1
|
Mohammed WH, Sulaiman GM, Abomughaid MM, Klionsky DJ, Abu-Alghayth MH. The dual role of autophagy in suppressing and promoting hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1472574. [PMID: 39463763 PMCID: PMC11502961 DOI: 10.3389/fcell.2024.1472574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream adaptive responses, malfunctioning DNA damage repair, epigenetic modification, the tumor microenvironment, and the extracellular matrix can all be linked to drug resistance. The evolutionary process of autophagy, which is in charge of intracellular breakdown, is intimately linked to medication resistance in HCC. Autophagy is involved in both the promotion and suppression of cancer by influencing treatment resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain autophagy regulators are employed in anticancer treatment; however, because of the dual functions of autophagy, their use is restricted, and therapeutic failure is increased. By focusing on autophagy, it is possible to reduce HCC expansion and metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the best-characterized type of autophagy, involves the formation of a sequestering compartment termed a phagophore, which surrounds and encloses aberrant or superfluous components. The phagophore matures into a double-membrane autophagosome that delivers the cargo to the lysosome; lysosomes and autophagosomes fuse to degrade and recycle the cargo. Macroautophagy plays dual functions in both promoting and suppressing cancer in a variety of cancer types.
Collapse
Affiliation(s)
- Wasnaa H. Mohammed
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Liu W, Cheng L, Du Y, Liu X, Ma J, Yan L. 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio) Hexanol Inhibits Proliferation and Induces Apoptosis of Endometriosis by Regulating Glutathione S-Transferase Mu Class 4. Reprod Sci 2023; 30:2945-2961. [PMID: 36928896 DOI: 10.1007/s43032-023-01207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Endometriosis is a chronic disease associated with a disrupted oxidative balance and chronic inflammation. In this study, we investigated the role of glutathione S-transferase Mu class 4 (GSTM4) in endometriosis and determined whether 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX) regulates GSTM4 expression to affect cellular functions and oxidative stress. GSTM4 expression was detected by immunohistochemistry in endometrium from 15 endometriosis patients and 15 healthy controls. Western blotting was used to detect the expression of GSTM4, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP-9), Survivin, B-cell lymphoma-extra-large (Bcl-XL), Bax, kelch-like ECH-associated protein 1 (Keap1), and nuclear factor-erythroid 2-related factor 2 (Nrf2) in primary endometrial stromal cells with endometriosis (EESC) and normal endometrial stromal cells (NESC). The effects of NBDHEX on cell proliferation, migration, and invasion were evaluated using Cell Counting Kit-8 (CCK8) and Transwell assays. Apoptosis was detected by flow cytometry. The expression of GSTM4 was significantly increased in endometrium from endometriosis patients. Upon NBDHEX treatment, ESC exhibited reduced proliferation, migration and invasion abilities, and increased apoptosis. NBDHEX decreased the expression of endometriosis prognostic markers (PCNA and MMP-9) and anti-apoptotic proteins (Survivin and Bcl-xl), while it increased the expression of the apoptotic protein Bax. It had no effect on Keap1 expression, and it decreased the expression of Nrf2. The effect of siRNA-mediated knockdown of GSTM4 was similar to that of suppressing GSTM4 expression with NBDHEX treatment. These results indicate that GSTM4 is highly expressed in endometriosis and its expression is inhibited by NBDHEX. Decreased expression of GSTM4 inhibits cell growth, migration, and invasion, and negatively regulates Nrf2 to affect oxidative stress-induced apoptosis. Our results suggest that GSTM4 may play a role in ameliorating the progression of endometriosis. NBDHEX may have therapeutic potential in the treatment of endometriosis.
