1
|
Chandel M, Sharma AK, Thakur K, Sharma D, Brar B, Mahajan D, Kumari H, Pankaj PP, Kumar R. Poison in the water: Arsenic's silent assault on fish health. J Appl Toxicol 2024; 44:1282-1301. [PMID: 38262619 DOI: 10.1002/jat.4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 01/25/2024]
Abstract
Arsenic occurs across the world in freshwater and marine environments, menacing the survival of aquatic organisms. Organic and inorganic forms of this substance can be found, in which the inorganic form is more hazardous than the organic form. Most aquatic bodies contain inorganic arsenic species, but organic species are believed to be the dominant form of arsenic in the majority of fish. Natural and anthropogenic both are the sources of water contamination with arsenic. Its bioaccumulation and transfer from one trophic level to another in the aquatic food chain make arsenic a vital environmental issue. Continuous exposure to low concentrations of arsenic in aquatic organisms including fish leads to its bioaccumulation, which may affect organisms of higher trophic levels including large fishes or humans. Humans can be exposed to arsenic through the consumption of fish contaminated with arsenic. Hence, the present review facilitates our understanding about sources of arsenic, its bioaccumulation, food chain transfer, and its effect on the fish health. Also, "Poison in the Water: Arsenic's Silent Assault on Fish Health" serves as a wake-up call to recognize the pressing need to address arsenic contamination in water bodies. By understanding its devastating impact on fish health, we can strive to implement sustainable practices and policies that safeguard our precious aquatic environments and ensure the well-being of both wildlife and human communities that depend on them.
Collapse
Affiliation(s)
- Meenakshi Chandel
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Pranay Punj Pankaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
2
|
Wu Q, Li G, Huo T, Du X, Yang Q, Hung TC, Yan W. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145766. [PMID: 33610984 DOI: 10.1016/j.scitotenv.2021.145766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydro-ecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, Hubei, China.
| |
Collapse
|
3
|
Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/8740468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A critical stage of shotgun proteomics is database search, a process which attempts to match the experimental spectra to the theoretical one. Given the considerable time and effort spent in analysis, it is self-evident for a researcher to aspire for rigorous computational analysis and a more confident and accurate peptide/protein identification. Mass spectrometry (MS) has been applied across several clinical disciplines. The pathophysiology of Stress Urinary Incontinence (SUI), caused by a damaged pelvic floor, has become a boundless disease altering the quality of life worldwide. Although some studies pointed markers that can be bioindicators for SUI, these findings raise the issue of sensitivity and specificity. Therefore, it is critical to have a sensitive and specific analytical approach to identify markers that have been associated with protective and deleterious associations in disease. Here, we describe our designed and developed workflow for protein identification from tandem mass spectrometry that uses multiple search engines. We apply our workflow to an existing study addressing the pathophysiology of SUI. We demonstrate how using the combined approach together with high-performance computing techniques can surmount the challenges of complex analyses and extended computing time. We also compare the relative performance of each combination. Our results suggest that a combination of MS-GF+ and COMET represents the best sensitivity-specificity trade-off, outperforming all other tested combinations. The approach was also sensitive and accurately identified a set of protein that was shown to be markers for categories of diseases associated with the pathophysiology of SUI. This workflow was developed to encourage proteomic researchers to adopt MS-based techniques for accurate analysis and to promote MS as a routine tool to the clinical cohorts.
Collapse
|
4
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
5
|
Chiu CY, Chung MN, Lan KC, Yang RS, Liu SH. Exposure of low-concentration arsenic induces myotube atrophy by inhibiting an Akt signaling pathway. Toxicol In Vitro 2020; 65:104829. [PMID: 32184170 DOI: 10.1016/j.tiv.2020.104829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Arsenic, a widely distributed toxic metalloid, has been found to be associated with the low-birth-weight infants and the impairment of muscle regenerative capacity in areas with high levels of arsenic in drinking water. The distal muscular atrophy is one of side effects of arsenic trioxide (As2O3) for acute promyelocytic leukemia therapy. We hypothesized that arsenic may be a potential risk factor for skeletal muscle atrophy. Here, we investigated the action and molecular mechanism of low-dose arsenic on the induction of skeletal muscle atrophy in a skeletal muscle cell model. The differentiated C2C12 myotubes were treated with As2O3 (0.25-1 μM) for 48 h without apparent effects on cell viability. The signaling molecules for myotube atrophy were assessed. Submicromolar-concentration As2O3 dose-dependently triggered C2C12 myotube atrophy and increased the protein expressions of atrogenes Atrogin1 and MuRF1 and inhibited the upstream phosphorylated proteins Akt and FoxO1, while As2O3 dose-dependently increased AMPK phosphorylation in myotubes. Akt activator SC79 could significantly reverse the As2O3-induced myotube atrophy. These results suggest that arsenic is capable of inducing myotube atrophy by inhibiting an Akt signaling pathway.
