via effects on mitochondrial function. SLC46A3 was localized to the lysosome where it modulated intracellular copper levels. Forced expression of hepatic SLC46A3 resulted in decreased mitochondrial membrane potential and abnormal mitochondria morphology consistent with lower copper levels. SLC46A3 expression increased hepatic lipid accumulation similar to the known effects of TCDD exposure in mice and humans. The TCDD-induced hepatic triglyceride accumulation was significantly decreased in Slc46a3-/- mice and was more pronounced when these mice were fed a high-fat diet, as compared to wild-type mice. These data are consistent with a model where lysosomal SLC46A3 induction by TCDD leads to cytosolic copper deficiency resulting in mitochondrial dysfunction leading to lower lipid catabolism, thus linking copper status to mitochondrial function, lipid metabolism and TCDD-induced liver toxicity.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Anatomy and Regenerative Biology, Osaka City University Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shang Jia
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Heejung Yang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Tomokazu Nagano
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sun-Hee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 41163, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
8
|
Jeong KH, Lee HJ, Park TS, Shim SM. Catechins Controlled Bioavailability of Benzo[a]pyrene (B[α]P) from the Gastrointestinal Tract to the Brain towards Reducing Brain Toxicity Using the In Vitro Bio-Mimic System Coupled with Sequential Co-Cultures. Molecules 2019; 24:molecules24112175. [PMID: 31185615 PMCID: PMC6600685 DOI: 10.3390/molecules24112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of the current study was to examine the preventive effect of green tea catechins on the transport of Benzo[a]pyrene (B[α]P) into the brain using an in vitro bio-mimic system coupled with sequential co-cultures. When 72 μM of catechins was pre-treated, cellular cytotoxicity induced by IC50 of B[α]P in human liver hepatocellular carcinoma (HepG2) and human brain microvascular endothelial cells (HBMECs) was reduced by 27% and 26%, respectively. The cellular integrity measured in HBMECs, which was exposed to IC50 of B[α]P, slowly decreased. However, the pre-treatment of catechins retained cellular integrity that was 1.14 times higher than with the absence of catechins. Co-consumption of catechins reduced not only the bio-accessibility of B[α]P in digestive fluid, but it also decreased absorption of B[α]P in human intestinal epithelial cells (Caco-2) with a HepG2 co-culture system. It was found that approximately a two times lower amount of B[α]P was transported via the blood-brain barrier (BBB) compared to only the B[α]P intake. These results are taken in conjunction with each other support that catechins could be able to prevent brain toxicity induced by B[α]P in the human body by limiting the bio-availability of B[α]P.
Collapse
Affiliation(s)
- Kang-Hyun Jeong
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Sungnam-si 461-701, Gyeonggi-do, Korea.
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| |
Collapse
|
9
|
Pěnčíková K, Svržková L, Strapáčová S, Neča J, Bartoňková I, Dvořák Z, Hýžďalová M, Pivnička J, Pálková L, Lehmler HJ, Li X, Vondráček J, Machala M. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:473-486. [PMID: 29518658 PMCID: PMC5908724 DOI: 10.1016/j.envpol.2018.02.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 05/18/2023]
Abstract
The mechanisms contributing to toxic effects of airborne lower-chlorinated PCB congeners (LC-PCBs) remain poorly characterized. We evaluated in vitro toxicities of environmental LC-PCBs found in both indoor and outdoor air (PCB 4, 8, 11, 18, 28 and 31), and selected hydroxylated metabolites of PCB 8, 11 and 18, using reporter gene assays, as well as other functional cellular bioassays. We focused on processes linked with endocrine disruption, tumor promotion and/or regulation of transcription factors controlling metabolism of both endogenous compounds and xenobiotics. The tested LC-PCBs were found to be mostly efficient anti-androgenic (within nanomolar - micromolar range) and estrogenic (at micromolar concentrations) compounds, as well as inhibitors of gap junctional intercellular communication (GJIC) at micromolar concentrations. PCB 8, 28 and 31 were found to partially inhibit the aryl hydrocarbon receptor (AhR)-mediated activity. The tested LC-PCBs were also partial constitutive androstane receptor (CAR) and