1
|
Tan Q, Zhou M, You X, Ma J, Ye Z, Shi W, Cui X, Mu G, Yu L, Chen W. Association of ambient ozone exposure with early cardiovascular damage among general urban adults: A repeated-measures cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177380. [PMID: 39505024 DOI: 10.1016/j.scitotenv.2024.177380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Longitudinal evidence of long-term ozone exposure on heart rate variability (HRV, an early indicator of cardiovascular damage) is lacking and the potential mechanism remains largely unclear. Our objectives were to evaluate the cross-sectional and longitudinal associations of ozone exposure with HRV alteration, and the potential roles of protein carbonyl (PC, biomarker of oxidative protein damage) and transforming growth factor (TGF)-β1 in this association. This repeated-measures prospective study included 4138 participants with 6617 observations from the Wuhan-Zhuhai cohort. Ozone concentrations were estimated using a high temporospatial resolution model for each participant. HRV indices, PC, and TGF-β1 were also repeatedly measured. Cross-sectional and longitudinal relationships of ozone exposure with HRV alteration were evaluated by linear mixed model. Cross-sectionally, the strongest lag effect of each 10 ppb increment in short-term ozone exposure showed a 12.40 %, 8.47 %, 4.31 %, 8.03 %, 3.69 %, and 2.41 % decrement on very low frequency (VLF, lag 3 weeks), LF (lag 2 weeks), high frequency (HF, lag 0-7 days), total power (TP, lag 2 weeks), standard deviation of all normal-to-normal intervals (SDNN, lag 3 weeks), and square root of the mean squared difference between adjacent normal-to-normal intervals (lag 2 weeks), respectively. Longitudinally, each 10 ppb increment of annual average ozone was related with an annual change rate of -0.024 ms2/year in VLF, -0.009 ms2/year in LF, -0.013 ms2/year in HF, -0.014 ms2/year in TP, and -0.004 ms/year in SDNN. Mediation analyses indicated that PC mediated 20.77 % and 12.18 % of ozone-associated VLF and TP decline, respectively; TGF-β1 mediated 16.87 % and 27.78 % of ozone-associated VLF and SDNN reduction, respectively. Our study demonstrated that ozone exposure was cross-sectionally and longitudinally related with HRV decline in general Chinese urban adults, and oxidative protein damage and increased TGF-β1 partly mediated ozone exposure-related HRV reduction.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wendi Shi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Data Center, Medical Affairs Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Zhao K, He F, Zhang B, Liu C, Hu Y, Dong Y, Zhang P, Liu C, Wei J, Lu Z, Guo X, Huang Q, Jia X, Mi J. Short-term ozone exposure on stroke mortality and mitigation by greenness in rural and urban areas of Shandong Province, China. BMC Public Health 2024; 24:2955. [PMID: 39449115 PMCID: PMC11515287 DOI: 10.1186/s12889-024-20454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Short-term exposure to ozone (O3) has been associated with higher stroke mortality, but it is unclear whether this association differs between urban and rural areas. The study aimed to compare the association between short-term exposure to O3 and ischaemic and haemorrhagic stroke mortality across rural and urban areas and further investigate the potential impacts of modifiers, such as greenness, on this association. METHODS A multi-county time-series analysis was carried out in 19 counties of Shandong Province from 2013 to 2019. First, we employed generalized additive models (GAMs) to assess the effects of O3 on stroke mortality in each county. We performed random-effects meta-analyses to pool estimates to counties and compare differences in rural and urban areas. Furthermore, a meta-regression model was utilized to assess the moderating effects of county-level features. RESULTS Short-term O3 exposure was found to be associated with increased mortality for both stroke subtypes. For each 10-µg/m3 (lag0-3) rise in O3, ischaemic stroke mortality rose by 1.472% in rural areas and 1.279% in urban areas. For each 0.1-unit increase in the Enhanced Vegetation Index (EVI) per county, the ischaemic stroke mortality caused by a 10-µg/m3 rise in O3 decreased by 0.60% overall and 1.50% in urban areas. CONCLUSIONS Our findings add to the evidence that short-term O3 exposure increases ischaemic and haemorrhagic stroke mortality and has adverse effects in urban and rural areas. However, improving greenness levels may contribute to mitigating the detrimental effects of O3 on ischaemic stroke mortality.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xian, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yang Hu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yilin Dong
- Liaocheng Centre for Disease Control and Prevention, Liaocheng, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20740, USA
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qing Huang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
| |
Collapse
|
3
|
Guo X, Su W, Wang H, Li N, Song Q, Liang Q, Sun C, Liang M, Zhou Z, Song EJ, Sun Y. Short-term exposure to ambient ozone and cardiovascular mortality in China: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:958-975. [PMID: 35438585 DOI: 10.1080/09603123.2022.2066070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a major public health concern in China. Notwithstanding this, there is limited evidence regarding the impact of short-term exposure to ambient ozone on cardiovascular mortality in the Chinese population. Therefore, we conducted this meta-analysis to address this important question. The random-effects model was applied to pool the results from individual studies. Finally, 32 effect estimates extracted from 19 studies were pooled in this meta-analysis. The pooled relative risk for cardiovascular mortality for each 10 µg/m3 increment in ozone concentration was 1.0068 (95% CI: 1.0049, 1.0086). Ths significant positive association between ozone exposure and cardiovascular mortality was also observed in different two-pollutant models. This meta-analysis revealed that exposure to ozone was associated with an increased risk of cardiovascular mortality in China, and more efforts on controlling the population from ozone are needed to improve cardiovascular health of Chinese population.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Evelyn J Song
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
4
|
Zhang K, Chen R, Cai Z, Hou L, Li X, Xu X, Sun Y, Lu X, Jiang Q. The effect of ozone short-term exposure on flow-mediated dilation: Using data before and after COVID-19 lockdown in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163485. [PMID: 37068686 PMCID: PMC10105378 DOI: 10.1016/j.scitotenv.2023.163485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Short-term ambient ozone exposure has been shown to have an adverse impact on endothelial function, contributing to major cardiovascular diseases and premature death. However, only limited studies have focused on the impact of short-term ozone exposure on Flow-mediated Dilation (FMD), and their results have been inconsistent. The current study aims to explore the relationship between short-term ambient ozone exposure and FMD. In addition, the study aims to investigate how lockdown measures for COVID-19 may influence ozone concentration in the atmosphere. METHODS Participants were recruited from a hospital in Shanghai from December 2020 to August 2022. Individuals' ozone exposure was determined using residential addresses. A distributed lag nonlinear model was adopted to assess the exposure-response relationship between short-term ozone exposure and FMD. A comparison was made between ambient ozone concentration and FMD data collected before and after Shanghai's lockdown in 2022. RESULTS When ozone concentration was between 150 and 200 μg/m3, there was a significant reduction in FMD with a 2-day lag. Elderly individuals (age ≥ 65), females, non-drinkers, and non-smokers were found to be more susceptible to high concentrations of ozone exposure. The lockdown did elevate ambient ozone concentration compared to the same period previously. INTERPRETATION This study proposes that an ambient ozone concentration of 150-200 μg/m3 is harmful to endothelial function, and that a reduction in human activity during lockdown increased the concentration, which in turn reduced FMD. However, the underlying mechanism requires further research.
