1
|
Abdel Azim S, Bainvoll L, Vecerek N, DeLeo VA, Adler BL. Sunscreens part 2: Regulation and safety. J Am Acad Dermatol 2025; 92:689-698. [PMID: 38777185 DOI: 10.1016/j.jaad.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 05/25/2024]
Abstract
The second part of this CME article discusses sunscreen regulation and safety considerations for humans and the environment. First, we provide an overview of the history of the US Food and Drug Administration's regulation of sunscreen. Recent Food and Drug Administration studies clearly demonstrate that organic ultraviolet filters are systemically absorbed during routine sunscreen use, but to date there is no evidence of associated negative health effects. We also review the current evidence of sunscreen's association with vitamin D levels and frontal fibrosing alopecia, and recent concerns regarding benzene contamination. Finally, we review the possible environmental effects of ultraviolet filters, particularly coral bleaching. While climate change has been shown to be the primary driver of coral bleaching, laboratory-based studies suggest that organic ultraviolet filters represent an additional contributing factor, which led several localities to ban certain organic filters.
Collapse
Affiliation(s)
- Sara Abdel Azim
- Georgetown University School of Medicine, Washington, District of Columbia
| | - Liat Bainvoll
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Natalia Vecerek
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vincent A DeLeo
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brandon L Adler
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
2
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:95-105. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2025; 45:61-76. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
4
|
Wareing B, Aktalay Hippchen A, Kolle SN, Birk B, Funk-Weyer D, Landsiedel R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. TOXICS 2024; 12:616. [PMID: 39195718 PMCID: PMC11360696 DOI: 10.3390/toxics12080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Since 2020, the REACh regulation requires toxicological data on nanoforms of materials, including the assessment of their skin-sensitizing properties. Small molecules' skin sensitization potential can be assessed by new approach methodologies (NAMs) addressing three key events (KE: protein interaction, activation of dendritic cells, and activation of keratinocytes) combined in a defined approach (DA) described in the OECD guideline 497. In the present study, the applicability of three NAMs (DPRA, LuSens, and h-CLAT) to nine materials (eight inorganic nanomaterials (NM) consisting of CeO2, BaSO4, TiO2 or SiO2, and quartz) was evaluated. The NAMs were technically applicable to NM using a specific sample preparation (NANOGENOTOX dispersion protocol) and method modifications to reduce interaction of NM with the photometric and flowcytometric read-outs. The results of the three assays were combined according to the defined approach described in the OECD guideline No. 497; two of the inorganic NM were identified as skin sensitizers. However, data from animal studies (for ZnO, also human data) indicate no skin sensitization potential. The remaining seven test substances were assessed as "inconclusive" because all inorganic NM were outside the domain of the DPRA, and the achievable test concentrations were not sufficiently high according to the current test guidelines of all three NAMs. The use of these NAMs for (inorganic) NM and the relevance of the results in general are challenged in three ways: (i) NAMs need modification to be applicable to insoluble, inorganic matter; (ii) current test guidelines lack adequate concentration metrics and top concentrations achievable for NM; and (iii) NM may not cause skin sensitization by the same molecular and cellular key events as small organic molecules do; in fact, T-cell-mediated hypersensitivity may not be the most relevant reaction of the immune system to NM. We conclude that the NAMs adopted by OECD test guidelines are currently not a good fit for testing inorganic NM.
Collapse
Affiliation(s)
- Britta Wareing
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Ayse Aktalay Hippchen
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Susanne N. Kolle
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Barbara Birk
- BASF SE, Agriculture Solutions, 67117 Limburgerhof, Germany;
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Nasirzadeh N, Monazam Esmaielpour MR, Golbabaei F. The role of submicron zinc oxide particle size in improving UV protection by textiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3068-3071. [PMID: 38166475 DOI: 10.1080/09603123.2023.2293063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Affiliation(s)
- Nafiseh Nasirzadeh
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Monazam Esmaielpour
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Occupational Health Engineering, School of Public Health, Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Thoma T, Ma-Hock L, Schneider S, Honarvar N, Treumann S, Groeters S, Strauss V, Marxfeld H, Funk-Weyer D, Seiffert S, Wohlleben W, Dammann M, Wiench K, Lombaert N, Spirlet C, Vasquez M, Dewhurst N, Landsiedel R. Toxicological inhalation studies in rats to substantiate grouping of zinc oxide nanoforms. Part Fibre Toxicol 2024; 21:24. [PMID: 38760761 PMCID: PMC11100124 DOI: 10.1186/s12989-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.
Collapse
Affiliation(s)
| | - Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Steffen Schneider
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Silke Treumann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Sibylle Groeters
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Heike Marxfeld
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Svenja Seiffert
- BASF SE, Analytical and Material Science, Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- BASF SE, Analytical and Material Science, Ludwigshafen am Rhein, Germany
| | - Martina Dammann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Karin Wiench
- BASF SE, Product Stewardship, Regulatory Toxicology Chemicals, Ludwigshafen am Rhein, Germany
| | | | | | | | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Martin L, Simpson K, Brzezinski M, Watt J, Xu W. Cellular response of keratinocytes to the entry and accumulation of nanoplastic particles. Part Fibre Toxicol 2024; 21:22. [PMID: 38685063 PMCID: PMC11057139 DOI: 10.1186/s12989-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Plastic accumulation in the environment is rapidly increasing, and nanoplastics (NP), byproducts of environmental weathering of bulk plastic waste, pose a significant public health risk. Particles may enter the human body through many possible routes such as ingestion, inhalation, and skin absorption. However, studies on NP penetration and accumulation in human skin are limited. Loss or reduction of the keratinized skin barrier may enhance the skin penetration of NPs. The present study investigated the entry of NPs into a human skin system modeling skin with compromised barrier functions and cellular responses to the intracellular accumulations of NPs. Two in vitro models were employed to simulate human skin lacking keratinized barriers. The first model was an ex vivo human skin culture with the keratinized dermal layer (stratum corneum) removed. The second model was a 3D keratinocyte/dermal fibroblast cell co-culture model with stratified keratinocytes on the top and a monolayer of skin fibroblast cells co-cultured at the bottom. The penetration and accumulation of the NPs in different cell types were observed using fluorescent microscopy, confocal microscopy, and cryogenic electron microscopy (cryo-EM). The cellular responses of keratinocytes and dermal fibroblast cells to stress induced by NPs stress were measured. The genetic regulatory pathway of keratinocytes to the intracellular NPs was identified using transcript analyses and KEGG pathway analysis. The cellular uptake of NPs by skin cells was confirmed by imaging analyses. Transepidermal transport and penetration of NPs through the skin epidermis were observed. According to the gene expression and pathway analyses, an IL-17 signaling pathway was identified as the trigger for cellular responses to internal NP accumulation in the keratinocytes. The transepidermal NPs were also found in co-cultured dermal fibroblast cells and resulted in a large-scale transition from fibroblast cells to myofibroblast cells with enhanced production of α-smooth muscle actin and pro-Collagen Ia. The upregulation of inflammatory factors and cell activation may result in skin inflammation and ultimately trigger immune responses.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, NM, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, 6300 Ocean Dr, 78412, Corpus Christi, TX, USA.