pregnane X receptor (PXR) agonists, with PCB 4, 8 and 18 being the most active compounds. They were inactive towards other nuclear receptors, such as vitamin D receptor, thyroid receptor α, glucocorticoid receptor or peroxisome proliferator-activated receptor γ. We found that only PCB 8 contributed to generation of oxidative stress, while all tested LC-PCBs induced arachidonic acid release (albeit without further modulations of arachidonic acid metabolism) in human lung epithelial cells. Importantly, estrogenic effects of hydroxylated (OH-PCB) metabolites of LC-PCBs (4-OH-PCB 8, 4-OH-PCB 11 and 4'-OH-PCB 18) were higher than those of the parent PCBs, while their other toxic effects were only slightly altered or suppressed. This suggested that metabolism may alter toxicity profiles of LC-PCBs in a receptor-specific manner. In summary, anti-androgenic and estrogenic activities, acute inhibition of GJIC and suppression of the AhR-mediated activity were found to be the most relevant modes of action of airborne LC-PCBs, although they partially affected also additional cellular targets.
Collapse
Affiliation(s)
- Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Iveta Bartoňková
- Department of Cell Biology and Genetics, Faculty of Science, Šlechtitelů 11, Palacký University, 78371 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Šlechtitelů 11, Palacký University, 78371 Olomouc, Czech Republic
| | - Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Jakub Pivnička
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Lenka Pálková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
10
|
May P, Bremond P, Sauzet C, Piccerelle P, Grimaldi F, Champion S, Villard PH. In Vitro Cocktail Effects of PCB-DL (PCB118) and Bulky PCB (PCB153) with BaP on Adipogenesis and on Expression of Genes Involved in the Establishment of a Pro-Inflammatory State. Int J Mol Sci 2018. [PMID: 29534036 PMCID: PMC5877702 DOI: 10.3390/ijms19030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
(1) Objective: Highlight the in vitro effects of 3T3-L1 cell exposure to polychlorinated biphenyls (PCB118 and 153) or benzo(a)pyrene (BaP) alone or as a cocktail on adipogenesis (ADG) by focusing on changes in lipid metabolism and inflammatory-related genes expression (INFG) and ADG-related genes expression (ADGG); (2) Results: Treatment from the early stage of cell differentiation by BaP alone or in combination with PCBs decreased the expression of some of the ADGG (PPARγGlut-4, FAS, Lipin-1a, Leptin, and Adiponectin). BaP enhanced the INFG, especially MCP-1 and TNFα. Co-exposure to BaP and PCB153 showed a synergistic effect on TNFα and IL6 expression. Treatment with BaP and PCBs during only the maturation period up-regulated the INFG (IL6, TNFα, CXCL-10 & MCP-1). PCB118 alone also enhanced TNFα, CXCL-10, and PAI-1 expression. The change in MCP-1 protein expression was in agreement with that of the gene. Finally, the BaP-induced up-regulation of the xenobiotic responsive element (XRE)-controlled luciferase activity was impaired by PCB153 but not by PCB118; (3) Conclusion: BaP and PCBs down-regulate a part of ADGG and enhance INFG. The direct regulatory effect of PCBs on both ADGG and INFG is usually rather lower than that of BaP and synergistic or antagonistic cocktail effects are clearly observed.
Collapse
Affiliation(s)
- Phealay May
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Patricia Bremond
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Christophe Sauzet
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Philippe Piccerelle
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Frédérique Grimaldi
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Serge Champion
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Pierre-Henri Villard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| |
Collapse
|
11
|
Aluru N, Karchner SI, Glazer L. Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci 2017; 160:386-397. [PMID: 28973690 PMCID: PMC5837202 DOI: 10.1093/toxsci/kfx192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| |
Collapse
|
12
|
Hale MD, Galligan TM, Rainwater TR, Moore BC, Wilkinson PM, Guillette LJ, Parrott BB. AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:1050-1061. [PMID: 28764121 DOI: 10.1016/j.envpol.2017.07.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 05/16/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link contamination events to critical genetic pathways during embryonic development, and carries significant potential to inform our understanding of potential health effects in wildlife and humans.