Collapse
Affiliation(s)
- Kai Zhang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Rukun Chen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China; Faculty of Medicine, University of Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Zhenzhen Cai
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, China
| | - Lei Hou
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoguang Li
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, China
| | - Xin Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yishuai Sun
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotong Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qixia Jiang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
5
|
Zong Z, Zhang M, Xu K, Zhang Y, Hu C. Association between Short-Term Exposure to Ozone and Heart Rate Variability: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11186. [PMID: 36141453 PMCID: PMC9517606 DOI: 10.3390/ijerph191811186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
At present, ambient air pollution poses a significant threat to patients with cardiovascular disease (CVD). The heart rate variability (HRV) is a marker of the cardiac autonomic nervous system, and it is related to air pollution and cardiovascular disease. There is, however, considerable disagreement in the literature regarding the association between ozone (O3) and HRV. To further investigate the effects of short-term exposure to O3 on HRV, we conducted the first meta-analysis of relevant studies. The percentage change of HRV indicator(s) is the effect estimate extracted for the quantitative analysis in this study. In our meta-analysis, per 10 ppb increase in O3 was significantly associated with decreases in the time-domain measurements, for standard deviation of the normal-to-normal (NN) interval (SDNN) -1.11% (95%CI: -1.35%, -0.87%) and for root mean square of successive differences (RMSSD) -3.26% (95%CI: -5.42%, -1.09%); in the frequency-domain measurements, for high frequency (HF) -3.01% (95%CI: -4.66%, -1.35%) and for low frequency (LF) -2.14% (95%CI: -3.83%, -0.45%). This study showed short-term exposure to O3 was associated with reduced HRV indicators in adults, which suggested that the cardiac autonomic nervous system might be affected after O3 exposure, contributing to the association between O3 exposure and CVD risk.
Collapse
Affiliation(s)
- Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chengyang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
6
|
Chen H, Tong H, Shen W, Montilla TS, Case MW, Almond MA, Wells HB, Alexis NE, Peden DB, Rappold AG, Diaz-Sanchez D, Devlin RB, Bromberg PA, Samet JM. Fish oil blunts lung function decrements induced by acute exposure to ozone in young healthy adults: A randomized trial. ENVIRONMENT INTERNATIONAL 2022; 167:107407. [PMID: 35850080 PMCID: PMC9378480 DOI: 10.1016/j.envint.2022.107407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Wan Shen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States; Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH, United States
| | - Tracey S Montilla
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Martha A Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather B Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Zhou X, Wang C, Chen P, Chen Y, Yin L, Du W, Pu Y. Time series analysis of short-term effects of particulate matter pollution on the circulatory system disease mortality risk in Lishui District, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17520-17529. [PMID: 34665418 DOI: 10.1007/s11356-021-17095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological evidence has shown a significant association between short-term exposure to air pollution and mortality risk for circulatory system diseases (CSD). However, informative insights on the significance and magnitude of its relationship in the process of government interventions on abating air pollution are still lacking, particularly in a burgeoning Chinese city. In this study, we conducted a time series study in Lishui District, Nanjing, to examine the effect of ambient particulate matter (PM), e.g., PM2.5 and PM10, on daily death counts of CSD which included cardiovascular disease (CVD), cerebrovascular disease (CEVD), and arteriosclerotic heart disease (ASHD) mortality from January 1, 2015, to December 31, 2019. The results revealed that each 10 μg/m3 increase in PM2.5 and PM10 concentration at lag0 day was associated with an increase of 1.33% (95% confidence interval, 0.08%, 2.60%) and 1.12% (0.43%, 1.82%) in CSD mortality; 2.42% (0.44%, 4.43%) and 1.43% (0.32%, 2.55%) in CVD mortality; 1.20% (- 0.31%, 2.73%) and 1.21% (0.38%, 2.05%) in CEVD mortality; and 2.78% (0.00%, 5.62%) and 1.66% (0.14%, 3.21%) in ASHD mortality, respectively. For cumulative risk, the corresponding increase in daily mortality for the same change in PM2.5 concentration at lag03 day was significantly associated with 1.94% (0.23%, 3.68%), 3.17% (0.58%, 5.84%), 2.38% (0.17%, 4.63%), and 4.92% (1.18%, 8.81%) for CSD, CVD, CEVD, and ASHD, respectively. The exposure-response curves were approximately nonlinear over the entire exposure range of the PM concentrations. We also analyzed the effect modifications by season (warm or cold), age group (0-64 years, 65-74 years, or ≥ 75 years), and sex (male or female). Although not statistically significant, stratified analysis showed greater vulnerability to PM exposure for cold season, population over 65 years of age, and female group.
Collapse
Affiliation(s)
- Xudan Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ping Chen
- The Lishui Smart City Operating Command Center, Nanjing, 211200, China
| | - Yuqi Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Wei Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Wang C, Lin J, Niu Y, Wang W, Wen J, Lv L, Liu C, Du X, Zhang Q, Chen B, Cai J, Zhao Z, Liang D, Ji JS, Chen H, Chen R, Kan H. Impact of ozone exposure on heart rate variability and stress hormones: A randomized-crossover study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126750. [PMID: 34339988 DOI: 10.1016/j.jhazmat.2021.126750] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The biological mechanisms underlying the associations between atmospheric ozone exposure and adverse cardiometabolic outcomes are yet to be identified. Imbalanced autonomic nervous system (ANS) as well as activations of the sympatho-adrenomedullary (SAM) and hypothalamic-pituitary-adrenal (HPA) axes are among possible early biological responses triggered by ozone, and may eventually lead to cardiometabolic abnormalities. To determine whether acute ozone exposure causes ANS imbalance and increases the secretion of neuroendocrine stress hormones, we conducted a randomized, double-blind, crossover trial, under controlled 2-hour exposure to either ozone (200 ppb) or clean air with intermittent exercise among 22 healthy young adults. Here we found that, compared to clean air exposure, acute ozone exposure significantly decreased the high-frequency band of heart rate variability, even after adjusting for heart rate and pre-exposure to ambient air pollutants and meteorological factors. Ozone exposure also significantly increased the serum levels of stress hormones, including corticotrophin-releasing factor, adrenocorticotropic hormone, adrenaline, and noradrenaline. Metabolomics analysis showed that acute ozone exposure led to alterations in stress hormones, systemic inflammation, oxidative stress, and energy metabolism. Our results suggest that acute ozone exposure may trigger ANS imbalance and activate the HPA and SAM axes, offering potential biological explanations for the adverse cardiometabolic effects following acute ozone exposure.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jingyu Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Weidong Wang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jianfen Wen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Lv
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Qingli Zhang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Bo Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Jing Cai
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China
| | - Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John S Ji
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249,130 Dong-An Road, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
9
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
10
|
Hazari MS, Phillips K, Stratford KM, Khan M, Thompson L, Oshiro W, Hudson G, Herr DW, Farraj AK. Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar-Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge. Cardiovasc Toxicol 2021; 21:336-348. [PMID: 33389603 PMCID: PMC8074345 DOI: 10.1007/s12012-020-09623-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Noise has become a prevalent public health problem across the world. Although there is a significant amount of data demonstrating the harmful effects of noise on the body, very little is known about how it impacts subsequent responses to other environmental stressors like air pollution, which tend to colocalize in urban centers. Therefore, this study was conducted to determine the effect of intermittent noise on cardiovascular function and subsequent responses to ozone (O3). Male Wistar-Kyoto rats implanted with radiotelemeters to non-invasively measure heart rate (HR) and blood pressure (BP), and assess heart rate variability (HRV) and baroreflex sensitivity (BRS) were kept in the quiet or exposed to intermittent white noise (85-90 dB) for one week and then exposed to either O3 (0.8 ppm) or filtered air. Left ventricular function and arrhythmia sensitivity were measured 24 h after exposure. Intermittent noise caused an initial increase in HR and BP, which decreased significantly later in the regimen and coincided with an increase in HRV and BRS. Noise caused HR and BP to be significantly elevated early during O3 and lower at the end when compared to animals kept in the quiet while the increased HRV and BRS persisted during the 24 h after. Lastly, noise increased arrhythmogenesis and may predispose the heart to mechanical function changes after O3. This is the first study to demonstrate that intermittent noise worsens the cardiovascular response to inhaled O3. These effects may occur due to autonomic changes and dysregulation of homeostatic controls, which persist one day after exposure to noise. Hence, co-exposure to noise should be taken into account when assessing the health effects of urban air pollution.
