1
|
Ordoñez WOC, Palomino NV, Varela PEV, Martínez IB, Alves LB, Giuliatti S. Alkaloids from Caliphruria subedentata (Amaryllidaceae) as Regulators of AChE, BuChE, NMDA and GSK3 Activity: An In Vitro and In Silico Approach for Mimicking Alzheimer´s Disease. Neurochem Res 2025; 50:116. [PMID: 40056267 PMCID: PMC11890331 DOI: 10.1007/s11064-025-04354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Patients with Alzheimer's disease (AD) have two types of abnormal protein buildups: amyloid plaques and neurofibrillary tangles, in addition to the early synaptic dysfunction associated with the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Impairment of the glutamatergic system is also crucial for neuronal survival, as it can cause synaptic dysfunction that overstimulates glutamate receptors, especially N-methyl-d-aspartate receptors (NMDARs). Another protein affecting neuronal health is glycogen synthase kinase-3 (GSK3), a widely preserved serine/threonine protein kinase linked to neuronal disorders, including AD. In recent years, alkaloids from the Amaryllidaceae have received great attention for their known anticholinergic activity, as well as their antioxidant, antigenotoxic, and neuroprotective properties. In this context, the identification of compounds capable of interacting with different targets involved in AD provides a possible new therapeutic strategy. In this study, we conducted a combination of in vitro and in silico approaches to identify the potential of C. subedentata in regulating key proteins involved in AD. Viability and neuroprotection assays were performed to evaluate the neuroprotection exerted by C. subedentata extract against neurotoxicity induced by Aβ (1-42) peptide and Okadaic acid in SH-SY5Y cells. Computational methods such as docking and molecular dynamic and viability therapeutic analysis were conducted to explore the interaction of alkaloids from C. subedentata with target proteins (AChE, BuChE, NMDA, and GSK-3) involved in AD. Our findings show that C. subedentata extract exerts neuroprotective effects against neurotoxic stimuli induced by Aβ (1-42) peptide and Okadaic acid. In addition, in silico approaches provide insight into how C. subedentata extract alkaloids interact with key proteins involved in AD. These findings provide insights into the potential therapeutic effects and action mechanisms of these alkaloids. We hope these rapid findings can contribute as a bridge to the identification of new molecules with the potential to counteract the effects of AD.
Collapse
Affiliation(s)
- Willian Orlando Castillo Ordoñez
- Departamento de Biología, Facultad de Ciencias Naturales-Exactas y de la Educación, Universidad del Cauca, Cra 2 No 2N-57, 19003, Popayán-Cauca, Colombia.
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia.
| | - Nilza Velasco Palomino
- Departamento de Biología, Facultad de Ciencias Naturales-Exactas y de la Educación, Universidad del Cauca, Cra 2 No 2N-57, 19003, Popayán-Cauca, Colombia
| | - Patricia Eugenia Vélez Varela
- Departamento de Biología, Facultad de Ciencias Naturales-Exactas y de la Educación, Universidad del Cauca, Cra 2 No 2N-57, 19003, Popayán-Cauca, Colombia
| | - Ivon Bolaños Martínez
- Departamento de Biología, Facultad de Ciencias Naturales-Exactas y de la Educación, Universidad del Cauca, Cra 2 No 2N-57, 19003, Popayán-Cauca, Colombia
| | - Levy Bueno Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
2
|
Li J, Zhao C, Guan D, Liu C. Study on the Molecular Mechanism of Baicalin Phosphorylation of Tau Protein Content in a Cell Model of Intervention Cognitive Impairment. Neuropsychiatr Dis Treat 2025; 21:309-322. [PMID: 39989661 PMCID: PMC11847425 DOI: 10.2147/ndt.s482362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Objective This study aimed to predict the molecular mechanism of baicalein through network pharmacology, cell experiments and molecular docking. The goal was to elucidate the mechanism for the treatment of mild cognitive impairment. Materials and Methods The protein-protein interaction network (PPI) and Cytoscape software were used to screen the hub genes of intersection genes, while the therapeutic mechanism of baicalein was predicted through the Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analysis. Molecular docking of the core target and baicalein was conducted using AutoDock software. The neuroprotective effect of Baicalein with different concentrations on okadaic acid-treated SH-SY5Y cells was investigated in cell experiments. Scratch experiments were conducted to explore the effect of baicalein on cell migration ability, and enzyme linked immunosorbent assay was employed to measure the content of extracellular pathological proteins. Western Blot and Cellular immunofluorescence pinpointed differences in the relevant protein content. Results Enrichment analysis revealed significant enrichment in the PI3K-Akt signaling pathway, and molecular docking demonstrated a favorable binding energy between baicalein and AKT1. In cell experiments, baicalein presented a positive impact on mild cognitive impairment by elevating P-AKT1 and P-GSK-3β levels while reducing the overall amount of P-tau. Conclusion As demonstrated by the present study, the low concentration of baicalein (15μmol/L) effectively managed the mild cognitive impairment by regulating the phosphorylation of AKT1 and GSK-3β.