Collapse
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, United States; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States
| | - Thomas M Galligan
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory and the Medical University of South Carolina, Charleston, SC 29412, United States
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center & Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC 29442, United States
| | - Brandon C Moore
- Department of Biology, Sewanee: the University of the South, Sewanee, TN 37383, United States
| | - Philip M Wilkinson
- Tom Yawkey Wildlife Center Heritage Preserve, South Carolina Department of Natural Resources, Georgetown, SC 29440, United States
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory and the Medical University of South Carolina, Charleston, SC 29412, United States
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, United States; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
13
|
Xie C, Pogribna M, Word B, Lyn‐Cook L, Lyn‐Cook BD, Hammons GJ. In vitro analysis of factors influencing CYP1A2 expression as potential determinants of interindividual variation. Pharmacol Res Perspect 2017; 5:e00299. [PMID: 28357125 PMCID: PMC5368963 DOI: 10.1002/prp2.299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
Individual differences in drug metabolism contribute to interindividual variation that characterizes responses to drugs and risk in exposure to foreign chemicals. Large individual differences are found in expression levels of CYP1A2, a major drug-metabolizing enzyme. Underlying causes for this variation are not well understood. Several factors, including tobacco smoking, consumption of cruciferous vegetables, and sex, have been associated with modulating CYP1A2 expression. To understand factors regulating expression of CYP1A2 in establishing a causal relationship, this study examined effects of cigarette smoke condensate (CSC), indole-3-carbinol (I3C), and 17β-estradiol (estradiol) on CYP1A2 expression in in vitro systems using human liver and lung cells. Treatment with CSC (2-25 μg/mL) significantly increased levels of CYP1A2 in six cell lines examined, in a concentration- and time-dependent manner. Fold changes in expression levels relative to controls varied among cell lines. CYP1A2 enzymatic activity also increased with CSC exposure. Treatment of H1299 and HepB3 cells with dietary agent I3C (50 and 100 μmol/L) increased CYP1A2 expression. In human cell lines H1299 and H1395, treatment with estradiol (10 and 100 nmol/L) significantly reduced expression of CYP1A2. Using ChIP assays, effects of CSC on histone modifications were analyzed. Increases in H3K4me3 and H4K16ac were observed at several segments in the CYP1A2 gene, whereas H3K27me3 decreased, following CSC treatment. These results suggest that CYP1A2 expression is affected epigenetically by CSC. Additional studies will be needed to further establish regulatory mechanisms underlying effects of various environmental, dietary, and endogenous factors on CYP1A2 expression in better predicting individual variation.