| |
Collapse
|
8
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Keller AA, Zheng Y, Praetorius A, Quik JTK, Nowack B. Predicting environmental concentrations of nanomaterials for exposure assessment - a review. NANOIMPACT 2024; 33:100496. [PMID: 38266914 DOI: 10.1016/j.impact.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
There have been major advances in the science to predict the likely environmental concentrations of nanomaterials, which is a key component of exposure and subsequent risk assessment. Considerable progress has been since the first Material Flow Analyses (MFAs) in 2008, which were based on very limited information, to more refined current tools that take into account engineered nanoparticle (ENP) size distribution, form, dynamic release, and better-informed release factors. These MFAs provide input for all environmental fate models (EFMs), that generate estimates of particle flows and concentrations in various environmental compartments. While MFA models provide valuable information on the magnitude of ENP release, they do not account for fate processes, such as homo- and heteroaggregation, transformations, dissolution, or corona formation. EFMs account for these processes in differing degrees. EFMs can be divided into multimedia compartment models (e.g., atmosphere, waterbodies and their sediments, soils in various landuses), of which there are currently a handful with varying degrees of complexity and process representation, and spatially-resolved watershed models which focus on the water and sediment compartments. Multimedia models have particular applications for considering predicted environmental concentrations (PECs) in particular regions, or for developing generic "fate factors" (i.e., overall persistence in a given compartment) for life-cycle assessment. Watershed models can track transport and eventual fate of emissions into a flowing river, from multiple sources along the waterway course, providing spatially and temporally resolved PECs. Both types of EFMs can be run with either continuous sources of emissions and environmental conditions, or with dynamic emissions (e.g., temporally varying for example as a new nanomaterial is introduced to the market, or with seasonal applications), to better understand the situations that may lead to peak PECs that are more likely to result in exceedance of a toxicological threshold. In addition, bioaccumulation models have been developed to predict the internal concentrations that may accumulate in exposed organisms, based on the PECs from EFMs. The main challenge for MFA and EFMs is a full validation against observed data. To date there have been no field studies that can provide the kind of dataset(s) needed for a true validation of the PECs. While EFMs have been evaluated against a few observations in a small number of locations, with results that indicate they are in the right order of magnitude, there is a great need for field data. Another major challenge is the input data for the MFAs, which depend on market data to estimate the production of ENPs. The current information has major gaps and large uncertainties. There is also a lack of robust analytical techniques for quantifying ENP properties in complex matrices; machine learning may be able to fill this gap. Nevertheless, there has been major progress in the tools for generating PECs. With the emergence of nano- and microplastics as a leading environmental concern, some EFMs have been adapted to these materials. However, caution is needed, since most nano- and microplastics are not engineered, therefore their characteristics are difficult to generalize, and there are new fate and transport processes to consider.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, United States of America.
| | - Yuanfang Zheng
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris T K Quik
- National Institute for Public Health and the Environment, Centre for Sustainability Health and Environment, Bilthoven, the Netherlands
| | - Bernd Nowack
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
10
|
Li Y, Li J, Li M, Sun J, Shang X, Ma Y. Biological mechanism of ZnO nanomaterials. J Appl Toxicol 2024; 44:107-117. [PMID: 37518903 DOI: 10.1002/jat.4522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Modern nanotechnology has made zinc oxide nanomaterials (ZnO NMts) multifunctional, stable, and low cost, enabling them to be widely used in commercial and biomedical fields. With its wide application, the risk of human direct contact and their release into the environment also increases. This review aims to summarize the toxicity studies of ZnO NMts in vivo, including neurotoxicity, inhalation toxicity, and reproductive toxicity. The antibacterial and antiviral mechanisms of ZnO NMts in vitro and the toxicity to eukaryotic cells were summarized. The summary found that it was mainly related to reactive oxygen species (ROS) produced by oxidative stress. It also discusses the potential harm to body and the favorable prospects of the widespread use of antibacterial and antiviral in the future medical field. The review also emphasizes that the dosage and use method of ZnO NMts will be the focus of future biomedical research.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jiwen Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Xiaofen Shang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
11
|
Choudhary M, Pereira J, Davidson EB, Colee J, Santra S, Jones JB, Paret ML. Improved Persistence of Bacteriophage Formulation with Nano N-Acetylcysteine-Zinc Sulfide and Tomato Bacterial Spot Disease Control. PLANT DISEASE 2023; 107:3933-3942. [PMID: 37368450 DOI: 10.1094/pdis-02-23-0255-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bacteriophages are biocontrol agents used to manage bacterial diseases. They have long been used against plant pathogenic bacteria; however, several factors impede their use as a reliable disease management strategy. Short-lived persistence on plant surfaces under field conditions results mainly from rapid degradation by exposure to ultraviolet (UV) light. Currently, there are no effective commercial formulations that protect phages from UV. The phage ΦXp06-02-1, which lyses strains of the tomato bacterial spot pathogen Xanthomonas perforans, was mixed with different concentrations of the nanomaterial N-acetylcysteine surface-coated manganese-doped zinc sulfide (NAC-ZnS; 3.5 nm). In vitro, NAC-ZnS at 10,000 μg/ml formulated phage, when exposed to UV for 1 min, provided statistically equivalent plaque-forming unit (PFU) recovery as phages that were not exposed to UV. NAC-ZnS had no negative effect on the phage's ability to lyse bacterial cells under in vitro conditions. NAC-ZnS reduced phage degradation over time in comparison with the nontreated control, whereas N-acetylcysteine-zinc oxide (NAC-ZnO) had no effect. In fluorescent light, without UV exposure, NAC-ZnO-formulated phages were more infective than NAC-ZnS-formulated phages. The nanomaterial-phage mixture did not cause any phytotoxicity when applied to tomato plants. Following exposure to sunlight, the NAC-ZnS formulation improved phage persistence in the phyllosphere by 15 times compared with nonformulated phages. NAC-ZnO-formulated phage populations were undetectable within 32 h, whereas NAC-ZnS-formulated phage populations were detected at 103 PFU/g. At 4 h of sunlight exposure, NAC-ZnS-formulated phages at 1,000 μg/ml significantly reduced tomato bacterial spot disease severity by 16.4% compared with nonformulated phages. These results suggest that NAC-ZnS can be used to improve the efficacy of phages for bacterial diseases.