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Department of Botanicals, Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City, Taiwan
| | - Min-Ni Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Sims KC, Schwendinger KL, Szymkowicz DB, Swetenburg JR, Bain LJ. Embryonic arsenic exposure reduces intestinal cell proliferation and alters hepatic IGF mRNA expression in killifish (Fundulus heteroclitus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:142-156. [PMID: 30729860 PMCID: PMC6397093 DOI: 10.1080/15287394.2019.1571465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a toxicant found in food and water throughout the world, and studies suggested that exposure early in life reduces growth. Thus, the goal of this study was to examine mechanisms by which As impacted organismal growth. Killifish (Fundulus heteroclitus) were exposed to 0, 10, 50, or 200 ppb As as embryos and, after hatching, were reared in clean water for up to 40 weeks. Metabolism studies revealed that killifish biotransform As such that monomethylated and dimethylated arsenicals account for 15-17% and 45-61%, respectively, of the total metal. Growth, as measured by condition factor (CF), was significantly and dose-dependently reduced at 8 weeks of age but was similar to controls by 40 weeks. To determine mechanisms underlying the observed initial decrease, intestinal proliferation and morphology were examined. Arsenic-exposed fish exhibited significant 1.3- to 1.5-fold reduction in intestinal villus height and 1.4- to 1.6-fold decrease in proliferating cell nuclear antigen (PCNA+) intestinal cells at all weeks examined. In addition, there were significant correlations between CF, PCNA+ cells, and intestinal villus height. Upon examining whether fish might compensate for the intestinal changes, it was found that hepatic mRNA expression of insulin-like growth factor 1 (IGF-1) and its binding protein (IGFBP-1) were dose-dependently increased. These results indicate that embryonic exposure initially diminished growth, and while intestinal cell proliferation remained reduced, fish appear to compensate by enhancing transcript levels of hepatic IGF-1 and IGFBP-1.
Collapse
Affiliation(s)
- Kaleigh C. Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Dana B. Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Lisa J. Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Dipp VR, Valles S, Ortiz-Kerbertt H, Suarez JV, Bardullas U. Neurobehavioral Alterations in Zebrafish Due to Long-Term Exposure to Low Doses of Inorganic Arsenic. Zebrafish 2018; 15:575-585. [PMID: 30183563 DOI: 10.1089/zeb.2018.1627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic arsenic (As) is one of the most ubiquitous and toxic substances with widespread health effects on human populations and biodiversity. Although arsenic is a frequent surface water pollutant, there is scant evidence about neurotoxicity in aquatic species in different stages of development. In the present study, we investigated the neurobehavioral effects of chronic exposure to environmentally relevant doses of arsenic. We exposed zebrafish to 50 and 500 ppb during the larval, juvenile, and adult stage (from 4 h to 150 days postfertilization). We then used broad behavioral screening to evaluate motor function, social behavior, learning and memory, and anxiety-like behaviors. Our results show that arsenic exposure to 500 ppb alters motor function from the embryo to the adult stage. Furthermore, during the adult phase, associative learning and the sensorimotor response are affected with both high and low doses of As, respectively. Notably, exposure to 500 ppb of As induces behaviors associated with anxiety, during the juvenile and adult phase but not the larval stage, without changes in whole-body cortisol levels. These results indicate that chronic exposure to arsenic during their lifespan is capable of producing alterations in different behavioral markers in aquatic vertebrates.