Collapse
Affiliation(s)
- ChengHui Xie
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Marta Pogribna
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Beverly Word
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Lascelles Lyn‐Cook
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - Beverly D. Lyn‐Cook
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| | - George J. Hammons
- Division of Biochemical ToxicologyFDA/National Center for Toxicological ResearchJeffersonArkansas72079
| |
Collapse
|
14
|
Merches K, Haarmann-Stemmann T, Weighardt H, Krutmann J, Esser C. AHR in the skin: From the mediator of chloracne to a therapeutic panacea? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Prasad B, Vrana M, Mehrotra A, Johnson K, Bhatt DK. The Promises of Quantitative Proteomics in Precision Medicine. J Pharm Sci 2016; 106:738-744. [PMID: 27939376 DOI: 10.1016/j.xphs.2016.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
Abstract
Precision medicine approach has a potential to ensure optimum efficacy and safety of drugs at individual patient level. Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models could play a significant role in precision medicine by predicting interindividual variability in drug disposition and response. In order to develop robust PBPK/PD models, it is imperative that the critical physiological parameters affecting drug disposition and response and their variability are precisely characterized. Currently used PBPK/PD modeling software, for example, Simcyp and Gastroplus, encompass information such as organ volumes, blood flows to organs, body fat composition, glomerular filtration rate, etc. However, the information on the interindividual variability of the majority of the proteins associated with PK and PD, for example, drug metabolizing enzymes, transporters, and receptors, are not fully incorporated into these PBPK modeling platforms. Such information is significant because the population factors such as age, genotype, disease, and gender can affect abundance or activity of these proteins. To fill this critical knowledge gap, mass spectrometry-based quantitative proteomics has emerged as an important technique to characterize interindividual variability in the protein abundance of drug metabolizing enzymes, transporters, and receptors. Integration of these quantitative proteomics data into in silico PBPK/PD modeling tools will be crucial toward precision medicine.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195.
| | - Marc Vrana
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Aanchal Mehrotra
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Katherine Johnson
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| |
Collapse
|
16
|
Amenya HZ, Tohyama C, Ohsako S. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver. Sci Rep 2016; 6:34989. [PMID: 27713569 PMCID: PMC5054525 DOI: 10.1038/srep34989] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.
Collapse
Affiliation(s)
- Hesbon Z Amenya
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Experimental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Wahlang B, Petriello MC, Perkins JT, Shen S, Hennig B. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases. Toxicol In Vitro 2016; 35:180-7. [PMID: 27288564 PMCID: PMC4949395 DOI: 10.1016/j.tiv.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023]
Abstract
Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity.
Collapse
Affiliation(s)
- Banrida Wahlang
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40536, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan T Perkins
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Shu Shen
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40536, USA; Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
18
|
Mohammadi-Bardbori A, Akbarizadeh AR, Delju F, Rannug A. Chromatin remodeling by curcumin alters endogenous aryl hydrocarbon receptor signaling. Chem Biol Interact 2016; 252:19-27. [DOI: 10.1016/j.cbi.2016.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023]
|
19
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Brenerová P, Hamers T, Kamstra JH, Vondráček J, Strapáčová S, Andersson PL, Machala M. Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2099-2107. [PMID: 26077315 DOI: 10.1007/s11356-015-4819-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 μM), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.
Collapse
Affiliation(s)
- Petra Brenerová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - Timo Hamers
- Institute for Environmental Studies, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Jorke H Kamstra
- Institute for Environmental Studies, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 62165, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | | | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic.
| |
Collapse
|
21
|
Murphy MO, Petriello MC, Han SG, Sunkara M, Morris AJ, Esser K, Hennig B. Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2201-11. [PMID: 25586614 PMCID: PMC4503535 DOI: 10.1007/s11356-014-4062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 04/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE(-/-) mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Michael C Petriello
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Sung Gu Han
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Manjula Sunkara
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew J Morris
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Karyn Esser
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
22
|
Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65. Toxicol Appl Pharmacol 2015; 289:457-65. [PMID: 26519613 DOI: 10.1016/j.taap.2015.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
Abstract
Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications.
Collapse
Affiliation(s)
- Dandan Liu
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Jordan T Perkins
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Graduate Center for Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, United States; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
23
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
24
|
Jackson DP, Joshi AD, Elferink CJ. Ah Receptor Pathway Intricacies; Signaling Through Diverse Protein Partners and DNA-Motifs. Toxicol Res (Camb) 2015; 4:1143-1158. [PMID: 26783425 PMCID: PMC4714567 DOI: 10.1039/c4tx00236a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Ah receptor is a transcription factor that modulates gene expression via interactions with multiple protein partners; these are reviewed, including the novel NC-XRE pathway involving KLF6.