Collapse
Affiliation(s)
- Manoj Choudhary
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- ICAR - National Centre for Integrated Pest Management, PUSA, New Delhi, India
| | - Jorge Pereira
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Edwin B Davidson
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - James Colee
- Statistical Consulting Unit, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, U.S.A
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Mathews L Paret
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
12
|
Mascarenhas-Melo F, Mathur A, Murugappan S, Sharma A, Tanwar K, Dua K, Singh SK, Mazzola PG, Yadav DN, Rengan AK, Veiga F, Paiva-Santos AC. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues. Eur J Pharm Biopharm 2023; 192:25-40. [PMID: 37739239 DOI: 10.1016/j.ejpb.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The use of nanotechnology strategies is a current hot topic, and research in this field has been growing significantly in the cosmetics industry. Inorganic nanoparticles stand out in this context for their distinctive physicochemical properties, leading in particular to an increased refractive index and absorption capacity giving them a broad potential for cutaneous applications and making them of special interest in research for dermopharmaceutical and cosmetic purposes. This performance is responsible for its heavy inclusion in the manufacture of skin health products such as sunscreens, lotions, beauty creams, skin ointments, makeup, and others. In particular, their suitable bandgap energy characteristics allow them to be used as photocatalytic semiconductors. They provide excellent UV absorption, commonly known as UV filters, and are responsible for their wide worldwide use in sunscreen formulations without the undesirable white residue after consumer application. In addition, cosmetics based on inorganic nanoparticles have several additional characteristics relevant to formulation development, such as being less expensive compared to other nanomaterials, having greater stability, and ensuring less irritation, itching, and propensity for skin allergies. This review will address in detail the main inorganic nanoparticles used in dermopharmaceutical and cosmetic products, such as titanium dioxide, zinc oxide, silicon dioxide, silver, gold, copper, and aluminum nanoparticles, nanocrystals, and quantum dots, reporting their physicochemical characteristics, but also their additional intrinsic properties that contribute to their use in this type of formulations. Safety issues regarding inorganic nanoparticles, based on toxicity studies, both to humans and the environment, as well as regulatory affairs associated with their use in dermopharmaceuticals and cosmetics, will be addressed.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Ankita Mathur
- Abode Biotec India Private Limited, Hyderbad, Telangana, India
| | - Sivasubramanian Murugappan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India; Department of Physics, Faculty of Science and Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Arpana Sharma
- Department of Life Sciences, Mewar University, Gangrar, Rajasthan, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | | | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Keller AA. Nanomaterials in sunscreens: Potential human and ecological health implications. Int J Cosmet Sci 2023; 45 Suppl 1:127-140. [PMID: 37799081 DOI: 10.1111/ics.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 10/07/2023]
Abstract
Inorganic nanomaterials such as TiO2 and ZnO provide significant benefits in terms of UV protection, and their use generally has increased in commercial sunscreens. However, more recently there have been concerns about their potential human and ecological health implications, mostly driven by perception rather than by formal assessments. The large and increasing body of literature on these nanomaterials indicates that in most circumstances their risk are minimal. Penetration of the human epidermis is minimal for these nanomaterials, significantly reducing the potential effects that these nanomaterials may pose to internal organs. The excess Zn ion dose is very small compared to normal dietary consumption of Zn, which is a necessary element. The levels of residual nanomaterials or released ions in public swimming pools is also low, with minimal effect in case this water is ingested during swimming or bathing. In natural environments with significant water flow due to wind and water currents, the concentrations of nanomaterials and released ions are generally well below levels that would cause effects in aquatic organisms. However, sensitive habitats with slow currents, such as coral reefs, may accumulate these nanomaterials. The number of studies of the levels and effects of nanomaterials in these sensitive habitats is very small; more research is needed to determine if there is an elevated risk to these ecosystems from the use of sunscreens with these nanomaterials.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
14
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
M.Munshi A. Collaborative impact of Cu/TiO2 nano composites for elimination of cationic dye from aqueous solution: Kinetics and isothermal modeling. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
16
|
Horie M, Kato H, Nakamura A, Kadota Y, Izumi N. Evaluation of the cellular effects of silica particles used for dermal application. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:326-345. [PMID: 37016508 DOI: 10.1080/15287394.2023.2198577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cellular effects of 5 types of spherical amorphous silica particles whose particle size were 4.2-12.8 μm for cosmetic use and two types of crystalline silica whose particle size were 2.4 and 7.1 μm particles for industrial use were examined. These silica particles were applied to HaCaT human keratinocytes for 24 hr. Crystalline silica enhanced IL-8 and IL-6 expression and caused cell membrane damage. Crystalline silica also enhanced HO-1 gene expression; however, the level of intracellular ROS did not change. Compared with crystalline silica, the cellular effects of the spherical silica employed in this study were minor. Cellular uptake of particles was observed for all of silica particle types. Cellular uptake of crystalline silica was observed 1 hr after exposure, and internalized silica particles were present in the cytoplasm. When HaCaT cells were exposed to crystalline silica for 1 hr and incubated for 23 hr in culture medium without silica particles, IL-8 expression was still detected. In addition, silica particles exerted negligible effects using a 3D skin tissue model. Thus, the following conclusions may be drawn. (1) cellular effects exerted by spherical silica are less compared to crystalline silica. (2) phagocytosis of particles is an important first step in the cellular effects of silica particles. (3) spherical silica particles might exert little, if any, effect on healthy skin attributed to no apparent cellular uptake.
Collapse
Affiliation(s)
- Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Haruhisa Kato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayako Nakamura
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yutaka Kadota
- CSR Division, AGC-Si-Tech Co. Ltd, Kitakyushu, Fukuoka, Japan
| | - Naoyuki Izumi
- CSR Division, AGC-Si-Tech Co. Ltd, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
17
|
Abstract
Nanoparticles (NPs) have been widely used in different areas, including consumer products and medicine. In terms of biomedical applications, NPs or NP-based drug formulations have been extensively investigated for cancer diagnostics and therapy in preclinical studies, but the clinical translation rate is low. Therefore, a thorough and comprehensive understanding of the pharmacokinetics of NPs, especially in drug delivery efficiency to the target therapeutic tissue tumor, is important to design more effective nanomedicines and for proper assessment of the safety and risk of NPs. This review article focuses on the pharmacokinetics of both organic and inorganic NPs and their tumor delivery efficiencies, as well as the associated mechanisms involved. We discuss the absorption, distribution, metabolism, and excretion (ADME) processes following different routes of exposure and the mechanisms involved. Many physicochemical properties and experimental factors, including particle type, size, surface charge, zeta potential, surface coating, protein binding, dose, exposure route, species, cancer type, and tumor size can affect NP pharmacokinetics and tumor delivery efficiency. NPs can be absorbed with varying degrees following different exposure routes and mainly accumulate in liver and spleen, but also distribute to other tissues such as heart, lung, kidney and tumor tissues; and subsequently get metabolized and/or excreted mainly through hepatobiliary and renal elimination. Passive and active targeting strategies are the two major mechanisms of tumor delivery, while active targeting tends to have less toxicity and higher delivery efficiency through direct interaction between ligands and receptors. We also discuss challenges and perspectives remaining in the field of pharmacokinetics and tumor delivery efficiency of NPs.
Collapse
Affiliation(s)
- Long Yuan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| | - Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, KS 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
18
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Righi S, Prato E, Magnani G, Lama V, Biandolino F, Parlapiano I, Carella F, Iafisco M, Adamiano A. Calcium phosphates from fish bones in sunscreen: An LCA and toxicity study of an emerging material for circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160751. [PMID: 36493829 DOI: 10.1016/j.scitotenv.2022.160751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The use of sustainable and natural materials is an ever-increasing trend in cosmetic. Natural calcium phosphate (CaP-N) from food by-products and especially from fisheries (i.e., bones), has been suggested as a sustainable option to chemicals commonly used in cosmetic products, in particular to UV-filters in sunscreens. However, the environmental benefits and impacts of its production and use are still uncertain as they have never been quantified. In this paper, we report on toxicological characterization of CaP-N produced from incineration of fish meal in a pilot scale plant. Furthermore, we quantified the environmental burdens linked to the partial substitution of UV-filters by CaP-N through the life cycle assessment (LCA) comparing CaP-N with zinc oxide nanoparticles (ZnO NPs) as alternative option. CaP-N consists in a biphasic mixture 53:47 of hydroxyapatite:β-tricalcium phosphate, and is made of round particles with a diameter in the range of a few microns. Toxicity tests on 4 aquatic species (Dunaliella tertiolecta, Tigriopus fulvus, Corophium insidiosum and Gammarus aequicauda) revealed that CaP-N does not produce any adverse effect, all the species showing EC/LC50 values higher than 100 mg L-1. Moreover, during the 96 h acute toxicity test on C. insidiosum, which is a tube-building species, the specimens built their tubes with the available CaP-N, further attesting the non-toxicity of the material. The LCA study showed that the environmental performance of CaP-N is better than that of ZnO NPs for 11 out of 16 impact categories analysed in this study, especially for the categories Ecotoxicity and Eutrophication of freshwaters (an order of magnitude lower), and with the exception of fossil resources for which CaP-N has a significantly higher impact than ZnO NPs (+140 %). Concluding, our study demonstrates that the replacement of ZnO NPs with CaP-N thermally extracted from fish bones in cosmetic products can increase their safety and sustainability.