Collapse
Affiliation(s)
- Víctor René Dipp
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Selma Valles
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Héctor Ortiz-Kerbertt
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Julio V Suarez
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Ulises Bardullas
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| |
Collapse
|
8
|
Szymkowicz DB, Schwendinger KL, Tatnall CM, Swetenburg JR, Bain LJ. Embryonic-only arsenic exposure alters skeletal muscle satellite cell function in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:276-286. [PMID: 29574248 PMCID: PMC5889967 DOI: 10.1016/j.aquatox.2018.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant found worldwide in drinking water and food. Epidemiological studies have correlated arsenic exposure with reduced weight gain and improper muscular development, while in vitro studies show that arsenic exposure impairs myogenic differentiation. The purpose of this study was to use Fundulus heteroclitus or killifish as a model organism to determine if embryonic-only arsenic exposure permanently reduces the number or function of muscle satellite cells. Killifish embryos were exposed to 0, 50, 200, or 800 ppb arsenite (AsIII) until hatching, and then juvenile fish were raised in clean water. At 28, 40, and 52 weeks after hatching, skeletal muscle injuries were induced by injecting cardiotoxin into the trunk of the fish just posterior to the dorsal fin. Muscle sections were collected at 0, 3 and 10 days post-injury. Collagen levels were used to assess muscle tissue damage and recovery, while levels of proliferating cell nuclear antigen (PCNA) and myogenin were quantified to compare proliferating cells and newly formed myoblasts. At 28 weeks of age, baseline collagen levels were 105% and 112% greater in 200 and 800 ppb groups, respectively, and at 52 weeks of age, were 58% higher than controls in the 200 ppb fish. After cardiotoxin injury, collagen levels tend to increase to a greater extent and take longer to resolve in the arsenic exposed fish. The number of baseline PCNA(+) cells were 48-216% greater in 800 ppb exposed fish compared to controls, depending on the week examined. However, following cardiotoxin injury, PCNA is reduced at 28 weeks in 200 and 800 ppb fish at day 3 during the recovery period. By 52 weeks, there are significant reductions in PCNA in all exposure groups at day 3 of the recovery period. Based on these results, embryonic arsenic exposure increases baseline collagen levels and PCNA(+) cells in skeletal muscle. However, when these fish are challenged with a muscle injury, the proliferation and differentiation of satellite cells into myogenic precursors is impaired and instead, the fish appear to be favoring a fibrotic resolution to the injury.
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Katey L Schwendinger
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Caroline M Tatnall
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - John R Swetenburg
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
9
|
Zhao H, He Y, Li S, Sun X, Wang Y, Shao Y, Hou Z, Xing M. Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 2018; 8:40327-40344. [PMID: 28454103 PMCID: PMC5522337 DOI: 10.18632/oncotarget.16960] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022] Open
Abstract
In many organ dysfunctions, arsenic and its compounds are well known to induce apoptosis by the mitochondria and death receptor apoptotic pathways in liver and airway. However, it is less reported that which signaling pathways contribute to excessive apoptosis of chicken immune organs, a major target of toxic metals biotransformation, which suffer from subchronic arsenism. In this study, we investigated whether the mitochondria or death receptor apoptotic pathways activated in the immune organs (spleen, thymus and bursa of Fabricius) of one-day-old male Hy-line chickens exposed to arsenic trioxide (As2O3), which were fed on diets supplemented with 0, 0.625, 1.25 and 2.5 mg/kg BW of As2O3 for 30, 60 and 90 days. We found that (1) Oxidative damage and inflammatory response were confirmed in the immune organs of chickens fed on As2O3 diet. (2) Subchronic arsenism induced typical apoptotic changes in ultrastructure. (3) TdT-mediated dUTP Nick-End Labeling (TUNEL) showed that the number of apoptotic cells significantly increased under subchronic arsenism. (4) As2O3-induced apoptosis of immune organs involved in mitochondrial pathway (decrease of B-cell lymphoma-2 (Bcl-2) and increase of protein 53 (p53), Bcl-2 Associated X Protein (Bax), caspase-9, caspase-3) and death receptor pathway (increase of factor associated suicide (Fas) and caspase-8). In conclusion, this work is the first to demonstrate that the activation of mitochondria and death receptor apoptosis pathways can lead to excessive apoptosis in immune organs of chickens, which suffer from subchronic arsenism, meanwhile, oxidative stress as well as subsequent inflammatory is a crucial driver of apoptosis.