Collapse
Affiliation(s)
- Wei Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical, University, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Cheng
- Department of Gynecology Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Yanbo Du
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoqiang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Reproductive Medicine Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
4
|
Supplementation with High or Low Iron Reduces Colitis Severity in an AOM/DSS Mouse Model. Nutrients 2022; 14:nu14102033. [PMID: 35631174 PMCID: PMC9147005 DOI: 10.3390/nu14102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
The relationship between colitis-associated colorectal cancer (CAC) and the dysregulation of iron metabolism has been implicated. However, studies on the influence of dietary iron deficiency on the incidence of CAC are limited. This study investigated the effects of dietary iron deficiency and dietary non-heme iron on CAC development in an azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. The four-week-old mice were divided into the following groups: iron control (IC; 35 ppm iron/kg) + normal (NOR), IC + AOM/DSS, iron deficient (ID; <5 ppm iron/kg diet) + AOM/DSS, and iron overload (IOL; approximately 2000 ppm iron/kg) + AOM/DSS. The mice were fed the respective diets for 13 weeks, and the AOM/DSS model was established at week five. FTH1 expression increased in the mice’s colons in the IC + AOM/DSS group compared with that observed in the ID and IOL + AOM/DSS groups. The reduced number of colonic tumors in the ID + AOM/DSS and IOL + AOM/DSS groups was accompanied by the downregulated expression of cell proliferation regulators (PCNA, cyclin D1, and c-Myc). Iron overload inhibited the increase in the expression of NF-κB and its downstream inflammatory cytokines (IL-6, TNFα, iNOS, COX2, and IL-1β), likely due to the elevated expression of antioxidant genes (SOD1, TXN, GPX1, GPX4, CAT, HMOX1, and NQO1). ID + AOM/DSS may hinder tumor development in the AOM/DSS model by inhibiting the PI3K/AKT pathway by increasing the expression of Ndrg1. Our study suggests that ID and IOL diets suppress AOM/DSS-induced tumors and that long-term iron deficiency or overload may negate CAC progression.
Collapse
|
5
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
6
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
7
|
Piloni NE, Vargas R, Fernández V, Videla LA, Puntarulo S. Effects of acute iron overload on Nrf2-related glutathione metabolism in rat brain. Biometals 2021; 34:1017-1027. [PMID: 34136984 DOI: 10.1007/s10534-021-00324-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Iron (Fe) overload triggers free radical production and lipid peroxidation processes that may lead to cell death (ferroptosis). The hypothesis of this work was that acute Fe-dextran treatment triggers Nrf2-mediated antioxidant regulation in rat brain involving glutathione (GSH) metabolism. Over the initial 8 h after Fe-dextran administration (single dose of 500 mg Fe-dextran/kg), total Fe, malondialdehyde (MDA) content, glutathione peroxidase (GPx), GPx-Se dependent (GPx-Se) and glutathione S-transferases (GST) activities were increased in rat whole brain. The content of GSH and the activity of glutathione reductase (GR) showed decreases (p < 0.05) after 6 and 8 h post injection in cortex. A significant increase in nuclear Nrf2 protein levels over control values was achieved after 6 h of Fe-dextran administration, while no significant differences were observed in the cytosolic fraction. Nuclear Nrf2/cytosolic Nrf2 ratios showed enhancement (p < 0.05) after 6 h of Fe overload, suggesting a greater translocation of the factor to the nucleus. No significant differences were observed in the expression of Keap1 in nuclear or cytosolic extracts. It is concluded that acute Fe overload induces oxidative stress in rat brain with the concomitant lipid peroxidation increase and GSH depletion, leading to the elevation of Nrf2-controlled GPx, GPx-Se and GST protein expression as a protective adaptive response. Further studies are required to fully comprehend the complex network of interrelated processes keeping the balance of GSH functions as chelator, antioxidant and redox buffer in the understanding of the ferroptotic and hormetic mechanisms triggered by Fe overload in brain.
Collapse
Affiliation(s)
- Natacha E Piloni
- Fisicoquímica-IBIMOL, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CAAD1113, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Virginia Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Susana Puntarulo
- Fisicoquímica-IBIMOL, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CAAD1113, Buenos Aires, Argentina. .,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Schwarz M, Lossow K, Kopp JF, Schwerdtle T, Kipp AP. Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper. Nutrients 2019; 11:E2112. [PMID: 31491970 PMCID: PMC6770424 DOI: 10.3390/nu11092112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Johannes F Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743 Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
9
|
Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, Armitage AE, Mehta H, Wideman S, Santos AG, Santos-Gonçalves A, Morovat A, Hughes JR, Soilleux E, Wang CY, Bayer AL, Klenerman P, Willberg CB, Hartley RC, Murphy MP, Babitt JL, Ponka P, Porto G, Drakesmith H. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab 2019; 1:519-531. [PMID: 31276102 PMCID: PMC6609153 DOI: 10.1038/s42255-019-0063-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.