Collapse
|
25
|
Chepelev NL, Moffat ID, Bowers WJ, Yauk CL. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:64-89. [DOI: 10.1016/j.mrrev.2015.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
|
26
|
Winans B, Nagari A, Chae M, Post CM, Ko CI, Puga A, Kraus WL, Lawrence BP. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:4446-57. [PMID: 25810390 DOI: 10.4049/jimmunol.1402044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
Abstract
Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8(+) T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8(+) T cells prior to and during infection. Altered transcriptional profiles in CD8(+) T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8(+) T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life.
Collapse
Affiliation(s)
- Bethany Winans
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Minho Chae
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Christina M Post
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - B Paige Lawrence
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642;
| |
Collapse
|
27
|
Peng L, Zhong X. Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B 2015; 5:106-12. [PMID: 26579435 PMCID: PMC4629221 DOI: 10.1016/j.apsb.2015.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
The drug metabolism is a biochemical process on modification of pharmaceutical substances through specialized enzymatic systems. Changes in the expression of drug-metabolizing enzyme genes can affect drug metabolism. Recently, epigenetic regulation of drug-metabolizing enzyme genes has emerged as an important mechanism. Epigenetic regulation refers to heritable factors of genomic modifications that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, and non-coding RNAs. This review examines the widespread effect of epigenetic regulations on genes involved in drug metabolism, and also suggests a network perspective of epigenetic regulation. The epigenetic mechanisms have important clinical implications and may provide insights into effective drug development and improve safety of drug therapy.
Collapse
Key Words
- CAR, constitutive androstane receptor
- DNA methylation
- DNMTs, DNA methyltransferases
- Drug metabolism
- Epigenetics
- H3K27me3, histone 3 lysine 27 trimethylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me1, histone 3 lysine 4 monomethylation
- H3K4me2, histone 3 lysine 4 dimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- H3K9me2, histone 3 lysine 9 dimethylation
- H3K9me3, histone 3 lysine 9 trimethylation
- HATs, histone acetyltransferases
- HDAC, histone deacetylases
- Histone modification
- Non-coding RNA
- P450s, cytochrome P450s
- SULTs, sulfotransferases
- TSS, transcription start sites
- Transporter
- UGTs, UDP-glucuronosyltransferases
- UTR, untranslated region
- lncRNAs, long non-coding RNAs
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
|
28
|
Jin Y, Miao W, Lin X, Pan X, Ye Y, Xu M, Fu Z. Acute exposure to 3-methylcholanthrene induces hepatic oxidative stress via activation of the Nrf2/ARE signaling pathway in mice. ENVIRONMENTAL TOXICOLOGY 2014; 29:1399-1408. [PMID: 23712962 DOI: 10.1002/tox.21870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most common contaminants in the environment. The primary focus on the toxicity of PAHs is their ability to activate the aryl hydrocarbon receptor (AhR)-mediated pathway and lead to carcinogenesis in different organisms. However, the influence of PAHs on the antioxidant system in mammalian systems has received only limited attention. In the present study, we observed that the intraperitoneal injection of 100 mg/kg 3-methylcholanthrene (3MC) into mice significantly increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents and decreased glutathione (GSH) contents and the activity of total antioxidant capacity (T-AOC), indicating that serious oxidative stress had been induced in the liver of mice. Then, the oxidative stress signal activated the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway by enhancing the mRNA levels of Nrf2, p38, and Erk2. Moreover, the mRNA levels of Nrf2/ARE target genes, including glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione synthetase (GS), NAD(P)H: quinone oxidoreductase 1 (Nqo1), superoxide dismutase 1 (Sod1), and Sod2, increased significantly after treatment with 3MC for 24 hours. The hepatic levels of NQO1 and the activities of GR and GS were also significantly enhanced at 24 hours after 3MC treatment. Because the expression of NQO1 is co-regulated by Nrf2/ARE and AhR/XRE in mammalian tissues, NQO1 may play an important role in protecting against the oxidative stress induced by 3MC. Taken together, our findings suggested that acute exposure to 3MC altered the cellular redox balance in hepatocytes to trigger Nrf2-regulated antioxidant responses, which may represent an adaptive cell defense mechanism against the oxidative stress induced by PAHs.