Collapse
Affiliation(s)
- Juncheng Li
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Canbin Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Donghui Guan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Chunmei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Eo H, Kim SH, Ju IG, Lee JH, Oh MS, Kim YJ. NXP032 Improves Memory Impairment Through Suppression of Tauopathy in PS19 Mice and Attenuates Okadaic Acid-Induced Tauopathy in SH-SY5Y Cells. J Neuroimmune Pharmacol 2025; 20:10. [PMID: 39891801 DOI: 10.1007/s11481-025-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Tauopathy is widely observed in multiple neurodegenerative diseases such as Alzheimer's disease (AD) and characterized by abnormal tau protein phosphorylation, aggregation and its accumulation as a form of neurofibrillary tangle (NFT) in the brain. However, there are no effective treatments targeting tau pathology in the AD. Vitamin C is known to reduce tauopathy and modulate one of its regulators called glycogen synthase kinase 3 (GSK3) in the body. Nevertheless, vitamin C has a limitation of its stability during metabolism due to its chemical properties. Thus, in the current study, NXP032 (a vitamin C/aptamer complex) was tested as a candidate for tau-targeting treatment because it can preserve antioxidative efficacy of vitamin C before it can reach the target tissue. In this context, the current study aimed to investigate the therapeutic effect of NXP032 on tauopathy in vivo and in vitro. As a result, NXP032 attenuated cognitive and memory decline and reduced NFT and tau hyperphosphorylation in the P301S mutant human tau transgenic mice (or called PS19 mice). In addition, NXP032 suppressed neuroinflammation found in the PS19 mice. Furthermore, NXP032 protected SH-SY5Y human neuroblastoma cells from okadaic acid (OKA)-induced cytotoxicity. Especially, 10 ng/ml of NXP032 reduced tau hyperphosphorylation and GSK3 activation though its phosphorylation at Tyr216 site which were promoted by OKA treatment in the SH-SY5Y cells. Taken together, our results suggest that NXP032 might be a potential therapy for AD and tauopathy-related neurodegenerative disorders as well.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Costantini E, Jarlapoodi S, Serra F, Aielli L, Khan H, Belwal T, Falasca K, Reale M. Neuroprotective Potential of Bacopa monnieri: Modulation of Inflammatory Signals. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:441-451. [PMID: 35021981 DOI: 10.2174/1871527321666220111124047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND To date, much evidence has shown the increased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. OBJECTIVE In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. METHODS Neuronal SH-SY5Y cells were stimulated with TNFα and IFNγ and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. RESULTS Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNFα and IFNγ primed cells, BME reduces IL-1β, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. CONCLUSION This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Srinivas Jarlapoodi
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Federica Serra
- Department of Pharmacy, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Katia Falasca
- Department of Medicine and Science of Aging, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G.d'Annunzio", Via dei Vestini 66100 Chieti, Italy
| |
Collapse
|
5
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Hirano T, Minagawa S, Furusawa Y, Yunoki T, Ikenaka Y, Yokoyama T, Hoshi N, Tabuchi Y. Growth and neurite stimulating effects of the neonicotinoid pesticide clothianidin on human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2019; 383:114777. [PMID: 31626844 DOI: 10.1016/j.taap.2019.114777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Neonicotinoids are one of most widely used pesticides targeting nicotinic acetylcholine receptors (nAChRs) of insects. Recent epidemiological evidence revealed increasing amounts of neonicotinoids detected in human samples, raising the critical question of whether neonicotinoids affect human health. We investigated the effects of a neonicotinoid pesticide clothianidin (CTD) on human neuroblastoma SH-SY5Y cells as in vitro models of human neuronal cells. Cellular and functional effects of micromolar doses of CTD were evaluated by changes in cell growth, intracellular signaling activities and gene expression profiles. We examined further the effects of CTD on neuronal differentiation by measuring neurite outgrowth. Exposure to CTD (1-100 μM) significantly increased the number of cells within 24 h of culture. The nAChRs antagonists, mecamylamine and SR16584, inhibited this effect, suggesting human α3β4 nAChRs could be targets of neonicotinoids. We observed a transient intracellular calcium influx and increased phosphorylation of extracellular signal-regulated kinase 1/2 shortly after exposure to CTD. Transcriptome analysis revealed that CTD down-regulated genes involved in neuronal function (e.g., formation of filopodia and calcium ion influx) and morphology (e.g., axon guidance signaling and cytoskeleton signaling); these changes were reflected by a finding of increased neurite length during neuronal differentiation. These findings provide novel insight into the potential risks of neonicotinoids to the human nervous system.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Life Science Research Center, University of Toyama, Toyama, Japan.
| | - Satsuki Minagawa
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Pérez de Vega MJ, Fernandez-Mendivil C, de la Torre Martínez R, González-Rodríguez S, Mullet J, Sala F, Sala S, Criado M, Moreno-Fernández S, Miguel M, Fernández-Carvajal A, Ferrer-Montiel A, López MG, González-Muñiz R. 1-(2',5'-Dihydroxyphenyl)-3-(2-fluoro-4-hydroxyphenyl)-1-propanone (RGM079): A Positive Allosteric Modulator of α7 Nicotinic Receptors with Analgesic and Neuroprotective Activity. ACS Chem Neurosci 2019; 10:3900-3909. [PMID: 31322853 DOI: 10.1021/acschemneuro.9b00364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylcholine α7 nicotinic receptors are widely expressed in the brain, where they are involved in the central processing of pain as well as in neuropsychiatric, neurodegenerative, and inflammatory processes. Positive allosteric modulators (PAMs) show the advantage of allowing the selective regulation of different subtypes of acetylcholine receptors without directly interacting with the agonist binding site. Here, we report the preparation and biological activity of a fluoro-containing compound, 1-(2',5'-dihydroxyphenyl)-3-(2-fluoro-4-hydroxyphenyl)-1-propanone (8, RGM079), that behaves as a potent PAM of the α7 receptors and has a balanced pharmacokinetic profile and antioxidant properties comparable or even higher than well-known natural polyphenols. In addition, compound RGM079 shows neuroprotective properties in Alzheimer's disease (AD)-toxicity related models. Thus, it causes a concentration-dependent neuroprotective effect against the toxicity induced by okadaic acid (OA) in the human neuroblastoma cell line SH-SY5Y. Similarly, in primary cultures of rat cortical neurons, RGM079 is able to restore the cellular viability after exposure to OA and amyloid peptide Aβ1-42, with cell death almost completely prevented at 10 and 30 μM, respectively. Finally, compound RGM079 shows in vivo analgesic activity in the complete Freund's adjuvant (CFA)-induced paw inflammation model after intraperitoneal administration.