Collapse
Affiliation(s)
- Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tiago L. Duarte
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Amel Hamdi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ana G. Santos
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andreia Santos-Gonçalves
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, UK
| | - Jim R. Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine. University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elizabeth Soilleux
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Chia-Yu Wang
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Abraham L. Bayer
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Klenerman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford, UK
| | | | - Richard C. Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jodie L. Babitt
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Graça Porto
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Theme Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
10
|
Iron-Induced Liver Injury: A Critical Reappraisal. Int J Mol Sci 2019; 20:ijms20092132. [PMID: 31052166 PMCID: PMC6539962 DOI: 10.3390/ijms20092132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is implicated in the pathogenesis of a number of human liver diseases. Hereditary hemochromatosis is the classical example of a liver disease caused by iron, but iron is commonly believed to contribute to the progression of other forms of chronic liver disease such as hepatitis C infection and nonalcoholic fatty liver disease. In this review, we present data from cell culture experiments, animal models, and clinical studies that address the hepatotoxicity of iron. These data demonstrate that iron overload is only weakly fibrogenic in animal models and rarely causes serious liver damage in humans, calling into question the concept that iron overload is an important cause of hepatotoxicity. In situations where iron is pathogenic, iron-induced liver damage may be potentiated by coexisting inflammation, with the resulting hepatocyte necrosis an important factor driving the fibrogenic response. Based on the foregoing evidence that iron is less hepatotoxic than is generally assumed, claims that assign a causal role to iron in liver injury in either animal models or human liver disease should be carefully evaluated.
Collapse
|
11
|
Beekman CR, Matta M, Thomas CD, Mohammad A, Stewart S, Xu L, Chockalingam A, Shea K, Sun D, Jiang W, Patel V, Rouse R. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 8:E10. [PMID: 29283393 PMCID: PMC5791097 DOI: 10.3390/nano8010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Relative biodistribution of FDA-approved innovator and generic sodium ferric gluconate (SFG) drug products was investigated to identify differences in tissue distribution of iron after intravenous dosing to rats. Three equal cohorts of 42 male Sprague-Dawley rats were created with each cohort receiving one of three treatments: (1) the innovator SFG product dosed intravenously at a concentration of 40 mg/kg; (2) the generic SFG product dosed intravenously at a concentration of 40 mg/kg; (3) saline dosed intravenously at equivalent volume to SFG products. Sampling time points were 15 min, 1 h, 8 h, 1 week, two weeks, four weeks, and six weeks post-treatment. Six rats from each group were sacrificed at each time point. Serum, femoral bone marrow, lungs, brain, heart, kidneys, liver, and spleen were harvested and evaluated for total iron concentration by ICP-MS. The ICP-MS analytical method was validated with linearity, range, accuracy, and precision. Results were determined for mean iron concentrations (µg/g) and mean total iron (whole tissue) content (µg/tissue) for each tissue of all groups at each time point. A percent of total distribution to each tissue was calculated for both products. At any given time point, the overall percent iron concentration distribution did not vary between the two SFG drugs by more than 7% in any tissue. Overall, this study demonstrated similar tissue biodistribution for the two SFG products in the examined tissues.
Collapse
Affiliation(s)
- Christopher R Beekman
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Murali Matta
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Christopher D Thomas
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Adil Mohammad
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Division of Product Quality Research, Silver Spring, MD 20993, USA.
| | - Sharron Stewart
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Lin Xu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Ashok Chockalingam
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Katherine Shea
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Dajun Sun
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, USA.
| | - Wenlei Jiang
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993, USA.
| | - Vikram Patel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, Silver Spring, MD 20993, USA.