Collapse
Affiliation(s)
- Yuanxiang Jin
- Department of Biotechnology, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Jin Y, Miao W, Lin X, Wu T, Shen H, Chen S, Li Y, Pan Q, Fu Z. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:353-363. [PMID: 25124514 DOI: 10.1016/j.etap.2014.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenyu Miao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangjie Shen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shan Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yanhong Li
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiaoqiao Pan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
31
|
Vorrink SU, Hudachek DR, Domann FE. Epigenetic determinants of CYP1A1 induction by the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Int J Mol Sci 2014; 15:13916-31. [PMID: 25116688 PMCID: PMC4159831 DOI: 10.3390/ijms150813916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022] Open
Abstract
Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP) 1A1, are regulated by the aryl hydrocarbon receptor (AhR). 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA) and 5-aza-2'-deoxycytidine (5-Aza-dC), significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.
Collapse
Affiliation(s)
- Sabine U Vorrink
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA 52242, USA.
| | - Danielle R Hudachek
- Department of Radiation Oncology, the University of Iowa, Iowa City, IA 52242, USA.
| | - Frederick E Domann
- Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
Kurita H, Schnekenburger M, Ovesen JL, Xia Y, Puga A. The Ah receptor recruits IKKα to its target binding motifs to phosphorylate serine-10 in histone H3 required for transcriptional activation. Toxicol Sci 2014; 139:121-32. [PMID: 24519526 DOI: 10.1093/toxsci/kfu027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) activation by xenobiotic ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is key to their toxicity. Following activation and nuclear translocation, AHR heterodimerizes with the AHR nuclear translocator (ARNT) and binds to AHR response elements (AhREs) in the enhancer of target genes, of which Cyp1a1 is the prototype. Previously, we showed that concomitant with AHR binding, histone H3 in the Cyp1a1 enhancer-promoter AhRE cluster became phosphorylated in serine-10 (H3S10), suggesting that the ligand-activated AHR recruited one or more kinases to the enhancer chromatin to phosphorylate this residue. To test this hypothesis, we used mouse hepatoma Hepa-1c1c7 cells and their c35 mutant derivative, lacking a functional AHR, to search for candidate kinases that would phosphorylate H3S10 in an AHR dependent manner. Using chromatin immunoprecipitation with antibodies to a comprehensive set of protein kinases, we identified three kinases, IκB kinase α (IKKα), mitogen and stress activated protein kinase 1 (MSK1), and mitogen and stress activated protein kinase 2 (MSK2), whose binding to the Cyp1a1 enhancer was significantly increased by TCDD in Hepa-1c1c7 cells and absent in control c35 cells. Complexes of AHR, ARNT, and IKKα could be coimmunoprecipitated from nuclei of TCDD treated Hepa-1c1c7 cells and shRNA-mediated IKKα knockdown inhibited both H3S10 phosphorylation in the Cyp1a1 enhancer and the induction of Cyp1a1, Aldh3a1, and Nqo1 in TCDD-treated cells. We conclude that AHR recruits IKKα to the promoter of its target genes and that AHR-mediated H3S10 phosphorylation is a key epigenetic requirement for induction of AHR targets. Given the role of H3S10ph in regulation of chromosome condensation, AHR-IKKα cross-talk may be a mediator of chromatin remodeling by environmental agents.