Collapse
Affiliation(s)
- Mehdi S Hazari
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA.
| | - Kaitlyn Phillips
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kimberly M Stratford
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Malek Khan
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Leslie Thompson
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - Wendy Oshiro
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - George Hudson
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David W Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Aimen K Farraj
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
11
|
Ambient air pollution exposure and radiographic pulmonary vascular volumes. Environ Epidemiol 2021; 5:e143. [PMID: 33870015 PMCID: PMC8043731 DOI: 10.1097/ee9.0000000000000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Supplemental Digital Content is available in the text. Exposure to higher levels of ambient air pollution is a known risk factor for cardiovascular disease but long-term effects of pollution exposure on the pulmonary vessels are unknown.
Collapse
|
12
|
Cardiorespiratory Effects of Indoor Ozone Exposure Associated with Changes in Metabolic Profiles among Children: A Repeated-Measure Panel Study. ACTA ACUST UNITED AC 2021; 2:100087. [PMID: 34557741 PMCID: PMC8454695 DOI: 10.1016/j.xinn.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Ozone is one of the major gaseous pollutants associated with short-term adverse cardiopulmonary effects, even at concentrations below the current indoor air quality limits. However, the underlying biological mechanisms of cardiorespiratory changes with exposure to ozone remain unclear. To further explore molecular linkages between indoor ozone exposure and relevant cardiorespiratory effects, a repeated-measure panel study including 46 schoolchildren was conducted and real-time exposure measurements including ozone were performed inside classrooms every weekday during the study period. Repeated health measurements and urine sample collection were conducted in each participant. Ultra-high-performance liquid chromatography/tandem mass spectrometry and meet-in-metabolite approach were used in metabolomics analysis. Methods including mixed-effect models were adopted to identify metabolites associated with ozone exposure or health indices. Nine metabolites were found to be associated with ozone after mixed-effect model analysis, which are mainly involved in amino acid and bile acid metabolism. Boys may have a greater decrease in bile acid and RNA related metabolites. Four of the nine ozone-related metabolites were also associated with cardiorespiratory function indices. Furthermore, 26.67% of the positive association between ozone and heart rate was mediated by cholestane-3,7,12,25-tetrol-3-glucuronide. Exposure to ozone below the current indoor standards was associated with the deteriorated cardiovascular function by disturbing bile acid and endogenous nitric oxide-related oxidation and inflammation, and associated with the exacerbated airway inflammation by reducing GPx-related anti-oxidation. The results provide metabolic evidence of the cardiorespiratory effects of indoor ozone exposure. Indoor ozone pollution should be controlled further, and more attention should be paid to preventing its adverse health effects, especially in children. Indoor O3 exposure far below the indoor air quality limits disturbed amino acid and bile acid metabolism of children Exposure to indoor O3 at low concentrations was associated with the deteriorated HRV, BP by affecting bile acid- and endogenous NO-related oxidation and inflammation Exposure to indoor O3 at low concentrations was associated with the aggravated airway inflammation by reducing GPx-related anti-oxidation The cardiorespiratory effects of low-level ozone exposure indoors in children require additional attention Indoor ozone pollution should be controlled further and the current indoor ozone standards should be revised
Collapse
|
13
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
14
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
15
|
Do Ambient Ozone or Other Pollutants Modify Effects of Controlled Ozone Exposure on Pulmonary Function? Ann Am Thorac Soc 2020; 17:563-572. [DOI: 10.1513/annalsats.201908-597oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
16
|
Rich DQ, Frampton MW, Balmes JR, Bromberg PA, Arjomandi M, Hazucha MJ, Thurston SW, Alexis NE, Ganz P, Zareba W, Koutrakis P, Thevenet-Morrison K. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 2. Effects of Personal and Ambient Concentrations of Ozone and Other Pollutants on Cardiovascular and Pulmonary Function. Res Rep Health Eff Inst 2020; 2020:1-90. [PMID: 32239870 PMCID: PMC7325421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
INTRODUCTION The Multicenter Ozone Study of oldEr Subjects (MOSES) was a multi-center study evaluating whether short-term controlled exposure of older, healthy individuals to low levels of ozone (O3) induced acute changes in cardiovascular biomarkers. In MOSES Part 1 (MOSES 1), controlled O3 exposure caused concentration-related reductions in lung function with evidence of airway inflammation and injury, but without convincing evidence of effects on cardiovascular function. However, subjects' prior exposures to indoor and outdoor air pollution in the few hours and days before each MOSES controlled O3 exposure may have independently affected the study biomarkers and/or modified biomarker responses to the MOSES controlled O3 exposures. METHODS MOSES 1 was conducted at three clinical centers (University of California San Francisco, University of North Carolina, and University of Rochester Medical Center) and included healthy volunteers 55 to 70 years of age. Consented participants who successfully completed the screening and training sessions were enrolled in the study. All three clinical centers adhered to common standard operating procedures and used common tracking and data forms. Each subject was scheduled to participate in a total of 11 visits: screening visit, training visit, and three sets of exposure visits consisting of the pre-exposure day, the exposure day, and the post-exposure day. After completing the pre-exposure day, subjects spent the night in a nearby hotel. On exposure days, the subjects were exposed for 3 hours in random order to 0 ppb O3 (clean air), 70 ppb O3, and 120 ppm O3. During the exposure period the subjects alternated between 15 minutes of moderate exercise and 15 minutes of rest. A suite of cardiovascular and pulmonary endpoints was measured on the day before, the day of, and up to 22 hours after each exposure. In MOSES Part 2 (MOSES 2), we used a longitudinal panel study design, cardiopulmonary biomarker data from MOSES 1, passive cumulative personal exposure samples (PES) of O3 and nitrogen dioxide (NO2) in the 72 hours before the pre-exposure visit, and hourly ambient air pollution and weather measurements in the 96 hours before the pre-exposure visit. We used mixed-effects linear regression and evaluated whether PES O3 and NO2 and these ambient pollutant concentrations in the 96 hours before the pre-exposure visit confounded the MOSES 1 controlled O3 exposure effects on the pre- to post-exposure biomarker changes (Aim 1), whether they modified these pre- to post-exposure biomarker responses to the controlled O3 exposures (Aim 2), whether they were associated with changes in biomarkers measured at the pre-exposure visit or morning of the exposure session (Aim 3), and whether they were associated with differences in the pre- to post-exposure biomarker changes independently of the controlled O3 exposures (Aim 4). RESULTS Ambient pollutant concentrations at each site were low and were regularly below the National Ambient Air Quality Standard levels. In Aim 1, the controlled O3 exposure effects on the pre- to post-exposure biomarker differences were little changed when PES or ambient pollutant concentrations in the previous 96 hours were included in the model, suggesting these were not confounders of the controlled O3 exposure/biomarker difference associations. In Aim 2, effects of MOSES controlled O3 exposures on forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were modified by ambient NO2 and carbon monoxide (CO), and PES NO2, with reductions in FEV1 and FVC observed only when these concentrations were "Medium" or "High" in the 72 hours before the pre-exposure visit. There was no such effect modification of the effect of controlled O3 exposure on any other cardiopulmonary biomarker. As hypothesized for Aim 3, increased ambient O3 concentrations were associated with decreased pre-exposure heart rate variability (HRV). For example, high frequency (HF) HRV decreased in association with increased ambient O3 concentrations in the 96 hours before the pre-exposure visit (-0.460 ln[ms2]; 95% CI, -0.743 to -0.177 for each 10.35-ppb increase in O3; P = 0.002). However, in Aim 4 these increases in ambient O3 were also associated with increases in HF and low frequency (LF) HRV from pre- to post-exposure, likely reflecting a "recovery" of HRV during the MOSES O3 exposure sessions. Similar patterns across Aims 3 and 4 were observed for LF (the other primary HRV marker), and standard deviation of normal-to-normal sinus beat intervals (SDNN) and root mean square of successive differences in normal-to-normal sinus beat intervals (RMSSD) (secondary HRV markers). Similar Aim 3 and Aim 4 patterns were observed for FEV1 and FVC in association with increases in ambient PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5), CO, and NO2 in the 96 hours before the pre-exposure visit. For Aim 3, small decreases in pre-exposure FEV1 were significantly associated with interquartile range (IQR) increases in PM2.5 concentrations in the 1 hour before the pre-exposure visit (-0.022 L; 95% CI, -0.037 to -0.006; P = 0.007), CO in the 3 hours before the pre-exposure visit (-0.046 L; 95% CI, -0.076 to -0.016; P = 0.003), and NO2 in the 72 hours before the pre-exposure visit (-0.030 L; 95% CI, -0.052 to -0.008; P = 0.007). However, FEV1 was not associated with ambient O3 or sulfur dioxide (SO2), or PES O3 or NO2 (Aim 3). For Aim 4, increased FEV1 across the exposure session (post-exposure minus pre-exposure) was marginally significantly associated with each 4.1-ppb increase in PES O3 concentration (0.010 L; 95% CI, 0.004 to 0.026; P = 0.010), as well as ambient PM2.5 and CO at all lag times. FVC showed similar associations, with patterns of decreased pre-exposure FVC associated with increased PM2.5, CO, and NO2 at most lag times, and increased FVC across the exposure session also associated with increased concentrations of the same pollutants, reflecting a similar recovery. However, increased pollutant concentrations were not associated with adverse changes in pre-exposure levels or pre- to post-exposure changes in biomarkers of cardiac repolarization, ST segment, vascular function, nitrotyrosine as a measure of oxidative stress, prothrombotic state, systemic inflammation, lung injury, or sputum polymorphonuclear leukocyte (PMN) percentage as a measure of airway inflammation. CONCLUSIONS Our previous MOSES 1 findings of controlled O3 exposure effects on pulmonary function, but not on any cardiovascular biomarker, were not confounded by ambient or personal O3 or other pollutant exposures in the 96 and 72 hours before the pre-exposure visit. Further, these MOSES 1 O3 effects were generally not modified, blunted, or lessened by these same ambient and personal pollutant exposures. However, the reductions in markers of pulmonary function by the MOSES 1 controlled O3 exposure were modified by ambient NO2 and CO, and PES NO2, with reductions observed only when these pollutant concentrations were elevated in the few hours and days before the pre-exposure visit. Increased ambient O3 concentrations were associated with reduced HRV, with "recovery" during exposure visits. Increased ambient PM2.5, NO2, and CO were associated with reduced pulmonary function, independent of the MOSES-controlled O3 exposures. Increased pollutant concentrations were not associated with pre-exposure or pre- to post-exposure changes in other cardiopulmonary biomarkers. Future controlled exposure studies should consider the effect of ambient pollutants on pre-exposure biomarker levels and whether ambient pollutants modify any health response to a controlled pollutant exposure.
Collapse
Affiliation(s)
- D Q Rich
- University of Rochester Medical Center, Rochester, New York
| | - M W Frampton
- University of Rochester Medical Center, Rochester, New York
| | - J R Balmes
- University of California at San Francisco
| | | | | | | | - S W Thurston
- University of Rochester Medical Center, Rochester, New York
| | - N E Alexis
- University of North Carolina at Chapel Hill
| | - P Ganz
- University of California at San Francisco
| | - W Zareba
- University of Rochester Medical Center, Rochester, New York
| | - P Koutrakis
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
17
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
18
|
Madureira J, Brancher EA, Costa C, Aurino de Pinho R, Teixeira JP. Cardio-respiratory health effects of exposure to traffic-related air pollutants while exercising outdoors: A systematic review. ENVIRONMENTAL RESEARCH 2019; 178:108647. [PMID: 31450147 DOI: 10.1016/j.envres.2019.108647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Despite physical exercise provides numerous health benefits, outdoor exercisers are frequently exposed to traffic-related air pollutants (TRAP) known to be associated with respiratory and cardiovascular diseases. The aim of this systematic review was to investigate the effects of TRAP exposure, specifically particulate matter and nitrogen dioxide (NO2), during outdoor exercise on cardio-respiratory health effects. Systematic database searches of PubMed, Web of Science, Scopus and Medline were performed by two researchers to identify peer-reviewed studies from 2000 to 2018. Combinations of keywords related to cardio-respiratory health effects, physical exercise and ambient air pollution were used. Thirteen studies were included, originating predominantly from European countries but also the American. They suggested that exercising in an environment with high TRAP exposure increases markers of respiratory and systemic inflammation, as well as, impairs the vascular function and increases artery pressure, when compared with an environment with low-TRAP exposure. In addition, the smaller particles appear to have the most severe health consequences compared with the larger coarse particles and NO2. This study also provides evidence that specific groups of the population have enhanced susceptibility to adverse effects from particulate matter exposure while exercising. There is a need for more studies focused on the relationship between air pollution, physical exercise and health, as large societal benefits can be obtained from healthy environments that can promote outdoor physical exercise.