| |
Collapse
|
12
|
Miura T, Tachikawa M, Ohtsuka H, Fukase K, Nakayama S, Sakata N, Motoi F, Naitoh T, Katayose Y, Uchida Y, Ohtsuki S, Terasaki T, Unno M. Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration. J Pharm Sci 2017; 106:2499-2508. [DOI: 10.1016/j.xphs.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/16/2023]
|
13
|
Holowiecki A, O'Shields B, Jenny MJ. Spatiotemporal expression and transcriptional regulation of heme oxygenase and biliverdin reductase genes in zebrafish (Danio rerio) suggest novel roles during early developmental periods of heightened oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:138-151. [PMID: 27760386 PMCID: PMC5148680 DOI: 10.1016/j.cbpc.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 02/04/2023]
Abstract
Heme oxygenase 1 (HMOX1) degrades heme into biliverdin, which is subsequently converted to bilirubin by biliverdin reductase (BVRa or BVRb) in a manner analogous to the classic anti-oxidant glutathione-recycling pathway. To gain a better understanding of the potential antioxidant roles the BVR enzymes may play during development, the spatiotemporal expression and transcriptional regulation of zebrafish hmox1a, bvra and bvrb were characterized under basal conditions and in response to pro-oxidant exposure. All three genes displayed spatiotemporal expression patterns consistent with classic hematopoietic progenitors during development. Transient knockdown of Nrf2a did not attenuate the ability to detect bvra or bvrb by ISH, or alter spatial expression patterns in response to cadmium exposure. While hmox1a:mCherry fluorescence was documented within the intermediate cell mass, a transient location of primitive erythrocyte differentiation, expression was not fully attenuated in Nrf2a morphants, but real-time RT-PCR demonstrated a significant reduction in hmox1a expression. Furthermore, Gata-1 knockdown did not attenuate hmox1a:mCherry fluorescence. However, while there was a complete loss of detection of bvrb expression by ISH at 24hpf, bvra expression was greatly attenuated but still detectable in Gata-1 morphants. In contrast, 96 hpf Gata-1 morphants displayed increased bvra and bvrb expression within hematopoietic tissues. Finally, temporal expression patterns of enzymes involved in the generation and maintenance of NADPH were consistent with known changes in the cellular redox state during early zebrafish development. Together, these data suggest that Gata-1 and Nrf2a play differential roles in regulating the heme degradation enzymes during an early developmental period of heightened cellular stress.
Collapse
Affiliation(s)
- Andrew Holowiecki
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Britton O'Shields
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
14
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 58:177-192. [PMID: 27640333 DOI: 10.1016/j.fsi.2016.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Holowiecki A, O'Shields B, Jenny MJ. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures. Toxicol Appl Pharmacol 2016; 311:74-87. [PMID: 27671773 DOI: 10.1016/j.taap.2016.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023]
Abstract
While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96h cadmium exposure (20μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs.
Collapse
Affiliation(s)
- Andrew Holowiecki
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Britton O'Shields
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
16
|
Peluso I, Cavaliere A, Palmery M. Plasma total antioxidant capacity and peroxidation biomarkers in psoriasis. J Biomed Sci 2016; 23:52. [PMID: 27377373 PMCID: PMC4932672 DOI: 10.1186/s12929-016-0268-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
Systemic biomarkers of oxidative stress can be relevant for assessment of psoriasis severity, for prediction of the outcome of therapy and of the development of comorbidities. In this review we aimed to evaluate the relationship between plasma total antioxidant capacity (TAC) and peroxidation biomarkers, as well as their association with dyslipidemia and systemic inflammation in psoriasis. The review of 59 case–control comparisons (from 41 studies) and 17 interventions (from 13 studies) suggests that peroxidation markers are more sensitive than TAC in the evaluation of oxidative stress in psoriasis. Although few studies investigated the effect of treatment on oxidative stress, it seems that biological drugs could be the better choice in the treatment of psoriasis. However, considering the limitations of TAC and plasma peroxidation markers, this review suggests that new methods should be developed in order to evaluate systemic oxidative stress in psoriasis.