Collapse
Affiliation(s)
- Serena Righi
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giulia Magnani
- Dipartimento di Chimica Giacomo Ciamician Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Virginia Lama
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Francesca Biandolino
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Isabella Parlapiano
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Francesca Carella
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
20
|
Zhang M, Liu C, Li B, Shen Y, Wang H, Ji K, Mao X, Wei L, Sun R, Zhou F. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. NANOSCALE ADVANCES 2023; 5:1043-1059. [PMID: 36798499 PMCID: PMC9926905 DOI: 10.1039/d2na00773h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 05/14/2023]
Abstract
Polyvinylidene fluoride (PVDF) has been considered as a promising piezoelectric material for advanced sensing and energy storage systems because of its high dielectric constant and good electroactive response. Electrospinning is a straightforward, low cost, and scalable technology that can be used to create PVDF-based nanofibers with outstanding piezoelectric characteristics. Herein, we summarize the state-of-the-art progress on the use of filler doping and structural design to enhance the output performance of electrospun PVDF-based piezoelectric fiber films. We divide the fillers into single filler and double fillers and make comments on the effects of various dopant materials on the performance and the underlying mechanism of the PVDF-based piezoelectric fiber film. The effects of highly oriented structures, core-shell structures, and multilayer composite structures on the output properties of PVDF-based piezoelectric nanofibers are discussed in detail. Furthermore, the perspectives and opportunities for PVDF piezoelectric nanofibers in the fields of health care, environmental monitoring, and energy collection are also discussed.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Boyu Li
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yutong Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Hao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Liang Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University Xi'an 710048 China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi'an Polytechnic University Xi'an 710048 China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
21
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
22
|
Saweres-Argüelles C, Ramírez-Novillo I, Vergara-Barberán M, Carrasco-Correa EJ, Lerma-García MJ, Simó-Alfonso EF. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur J Pharm Biopharm 2023; 182:128-140. [PMID: 36549398 DOI: 10.1016/j.ejpb.2022.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The role of inorganic nanoparticles in our society is increasing every day, from its use in sunscreens to their introduction in analytical laboratories, pharmacy, medicine, agricultural and other uses. Therefore, in order to establish precautions as well as correct handling of this type of material by operators, it is important to determine the ability of these compounds to travel through the different layers of the skin and to study their possible toxicological effects. In this sense, several authors have studied the ability of inorganic nanoparticles to penetrate the skin barrier by diverse methodologies in in vivo and in vitro modes. In the first case, most of the studies have been performed with animal skins that can imitate the human one (porcine, mouse and guinea pigs, among others), although human skin from surgery have been also explored. However, the use of animals is a common model that should be avoided in the following years due to ethical issues. In this sense, the use of in vitro methodologies is also usually selected to study the dermal absorption of nanoparticles through the skin. Nevertheless, most of the studies are performed with authentic animal skins, instead of the use of synthetic skins that imitate the permeability of our skin system, which has been scarcely studied. In addition, most of the literature is focused in achieving high-transdermal uptake to use nanoparticles (not only inorganic) as carriers for drugs, but little efforts have been done in the study of their inherent percutaneous absorption and toxicity. For these reasons, this review covers the current state-of-the-art of dermal absorption of inorganic nanoparticles in skin and their possible toxicity taking into account that people can be in contact with these nanomaterials in daily life, work or other places. In this sense, the observed results showed that the nanoparticles rarely reach the blood circulatory system, and no big toxicological effects were commonly found when in vivo and actual skin was used. In addition, similar results were found when synthetic skins were used, demonstrating the possibility of avoiding animals in these studies. In any case, more studies covering the dermal absorption of nanoparticles should be performed to have a better understanding of how nanoparticles can affect our health.
Collapse
Affiliation(s)
- Clara Saweres-Argüelles
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Icíar Ramírez-Novillo
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - María Jesús Lerma-García
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
23
|
Zinc and Zinc Transporters in Dermatology. Int J Mol Sci 2022; 23:ijms232416165. [PMID: 36555806 PMCID: PMC9785331 DOI: 10.3390/ijms232416165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc is an important trace mineral in the human body and a daily intake of zinc is required to maintain a healthy status. Over the past decades, zinc has been used in formulating topical and systemic therapies for various skin disorders owing to its wound healing and antimicrobial properties. Zinc transporters play a major role in maintaining the integrity of the integumentary system by controlling zinc homeostasis within dermal layers. Mutations and abnormal function of zinc-transporting proteins can lead to disease development, such as spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and acrodermatitis enteropathica (AE) which can be fatal if left untreated. This review discusses the layers of the skin, the importance of zinc and zinc transporters in each layer, and the various skin disorders caused by zinc deficiency, in addition to zinc-containing compounds used for treating different skin disorders and skin protection.
Collapse
|
24
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
25
|
Adamiano A, Carella F, Degli Esposti L, Piccirillo C, Iafisco M. Calcium Phosphates from Fishery Byproducts as a Booster of the Sun Protection Factor in Sunscreens. ACS Biomater Sci Eng 2022; 8:4987-4995. [DOI: 10.1021/acsbiomaterials.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Adamiano
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Via Granarolo 64, 48018Faenza, Italy
| | - Francesca Carella
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Via Granarolo 64, 48018Faenza, Italy
| | - Lorenzo Degli Esposti
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Via Granarolo 64, 48018Faenza, Italy
| | - Clara Piccirillo
- National Research Council (CNR), Institute of Nanotechnology (NANOTEC), Campus Ecoteckne, Via Monteroni, 73100Lecce, Italy
| | - Michele Iafisco
- National Research Council (CNR), Institute of Science and Technology for Ceramics (ISTEC), Via Granarolo 64, 48018Faenza, Italy
| |
Collapse
|
26
|
Liang Y, Simaiti A, Xu M, Lv S, Jiang H, He X, Fan Y, Zhu S, Du B, Yang W, Li X, Yu P. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2769. [PMID: 36014634 PMCID: PMC9414962 DOI: 10.3390/nano12162769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Being the main components of physical sunscreens, zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are often used together in different brands of sunscreen products with different proportions. With the broad use of cosmetics containing these nanoparticles (NPs), concerns regarding their joint skin toxicity are becoming more and more prominent. In this study, the co-exposure of these two NPs in human-derived keratinocytes (HaCaT) and the in vitro reconstructed human epidermis (RHE) model EpiSkin was performed to verify their joint skin effect. The results showed that ZnO NPs significantly inhibited cell proliferation and caused deoxyribonucleic acid (DNA) damage in a dose-dependent manner to HaCaT cells, which could be rescued with co-exposure to TiO2 NPs. Further mechanism studies revealed that TiO2 NPs restricted the cellular uptake of both aggregated ZnO NPs and non-aggregated ZnO NPs and meanwhile decreased the dissociation of Zn2+ from ZnO NPs. The reduced intracellular Zn2+ ultimately made TiO2 NPs perform an antagonistic effect on the cytotoxicity caused by ZnO NPs. Furthermore, these joint skin effects induced by NP mixtures were validated on the epidermal model EpiSkin. Taken together, the results of the current research contribute new insights for understanding the dermal toxicity produced by co-exposure of different NPs and provide a valuable reference for the development of formulas for the secure application of ZnO NPs and TiO2 NPs in sunscreen products.