Collapse
Affiliation(s)
- Hisaka Kurita
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267
| | | | | | | | | |
Collapse
|
33
|
Wheeler JLH, Martin KC, Resseguie E, Lawrence BP. Differential consequences of two distinct AhR ligands on innate and adaptive immune responses to influenza A virus. Toxicol Sci 2014; 137:324-34. [PMID: 24194396 PMCID: PMC3908724 DOI: 10.1093/toxsci/kft255] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/26/2013] [Indexed: 12/30/2022] Open
Abstract
Immune modulation by the aryl hydrocarbon receptor (AhR) has been primarily studied using 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). Recent reports suggest another AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), exhibits distinct immunomodulatory properties, but side-by-side comparisons of these 2 structurally distinct, high-affinity ligands are limited. In this study, the effects of in vivo AhR activation with TCDD and FICZ were directly compared in a mouse model of influenza virus infection using 3 key measures of the host response to infection: pulmonary neutrophilia, inducible nitric oxide synthase (iNOS) levels, and the virus-specific CD8(+) T-cell response. By this approach, the consequences of AhR activation on innate and adaptive immune responses to the same antigenic challenge were compared. A single dose of TCDD elicited AhR activation that is sustained for the duration of the host's response to infection and modulated all 3 responses to infection. In contrast, a single dose of FICZ induced transient AhR activation and had no effect on the immune response to infection. Micro-osmotic pumps and Cyp1a1-deficient mice were utilized to augment FICZ-mediated AhR activation in vivo, in order to assess the effect of transient versus prolonged AhR activation. Prolonged AhR activation with FICZ did not affect neutrophil recruitment or pulmonary iNOS levels. However, FICZ-mediated AhR activation diminished the CD8(+) T-cell response in Cyp1a1-deficient mice in a similar manner to TCDD. These results demonstrate that immunomodulatory differences in the action of these 2 ligands are likely due to not only the duration of AhR activation but also the cell types in which the receptor is activated.
Collapse
Affiliation(s)
- Jennifer L. H. Wheeler
- Department of Environmental Medicine and Toxicology Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kyle C. Martin
- Department of Environmental Medicine and Toxicology Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Emily Resseguie
- Department of Environmental Medicine and Toxicology Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - B. Paige Lawrence
- Department of Environmental Medicine and Toxicology Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
34
|
Casati L, Sendra R, Poletti A, Negri-Cesi P, Celotti F. Androgen receptor activation by polychlorinated biphenyls: epigenetic effects mediated by the histone demethylase Jarid1b. Epigenetics 2013; 8:1061-8. [PMID: 23907094 PMCID: PMC3891687 DOI: 10.4161/epi.25811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The exposure to environmental endocrine disrupting compounds (EDC), as polychlorinated biphenyls (PCBs), widely diffused in the environment may produce epigenetic changes that affect the endocrine system. We found that PCBs activate AR transcriptional activity and that this effect is potentiated by the demethylase Jarid1b, a histone demethylase that catalyzes the removal of trimethylation of lysine 4 on histone H3 (H3K4me3), induced by PCB. The aim of the present study was to investigate the effect of the treatment of cultured cells (HEK293) with a mixture of the most diffused environmental PCBs and, also with dihydrotestosterone (DHT), on the functional interaction between AR and Jarid1b. Although the effect induced by DHT on the AR transactivation was considerably higher, the PCB mixture produced an AR-mediated transactivation in a dose-dependent manner. Cotransfection with plasmids expressing Jarid1b and various AR isoforms containing polyglutamine tracts (polyQ tracts) of different lengths showed that Jarid1b potentiates the AR transcriptional activity induced by PCBs but only with the shortest AR isoform. The potentiating effect of Jarid1b on the AR is mediated by a direct interaction of the enzyme with the AR promoter. In fact, utilizing constructs containing AR promoters with a different length and a luciferase reporter gene, we showed that the effect of PCBs, but not of DHT, needs the presence of Jarid1b and of at least two DNA binding sites for Jarid1b.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Pharmacological and Biomolecular Sciences; University of Milan; Milano, Italy
| | - Ramon Sendra
- Departament de Bioquímica i Biologia Molecular; Universitat de València; Valencia, Spain
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular Sciences; University of Milan; Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences; University of Milan; Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences; University of Milan; Milano, Italy
| |
Collapse
|
35
|
Kim KH, Park HJ, Kim JH, Kim S, Williams DR, Kim MK, Jung YD, Teraoka H, Park HC, Choy HE, Shin BA, Choi SY. Cyp1a reporter zebrafish reveals target tissues for dioxin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:57-65. [PMID: 23587668 DOI: 10.1016/j.aquatox.2013.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.