Collapse
Affiliation(s)
- Ilaria Peluso
- Center of Nutrition, Council for Agricultural Research and Economics (CREA-NUT), Via Ardeatina 546, Rome, 00178, Italy.
| | - Arturo Cavaliere
- Dermopathic Institute of the Immaculate IDI-IRCCS, Via dei Monti di Creta, 104, Rome, 00167, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", "Sapienza" University of Rome, P.le Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
17
|
Lo Sasso G, Titz B, Nury C, Boué S, Phillips B, Belcastro V, Schneider T, Dijon S, Baumer K, Peric D, Dulize R, Elamin A, Guedj E, Buettner A, Leroy P, Kleinhans S, Vuillaume G, Veljkovic E, Ivanov NV, Martin F, Vanscheeuwijck P, Peitsch MC, Hoeng J. Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis. Inhal Toxicol 2016; 28:226-40. [PMID: 27027324 DOI: 10.3109/08958378.2016.1150368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Bjoern Titz
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Catherine Nury
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Stéphanie Boué
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Blaine Phillips
- b Philip Morris International Research Laboratories , Singapore , Singapore , and
| | - Vincenzo Belcastro
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Thomas Schneider
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Sophie Dijon
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Karine Baumer
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Daruisz Peric
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Remi Dulize
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Ashraf Elamin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emmanuel Guedj
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Patrice Leroy
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Samuel Kleinhans
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Gregory Vuillaume
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emilija Veljkovic
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Nikolai V Ivanov
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Florian Martin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Manuel C Peitsch
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Julia Hoeng
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| |
Collapse
|
18
|
Fustinoni-Reis AM, Arruda SF, Dourado LPS, da Cunha MSB, Siqueira EMA. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver. Nutrients 2016; 8:38. [PMID: 26901220 PMCID: PMC4772024 DOI: 10.3390/nu8020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.
Collapse
Affiliation(s)
- Adriana M Fustinoni-Reis
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Sandra F Arruda
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Lívia P S Dourado
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Marcela S B da Cunha
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Egle M A Siqueira
- Department of Cell Biology, Biological Sciences Institute, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| |
Collapse
|
19
|
Piloni NE, Perazzo JC, Fernandez V, Videla LA, Puntarulo S. Sub-chronic iron overload triggers oxidative stress development in rat brain: implications for cell protection. Biometals 2016; 29:119-130. [PMID: 26677163 DOI: 10.1007/s10534-015-9902-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022]
Abstract
This work was aimed to test the hypothesis that sub-chronic administration of iron-dextran (Fe-dextran) (six doses of 50 mg Fe-dextran/kg) to rats triggers a transient oxidative stress in brain and mechanisms of cellular antioxidant defence. After 2 h of administration of the 6th dose, a significant increase of total Fe, the labile Fe pool (LIP), the lipid radical (LR(•))/α-tocopherol (α-T) content ratio were observed, as compared to values in control brain homogenates. The ascorbyl radical (A(•))/ascorbate (AH(-)) content ratio and the oxidation rate of 2',7'-dichlorodihidrofluorescein (DCFH-DA) were significantly higher in Fe-dextran treated rats, as compared to values in brain from control rats after 4 h treatment. An increase in both catalase (CAT) and superoxide dismutase (SOD) activity was observed at 8 and 1-2 h, respectively. No significant changes were detected in the nuclear factor-κB (NF-κB) levels in nuclear extracts from rat brains after 1-8 h of Fe-dextran administration. After 2 h of Fe administration Fe concentration in cortex, striatum and hippocampus was significantly increased as compared to the same areas from control animals. Both, CAT and SOD activities were significantly increased in cortex after Fe administration over control values, without changes in striatum and hippocampus. Taken as a whole, sub-chronic Fe administration enhances the steady state concentration of Fe in the brain LIP that favors the settlement of an initial oxidative stress condition, both at hydrophilic and lipophilic compartments, resulting in cellular protection evidenced by antioxidant enzyme upregulation.