Collapse
Affiliation(s)
| | - Cristina Fernandez-Mendivil
- Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Roberto de la Torre Martínez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avenida de la Universidad s/n, Elche, Alicante 03202, Spain
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avenida de la Universidad s/n, Elche, Alicante 03202, Spain
| | - José Mullet
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante 03500, Spain
| | - Francisco Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante 03500, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante 03500, Spain
| | - Manuel Criado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante 03500, Spain
| | - Silvia Moreno-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), C/Nicolás Cabrera 9, Madrid 28049, Spain
| | - Marta Miguel
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), C/Nicolás Cabrera 9, Madrid 28049, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avenida de la Universidad s/n, Elche, Alicante 03202, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avenida de la Universidad s/n, Elche, Alicante 03202, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
| | | |
Collapse
|
8
|
Long non-coding RNA and mRNA analysis of Ang II-induced neuronal dysfunction. Mol Biol Rep 2019; 46:3233-3246. [PMID: 30945068 DOI: 10.1007/s11033-019-04783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
The sustained activation of Angiotensin II (Ang II) induces the remodelling of neurovascular units, inflammation and oxidative stress reactions in the brain. Long non-coding RNAs (lncRNAs) play a crucial regulatory role in the pathogenesis of hypertensive neuronal damage. The present study aimed to substantially extend the list of potential candidate genes involved in Ang II-related neuronal damage. This study assessed apoptosis and energy metabolism with Annexin V/PI staining and a Seahorse assay after Ang II exposure in SH-SY5Y cells. The expression of mRNA and lncRNA was investigated by transcriptome sequencing. The integrated analysis of mRNA and lncRNAs and the molecular mechanism of Ang II on neuronal injury was analysed by bioinformatics. Ang II increased the apoptosis rate and reduced the energy metabolism of SH-SY5Y cells. The data showed that 702 mRNAs and 821 lncRNAs were differentially expressed in response to Ang II exposure (244 mRNAs and 432 lncRNAs were upregulated, 458 mRNAs and 389 lncRNAs were downregulated) (fold change ≥ 1.5, P < 0.05). GO and KEGG analyses showed that both DE mRNA and DE lncRNA were enriched in the metabolism, differentiation, apoptosis and repair of nerve cells. This is the first report of the lncRNA-mRNA integrated profile of SH-SY5Y cells induced by Ang II. The novel targets revealed that the metabolism of the vitamin B group, the synthesis of unsaturated fatty acids and glycosphingolipids are involved in the Ang II-related cognitive impairment. Sphingolipid metabolism, the Hedgehog signalling pathway and vasopressin-regulated water reabsorption play important roles in nerve damage.
Collapse
|
9
|
Kimura I, Dohgu S, Takata F, Matsumoto J, Kawahara Y, Nishihira M, Sakada S, Saisho T, Yamauchi A, Kataoka Y. Activation of the α7 nicotinic acetylcholine receptor upregulates blood-brain barrier function through increased claudin-5 and occludin expression in rat brain endothelial cells. Neurosci Lett 2019; 694:9-13. [DOI: 10.1016/j.neulet.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
10
|
Hsu PH, Lin YT, Chung YH, Lin KJ, Yang LY, Yen TC, Liu HL. Focused Ultrasound-Induced Blood-Brain Barrier Opening Enhances GSK-3 Inhibitor Delivery for Amyloid-Beta Plaque Reduction. Sci Rep 2018; 8:12882. [PMID: 30150769 PMCID: PMC6110796 DOI: 10.1038/s41598-018-31071-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/31/2018] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is the leading cause of age-related dementia. Currently, therapeutic agent delivery to the CNS is a valued approach for AD therapy. Unfortunately, the CNS penetration is greatly hampered by the blood-brain barrier (BBB). Focused-ultrasound (FUS) has been demonstrated to temporally open the BBB, thus promoting therapeutic agent delivery to the CNS. Recently, the BBB opening procedure was further reported to clear the deposited Aβ plaque due to microglia activation. In this study, we aimed to evaluate whether the use of FUS-induced BBB opening to enhance GSK-3 inhibitor delivery, which would bring additive effect of Aβ plaque clearance by FUS with the reduction of Aβ plaque synthesis by GSK-3 inhibitor in an AD mice model. FUS-induced BBB opening on APPswe/PSEN1-dE9 transgenic mice was performed unilaterally, with the contralateral hemisphere serving as a reference. GSK-3 level was confirmed by immunohistochemistry (IHC) and autoradiography (ARG) was also conducted to quantitatively confirm the Aβ plaque reduction. Results from IHC showed GSK-3 inhibitor effectively reduced GSK-3 activity up to 61.3% with the addition of FUS-BBB opening and confirming the proposed therapeutic route. ARG also showed significant Aβ-plaque reduction up to 31.5%. This study reveals the therapeutic potentials of ultrasound to AD treatment, and may provide a useful strategy for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzu-Chen Yen
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Zhao Y, Ye F, Xu J, Liao Q, Chen L, Zhang W, Sun H, Liu W, Feng F, Qu W. Design, synthesis and evaluation of novel bivalent β-carboline derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2018; 26:3812-3824. [PMID: 29960728 DOI: 10.1016/j.bmc.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
To develop potent multi-target ligands against Alzheimer's disease (AD), a series of novel bivalent β-carboline derivatives were designed, synthesized, and evaluated. In vitro studies revealed these compounds exhibited good multifunctional activities. In particular, compounds 8f and 8g showed the good selectivity potency on BuChE inhibition (IC50 = 1.7 and 2.7 μM, respectively), Aβ1-42 disaggregation and neuroprotection. Compared with the positive control resveratrol, 8f and 8g showed better activity in inhibiting Aβ1-42 aggregation, with inhibitory rate 82.7% and 85.7% at 25 μM, respectively. Moreover, compounds 8e, 8f and 8g displayed excellent neuroprotective activity by ameliorating the impairment induced by H2O2, okadaic acid (OA) and Aβ1-42 without cytotoxicity in SH-SY5Y cells. Thus, the present study evidently showed that compounds 8f and 8g are potent multi-functional agents against AD and might serve as promising lead candidates for further development.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghong Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Weijia Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| | - Wei Qu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Patel H, McIntire J, Ryan S, Dunah A, Loring R. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. J Neuroinflammation 2017; 14:192. [PMID: 28950908 PMCID: PMC5615458 DOI: 10.1186/s12974-017-0967-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2023] Open
Abstract
Background α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and are reported to have neuroprotective properties. α7 nAChRs are expressed on astrocytes, which are key regulators of neuroinflammation and oxidative stress in several neurodegenerative diseases. However, the anti-inflammatory and antioxidant properties of astroglial α7 nAChRs are not well studied. Therefore, we evaluated the role of astroglial α7 nAChR activation in neuroinflammation. Methods Anti-inflammatory and antioxidant effects of α7 nAChR activation were evaluated in an in vitro mouse model of neuroinflammation using lipopolysaccharide (LPS) in primary astrocyte cultures. α7 nAChR anti-inflammatory effects on the NF-κB pathway were evaluated using ELISA, gene expression analysis, immunofluorescence, and western blotting. Antioxidant effect of α7 nAChR activation on expression profiles of canonical Nrf2 target genes was examined by quantitative PCR and western blotting. The role of the Nrf2 pathway in α7 nAChR-mediated anti-inflammatory response was evaluated using Nrf2 knockout astrocytes. Brain ex vivo NF-κB luciferase signals were evaluated after treatment with an α7 nAChR agonist in lipopolysaccharide (LPS)-injected NF-κB luciferase reporter mouse model. Results Astrocytes treated with the α7 nAChR partial agonist (GTS21) showed significantly reduced LPS-mediated secretion of inflammatory cytokines and this effect was reversed by the α7 nAChR antagonist methyllycaconitine (MLA) and by knockdown of α7 nAChR expression with a short hairpin RNA. Further, α7 nAChR activation blocked LPS-mediated NF-κB nuclear translocation indicating that the observed anti-inflammatory effect may be mediated through inhibition of the NF-κB pathway. Treatment with GTS21 also upregulated canonical Nrf2 antioxidant genes and proteins suggesting antioxidant properties of α7 nAChR in astrocytes. Using an astrocyte conditioned media approach, we demonstrated reduction in neuronal apoptosis when astrocytes were pretreated with GTS21. Finally, in an in vivo neuroinflammation model using LPS in NF-κB luciferase reporter mice, we demonstrated reduction in LPS-induced NF-κB activity and pro-inflammatory cytokines with GTS21 treatment in brain tissue. Conclusion Our results suggest that activating astroglial α7 nAChRs may have a role in neuroprotection by decreasing inflammation and oxidative stress, and therefore could have therapeutic implication for disease modifying treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiral Patel
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Neurology Research, Biogen, 225 Binney street, Cambridge, MA, 02142, USA.