Collapse
Affiliation(s)
- Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aili Simaiti
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxuan Xu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenchong Lv
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxiang He
- Lishui International Travel Health-Care Center, Lishui 323000, China
| | - Yang Fan
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shaoxiong Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaolin Li
- Technical Center of Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
27
|
Leopold LF, Coman C, Clapa D, Oprea I, Toma A, Iancu ȘD, Barbu-Tudoran L, Suciu M, Ciorîță A, Cadiș AI, Mureșan LE, Perhaița IM, Copolovici L, Copolovici DM, Copaciu F, Leopold N, Vodnar DC, Coman V. The effect of 100-200 nm ZnO and TiO 2 nanoparticles on the in vitro-grown soybean plants. Colloids Surf B Biointerfaces 2022; 216:112536. [PMID: 35567806 DOI: 10.1016/j.colsurfb.2022.112536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/22/2023]
Abstract
Engineered nanomaterials are increasingly used in everyday life applications and, in consequence, significant amounts are being released into the environment. From soil, water, and air they can reach the organelles of edible plants, potentially impacting the food chain and human health. The potential environmental and health impact of these nanoscale materials is of public concern. TiO2 and ZnO are among the most significant nanomaterials in terms of production amounts. Our study aimed at evaluating the effects of large-scale TiO2 (~100 nm) and ZnO (~200 nm) nanoparticles on soybean plants grown in vitro. The effect of different concentrations of nanoparticles (10, 100, 1000 mg/L) was evaluated regarding plant morphology and metabolic changes. ZnO nanoparticles showed higher toxicity compared to TiO2 in the experimental set-up. Overall, elevated levels of chlorophylls and proteins were observed, as well as increased concentrations of ascorbic and dehydroascorbic acids. Also, the decreasing stomatal conductance to water vapor and net CO2 assimilation rate show higher plant stress levels. In addition, ZnO nanoparticle treatments severely affected plant growth, while TEM analysis revealed ultrastructural changes in chloroplasts and rupture of leaf cell walls. By combining ICP-OES and TEM results, we were able to show that the nanoparticles were metabolized, and their internalization in the soybean plant tissues occurred in ionic forms. This behavior most likely is the main driving force of nanoparticle toxicity.
Collapse
Affiliation(s)
- Loredana F Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Doina Clapa
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Ioana Oprea
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Alexandra Toma
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Ștefania D Iancu
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084 Cluj-Napoca, Romania.
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș,-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania.
| | - Maria Suciu
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș,-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania.
| | - Alexandra Ciorîță
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș,-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania.
| | - Adrian I Cadiș
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele, 400294 Cluj Napoca, Romania.
| | - Laura Elena Mureșan
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele, 400294 Cluj Napoca, Romania.
| | - Ioana Mihaela Perhaița
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele, 400294 Cluj Napoca, Romania.
| | - Lucian Copolovici
- Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad, 2 Elena Drăgoi, 310330 Arad, Romania; Faculty of Food Engineering, Tourism and Environmental Protection, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad, 2 Elena Drăgoi, 310330 Arad, Romania.
| | - Dana M Copolovici
- Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad, 2 Elena Drăgoi, 310330 Arad, Romania; Faculty of Food Engineering, Tourism and Environmental Protection, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad, 2 Elena Drăgoi, 310330 Arad, Romania.
| | - Florina Copaciu
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084 Cluj-Napoca, Romania.
| | - Dan C Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| | - Vasile Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Peito S, Peixoto D, Ferreira-Faria I, Margarida Martins A, Margarida Ribeiro H, Veiga F, Marto J, Cláudia Santos A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int J Pharm 2022; 615:121455. [PMID: 35031412 DOI: 10.1016/j.ijpharm.2022.121455] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Collapse
Affiliation(s)
- Sofia Peito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
29
|
Elberskirch L, Binder K, Riefler N, Sofranko A, Liebing J, Minella CB, Mädler L, Razum M, van Thriel C, Unfried K, Schins RPF, Kraegeloh A. Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety. Part Fibre Toxicol 2022; 19:1. [PMID: 34983569 PMCID: PMC8728981 DOI: 10.1186/s12989-021-00442-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.
Collapse
Affiliation(s)
- Linda Elberskirch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kunigunde Binder
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Norbert Riefler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Liebing
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Christian Bonatto Minella
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Lutz Mädler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Matthias Razum
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Christoph van Thriel
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
30
|
Chen YY, Lee YH, Wang BJ, Chen RJ, Wang YJ. Skin damage induced by zinc oxide nanoparticles combined with UVB is mediated by activating cell pyroptosis via the NLRP3 inflammasome-autophagy-exosomal pathway. Part Fibre Toxicol 2022; 19:2. [PMID: 34983566 PMCID: PMC8729117 DOI: 10.1186/s12989-021-00443-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) are widely used nanomaterial in personal cosmetics, such as skin creams and sunscreens, due to their whitening properties and strong UV light absorption. However, the safety issues and the hazards of ZnONPs, which can be taken up by the skin and cause skin toxicity, are still unclear. From a chemoprevention point of view, pterostilbene (PT) has been reported to prevent skin damage effectively by its anti-inflammatory and autophagy inducer effect. This study aims to determine the skin toxicity and the potential mechanisms of UVB and ZnONPs exposure and the preventive effect of PT. RESULTS The co-exposure of UVB and ZnONPs elicit NLRP3 inflammasome activation and pyroptosis in keratinocytes. Furthermore, exposure to both UVB and ZnONPs also disrupts cellular autophagy, which increases cell exosome release. In vivo UVB and ZnONPs exposure triggers skin toxicity, as indicated by increased histological injury, skin thickness and transepidermal water loss. Notably, the NLRP3 inflammasome-mediated pyroptosis are also activated during exposure. Topical application of pterostilbene attenuates NLRP3 inflammasome activation and pyroptosis by decreasing ROS generation and mitochondrial ROS (mtROS) levels. In addition to its antioxidant effect, PT also reversed autophagy abnormalities by restoring normal autophagic flux and decreasing NLRP3 inflammasome-loaded exosome release. CONCLUSIONS Our findings reveal that ZnONPs induce skin damage in conjunction with UVB exposure. This process involves an interplay of inflammasomes, pyroptosis, autophagy dysfunction, and exosomes in skin toxicity. PT alleviates skin inflammation by regulating the inflammasome-autophagy-exosome pathway, a finding which could prove valuable when further evaluating ZnONPs effects for cosmetic applications.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, 70403, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
31
|
The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. MATERIALS 2021; 14:ma14216398. [PMID: 34771927 PMCID: PMC8585361 DOI: 10.3390/ma14216398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Calcium phosphates (CaPs) belong to a class of biomimetic materials widely employed for medical applications thanks to their excellent properties, such as biodegradability, biocompatibility and osteoinductivity. The recent trend in the cosmetics field of substituting potentially hazardous materials with natural, safe, and sustainable ingredients for the health of consumers and for the environment, as well as the progress in the materials science of academics and chemical industries, has opened new perspectives in the use of CaPs in this field. While several reviews have been focused on the applications of CaP-based materials in medicine, this is the first attempt to catalogue the properties and use of CaPs in cosmetics. In this review a brief introduction on the chemical and physical characteristics of the main CaP phases is given, followed by an up-to-date report of their use in cosmetics through a large literature survey of research papers and patents. The application of CaPs as agents in oral care, skin care, hair care, and odor control has been selected and extensively discussed, highlighting the correlation between the chemical, physical and toxicological properties of the materials with their final applications. Finally, perspectives on the main challenges that should be addressed by the scientific community and cosmetics companies to widen the application of CaPs in cosmetics are given.
Collapse
|
32
|
Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomineralization consists of a complex cascade of phenomena generating hybrid nano-structured materials based on organic (e.g., polymer) and inorganic (e.g., hydroxyapatite) components. Biomineralization is a biomimetic process useful to produce highly biomimetic and biocompatible materials resembling natural hard tissues such as bones and teeth. In detail, biomimetic materials, composed of hydroxyapatite nanoparticles (HA) nucleated on an organic matrix, show extremely versatile chemical compositions and physical properties, which can be controlled to address specific challenges. Indeed, different parameters, including (i) the partial substitution of mimetic doping ions within the HA lattice, (ii) the use of different organic matrices, and (iii) the choice of cross-linking processes, can be finely tuned. In the present review, we mainly focused on calcium biomineralization. Besides regenerative medicine, these multifunctional materials have been largely exploited for other applications including 3D printable materials and in vitro three-dimensional (3D) models for cancer studies and for drug testing. Additionally, biomineralized multifunctional nano-particles can be involved in applications ranging from nanomedicine as fully bioresorbable drug delivery systems to the development of innovative and eco-sustainable UV physical filters for skin protection from solar radiations.