Collapse
Affiliation(s)
- Natacha E Piloni
- School of Pharmacy and Biochemistry, Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), University of Buenos Aires-CONICET, Junín 956, CAAD1113, Buenos Aires, Argentina
| | - Juan C Perazzo
- Laboratory of Portal Hypertension & Hepatic Encephalopathy, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Virginia Fernandez
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Susana Puntarulo
- School of Pharmacy and Biochemistry, Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), University of Buenos Aires-CONICET, Junín 956, CAAD1113, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Silva-Gomes S, Santos AG, Caldas C, Silva CM, Neves JV, Lopes J, Carneiro F, Rodrigues PN, Duarte TL. Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J Hepatol 2014; 60:354-61. [PMID: 24021424 DOI: 10.1016/j.jhep.2013.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/21/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The liver, being the major site of iron storage, is particularly exposed to the toxic effects of iron. Transcription factor NRF2 is critical for protecting the liver against disease by activating the transcription of genes encoding detoxification/antioxidant enzymes. We aimed to determine if the NRF2 pathway plays a significant role in the protection against hepatic iron overload. METHODS Wild-type and Nrf2(-/-) mouse primary hepatocytes were incubated with ferric ammonium citrate. Wild-type and Nrf2(-/-) mice were fed standard rodent chow or iron-rich diet for 2weeks, with or without daily injection of the antioxidant mito-TEMPOL. RESULTS In mouse hepatocytes, iron induced the nuclear translocation of NRF2 and the expression of cytoprotective genes in an NRF2-dependent manner. Moreover, Nrf2(-/-) hepatocytes were highly susceptible to iron-induced cell death. Wild-type and Nrf2(-/-) mice fed iron-rich diet accumulated similar amounts of iron in the liver and were equally able to increase the expression of hepatic hepcidin and ferritin. Nevertheless, in Nrf2-null mice the iron loading resulted in progressive liver injury, ranging from mild confluent necrosis to severe necroinflammatory lesions. Hepatocytic cell death was associated with gross ultrastructural damage to the mitochondria. Notably, liver injury was prevented in iron-fed animals that received mito-TEMPOL. CONCLUSIONS NRF2 protects the mouse liver against the toxicity of dietary iron overload by preventing hepatocytic cell death. We identify NRF2 as a potential modifier of liver disease in iron overload pathology and show the beneficial effect of the antioxidant mito-TEMPOL in a mouse model of dietary iron-induced liver injury.
Collapse
Affiliation(s)
- Sandro Silva-Gomes
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana G Santos
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Carolina Caldas
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Cátia M Silva
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - João V Neves
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joanne Lopes
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal
| | - Fátima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) and Medical Faculty of University of Porto, Porto, Portugal
| | - Pedro N Rodrigues
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tiago L Duarte
- Iron and Innate Immunity Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
21
|
Morales P, Vargas R, Videla LA, Fernández V. Nrf2 activation in the liver of rats subjected to a preconditioning sub-chronic iron protocol. Food Funct 2014; 5:243-50. [DOI: 10.1039/c3fo60265f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Piloni NE, Fermandez V, Videla LA, Puntarulo S. Acute iron overload and oxidative stress in brain. Toxicology 2013; 314:174-82. [PMID: 24120471 DOI: 10.1016/j.tox.2013.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload. This information has potential clinical relevance, as it could be the key to understand specific brain damage occurring in conditions of Fe overload.
Collapse
Affiliation(s)
- Natacha E Piloni
- Physical Chemistry-Institute of Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
Dennis MD, Shenberger JS, Stanley BA, Kimball SR, Jefferson LS. Hyperglycemia mediates a shift from cap-dependent to cap-independent translation via a 4E-BP1-dependent mechanism. Diabetes 2013; 62:2204-14. [PMID: 23434932 PMCID: PMC3712054 DOI: 10.2337/db12-1453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the translational regulatory protein 4E-BP1 alters hepatic gene expression through a process involving the selection of mRNA for translation. In both streptozotocin (STZ)-treated mice and cells in culture exposed to hyperglycemic conditions, expression of 4E-BP1 and its interaction with the mRNA cap-binding protein eIF4E were enhanced in conjunction with downregulation of cap-dependent and concomitant upregulation of cap-independent mRNA translation, as assessed by a bicistronic luciferase reporter assay. Phlorizin treatment of STZ-treated mice lowered blood glucose concentrations and reduced activity of the cap-independent reporter. Notably, the glucose-induced shift from cap-dependent to cap-independent mRNA translation did not occur in cells lacking 4E-BP1. The extensive nature of this shift in translational control of gene expression was revealed using pulsed stable isotope labeling by amino acids in cell culture to identify proteins that undergo altered rates of synthesis in response to hyperglycemia. Taken together, these data provide evidence for a novel mechanism whereby O-GlcNAcylation of 4E-BP1 mediates translational control of hepatic gene expression.