| | | | - Sarah Ryan
- Pre-Clinical Imaging & Pharmacology, Biogen, Cambridge, MA, USA
| | - Anthone Dunah
- Neurology Research, Biogen, 225 Binney street, Cambridge, MA, 02142, USA
| | - Ralph Loring
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Ju Y, Asahi T, Sawamura N. Arctic Aβ40 blocks the nicotine-induced neuroprotective effect of CHRNA7 by inhibiting the ERK1/2 pathway in human neuroblastoma cells. Neurochem Int 2017; 110:49-56. [PMID: 28890319 DOI: 10.1016/j.neuint.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Amyloid β protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Point mutations in the Aβ sequence, which cluster around the central hydrophobic core of the peptide, are associated with familial AD (FAD). Several mutations have been identified, with the Arctic mutation exhibiting a purely cognitive phenotype that is typical of AD. Our previous findings suggest that Arctic Aβ40 binds to and aggregates with CHRNA7, thereby inhibiting the calcium response and signaling pathways downstream of the receptor. Activation of CHRNA7 is neuroprotective both in vitro and in vivo. Therefore, in the present study, we investigated whether Arctic Aβ40 affects neuronal survival and/or death via CHRNA7. Using human neuroblastoma SH-SY5Y cells, we found that the neuroprotective function of CHRNA7 is blocked by CHRNA7 knockdown using RNA interference. Furthermore, Arctic Aβ40 blocked the neuroprotective effect of nicotine by inhibiting the ERK1/2 pathway downstream of CHRNA7. Moreover, we show that ERK1/2 activation mediates the neuroprotective effect of nicotine against oxidative stress. Collectively, our findings further our understanding of the molecular pathogenesis of Arctic FAD.
Collapse
Affiliation(s)
- Ye Ju
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Naoya Sawamura
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
14
|
Can Astrocytes Be a Target for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:111-128. [DOI: 10.1007/978-3-319-60733-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, Prieto I, Cuadrado A, Satrustegui J, Cadenas S, Monsalve M, López MG. Heme-Oxygenase I and PCG-1α Regulate Mitochondrial Biogenesis via Microglial Activation of Alpha7 Nicotinic Acetylcholine Receptors Using PNU282987. Antioxid Redox Signal 2017; 27:93-105. [PMID: 27554853 DOI: 10.1089/ars.2016.6698] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS A loss in brain acetylcholine and cholinergic markers, subchronic inflammation, and impaired mitochondrial function, which lead to low-energy production and high oxidative stress, are common pathological factors in several neurodegenerative diseases (NDDs). Glial cells are important for brain homeostasis, and microglia controls the central immune response, where α7 acetylcholine nicotinic receptors (nAChR) seem to play a pivotal role; however, little is known about the effects of this receptor in metabolism. Therefore, the aim of this study was to evaluate if glial mitochondrial energetics could be regulated through α7 nAChR. RESULTS Primary glial cultures treated with the α7 nicotinic agonist PNU282987 increased their mitochondrial mass and their mitochondrial oxygen consumption without increasing oxidative stress; these changes were abolished when nuclear erythroid 2-related factor 2 (Nrf2) was absent, heme oxygenase-1 (HO-1) was inhibited, or peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) was silenced. More specifically, microglia of animals treated intraperitoneally with the α7 nAChR agonist PNU282987 (10 mg/kg) showed a significant increase in mitochondrial mass. Interestingly, LysMcre-Hmox1Δ/Δ and PGC-1α-/- animals showed lower microglial mitochondrial levels and treatment with PNU282987 did not produce effects on mitochondrial levels. INNOVATION Increases in microglial mitochondrial mass and metabolism can be achieved via α7 nAChR by a mechanism that implicates Nrf2, HO-1, and PGC-1α. This signaling pathway could open a new strategy for the treatment of NDDs, such as Alzheimer's, characterized by a reduction of cholinergic markers. CONCLUSION α7 nAChR signaling increases glial mitochondrial mass, both in vitro and in vivo, via HO-1 and PCG-1α. These effects could be of potential benefit in the context of NDDs. Antioxid. Redox Signal. 27, 93-105.