Collapse
Affiliation(s)
- Joana Madureira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Emerson Antonio Brancher
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE), Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil; Departamento de Educação Física, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Carla Costa
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Huang J, Song Y, Chu M, Dong W, Miller MR, Loh M, Xu J, Yang D, Chi R, Yang X, Wu S, Guo X, Deng F. Cardiorespiratory responses to low-level ozone exposure: The inDoor Ozone Study in childrEn (DOSE). ENVIRONMENT INTERNATIONAL 2019; 131:105021. [PMID: 31349208 DOI: 10.1016/j.envint.2019.105021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Indoor air pollution has emerged as a significant environmental and public health concern in recent years. However, evidence regarding the cardiorespiratory effects of indoor ozone is limited, and the underlying biological mechanisms are unclear, especially in children. Our study aimed to assess the cardiorespiratory responses to indoor ozone exposure in children. METHODS A repeated-measure study was conducted in 46 middle-school children in Beijing, China. Real-time concentrations of ozone, along with co-pollutants including particulate matter (PM) and black carbon (BC), were monitored in classrooms from Monday to Friday. Three repeated health measurements of cardiorespiratory functions, including ambulatory electrocardiogram (ECG), blood pressure, fractional exhaled nitric oxide (FeNO) and lung function, were performed on each participant. Mixed-effect models were used to evaluate the effects of indoor ozone exposure. RESULTS The mean (SD) indoor ozone concentration was 8.7 (6.6) ppb during the study period, which was largely below the current guideline and standards. However, even this low-level ozone exposure was associated with reduced cardiac autonomic function and increased heart rate (HR) in children. For instance, per interquartile range (IQR) increase in ozone at 2-hour moving average was associated with -7.8% (95% CI: -9.9%, -5.6%) reduction in standard deviation of all normal-to-normal intervals (SDNN), and 2.6% (95% CI: 1.6%, 3.6%) increment in HR. In addition, the associations were stronger at high BC levels (BC ≥ 3.7 μg/m3). No significant associations were found for airway inflammation and pulmonary function. CONCLUSIONS Exposure to low-level indoor ozone that is not associated with respiratory effects was significantly related to disturbed cardiac autonomic function and increased HR in children, which suggested a possible mechanism through which ozone may affect cardiovascular health in children, and indicated more protective measures should be taken to alleviate the acute adverse effects of indoor ozone in this susceptible population.
Collapse
Affiliation(s)
- Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, UK
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Rui Chi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
20
|
Balmes JR, Arjomandi M, Bromberg PA, Costantini MG, Dagincourt N, Hazucha MJ, Hollenbeck-Pringle D, Rich DQ, Stark P, Frampton MW. Ozone effects on blood biomarkers of systemic inflammation, oxidative stress, endothelial function, and thrombosis: The Multicenter Ozone Study in oldEr Subjects (MOSES). PLoS One 2019; 14:e0222601. [PMID: 31553765 PMCID: PMC6760801 DOI: 10.1371/journal.pone.0222601] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023] Open
Abstract
The evidence that exposure to ozone air pollution causes acute cardiovascular effects is mixed. We postulated that exposure to ambient levels of ozone would increase blood markers of systemic inflammation, prothrombotic state, oxidative stress, and vascular dysfunction in healthy older subjects, and that absence of the glutathione S-transferase Mu 1 (GSTM1) gene would confer increased susceptibility. This double-blind, randomized, crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol. Subjects were exposed for 3 h in random order to 0 parts per billion (ppb) (filtered air), 70 ppb, and 120 ppb ozone, alternating 15 min of moderate exercise and rest. Blood was obtained the day before, approximately 4 h after, and approximately 22 h after each exposure. Linear mixed effect and logistic regression models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. The definition of statistical significance was p<0.01. There were no effects of ozone on the three primary markers of systemic inflammation and a prothrombotic state: C-reactive protein, monocyte-platelet conjugates, and microparticle-associated tissue factor activity. However, among the secondary endpoints, endothelin-1, a potent vasoconstrictor, increased from pre- to post-exposure with ozone concentration (120 vs 0 ppb: 0.07 pg/mL, 95% confidence interval [CI] 0.01, 0.14; 70 vs 0 ppb: -0.03 pg/mL, CI -0.09, 0.04; p = 0.008). Nitrotyrosine, a marker of oxidative and nitrosative stress, decreased with increasing ozone concentrations, with marginal significance (120 vs 0 ppb: -41.5, CI -70.1, -12.8; 70 vs 0 ppb: -14.2, CI -42.7, 14.2; p = 0.017). GSTM1 status did not modify the effect of ozone exposure on any of the outcomes. These findings from healthy older adults fail to identify any mechanistic basis for the epidemiologically described cardiovascular effects of exposure to ozone. The findings, however, may not be applicable to adults with cardiovascular disease.
Collapse
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Mehrdad Arjomandi
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
| | - Philip A. Bromberg
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | - Milan J. Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul Stark
- New England Research Institute, Watertown, MA, United States of America
| | - Mark W. Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
21
|
Jantzen K, Jensen A, Kermanizadeh A, Elholm G, Sigsgaard T, Møller P, Roursgaard M, Loft S. Inhalation of House Dust and Ozone Alters Systemic Levels of Endothelial Progenitor Cells, Oxidative Stress, and Inflammation in Elderly Subjects. Toxicol Sci 2019; 163:353-363. [PMID: 29767793 DOI: 10.1093/toxsci/kfy027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ambient air pollution including ozone and especially particulate matter represents important causes of cardiovascular disease. However, there is limited knowledge on indoor air dust with respect to this risk and the potential interactions between dust and ozone. Here, we exposed 23 healthy elderly subjects for 5.5 h, to either clean air, house dust at 275 µg/m3 (diameter < 2.5 µm), ozone at 100 ppb or combined house dust and ozone in a double-blinded randomized cross-over study. The combined house dust and ozone exposure was associated with a 48% (95% CI 24%-65%) decrease as compared with the clean air exposure, in CD34+KDR+ late endothelial progenitor cells (EPCs) per leukocyte in the blood shortly after exposure, whereas none of the single exposures resulted in a significant effect. The combined exposure also increased reactive oxygen species production capacity in granulocytes and monocytes as well as an up-regulation of interleukin-8 mRNA levels in leukocytes. Ozone alone reduced the gene expression of tumor necrosis factor and C-C motif chemokine ligand 2, while dust alone showed no effects. The combined exposure to house dust and ozone also reduced levels of oxidized purines in DNA consistent with concomitant up-regulation of mRNA of the repair enzyme 8-oxoguanine DNA glycosylase. The reduction in late EPCs can be an indicator of cardiovascular risk caused by the combination of pulmonary oxidative stress induced by ozone and the inflammatory potential of the house dust. These data were corroborated with in vitro findings from exposed human macrophages and endothelial cells.
Collapse
Affiliation(s)
- Kim Jantzen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Annie Jensen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Ali Kermanizadeh
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Grethe Elholm
- Section of Environment, Occupation and Health, Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Torben Sigsgaard
- Section of Environment, Occupation and Health, Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1014 Copenhagen, Denmark
| |
Collapse
|
22
|
Xia Y, Niu Y, Cai J, Lin Z, Liu C, Li H, Chen C, Song W, Zhao Z, Chen R, Kan H. Effects of Personal Short-Term Exposure to Ambient Ozone on Blood Pressure and Vascular Endothelial Function: A Mechanistic Study Based on DNA Methylation and Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12774-12782. [PMID: 30259740 DOI: 10.1021/acs.est.8b03044] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Short-term exposure to ambient ozone is associated with adverse cardiovascular effects, with inconsistent evidence on the molecular mechanisms. We conducted a longitudinal panel study among 43 college students in Shanghai to explore the effects of personal ozone exposure on blood pressure (BP), vascular endothelial function, and the potential molecular mechanisms. We measured real-time personal ozone exposure levels, serum angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1), and locus-specific DNA methylation of ACE and EDN1 (coding ET-1). We used an untargeted metabolomic approach to explore potentially important metabolites. We applied linear mixed-effect models to examine the effects of ozone on the above biomarkers. An increase in 2 h-average ozone exposure was significantly associated with elevated levels of BP, ACE, and ET-1. ACE and EDN1 methylation decreased with ozone exposure, but the magnitude differed by genomic loci. Metabolomics analysis showed significant changes in serum lipid metabolites following ozone exposure that are involved in maintaining vascular endothelial function. Our findings suggested that acute exposure to ambient ozone can elevate serum levels of ACE and ET-1, decrease their DNA methylation, and alter the lipid metabolism, which may be partly responsible for the effects of ozone on BP and vascular endothelial function.