Collapse
Affiliation(s)
- Michael D. Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| | - Jeffrey S. Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and the
| | - Bruce A. Stanley
- Department of Microbiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
- Corresponding author: Scot R. Kimball,
| | - Leonard S. Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| |
Collapse
|
24
|
Wang QM, Du JL, Duan ZJ, Guo SB, Sun XY, Liu Z. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation. World J Gastroenterol 2013; 19:2921-2934. [PMID: 23704825 PMCID: PMC3660817 DOI: 10.3748/wjg.v19.i19.2921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/08/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of the heme oxygenase (HO)-1/carbon monoxide system on iron deposition and portal pressure in rats with hepatic fibrosis induced by bile duct ligation (BDL).
METHODS: Male Sprague-Dawley rats were divided randomly into a Sham group, BDL group, Fe group, deferoxamine (DFX) group, zinc protoporphyrin (ZnPP) group and cobalt protoporphyrin (CoPP) group. The levels of HO-1 were detected using different methods. The serum carboxyhemoglobin (COHb), iron, and portal vein pressure (PVP) were also quantified. The plasma and mRNA levels of hepcidin were measured. Hepatic fibrosis and its main pathway were assessed using Van Gieson’s stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1).
RESULTS: Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis.
CONCLUSION: Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and regulating PVP.
Collapse
|
25
|
Biodistribution and predictive hepatic gene expression of intravenous iron sucrose. J Pharmacol Toxicol Methods 2013; 68:374-83. [PMID: 23624021 DOI: 10.1016/j.vascn.2013.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We have examined iron biodistribution and hepatic gene expression in rats following administration of the generic Iron Sucrose Azad (ISA) or the reference iron sucrose drug Venofer®. METHODS ISA and Venofer® were administered intravenously to normal, non-anemic, male rats at 15 mg/kg (a supra-therapeutic dose-level). To evaluate biodistribution, tissue iron levels were determined over 28 days for plasma, liver, spleen, bone marrow, heart, kidney, lung and stomach using a validated ICP-MS method. Hepatic gene expression was evaluated by microarray analysis of mRNA from samples taken 24 h after drug administration. RESULTS Iron concentration/time profiles for plasma and tissues were quantitatively similar for ISA and Venofer. Following administration, circulating iron levels briefly exceeded transferrin binding capacity and there was a transient increase in hepatic iron. Bone marrow iron levels remained elevated throughout the study. No increases in tissue iron levels were observed in the heart, stomach or lungs. Spleen iron levels increased over the course of the study in treated and control rats. Small, transient increases were recorded in the kidneys of treated rats. The effects of ISA and Venofer® on hepatic gene transcription were similar. Principal components analysis showed that there was no systematic effect of either treatment on transcriptional profiles. Only a small number of genes showed significant modulation of expression. No transcriptional pattern matches with toxicity pathways were found in the ToxFX database for either treatment. No modulation of key genes in apoptosis, inflammation or oxidative stress pathways was detected. DISCUSSION These findings demonstrated that the biodistribution of administered iron is essentially similar for Iron Sucrose Azad and Venofer®, that iron sucrose partitions predominantly into the liver, spleen and bone marrow, and that hepatic gene expression studies did not provide any evidence of toxicity in animals treated at a supra-therapeutic dose-level.
Collapse
|
26
|
Arruda LF, Arruda SF, Campos NA, de Valencia FF, Siqueira EMDA. Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS One 2013; 8:e61058. [PMID: 23593390 PMCID: PMC3625229 DOI: 10.1371/journal.pone.0061058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/05/2013] [Indexed: 01/02/2023] Open
Abstract
Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging.
Collapse
Affiliation(s)
- Lorena Fernandes Arruda
- Health Sciences Faculty, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil.
| | | | | | | | | |
Collapse
|