Collapse
Affiliation(s)
- Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiao Sun
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Zhijun Hou
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
10
|
Szymkowicz DB, Sims KC, Castro NM, Bridges WC, Bain LJ. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:1-10. [PMID: 28237603 PMCID: PMC5395342 DOI: 10.1016/j.aquatox.2017.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb AsIII from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended.
Collapse
MESH Headings
- Animals
- Arsenic/toxicity
- Behavior, Animal/drug effects
- Embryonic Development/drug effects
- Environmental Exposure/analysis
- Female
- Fundulidae/embryology
- Fundulidae/genetics
- Fundulidae/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Kaleigh C Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Noemi M Castro
- Department of Biochemistry and Molecular Biology, University of California-Davis, Davis, CA, United States
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
11
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
12
|
Sun HJ, Xiang P, Tang MH, Sun L, Ma LQ. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis). JOURNAL OF HAZARDOUS MATERIALS 2016; 303:76-82. [PMID: 26513566 DOI: 10.1016/j.jhazmat.2015.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 10/13/2015] [Indexed: 05/21/2023]
Abstract
Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Ming-Hu Tang
- Yangzhou Integrated Experimental Station, National Industry Technology Research System of Staple Freshwater Fish, Jiangsu 225104, China
| | - Li Sun
- Yangzhou Integrated Experimental Station, National Industry Technology Research System of Staple Freshwater Fish, Jiangsu 225104, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Bain LJ, Liu JT, League RE. Arsenic inhibits stem cell differentiation by altering the interplay between the Wnt3a and Notch signaling pathways. Toxicol Rep 2016; 3:405-413. [PMID: 27158593 PMCID: PMC4855706 DOI: 10.1016/j.toxrep.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
data indicates that arsenic exposure inhibits stem cell differentiation. This study investigated whether arsenic disrupted the Wnt3a signaling pathway, critical in the formation of myotubes and neurons, during the differentiation in P19 mouse embryonic stem cells. Cells were exposed to 0, 0.1, or 0.5 μM arsenite, with or without exogenous Wnt3a, for up to 9 days of differentiation. Arsenic exposure alone inhibits the differentiation of stem cells into neurons and skeletal myotubes, and reduces the expression of both β-catenin and GSK3β mRNA to ~55% of control levels. Co-culture of the arsenic-exposed cells with exogenous Wnt3a rescues the morphological phenotype, but does not alter transcript, protein, or phosphorylation status of GSK3β or β-catenin. However, arsenic exposure maintains high levels of Hes5 and decreases the expression of MASH1 by 2.2-fold, which are anti- and pro-myogenic and neurogenic genes, respectively, in the Notch signaling pathway. While rescue with exogenous Wnt3a reduced Hes5 levels, MASH1 levels stay repressed. Thus, while Wnt3a can partially rescue the inhibition of differentiation from arsenic, it does so by also modulating Notch target genes rather than only working through the canonical Wnt signaling pathway. These results indicate that arsenic alters the interplay between multiple signaling pathways, leading to reduced stem cell differentiation.
Collapse
Affiliation(s)
- Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 23964, USA
| | - Jui-Tung Liu
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Ryan E League
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| |
Collapse
|
14
|
Reid NM, Whitehead A. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology. Brief Funct Genomics 2015; 15:358-64. [PMID: 26700295 DOI: 10.1093/bfgp/elv060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science.