Collapse
Affiliation(s)
- Kun-Hee Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Calò M, Casella S, Panzera M, Lo Cascio P, Alberghina D, Piccione G. Activation of the Ahr signalling pathway by polychlorobiphenyls causes a marked induction of cytochrome P450 only after depletion of vitellogenin in Sparus aurata. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:735-742. [PMID: 23121874 DOI: 10.1016/j.etap.2012.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/17/2012] [Accepted: 09/30/2012] [Indexed: 06/01/2023]
Abstract
The effects of polychlorinated biphenyl congeners 126 and 153 (PCB-126 and PCB-153) on vitellogenin (Vtg) and cytochrome (CYP1A1) expression were evaluated in 60 juvenile Sparus aurata. Fish were divided into four groups and the control group (Group A) was compared to fish exposed to PCB-126 (10-8M) (Group B), PCB-153 (10-6M) (Group C) singly and also in combination (Group D) for 12, 24 and 72 h. Hepatic expression of Vtg and CYP1A1 were analyzed using histological examinations and by immunochemical (Western blotting and immunohistochemistry) methods. Vtg increased in juvenile fishes of Groups B, C and D after 12h respect to Group A and decreased after 24 and 72 h respect to 12h in each group. CYP1A1 increased after 12 and 24h in all groups vs control group and increased in Group B only at 72 h vs in control group. The results showed that chemical interaction and endocrine disruption in fish might produce deleterious consequences not only for fish but also for human.
Collapse
Affiliation(s)
- Margherita Calò
- Department of Experimental Sciences and Applied Biotechnology, Faculty of Veterinary Medicine, University of Messina, Polo Universitario Annunziata, 90128 Messina, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Casati L, Sendra R, Colciago A, Negri-Cesi P, Berdasco M, Esteller M, Celotti F. Polychlorinated biphenyls affect histone modification pattern in early development of rats: a role for androgen receptor-dependent modulation? Epigenomics 2012; 4:101-12. [DOI: 10.2217/epi.11.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The epigenome represents an important target of environmental pollution. Early-life exposure to polychlorinated biphenyls (PCBs) modifies sex steroid enzymes and receptor transcription patterns. Steroid receptors, such as androgen receptor (AR), function as coregulators of histone modification enzymes. Aim: To clarify if a PCB early-life exposure might affect the epigenome in rat liver, we analyzed some histone post-translational modifications (H3K4me3 and H4K16Ac) and the corresponding histone remodeling enzymes, and the AR as a histone enzyme coregulator. Results: We observed a decrease of H4K16Ac and H3K4me3 levels, possibly linked to the induction of chromatin-modifying enzymes SirtT1 and Jarid1b, and a decrease of AR. PCBs also seem to induce AR transcriptional activity. Some of the observed effects are sex dimorphic. Conclusion: Our data suggest that an early-life exposure to PCB sometimes modifies the epigenome in the offspring liver in a dimorphic way. AR might be involved in modulating PCB effects on the epigenome.
Collapse
Affiliation(s)
| | - Ramon Sendra
- Departament de Bioquímica i Biologia Molecular Universitat de València, C/Dr Moliner 50, 46100-Burjassot, València, Spain
| | - Alessandra Colciago
- Department of Endocrinology, Pathophysiology & Applied Biology, INBB Research Unit, University of Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paola Negri-Cesi
- Department of Endocrinology, Pathophysiology & Applied Biology, INBB Research Unit, University of Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maria Berdasco
- Cancer Epigenetics & Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics & Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet, Barcelona, Catalonia, Spain
| | - Fabio Celotti
- Department of Endocrinology, Pathophysiology & Applied Biology, INBB Research Unit, University of Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|