Collapse
Affiliation(s)
- Elisa Navarro
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Laura Gonzalez-Lafuente
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Irene Pérez-Liébana
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Izaskun Buendia
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Elia López-Bernardo
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | | | - Ignacio Prieto
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Antonio Cuadrado
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Jorgina Satrustegui
- 3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Susana Cadenas
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Maria Monsalve
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Manuela G López
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| |
Collapse
|
16
|
Terrasso AP, Silva AC, Filipe A, Pedroso P, Ferreira AL, Alves PM, Brito C. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds. J Pharmacol Toxicol Methods 2017; 83:72-79. [DOI: 10.1016/j.vascn.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 11/25/2022]
|
17
|
Cholinergic Protection in Ischemic Brain Injury. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A: A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer's disease. Med Hypotheses 2016; 99:57-62. [PMID: 28110700 DOI: 10.1016/j.mehy.2016.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Besides cognitive deterioration, patients with AD are prone to seizures - more than 20% of patients diagnosed with AD experience at least one unprovoked seizure and up to 7% have recurrent seizures. Although available antiepileptic drugs (AEDs) may suppress seizures in patients with AD, they may also worsen cognitive dysfunction and increase the risk of falls. On the basis of preclinical studies, we hypothesize that Huperzine A (HupA), a safe and potent acetylcholinesterase (AChE) inhibitor with potentially disease-modifying qualities in AD, may have a realistic role as an anticonvulsant in AD.
Collapse
Affiliation(s)
- Ugur Damar
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roman Gersner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Steven Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Tommonaro G, García-Font N, Vitale RM, Pejin B, Iodice C, Cañadas S, Marco-Contelles J, Oset-Gasque MJ. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur J Med Chem 2016; 122:326-338. [DOI: 10.1016/j.ejmech.2016.06.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/02/2016] [Accepted: 06/19/2016] [Indexed: 02/06/2023]
|
20
|
García-Font N, Hayour H, Belfaitah A, Pedraz J, Moraleda I, Iriepa I, Bouraiou A, Chioua M, Marco-Contelles J, Oset-Gasque MJ. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer's disease. Eur J Med Chem 2016; 118:178-92. [DOI: 10.1016/j.ejmech.2016.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
|
21
|
Ovsepian SV, O'Leary VB, Zaborszky L. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist 2016; 22:238-51. [PMID: 26002948 PMCID: PMC4681696 DOI: 10.1177/1073858415588264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
22
|
Zhao L, Xiao Y, Wang XL, Pei J, Guan ZZ. Original Research: Influence of okadaic acid on hyperphosphorylation of tau and nicotinic acetylcholine receptors in primary neurons. Exp Biol Med (Maywood) 2016; 241:1825-33. [PMID: 27190248 DOI: 10.1177/1535370216650759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/25/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of the study was to investigate the influence of hyperphosphorylation of tau induced by okadaic acid on the expression of nicotinic acetylcholine receptors and the neurotoxicity of β-amyloid peptide. Primary cultures of neurons isolated from the hippocampus of the brains of neonatal rats were exposed to okadaic acid or/and Aβ1-42 Tau phosphorylated at Ser404 and Ser202, and the protein expressions of α7, α4 and α3 nAChR subunits were quantified by Western blotting, and their corresponding mRNAs by real-time PCR. Superoxide dismutase activity was assayed biochemically and malondialdehyde by thiobarbituric acid-reactive substance. As compared to controls, phosphorylations of tau at Ser404 and Ser202 in the neurons were elevated by exposure to 20 nM okadaic acid for 48 h but not by 1 or 2 µM Aβ1-42 Treatment with 20 nM okadaic acid or 1 µM Aβ1-42 for 48 h resulted in the reduced α7, α4 and α3 proteins, and α4 and α3 mRNAs, as well as the decreased activity of superoxide dismutase and the increased malondialdehyde. Okadaic acid and Aβ1-42 together caused more pronounced changes in the expressions of α7 and α4, superoxide dismutase activity and lipid peroxidation than either alone. When pre-treatment with vitamin E or lovastatin, the neurotoxicity induced by okadaic acid was significantly attenuated. These findings indicate that hyperphosphorylation of tau induced by okadaic acid inhibits the expression of nicotinic acetylcholine receptors at both the protein and mRNA levels, as well as enhances the neurotoxicity of β-amyloid peptide.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Pathology at the Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yan Xiao
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xiao-Liang Wang
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Jinjing Pei
- KI-Alzheimer Disease Research Center, Karolinska Institutet, Novum, SE14186 Huddinge, Sweden
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou, PR China The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| |
Collapse
|
23
|
Sun F, Johnson SR, Jin K, Uteshev VV. Boosting Endogenous Resistance of Brain to Ischemia. Mol Neurobiol 2016; 54:2045-2059. [PMID: 26910820 DOI: 10.1007/s12035-016-9796-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that the human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be (1) limited to less severe injuries; (2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and (3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential.
Collapse
Affiliation(s)
- Fen Sun
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | | | - Kunlin Jin
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Victor V Uteshev
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
24
|
BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor. Exp Neurol 2015; 275 Pt 1:69-77. [PMID: 26496817 DOI: 10.1016/j.expneurol.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.
Collapse
|
25
|
Puangmalai N, Somani A, Thangnipon W, Ballard C, Broadstock M. A genetically immortalized human stem cell line: a promising new tool for Alzheimer's disease therapy. EXCLI JOURNAL 2015; 14:1135-14. [PMID: 27152108 PMCID: PMC4849102 DOI: 10.17179/excli2015-560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
Amyloid-β peptides and hyper-phosphorylated tau are the main pathological hallmarks of Alzheimer's disease (AD). Given the recent failure of several large-scale clinical trials and the lack of disease-modifying pharmacological treatments, there is an urgent need to develop alternative therapies. A clinical grade human CTX0E03 neural stem cell line has recently passed phase I trials in people with stroke. However, this cell line has not been investigated in other neurodegenerative disorders. This study investigates the survival of CTX0E03 cells under conditions based on the underlying AD pathology. Cell viability assays showed a concentration dependence of this cell line to the toxic effects of Aβ1-42, but not Aβ1-40, and okadaic acid, a phosphatase 2A inhibitor. Notably, CTX0E03 cell line displayed toxicity at concentrations significantly higher than both rat neural stem cells and those previously reported for primary cultures. These results suggest CTX0E03 cells could be developed for clinical trials in AD patients.