Collapse
|
33
|
Bordes C, Bolzinger MA, El Achak M, Pirot F, Arquier D, Agusti G, Chevalier Y. Formulation of Pickering emulsions for the development of surfactant-free sunscreen creams. Int J Cosmet Sci 2021; 43:432-445. [PMID: 33964042 DOI: 10.1111/ics.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Pickering emulsions are increasingly used in the pharmaceutical and cosmetic fields, especially for topical applications, since these systems require solid particles as emulsifiers instead of surfactants which are known to cause skin irritation. The solid inorganic nanoparticles (TiO2 and ZnO) used as UV filters in sunscreen formulations may also stabilize emulsion droplets, so that the utility of surfactants may be questioned. Surfactant-free sunscreen emulsions solely stabilized by such nanoparticles (NPs) have been studied. METHODS The ability of these NPs to stabilize o/w emulsions containing a 'model' oil phase, the C12 -C15 alkylbenzoate, has been assessed. ZnO and hydrophilic silica-coated TiO2 NPs widely used in sunscreen products were used together with their mixtures. The emulsification efficiency, the control of droplet size and the stability of o/w Pickering emulsions solely stabilized by NPs were investigated. A ZnO/TiO2 NPs mixture characterized by a theoretical SPF of 45 was finally used as unique emulsifiers to develop a surfactant-free sunscreen emulsion. RESULTS Stable Pickering emulsions containing 10 up to 60 wt% of C12 -C15 alkyl benzoate were formulated with 2 wt% ZnO in the aqueous phase. The droplet size was controlled by the solid NPs content with respect to oil and the emulsification process. Hydrophilic TiO2 NPs did not allow the stabilization of emulsions. The substitution of TiO2 for ZnO up to 60-70 wt% in a 20/80 o/w emulsion was successfully performed. Finally, a ZnO/TiO2 NP mixture was tested as unique emulsifier system for the formulation of a sunscreen cream. Despite a lower viscosity, the obtained Pickering emulsion was stable and exhibited a photoprotective effect similar to the corresponding surfactant-based sunscreen cream with an in vitro SPF of about 45. CONCLUSION Surfactant-free Pickering emulsions can be stabilized by the UV-filter nanoparticles for the manufacture of sunscreen products.
Collapse
Affiliation(s)
- Claire Bordes
- CNRS, LAGEPP, University Claude Bernard Lyon 1, University of Lyon, Villeurbanne, France
| | | | - Myriam El Achak
- CNRS, LAGEPP, University Claude Bernard Lyon 1, University of Lyon, Villeurbanne, France
| | - Fabrice Pirot
- Faculty of Pharmacy, Lab. Rech & Dev Pharm Galen In, University Claude Bernard Lyon 1, Lyon, France
| | - Delphine Arquier
- CNRS, LAGEPP, University Claude Bernard Lyon 1, University of Lyon, Villeurbanne, France
| | - Géraldine Agusti
- CNRS, LAGEPP, University Claude Bernard Lyon 1, University of Lyon, Villeurbanne, France
| | - Yves Chevalier
- CNRS, LAGEPP, University Claude Bernard Lyon 1, University of Lyon, Villeurbanne, France
| |
Collapse
|
34
|
Gautam R, Yang S, Maharjan A, Jo J, Acharya M, Heo Y, Kim C. Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test. FRONTIERS IN TOXICOLOGY 2021; 3:649666. [PMID: 35295130 PMCID: PMC8915822 DOI: 10.3389/ftox.2021.649666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The development of nanotechnology has propagated the use of nanoparticles (NPs) in various fields including industry, agriculture, engineering, cosmetics, or medicine. The use of nanoparticles in cosmetics and dermal-based products is increasing owing to their higher surface area and unique physiochemical properties. Silver (Ag) NPs' excellent broad-spectrum antibacterial property and zinc oxide (ZnO) NPs' ability to confer better ultraviolet (UV) protection has led to their maximal use in cosmetics and dermal products. While the consideration for use of nanoparticles is increasing, concerns have been raised regarding their potential negative impacts. Although used in various dermal products, Ag and ZnO NPs' skin sensitization (SS) potential has not been well-investigated using in vitro alternative test methods. The human Cell Line Activation Test (h-CLAT) that evaluates the ability of chemicals to upregulate the expression of CD86 and CD54 in THP-1 cell line was used to assess the skin sensitizing potential of these NPs. The h-CLAT assay was conducted following OECD TG 442E. NPs inducing relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% in at least two out of three independent runs were predicted to be positive. Thus, Ag (20, 50, and 80 nm) NPs and ZnO NPs were all predicted to be positive in terms of SS possibility using the h-CLAT prediction model. Although further confirmatory tests addressing other key events (KEs) of SS adverse outcome pathway (AOP) should be carried out, this study gave an insight into the need for cautious use of Ag and ZnO NPs based skincare or dermal products owing to their probable skin sensitizing potency.
Collapse
Affiliation(s)
- Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, South Korea
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| | - ChangYul Kim
- Department of Toxicity Assessment, The Graduate School of Medical and Health Industry, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
35
|
Moratin H, Ickrath P, Scherzad A, Meyer TJ, Naczenski S, Hagen R, Hackenberg S. Investigation of the Immune Modulatory Potential of Zinc Oxide Nanoparticles in Human Lymphocytes. NANOMATERIALS 2021; 11:nano11030629. [PMID: 33802496 PMCID: PMC7999554 DOI: 10.3390/nano11030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.
Collapse
Affiliation(s)
- Helena Moratin
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | - Pascal Ickrath
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | | | | | | | | | | |
Collapse
|
36
|
Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light. Part II: Photoprotection against visible and ultraviolet light. J Am Acad Dermatol 2021; 84:1233-1244. [PMID: 33640513 DOI: 10.1016/j.jaad.2020.11.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023]
Abstract
Cutaneous photobiology studies have focused primarily on the ultraviolet portion of the solar spectrum. Visible light (VL), which comprises 50% of the electromagnetic radiation that reaches the Earth's surface and, as discussed in Part I of this CME, has cutaneous biologic effects, such as pigment darkening and erythema. Photoprotection against VL includes avoiding the sun, seeking shade, and using photoprotective clothing. The organic and inorganic ultraviolet filters used in sunscreens do not protect against VL, only tinted sunscreens do. In the United States, these filters are regulated by the Food and Drug Administration as an over-the-counter drug and are subject to more stringent regulations than in Europe, Asia, and Australia. There are no established guidelines regarding VL photoprotection. Alternative measures to confer VL photoprotection are being explored. These novel methods include topical, oral, and subcutaneous agents. Further development should focus on better protection in the ultraviolet A1 (340-400 nm) and VL ranges while enhancing the cosmesis of the final products.
Collapse
Affiliation(s)
| | - Evan Austin
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Julie Nguyen
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York.