Collapse
|
15
|
Adeyemi JA, da Cunha Martins-Junior A, Barbosa F. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comp Biochem Physiol C Toxicol Pharmacol 2015; 172-173:7-12. [PMID: 25882832 DOI: 10.1016/j.cbpc.2015.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
Abstract
Arsenic and atrazine are common environmental contaminants probably due to their extensive use as pesticides on agricultural farmlands. In this study, zebrafish embryos were exposed to 0.8mM arsenic, 0.1mM atrazine or mixture of both for 96h, and various indices which are indicative of teratogenicity (egg coagulation, growth retardation, edema formation, hatching success, scoliosis), genotoxicity (DNA tail moments) and oxidative stress (lipid peroxidation and reduced glutathione (GSH) levels, catalase and glutathione peroxidase activities) were determined. The negative control were exposed to 0.5% DMSO while the positive control group were exposed to 4mg/L 3,4 dichloroaniline. Egg coagulation was highest in the positive control (85%), followed by the group that was exposed to mixture of arsenic and atrazine (30%) and least in the arsenic-exposed group (20%). The incidences of edema (59%) and growth retardation (35.2%) were more frequent in the group that was exposed to contaminant mixture and least in atrazine-exposed group where incidences of both edema and growth retardation were 15%. The incidence of scoliosis ranged between 20% in arsenic-exposed group and 10% in atrazine-exposed group. Hatching success was generally high in all the groups ranging between 95% in atrazine-exposed group and 88% in the group that was exposed to mixture of arsenic and atrazine. There was no evidence of teratogenic effect in the negative control group. DNA tail moments and lipid peroxidation levels increased significantly while GSH levels and catalase activity decreased significantly in contaminant-exposed groups, especially the mixture compared to the negative control. There was no significant change in GPx activity in the exposed groups compared to the negative control. The results of this study demonstrate that both arsenic and atrazine are potentially teratogenic and genotoxic, and can cause oxidative stress in zebrafish embryos, and these effects are potentiated by toxic interactions between the two contaminants.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biological Sciences, Faculty of Basic and Applied Sciences, Osun State University, P.M.B. 4494 Osogbo, Osun State, Nigeria.
| | - Airton da Cunha Martins-Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. CHEMOSPHERE 2015; 120:778-792. [PMID: 25456049 DOI: 10.1016/j.chemosphere.2014.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Raquel N Carvalho
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
| | | | - Nancy D Denslow
- University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
| | - Marlies Halder
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Cheryl A Murphy
- Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
| | - Dick Roelofs
- VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
| | - Alexandra Rolaki
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Karen H Watanabe
- Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA
| |
Collapse
|
17
|
D'Amico AR, Gibson AW, Bain LJ. Embryonic arsenic exposure reduces the number of muscle fibers in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:196-204. [PMID: 24316437 DOI: 10.1016/j.aquatox.2013.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
Arsenic is a contaminant of drinking water and has been correlated with adverse developmental outcomes such as low birth weight, reduced weight gain, and altered locomotor activity. Previous research has shown that killifish (Fundulus heteroclitus) exposed to high arsenic levels during embryogenesis had smaller muscle fiber diameters. The current study was designed to determine whether changes in muscle fibers persisted, were exacerbated, or resolved over time. Killifish embryos were exposed to 0-5 ppm arsenite and, upon hatching, were transferred into either clean water or continued receiving the same exposure to arsenic for up to 16 weeks. Arsenic significantly decreased the weight of both embryonic-only exposed juveniles and continuously exposed juveniles between 4 and 16 weeks of development at concentrations as low as 0.8 ppm. Although arsenite exposure increased the percentage of small diameter fibers during the early weeks, fiber diameters returned to control levels in the embryonic-only exposed fish. However, muscle fiber density was still reduced to 85.7%, 80.3%, and 73.8% of control for the 0.8, 2, and 5 ppm embryonic-only exposure groups, respectively, even after 16 weeks of development. These results indicate that while continuous exposure to arsenic may alter the size of muscle fibers, embryonic-only exposure to arsenic has lasting effects on the number of muscle fibers formed.
Collapse
Affiliation(s)
- Angela R D'Amico
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29631, United States
| | - Alec W Gibson
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29631, United States
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29631, United States; Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29631, United States.
| |
Collapse
|
18
|
Bomberger JM, Coutermarsh BA, Barnaby RL, Stanton BA. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells. J Biol Chem 2012; 287:17130-17139. [PMID: 22467879 DOI: 10.1074/jbc.m111.338855] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.
Collapse
Affiliation(s)
- Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Bonita A Coutermarsh
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Roxanna L Barnaby
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755.
| |
Collapse
|