Collapse
Affiliation(s)
- Nicha Puangmalai
- King’s College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, UK
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Alyma Somani
- King’s College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, UK
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Clive Ballard
- King’s College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, UK
| | - Martin Broadstock
- King’s College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, UK
| |
Collapse
|
26
|
Quik M, Zhang D, McGregor M, Bordia T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015; 97:399-407. [PMID: 26093062 PMCID: PMC4600450 DOI: 10.1016/j.bcp.2015.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are important targets for the development of therapeutic approaches for Parkinson's disease. This progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently l-dopa is the gold standard treatment for Parkinson's disease motor problems, particularly in the early disease stages. However, it does not improve the other symptoms, nor does it reduce the inevitable disease progression. Novel therapeutic strategies for Parkinson's disease are therefore critical. Extensive pre-clinical work using a wide variety of experimental models shows that nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying agents. Additionally, studies in several parkinsonian animal models including nonhuman primates show that nicotine reduces l-dopa-induced dyskinesias, a side effect of l-dopa therapy that may be as incapacitating as Parkinson's disease itself. Work with subtype selective nAChR agonists indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against neurodegenerative effects and for the reduction of l-dopa-induced dyskinesias. Altogether, this work suggests that α7 nAChRs may be useful targets for reducing Parkinson's disease progression and for the management of the dyskinesias that arise with l-dopa therapy.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| |
Collapse
|
27
|
Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 2015; 97:463-472. [DOI: 10.1016/j.bcp.2015.07.032] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
|
28
|
The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression. Cancers (Basel) 2015; 7:1447-71. [PMID: 26264026 PMCID: PMC4586778 DOI: 10.3390/cancers7030845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.
Collapse
|
29
|
Mata D, Linn DM, Linn CL. Retinal ganglion cell neuroprotection induced by activation of alpha7 nicotinic acetylcholine receptors. Neuropharmacology 2015; 99:337-46. [PMID: 26239818 DOI: 10.1016/j.neuropharm.2015.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
The α7nAChR agonist, PNU-282987, has previously been shown to have a neuroprotective effect against loss of retinal ganglion cells (RGCs) in an in vivo glaucoma model when the agent was injected into the vitreous chamber of adult Long Evans rat eyes. Here, we characterized the neuroprotective effect of PNU-282987 at the nerve fiber and retinal ganglion cell layer, determined that neuroprotection occurred when the agonist was applied as eye drops and verified detection of the agonist in the retina, using LC/MS/MS. To induce glaucoma-like conditions in adult Long Evans rats, hypertonic saline was injected into the episcleral veins to induce scar tissue and increase intraocular pressure. Within one month, this procedure produced significant loss of RGCs compared to untreated conditions. RGCs were quantified after immunostaining with an antibody against Thy 1.1 and imaged using a confocal microscope. In dose-response studies, concentrations of PNU-282987 were applied to the animal's right eye two times each day, while the left eye acted as an internal control. Eye drops of PNU-282987 resulted in neuroprotection against RGC loss in a dose-dependent manner using concentrations between 100 μM and 2 mM PNU-282987. LC/MS/MS results demonstrated that PNU-282987 was detected in the retina when applied as eye drops, relatively small amounts of PNU-282987 were measured in blood plasma and no PNU-282987 was detected in cardiac tissue. These results support the hypothesis that eye drop application of PNU-282987 can prevent loss of RGCs associated with glaucoma, which can lead to neuroprotective treatments for diseases that involve α7nAChRs.
Collapse
Affiliation(s)
- David Mata
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA.
| | - David M Linn
- Grand Valley State University, Department of Biomedical Sciences, Allendale, MI 49401, USA.
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008, USA.
| |
Collapse
|
30
|
Guerra-Álvarez M, Moreno-Ortega AJ, Navarro E, Fernández-Morales JC, Egea J, López MG, Cano-Abad MF. Positive allosteric modulation of alpha-7 nicotinic receptors promotes cell death by inducing Ca(2+) release from the endoplasmic reticulum. J Neurochem 2015; 133:309-19. [PMID: 25650007 DOI: 10.1111/jnc.13049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7-nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca(2+) signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca(2+) signaling and cell viability. We used human SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca(2+) with Fura-2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch-clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7-SH but not of C-SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca(2+) concentration; (iii) released Ca(2+) from the ER by a Ca(2+) -induced Ca(2+) release mechanism only in α7-SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7-nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7-nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca(2+) , overloading of intracellular Ca(2+) , and neuronal cell death. This study focuses on how the type II positive allosteric modulator PNU120596 (PAM II PNU12) affects intracellular Ca(2+) signaling and cell viability. Using SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH), we find that PAM of α7-nAChRs with PNU120596: (i) increases inward calcium current (ICa ) and cytosolic Ca(2+) concentration ([Ca(2+) ]cyt ); (ii) releases Ca(2+) from the ER ([Ca(2+) ]ER ) by a Ca(2+) -induced Ca(2+) release mechanism; and (iv) reduces cell viability. These findings were corroborated in rat hippocampal organotypic cultures. [Ca(2+) ]cyt , cytosolic Ca(2+) concentration; [Ca(2+) ]ER , endoplasmic reticulum Ca(2+) concentration; α7 nAChR, α7 isoform of nicotinic acetylcholine receptors; α7-SH, SH-SY5Y stably overexpressing α7 nAChRs cells; C-SH, control SH-SY5Y cells; Nic, nicotine; PNU12, PNU120596.
Collapse
Affiliation(s)
- María Guerra-Álvarez
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI, López MG. The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer's model via hemo-oxygenase-1 induction. ACS Chem Neurosci 2015; 6:288-96. [PMID: 25393881 DOI: 10.1021/cn5002073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have investigated the protective effects of ITH91/IQM157, a hybrid of melatonin and N,N-dibenzyl(N-methyl)amine, in an in vitro model of Alzheimer's disease (AD)-like pathology that combines amyloid beta (Aβ) and tau hyperphosphorylation induced by okadaic acid (OA), in the human neuroblastoma cell line SH-SY5Y. Combination of subtoxic concentrations of Aβ and OA caused a significant toxicity of 40% cell death, which mainly was apoptotic; this effect was accompanied by retraction of the cells' prolongations and accumulation of thioflavin-S stained protein aggregates. In this toxicity model, ITH91/IQM157 (1-1000 nM) reduced cell death measured as MTT reduction; at 100 nM, it prevented apoptosis, retraction of prolongations, and Aβ aggregates. The protective actions of ITH91/IQM157 were blocked by mecamylamine, luzindol, chelerythrine, PD98059, LY294002, and SnPP. We show that the combination of melatonin with a fragment endowed with AChE inhibition in a unique chemical structure, ITH91/IQM157, can reduce neuronal cell death induced by Aβ and OA by a signaling pathway that implicates both nicotinic and melatonin receptors, PKC, Akt, ERK1/2, and induction of hemoxygenase-1.