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
37
|
Wang WM, Chen CY, Lu TH, Yang YF, Liao CM. Estimates of lung burden risk associated with long-term exposure to TiO 2 nanoparticles as a UV-filter in sprays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12924-8. [PMID: 33625711 DOI: 10.1007/s11356-021-12924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are employed as an ultraviolet filter in sunscreen products because of their high ultraviolet absorptivity. However, sunscreen sprays may pose health risks due to the toxicity of inhaled TiO2 NPs. Therefore, we estimated the potential human health risk posed by inhaled TiO2 NPs emitted from sunscreen sprays. The physiology-based lung model was employed to predict the lung TiO2 NPs burden caused by long-term exposure. A Hill-based dose-response model described the relationship between lung inflammation and TiO2 NP accumulation. The Weibull threshold model was used to estimate the threshold amount of accumulation inducing 0.5% of the maximum increase in neutrophils. The potential health risk was assessed using a hazard quotient-based probabilistic risk model. All data obtained to date indicate that application of sunscreen sprays poses no significant health risk. However, using data simulations based on the threshold criterion, we discovered that in terms of practical strategies for preventing the risks posed by inhaled TiO2 NPs emitted from spray products, the suggested daily use amount and pressing number are 40 g (95% confidence interval: 11-146 g) and 66 (18-245), respectively. In this study, we successfully translated the potential health risk of long-term exposure to NP-containing sunscreen sprays and recommendations for daily application into mechanistic insights.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
38
|
Romanhole RC, Fava ALM, Tundisi LL, Macedo LMD, Santos ÉMD, Ataide JA, Mazzola PG. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int J Pharm 2020; 591:120013. [PMID: 33132151 DOI: 10.1016/j.ijpharm.2020.120013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Permeation of sunscreens agents reduces its effectiveness and safety, leading to systemic circulation and causing unknown adverse effects. In order to maintain the sunscreen efficacy and safety, the filters must stay on the skin surface, with minimum penetration through dermis. Even facing the possibility of filters permeation, the use of sunscreen is important to avoid skin damage as erythema, free-radicals formation, skin ageing and skin cancer, caused by ultraviolet radiation. Aiming potential side effects caused by topical absorption of sunscreens, studies are carried to improve formulation characteristics and stability, reduce skin permeation and evaluate sun protections factor (SPF). Current assays to detect the permeation of sunscreens involve in vivo or in vitro studies, to simulate physiological conditions of use. The aim of this review is to revisit sunscreen skin permeation data over the last decade and the factors that can enhance skin permeation or improve the sunscreen efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
39
|
Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00085-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractBackgroundThe technical innovations are based on the principles of science with the assurance of outweighing their cost and risk factors with the benefits to society. But sometimes, the innovation either itself becomes a risk or brings in some risk factors along with it. For most of the alleyway of an innovation from its emergence to its road to societal acceptance and adoption, the focus remains on the benefits majorly. Only when we are at the neck of the hour we think about some of the apparent cost and risk issues. The understanding, proper communication, and address of the basics of risk factors are necessarily required much in advance to deal with this issue.Main bodyNanoparticles with very small size and huge surface area are being derived from various plants, microbes, chemical compounds, metals, and metal alloys. Without our realizations, nanotechnology has become a vital part of our day-to-day life, and nanoparticles are proving their worth in almost every field ranging from food, water, medicine, agriculture, construction, fashion, electronics, and computers to eco-remediation, but what about the costs involved and the risks associated? We strongly need to recognize these concerns and challenges, and it requires collaborative efforts from academicians, researchers, industries, government, and non-government organizations to involve people in dialogs to deal with them.ConclusionThrough reviewing various studies and articles on nanotechnology, this review has shown that nanotechnology can productively be used to produce consumer goods for pharma, electronics, food, agriculture, aviation, construction, security, and remediation sectors which are advantages in their characteristics. Regarding the future of nanotechnology, we need to focus on assessment and management of risks associated for its promising market growth.Graphical abstract
Collapse
|
40
|
Munem M, Djuphammar A, Sjölander L, Hagvall L, Malmberg P. Animal- free skin permeation analysis using mass spectrometry imaging. Toxicol In Vitro 2020; 71:105062. [PMID: 33276055 DOI: 10.1016/j.tiv.2020.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
Here we demonstrate an animal-free skin permeation analytical approach suitable for testing pharmaceuticals, cosmetics, occupational skin hazards and skin allergens. The method aims to replace or significantly reduce existing in-vivo models and improve on already established in-vitro models. This by offering a more sensitive and flexible analytical approach that can replace and/or complement existing methods in the OECD guidelines for skin adsorption (no 427 and no 428) and measure multiple compounds simultaneously in the skin while being able to also trace endogenous effects in cells. We demonstrate this here by studying how active ingredients in sunscreen permeate through left-over human skin, from routine surgery, in a in a Franz-cell permeation model. Two common sunscreens were therefore applied to the human skin and Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to trace the molecules through the skin. We show that that ToF-SIMS imaging can be applied in visualizing the distribution of Avobenzone, Bemotrizinol, Biscotrizole and Ethyl hexyl triazine at subcellular resolution in the skin. The UV-blockers could be visualized at the same time in one single experiment without any probes or antibodies used. The UV-blockers mostly remained in the stratum corneum. However, in certain features of the skin, such as sebaceous glands, the penetration of the UV-blockers was more prominent, and the compounds reached deeper into the epidermis.
Collapse
Affiliation(s)
- Marwa Munem
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - August Djuphammar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Linnea Sjölander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lina Hagvall
- Occupational Dermatology, Department of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
41
|
Gimeno-Benito I, Giusti A, Dekkers S, Haase A, Janer G. A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul Toxicol Pharmacol 2020; 119:104836. [PMID: 33249100 DOI: 10.1016/j.yrtph.2020.104836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022]
Abstract
Data on dermal penetration of nanoparticles (NPs) was reviewed with the goal to establish a worst-case dermal penetration value for NPs. To this aim, the main focus was on studies providing quantitative dermal penetration data (29 studies). In vivo dermal penetration studies and ex vivo studies based on skin explants were included. These studies used NPs with different compositions, dimensions, and shapes. The overall results showed that skin is an efficient barrier for NPs, indistinctly of their properties. However, some studies reported that a small percentage of the applied NP dose penetrated the skin surface and reached deeper skin layers. The integrity of the skin layer and the product formulation were more critical determinants of dermal penetration than the NP properties. Most quantitative studies were based on elemental analysis such that it cannot be concluded if detected levels are attributable to a dissolved fraction or to the penetration of particles as such. Results of qualitative imaging studies suggest that at least a fraction of the levels reported in quantitative studies could be due to particle penetration. Altogether, based on the data compiled, we propose that 1% could be used as a worst-case dermal penetration value for nanoparticles within the boundaries of the properties of those included in our analysis.
Collapse
Affiliation(s)
| | - Anna Giusti
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Susan Dekkers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Gemma Janer
- Leitat Technological Center, Innovació 2, 08225, Terrassa, Spain.
| |
Collapse
|
42
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
43
|
Development of fibrin hydrogel–based in vitro bioassay system for assessment of skin permeability to and pro-inflammatory activity mediated by zinc ion released from nanoparticles. Anal Bioanal Chem 2020; 412:8269-8282. [DOI: 10.1007/s00216-020-02970-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
|
44
|
Hussain Z, Thu HE, Haider M, Khan S, Sohail M, Hussain F, Khan FM, Farooq MA, Shuid AN. A review of imperative concerns against clinical translation of nanomaterials: Unwanted biological interactions of nanomaterials cause serious nanotoxicity. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Cai X, Liu X, Jiang J, Gao M, Wang W, Zheng H, Xu S, Li R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907663. [PMID: 32406193 DOI: 10.1002/smll.201907663] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano-bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.