Collapse
Affiliation(s)
- Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Weimin Song
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai 200032 , China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai 200032 , China
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research , Institute of Reproduction and Development, Fudan University , Shanghai 200032 , China
| |
Collapse
|
23
|
Rich DQ, Balmes JR, Frampton MW, Zareba W, Stark P, Arjomandi M, Hazucha MJ, Costantini MG, Ganz P, Hollenbeck-Pringle D, Dagincourt N, Bromberg PA. Cardiovascular function and ozone exposure: The Multicenter Ozone Study in oldEr Subjects (MOSES). ENVIRONMENT INTERNATIONAL 2018; 119:193-202. [PMID: 29980042 DOI: 10.1016/j.envint.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND To date, there have been relatively few studies of acute cardiovascular responses to controlled ozone inhalation, although a number of observational studies have reported significant positive associations between both ambient ozone levels and acute cardiovascular events and long-term ozone exposure and cardiovascular mortality. OBJECTIVES We hypothesized that short-term controlled exposure to low levels of ozone in filtered air would induce autonomic imbalance, repolarization abnormalities, arrhythmia, and vascular dysfunction. METHODS This randomized crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol, from June 2012 to April 2015. Subjects were exposed for 3 h in random order to 0 ppb (filtered air), 70 ppb ozone, and 120 ppb ozone, alternating 15 min of moderate exercise with 15 min of rest. A suite of cardiovascular endpoints was measured the day before, the day of, and up to 22 h after each exposure. Mixed effect linear and logit models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. Site and time were included in the models. RESULTS We found no significant effects of ozone exposure on any of the primary or secondary measures of autonomic function, repolarization, ST segment change, arrhythmia, or vascular function (systolic blood pressure and flow-mediated dilation). CONCLUSIONS In this multicenter study of older healthy women and men, there was no convincing evidence for acute effects of 3-h, relatively low-level ozone exposures on cardiovascular function. However, we cannot exclude the possibility of effects with higher ozone concentrations, more prolonged exposure, or in subjects with underlying cardiovascular disease. Further, we cannot exclude the possibility that exposure to ambient ozone and other pollutants in the days before the experimental exposures obscured or blunted cardiovascular biomarker response to the controlled ozone exposures.
Collapse
Affiliation(s)
- David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America.
| | - John R Balmes
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Mark W Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Wojciech Zareba
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul Stark
- New England Research Institute, Watertown, MA, United States of America
| | - Mehrdad Arjomandi
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
| | - Milan J Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | - Peter Ganz
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
| | | | | | - Philip A Bromberg
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
24
|
Cakmak S, Hebbern C, Pinault L, Lavigne E, Vanos J, Crouse DL, Tjepkema M. Associations between long-term PM 2.5 and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. ENVIRONMENT INTERNATIONAL 2018; 111:200-211. [PMID: 29227849 DOI: 10.1016/j.envint.2017.11.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 05/23/2023]
Abstract
Studies suggest that long-term chronic exposure to fine particulate matter air pollution can increase lung cancer mortality. We analyzed the association between long term PM2.5 and ozone exposure and mortality due to lung cancer, ischemic heart disease, and chronic obstructive pulmonary disease, accounting for geographic location, socioeconomic status, and residential mobility. Subjects in the 1991 Canadian Census Health and Environment Cohort (CanCHEC) were followed for 20years, and assigned to regions across Canada based on spatial synoptic classification weather types. Hazard ratios (HR) for mortality, were related to PM2.5 and ozone using Cox proportional hazards survival models, adjusting for socioeconomic characteristics and individual confounders. An increase of 10μg/m3 in long term PM2.5 exposure resulted in an HR for lung cancer mortality of 1.26 (95% CI 1.04, 1.53); the inclusion in the model of SSC zone as a stratum increased the risk estimate to HR 1.29 (95% CI 1.06, 1.57). After adjusting for ozone, HRs increased to 1.49 (95% CI 1.23, 1.88), and HR 1.54 (95% CI 1.27, 1.87), with and without zone as a model stratum. HRs for ischemic heart disease fell from 1.25 (95% CI 1.21, 1.29) for exposure to PM2.5, to 1.13 (95% CI 1.08, 1.19) when PM2.5 was adjusted for ozone. For COPD, the 95% confidence limits included 1.0 when climate zone was included in the model. HRs for all causes of death showed spatial differences when compared to zone 3, the most populated climate zone. Exposure to PM2.5 was related to an increased risk of mortality from lung cancer, and both ozone and PM2.5 exposure were related to risk of mortality from ischemic heart disease, and the risk varied spatially by climate zone.
Collapse
Affiliation(s)
- Sabit Cakmak
- Population Studies Division, Environmental Health Science & Research Bureau, Health Canada, 101 Tunney's Pasture Driveway, Ottawa, ON K1A 0K9, Canada.