Collapse
Affiliation(s)
- Izaskun Buendia
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto
de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Javier Egea
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto
de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Esther Parada
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Elisa Navarro
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Rafael León
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto
de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - María Isabel Rodríguez-Franco
- Instituto
de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Manuela G. López
- Instituto
Teófilo Hernando (ITH), Universidad Autónoma de Madrid, Madrid 28029, Spain
- Departamento
de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto
de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
32
|
Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: A new target for a privileged structure. Eur J Med Chem 2014; 86:724-39. [DOI: 10.1016/j.ejmech.2014.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
|
33
|
Protective effects of humanin on okadaic Acid-induced neurotoxicities in cultured cortical neurons. Neurochem Res 2014; 39:2150-9. [PMID: 25142935 DOI: 10.1007/s11064-014-1410-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Abstract
Neurofibrillary tangles are pathological hallmarks of Alzheimer's disease (AD), which are mostly composed of hyperphosphorylated tau and directly correlate with dementia in AD patients. Okadaic acid (OA), a toxin extracted from marine life, can specifically inhibit protein phosphatases (PPs), including PP1 and Protein phosphatase 2A (PP2A), resulting in tau hyperphosphorylation. Humanin (HN), a peptide of 24 amino acids, was initially reported to protect neurons from AD-related cell toxicities. The present study was designed to test if HN could attenuate OA-induced neurotoxicities, including neural insults, apoptosis, autophagy, and tau hyperphosphorylation. We found that administration of OA for 24 h induced neuronal insults, including lactate dehydrogenase released, decreased of cell viability and numbers of living cells, neuronal apoptosis, cells autophagy and tau protein hyperphosphorylation. Pretreatment of cells with HN produced significant protective effects against OA-induced neural insults, apoptosis, autophagy and tau hyperphosphorylation. We also found that OA treatment inhibited PP2A activity and HN pretreatment significantly attenuated the inhibitory effects of OA. This study demonstrated for the first time that HN protected cortical neurons against OA-induced neurotoxicities, including neuronal insults, apoptosis, autophagy, and tau hyperphosphorylation. The mechanisms underlying the protections of HN may involve restoration of PP2A activity.
Collapse
|
34
|
Taveira M, Sousa C, Valentão P, Ferreres F, Teixeira JP, Andrade PB. Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. J Steroid Biochem Mol Biol 2014; 140:106-15. [PMID: 24373792 DOI: 10.1016/j.jsbmb.2013.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/28/2013] [Accepted: 12/16/2013] [Indexed: 01/31/2023]
Abstract
Several evidences suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of several neurodegenerative diseases. The aim of this study was to investigate for the first time whether both extracts from tomato plant (Lycopersicon esculentum Mill.) leaves and their isolated steroidal alkaloids (tomatine and tomatidine) afford neuroprotective effect against glutamate-induced toxicity in SH-SY5Y neuroblastoma cells and to elucidate the mechanisms underlying this protection. Steroidal alkaloids from tomato are well known for their cholinesterases' inhibitory capacity and the results showed that both purified extracts and isolated compounds, at non-toxic concentrations for gastric (AGS), intestinal (Caco-2) and neuronal (SH-SY5Y) cells, have the capacity to preserve mitochondria membrane potential and to decrease reactive oxygen species levels of SH-SY5Y glutamate-insulted cells. Moreover, the use of specific antagonists of cholinergic receptors allowed observing that tomatine and tomatidine can interact with nicotinic receptors, specifically with the α7 type. No effect on muscarinic receptors was noticed. In addition to the selective cholinesterases' inhibition revealed by the compounds/extracts, these results provide novel and important insights into their neuroprotective mechanism. This work also demystifies the applicability of these compounds in therapeutics, by demonstrating that their toxicity was overestimated for long time.
Collapse
Affiliation(s)
- Marcos Taveira
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n°. 228, 4050-313 Porto, Portugal
| | - Carla Sousa
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n°. 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n°. 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- CEBAS (CSIC) Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - João P Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, n°. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
35
|
Uteshev VV. The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 2014; 727:181-5. [PMID: 24530419 DOI: 10.1016/j.ejphar.2014.01.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/11/2022]
Abstract
In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
36
|
Kalappa BI, Sun F, Johnson SR, Jin K, Uteshev VV. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia. Br J Pharmacol 2014; 169:1862-78. [PMID: 23713819 DOI: 10.1111/bph.12247] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. EXPERIMENTAL APPROACH An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. KEY RESULTS Choline (20-200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg(-1) , s.c. and 1 mg·kg(-1) , i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg(-1) , i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. CONCLUSIONS AND IMPLICATIONS PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting neuroprotective effects of endogenous choline/ACh.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | |
Collapse
|
37
|
Liu Q, Tang Z, Gan Y, Wu W, Kousari A, La Cava A, Shi FD. Genetic deficiency of β2-containing nicotinic receptors attenuates brain injury in ischemic stroke. Neuroscience 2013; 256:170-7. [PMID: 24184117 DOI: 10.1016/j.neuroscience.2013.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
Abstract
One of the major consequences of stroke is brain injury caused by glutamate-mediated excitotoxicity. Glutamate-mediated excitatory activities are partially driven by β2-containing nicotinic acetylcholine receptors (β2-nAChRs). In examining the role of β2-nAChRs in cerebral ischemic injury, excitotoxicity and stroke outcome, we found that deficiency of β2-nAChRs attenuated brain infarction and neurological deficit at 24 and 72 h after transient middle cerebral artery occlusion (MCAO). Genetic deletion of β2-nAChRs associated with reduced terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL(+)) and cleaved caspase-3(+) cells after MCAO, together with a reduction of extracellular glutamate and oxygen-glucose deprivation-induced increase of excitatory inputs in cortical neurons. Pharmacologic pretreatment with a selective β2-nAChRs antagonist reduced brain infarction, neurological deficit, and MCAO-induced glutamate release. These findings suggest that deficiency of β2-nAChRs, also achievable by pharmacological blockade, can decrease brain infarction and improve the neurological status in ischemic stroke. The improved outcome is associated with reduced extracellular glutamate level and lower excitatory inputs into ischemic neurons, suggesting a reduction of glutamate-mediated excitotoxicity in the mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Q Liu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Z Tang
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Y Gan