Collapse
Affiliation(s)
- Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
46
|
Zhang D, Bian Q, Zhou Y, Huang Q, Gao J. The application of label-free imaging technologies in transdermal research for deeper mechanism revealing. Asian J Pharm Sci 2020; 16:265-279. [PMID: 34276818 PMCID: PMC8261078 DOI: 10.1016/j.ajps.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products, such as sunscreen and hair growth products. Researchers have tried to illustrate the transdermal process with diversified theories and technologies. Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach. Unfortunately, fluorescence labeling imaging, which is commonly used in biochemical research, is limited for transdermal research for most topical substances with a molecular mass less than 500 Da. Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes, no tissue destruction and an extensive substance detection capability, which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis, such as skin samples. Through the specific identification of topical substances and endogenous tissue components, label-free imaging technologies can provide abundant tissue distribution information, enrich theoretical and practical guidance for transdermal drug delivery systems. In this review, we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present, compare their advantages and disadvantages, and forecast development prospects.
Collapse
Affiliation(s)
- Danping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310012, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
- Corresponding author.
| |
Collapse
|
47
|
Efthimiou I, Georgiou Y, Vlastos D, Dailianis S, Deligiannakis Y. Assessing the cyto-genotoxic potential of model zinc oxide nanoparticles in the presence of humic-acid-like-polycondensate (HALP) and the leonardite HA (LHA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137625. [PMID: 32169638 DOI: 10.1016/j.scitotenv.2020.137625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The present study investigates the potential cyto-genotoxic effects of model zinc oxide nanoparticles (ZnO NPs) on human lymphocytes, with and/or without humic acids (HAs). Two types of HAs were studied, a natural well-characterized leonardite HA (LHA) and its synthetic-model, a humic-acid-like-polycondensate (HALP). The Cytokinesis Block Micronucleus (CBMN) assay was applied in cell cultures treated with different concentrations of ZnO NPs (0.5, 5, 10, 20 μg mL-1) and under different concentrations of either HALP or LHA (ZnO NPs-HALP and ZnO NPs-LHA, at concentrations of 0.5-0.8, 5-8, 10-16, 20-32 and 0.5-2, 5-20, 10-40, 20-80 μg mL-1, respectively). According to the results, ZnO NPs lacked genotoxicity but demonstrated cytotoxic potential. Binary mixtures of ZnO NPs-HAs (ZnO NPs-HALP or ZnO NPs-LHA) showed negligible alterations of micronuclei (MN) formation in challenged cells, with cytotoxic effects revealed only in case of cells treated with ZnO NPs-LHA at the concentration 5-20 μg mL-1. Furthermore, no genotoxic phenomena were exerted neither by the ZnO NPs nor from their mixtures with HAs. These findings indicate [i] the cytotoxic activity of used ZnO NPs on human lymphocytes, and [ii] reveal the protective role of HAs against ZnO NPs mediated cytotoxicity.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Yiannis Georgiou
- Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Rio, Patra, Greece
| | | |
Collapse
|
48
|
Sanches PL, Geaquinto LRDO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. Toxicity Evaluation of TiO 2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front Bioeng Biotechnol 2020; 8:575. [PMID: 32587852 PMCID: PMC7298140 DOI: 10.3389/fbioe.2020.00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/12/2020] [Indexed: 01/14/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are regularly used in sunscreens because of their photoprotective capacity. The advantage of using TiO2 on the nanometer scale is due to its transparency and better UV blocking efficiency. Due to the greater surface area/volume ratio, NPs become more (bio)-reactive giving rise to concerns about their potential toxicity. To evaluate the irritation and corrosion of cosmetics, 3D skin models have been used as an alternative method to animal experimentation. However, it is not known if this model is appropriate to study skin irritation, corrosion and phototoxicity of nanomaterials such as TiO2 NPs. This systematic review (SR) proposed the following question: Can the toxicity of TiO2 nanoparticles be evaluated in a 3D skin model? This SR was conducted according to the Preliminary Report on Systematic Review and Meta-Analysis (PRISMA). The protocol was registered in CAMARADES and the ToxRTool evaluation was performed in order to increase the quality and transparency of this search. In this SR, 7 articles were selected, and it was concluded that the 3D skin model has shown to be promising to evaluate the toxicity of TiO2 NPs. However, most studies have used biological assays that have already been described as interfering with these NPs, demonstrating that misinterpretations can be obtained. This review will focus in the possible efforts that should be done in order to avoid interference of NPs with biological assays applied in 3D in vitro culture.
Collapse
Affiliation(s)
- Priscila Laviola Sanches
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Luths Raquel de Oliveira Geaquinto
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| | - Rebecca Cruz
- Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | | - José Mauro Granjeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
- Fluminense Federal University, Rio de Janeiro, Brazil
| | - Ana Rosa Lopes Ribeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| |
Collapse
|
49
|
Garnacho Saucedo GM, Salido Vallejo R, Moreno Giménez JC. [Effects of solar radiation and an update on photoprotection]. An Pediatr (Barc) 2020; 92:377.e1-377.e9. [PMID: 32513601 DOI: 10.1016/j.anpedi.2020.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022] Open
Abstract
Sunburn, immunodepression, photoaging, and photocarcinogenesis, are some of the most significant adverse effects of solar radiation in humans. Children are population group of special vulnerability, due to the fact that exposure to the sun has more pronounced biological effects compared to adults. Furthermore, childhood is a critical period for promoting the development of photo damage and photocarcinogenesis in the later stages of life if adequate measures at not put into place. This is because it is estimated that between 18 and 20 years of age is when 40% to 50% of the accumulative exposure to ultraviolet radiation up to 60 years of age is received. The most important strategy for the photoprotection of children is changes in behaviour and habits associated with exposure to the sun at all levels (school, society, family, etc.). Resorting to the shade, reduction in overall time of exposure to the sun, and physical protection (clothes, hats, and sunglasses) are the best and least costly photoprotection strategies. The photoprotectors must be incorporated into the daily routine of children in the same way as adults, and must complete a series of requirements in order to make them effective, safe, and in line with the environment.
Collapse
Affiliation(s)
- Gloria M Garnacho Saucedo
- Unidad de Dermatología Pediátrica, Departamento de Dermatología, Hospital Universitario Reina Sofía, Córdoba, España.
| | - Rafael Salido Vallejo
- Unidad de Dermatología Pediátrica, Departamento de Dermatología, Hospital Universitario Reina Sofía, Córdoba, España
| | - Jose Carlos Moreno Giménez
- Unidad de Dermatología Pediátrica, Departamento de Dermatología, Hospital Universitario Reina Sofía, Córdoba, España
| |
Collapse
|
50
|
Musial J, Krakowiak R, Mlynarczyk DT, Goslinski T, Stanisz BJ. Titanium Dioxide Nanoparticles in Food and Personal Care Products-What Do We Know about Their Safety? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1110. [PMID: 32512703 PMCID: PMC7353154 DOI: 10.3390/nano10061110] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Titanium dioxide (TiO2) is a material of diverse applications commonly used as a food additive or cosmetic ingredient. Its prevalence in products of everyday use, especially in nanosize, raises concerns about safety. Current findings on the safety of titanium dioxide nanoparticles (TiO2 NPs) used as a food additive or a sunscreen compound are reviewed and systematized in this publication. Although some studies state that TiO2 NPs are not harmful to humans through ingestion or via dermal exposure, there is a considerable number of data that demonstrated their toxic effects in animal models. The final agreement on the safety of this nanomaterial has not yet been reached among researchers. There is also a lack of official, standardized guidelines for thorough characterization of TiO2 NPs in food and cosmetic products, provided by international authorities. Recent advances in the application of 'green-synthesized' TiO2 NPs, as well as comparative studies of the properties of 'biogenic' and 'traditional' nanoparticles, are presented. To conclude, perspectives and directions for further studies on the toxicity of TiO2 NPs are proposed.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| | - Rafal Krakowiak
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| | - Beata J. Stanisz
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (R.K.); (T.G.)
| |
Collapse
|