| | - Chris Hebbern
- Population Studies Division, Environmental Health Science & Research Bureau, Health Canada, 101 Tunney's Pasture Driveway, Ottawa, ON K1A 0K9, Canada
| | - Lauren Pinault
- Research Analyst, Health Analysis, Statistics Canada/Government of Canada, Canada
| | - Eric Lavigne
- Air Health Science Division Health Canada, 269 Laurier Avenue West Ottawa, Ontario K1A0K9, Canada
| | - Jennifer Vanos
- Climate, Atmospheric Science & Physical Oceanography, Scripps Institution of Oceanography University of California at San Diego 9500, Gilman, Drive #0206, USA
| | - Dan Lawson Crouse
- Epidemiologist of the New Brunswick Institute for Research, Data, and Training (NB-IRDT) and Research Associate in the Department of Sociology University of New Brunswick Fredericton, NB, PO Box 4400, E3B 5A3, Canada
| | | |
Collapse
|
25
|
Li H, Wu S, Pan L, Xu J, Shan J, Yang X, Dong W, Deng F, Chen Y, Shima M, Guo X. Short-term effects of various ozone metrics on cardiopulmonary function in chronic obstructive pulmonary disease patients: Results from a panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:358-366. [PMID: 28987568 DOI: 10.1016/j.envpol.2017.09.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Short-term exposure to ambient air pollution has been associated with lower pulmonary function and higher blood pressure (BP). However, controversy remains regarding the relationship between ambient multiple daily ozone (O3) metrics and cardiopulmonary health outcomes, especially in the developing countries. OBJECTIVES To investigate and compare the short-term effects of various O3 metrics on pulmonary function, fractional exhaled nitric oxide (FeNO) and BP in a panel study of COPD patients. METHODS We measured pulmonary function, FeNO and BP repeatedly in a total of 43 patients with COPD for 215 home visits. Daily hourly ambient O3 concentrations were obtained from central-monitoring stations close to subject residences. We calculated various O3 metrics [daily 1-h maximum (O3-1 h max), maximum 8-h average (O3-8 h max) and 24-h average (O3-24 h avg)] based on the hourly data. Daily indoor O3 concentrations were estimated based on estimated indoor/outdoor O3 ratios. Linear mixed-effects models were used to estimate associations of various O3 metrics with cardiopulmonary function variables. RESULTS An interquartile range (IQR) increase in ambient O3-8 h max (80.5 μg/m3, 5-d) was associated with a 5.9% (95%CI: -11.0%, -0.7%) reduction in forced expiratory volume in 1 s (FEV1) and a 6.2% (95%CI: -10.9%, -1.5%) reduction in peak expiratory flow (PEF). However, there were no significant negative associations between ambient O3-1 h max, O3-24 h avg and FEV1, PEF. An IQR increase in ambient O3-1 h max (85.3 μg/m3, 6-d) was associated with a 6.7 mmHg (95%CI: 0.7, 12.7) increase in systolic BP. The estimated indoor O3 were still significantly associated with reduction of FEV1 and PEF. No significant associations were found between various O3 metrics and FeNO. CONCLUSIONS Our results provide clues for the adverse cardiopulmonary effects associated with various O3 metrics in COPD patients and highlight that O3-8 h max was more closely associated with respiratory health variables.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lu Pan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jiao Shan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Yahong Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, Hyogo, Japan
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
26
|
Yin P, Chen R, Wang L, Meng X, Liu C, Niu Y, Lin Z, Liu Y, Liu J, Qi J, You J, Zhou M, Kan H. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:117006. [PMID: 29212061 PMCID: PMC5947936 DOI: 10.1289/ehp1849] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Few large multicity studies have been conducted in developing countries to address the acute health effects of atmospheric ozone pollution. OBJECTIVE We explored the associations between ozone and daily cause-specific mortality in China. METHODS We performed a nationwide time-series analysis in 272 representative Chinese cities between 2013 and 2015. We used distributed lag models and over-dispersed generalized linear models to estimate the cumulative effects of ozone (lagged over 0-3 d) on mortality in each city, and we used hierarchical Bayesian models to combine the city-specific estimates. Regional, seasonal, and demographic heterogeneity were evaluated by meta-regression. RESULTS At the national-average level, a 10-μg/m3 increase in 8-h maximum ozone concentration was associated with 0.24% [95% posterior interval (PI): 0.13%, 0.35%], 0.27% (95% PI: 0.10%, 0.44%), 0.60% (95% PI: 0.08%, 1.11%), 0.24% (95% PI: 0.02%, 0.46%), and 0.29% (95% PI: 0.07%, 0.50%) higher daily mortality from all nonaccidental causes, cardiovascular diseases, hypertension, coronary diseases, and stroke, respectively. Associations between ozone and daily mortality due to respiratory and chronic obstructive pulmonary disease specifically were positive but imprecise and nonsignificant. There were no statistically significant differences in associations between ozone and nonaccidental mortality according to region, season, age, sex, or educational attainment. CONCLUSIONS Our findings provide robust evidence of higher nonaccidental and cardiovascular mortality in association with short-term exposure to ambient ozone in China. https://doi.org/10.1289/EHP1849.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Renjie Chen
- Key Laboratory of Public Health Security, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technique Assessment, School of Public Health, Ministry of Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Meng
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Cong Liu
- Key Laboratory of Public Health Security, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technique Assessment, School of Public Health, Ministry of Health, Fudan University, Shanghai, China
| | - Yue Niu
- Key Laboratory of Public Health Security, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technique Assessment, School of Public Health, Ministry of Health, Fudan University, Shanghai, China
| | - Zhijing Lin
- Key Laboratory of Public Health Security, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technique Assessment, School of Public Health, Ministry of Health, Fudan University, Shanghai, China
| | - Yunning Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangmei Liu
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinling You
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haidong Kan
- Key Laboratory of Public Health Security, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technique Assessment, School of Public Health, Ministry of Health, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University , Shanghai, China
| |
Collapse
|
27
|
Frampton MW, Balmes JR, Bromberg PA, Stark P, Arjomandi M, Hazucha MJ, Rich DQ, Hollenbeck-Pringle D, Dagincourt N, Alexis N, Ganz P, Zareba W, Costantini MG. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 1. Effects of Exposure to Low Concentrations of Ozone on Respiratory and Cardiovascular Outcomes. Res Rep Health Eff Inst 2017; 2017:1-107. [PMID: 31898880 PMCID: PMC7266375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Exposure to air pollution is a well-established risk factor for cardiovascular morbidity and mortality. Most of the evidence supporting an association between air pollution and adverse cardiovascular effects involves exposure to particulate matter (PM). To date, little attention has been paid to acute cardiovascular responses to ozone, in part due to the notion that ozone causes primarily local effects on lung function, which are the basis for the current ozone National Ambient Air Quality Standards (NAAQS). There is evidence from a few epidemiological studies of adverse health effects of chronic exposure to ambient ozone, including increased risk of mortality from cardiovascular disease. However, in contrast to the well-established association between ambient ozone and various nonfatal adverse respiratory effects, the observational evidence for impacts of acute (previous few days) increases in ambient ozone levels on total cardiovascular mortality and morbidity is mixed. Ozone is a prototypic oxidant gas that reacts with constituents of the respiratory tract lining fluid to generate reactive oxygen species (ROS) that can overwhelm antioxidant defenses and cause local oxidative stress. Pathways by which ozone could cause cardiovascular dysfunction include alterations in autonomic balance, systemic inflammation, and oxidative stress. These initial responses could lead ultimately to arrhythmias, endothelial dysfunction, acute arterial vasoconstriction, and procoagulant activity. Individuals with impaired antioxidant defenses, such as those with the null variant of glutathione S-transferase mu 1 (GSTM1), may be at increased risk for acute health effects. The Multicenter Ozone Study in oldEr Subjects (MOSES) was a controlled human exposure study designed to evaluate whether short-term exposure of older, healthy individuals to ambient levels of ozone induces acute cardiovascular