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - W Wu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - A Kousari
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - A La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - F-D Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
38
|
Sun F, Jin K, Uteshev VV. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats. PLoS One 2013; 8:e73581. [PMID: 23951360 PMCID: PMC3739732 DOI: 10.1371/journal.pone.0073581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fen Sun
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Kunlin Jin
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Victor V. Uteshev
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kamat PK, Rai S, Nath C. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer's disease pathology. Neurotoxicology 2013; 37:163-72. [DOI: 10.1016/j.neuro.2013.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/18/2022]
|
40
|
Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, Kim SH. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity. J Neurochem 2013; 127:562-74. [PMID: 23711227 DOI: 10.1111/jnc.12319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional mechanisms of donepezil including its inhibitory effect on GSK-3β activity and activating role of nicotinic AChRs might be involved.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Medina M, Avila J, Villanueva N. Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. Mar Drugs 2013; 11:1656-68. [PMID: 23697949 PMCID: PMC3707166 DOI: 10.3390/md11051656] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes and is the result of a balance between protein kinase and phosphatase activities. Biologically active marine derived compounds have been shown to represent an interesting source of novel compounds that could modify that balance. Among them, the marine toxin and tumor promoter, okadaic acid (OA), has been shown as an inhibitor of two of the main cytosolic, broad-specificity protein phosphatases, PP1 and PP2A, thus providing an excellent cell-permeable probe for examining the role of protein phosphorylation, and PP1 and PP2A in particular, in any physiological or pathological process. In the present work, we review the use of okadaic acid to identify specific phosphoepitopes mainly in proteins relevant for neurodegeneration. We will specifically highlight those cases of highly dynamic phosphorylation-dephosphorylation events and the ability of OA to block the high turnover phosphorylation, thus allowing the detection of modified residues that could be otherwise difficult to identify. Finally, its effect on tau hyperhosphorylation and its relevance in neurodegenerative pathologies such as Alzheimer’s disease and related dementia will be discussed.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
| | - Jesús Avila
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
- Center of Molecular Biology “Severo Ochoa” CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-91-196-4803; Fax: +34-91-196-4715
| | - Nieves Villanueva
- National Center of Microbiology (CNM), Carlos III Institute of Health (ISCIII), Crta. Majadahonda-Pozuelo km 2, Majadahonda, Madrid 28220, Spain; E-Mail:
| |
Collapse
|
42
|
Ozdemir AY, Rom I, Kovalevich J, Yen W, Adiga R, Dave RS, Langford D. PINCH in the cellular stress response to tau-hyperphosphorylation. PLoS One 2013; 8:e58232. [PMID: 23554879 PMCID: PMC3595241 DOI: 10.1371/journal.pone.0058232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 02/04/2013] [Indexed: 12/28/2022] Open
Abstract
Particularly interesting new cysteine- histidine- rich protein (PINCH) is an adaptor protein that our data have shown is required for neurite extension under stressful conditions. Our previous studies also report that PINCH is recalled by neurons showing decreased levels of synaptodendritic signaling proteins such as MAP2 or synaptophysin in the brains of human immunodeficiency virus (HIV) patients. The current study addressed potential role(s) for PINCH in neurodegenerative diseases. Mass spectrometry predicted the interaction of PINCH with Tau and with members of the heat shock response. Our in vitro data confirmed that PINCH binds to hyperphosphorylated (hp) Tau and to E3 ubiquitin ligase, carboxy-terminus of heat shock-70 interacting protein. Silencing PINCH prior to induction of hp-Tau resulted in more efficient clearance of accumulating hp-Tau, suggesting that PINCH may play a role in stabilizing hp-Tau. Accumulation of hp-Tau is implicated in more than 20 neuropathological diseases including Alzheimer's disease (AD), frontotemporal dementia (FTD), and human immunodeficiency virus encephalitis (HIVE). Analyses of brain tissues from HIVE, AD and FTD patients showed that PINCH is increased and binds to hp-Tau. These studies address a new mechanism by which AD and HIV may intersect and identify PINCH as a contributing factor to the accumulation of hyperphosphorylated Tau.
Collapse
Affiliation(s)
- Ahmet Yunus Ozdemir
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Inna Rom
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Jane Kovalevich
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - William Yen
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Radhika Adiga
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Rajnish S. Dave
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Dianne Langford
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Uteshev VV. Somatic integration of single ion channel responses of α7 nicotinic acetylcholine receptors enhanced by PNU-120596. PLoS One 2012; 7:e32951. [PMID: 22479351 PMCID: PMC3316542 DOI: 10.1371/journal.pone.0032951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
Positive allosteric modulators of highly Ca2+-permeable α7 nicotinic acetylcholine receptors, such as PNU-120596, may become useful therapeutic tools supporting neuronal survival and function. However, despite promising results, the initial optimism has been tempered by the concerns for cytotoxicity. The same concentration of a given nicotinic agent can be neuroprotective, ineffective or neurotoxic due to differences in the expression of α7 receptors and susceptibility to Ca2+ influx among various subtypes of neurons. Resolution of these concerns may require an ability to reliably detect, evaluate and optimize the extent of α7 somatic ionic influx, a key determinant of the likelihood of neuronal survival and function. In the presence of PNU-120596 and physiological choline (∼10 µM), the activity of individual α7 channels can be detected in whole-cell recordings as step-like current/voltage deviations. However, the extent of α7 somatic influx remains elusive because the activity of individual α7 channels may not be integrated across the entire soma, instead affecting only specific subdomains located in the channel vicinity. Such a compartmentalization may obstruct detection and integration of α7 currents, causing an underestimation of α7 activity. By contrast, if step-like α7 currents are integrated across the soma, then a reliable quantification of α7 influx in whole-cell recordings is possible and could provide a rational basis for optimization of conditions that support survival of α7-expressing neurons. This approach can be used to directly correlate α7 single-channel activity to neuronal function. In this study, somatic dual-patch recordings were conducted using large hypothalamic and hippocampal neurons in acute coronal rat brain slices. The results demonstrate that the membrane electrotonic properties do not impede somatic signaling, allowing reliable estimates of somatic ionic and Ca2+ influx through α7 channels, while the somatic space-clamp error is minimal (∼0.01 mV/µm). These research efforts could benefit optimization of potential α7-PAM-based therapies.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
| |
Collapse
|