responses. The study was designed to test the a priori hypothesis that short-term exposure to ambient levels of ozone would induce acute cardiovascular responses through the following mechanisms: autonomic imbalance, systemic inflammation, and development of a prothrombotic vascular state. We also postulated a priori the confirmatory hypothesis that exposure to ozone would induce airway inflammation, lung injury, and lung function decrements. Finally, we postulated the secondary hypotheses that ozone-induced acute cardiovascular responses would be associated with: (a) increased systemic oxidative stress and lung effects, and (b) the GSTM1-null genotype. METHODS The study was conducted at three clinical centers with a separate Data Coordinating and Analysis Center (DCAC) using a common protocol. All procedures were approved by the institutional review boards (IRBs) of the participating centers. Healthy volunteers 55 to 70 years of age were recruited. Consented participants who successfully completed the screening and training sessions were enrolled in the study. All three clinical centers adhered to common standard operating procedures (SOPs) and used common tracking and data forms. Each subject was scheduled to participate in a total of 11 visits: screening visit, training visit, and three sets of exposure visits, each consisting of the pre-exposure day, the exposure day, and the post-exposure day. The subjects spent the night in a nearby hotel the night of the pre-exposure day. On exposure days, the subjects were exposed for three hours in random order to 0 ppb ozone (clean air), 70 ppb ozone, and 120 ppm ozone, alternating 15 minutes of moderate exercise with 15 minutes of rest. A suite of cardiovascular and pulmonary endpoints was measured on the day before, the day of, and up to 22 hours after, each exposure. The endpoints included: (1) electrocardiographic changes (continuous Holter monitoring: heart rate variability [HRV], repolarization, and arrhythmia); (2) markers of inflammation and oxidative stress (C-reactive protein [CRP], interleukin-6 [IL-6], 8-isoprostane, nitrotyrosine, and P-selectin); (3) vascular function measures (blood pressure [BP], flow-mediated dilatation [FMD] of the brachial artery, and endothelin-1 [ET-1]; (4) venous blood markers of platelet activation, thrombosis, and microparticle-associated tissue factor activity (MP-TFA); (5) pulmonary function (spirometry); (6) markers of airway epithelial cell injury (increases in plasma club cell protein 16 [CC16] and sputum total protein); and (7) markers of lung inflammation in sputum (polymorphonuclear leukocytes [PMN], IL-6, interleukin-8 [IL-8], and tumor necrosis factor-alpha [TNF-α]). Sputum was collected only at 22 hours after exposure. The analyses of the continuous electrocardiographic monitoring, the brachial artery ultrasound (BAU) images, and the blood and sputum samples were carried out by core laboratories. The results of all analyses were submitted directly to the DCAC. The variables analyzed in the statistical models were represented as changes from pre-exposure to post-exposure (post-exposure minus pre-exposure). Mixed-effect linear models were used to evaluate the impact of exposure to ozone on the prespecified primary and secondary continuous outcomes. Site and time (when multiple measurements were taken) were controlled for in the models. Three separate interaction models were constructed for each outcome: ozone concentration by subject sex; ozone concentration by subject age; and ozone concentration by subject GSTM1 status (null or sufficient). Because of the issue of multiple comparisons, the statistical significance threshold was set a priori at P < 0.01. RESULTS Subject recruitment started in June 2012, and the first subject was randomized on July 25, 2012. Subject recruitment ended on December 31, 2014, and testing of all subjects was completed by April 30, 2015. A total of 87 subjects completed all three exposures. The mean age was 59.9 ± 4.5 years, 60% of the subjects were female, 88% were white, and 57% were GSTM1 null. Mean baseline body mass index (BMI), BP, cholesterol (total and low-density lipoprotein), and lung function were all within the normal range. We found no significant effects of ozone exposure on any of the primary or secondary endpoints for autonomic function, repolarization, ST segment change, or arrhythmia. Ozone exposure also did not cause significant changes in the primary endpoints for systemic inflammation (CRP) and vascular function (systolic blood pressure [SBP] and FMD) or secondary endpoints for systemic inflammation and oxidative stress (IL-6, P-selectin, and 8-isoprostane). Ozone did cause changes in two secondary endpoints: a significant increase in plasma ET-1 (P = 0.008) and a marginally significant decrease in nitrotyrosine (P = 0.017). Lastly, ozone exposure did not affect the primary prothrombotic endpoints (MP-TFA and monocyte-platelet conjugate count) or any secondary markers of prothrombotic vascular status (platelet activation, circulating microparticles [MPs], von Willebrand factor [vWF], or fibrinogen.). Although our hypothesis focused on possible acute cardiovascular effects of exposure to low levels of ozone, we recognized that the initial effects of inhaled ozone involve the lower airways. Therefore, we looked for: (a) changes in lung function, which are known to occur during exposure to ozone and are maximal at the end of exposure; and (b) markers of airway injury and inflammation. We found an increase in forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV₁) after exposure to 0 ppb ozone, likely due to the effects of exercise. The FEV₁ increased significantly 15 minutes after 0 ppb exposure (85 mL; 95% confidence interval [CI], 64 to 106; P < 0.001), and remained significantly increased from pre-exposure at 22 hours (45 mL; 95% CI, 26 to 64; P < 0.001). The increase in FVC followed a similar pattern. The increase in FEV₁ and FVC were attenuated in a dose-response manner by exposure to 70 and 120 ppb ozone. We also observed a significant ozone-induced increase in the percentage of sputum PMN 22 hours after exposure at 120 ppb compared to 0 ppb exposure (P = 0.003). Plasma CC16 also increased significantly after exposure to 120 ppb (P < 0.001). Sputum IL-6, IL-8, and TNF-α concentrations were not significantly different after ozone exposure. We found no significant interactions with sex, age, or GSTM1 status regarding the effect of ozone on lung function, percentage of sputum PMN, or plasma CC16. CONCLUSIONS In this multicenter clinical study of older healthy subjects, ozone exposure caused concentration-related reductions in lung function and presented evidence for airway inflammation and injury. However, there was no convincing evidence for effects on cardiovascular function. Blood levels of the potent vasoconstrictor, ET-1, increased with ozone exposure (with marginal statistical significance), but there were no effects on BP, FMD, or other markers of vascular function. Blood levels of nitrotyrosine decreased with ozone exposure, the opposite of our hypothesis. Our study does not support acute cardiovascular effects of low-level ozone exposure in healthy older subjects. Inclusion of only healthy older individuals is a major limitation, which may affect the generalizability of our findings. We cannot exclude the possibility of effects with higher ozone exposure concentrations or more prolonged exposure, or the possibility that subjects with underlying vascular disease, such as hypertension or diabetes, would show effects under these conditions.
Collapse
Affiliation(s)
- M W Frampton
- University of Rochester Medical Center, Rochester, New York
| | | | | | - P Stark
- New England Research Institute, Watertown, Massachusetts
| | | | | | - D Q Rich
- University of Rochester Medical Center, Rochester, New York
| | | | - N Dagincourt
- New England Research Institute, Watertown, Massachusetts
| | - N Alexis
- University of North Carolina, Chapel Hill
| | - P Ganz
- University of California, San Francisco
| | - W Zareba
- University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
28
|
Coogan PF, White LF, Yu J, Brook RD, Burnett RT, Marshall JD, Bethea TN, Rosenberg L, Jerrett M. Long-Term Exposure to NO2 and Ozone and Hypertension Incidence in the Black Women's Health Study. Am J Hypertens 2017; 30:367-372. [PMID: 28096146 PMCID: PMC5861564 DOI: 10.1093/ajh/hpw168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence shows that exposure to air pollutants can increase blood pressure in the short and long term. Some studies show higher levels of hypertension prevalence in areas of high pollution. Few data exist on the association of air pollution with hypertension incidence. The purpose of the present study was to prospectively assess the associations of the traffic-related nitrogen dioxide (NO2) and of ozone with the incidence of hypertension in the Black Women's Health Study (BWHS), a large cohort study of African American women. METHODS We used Cox proportional hazards models to calculate hazard ratios (HRs) and 95% confidence intervals (CI) for hypertension associated with exposure to NO2 and ozone among 33,771 BWHS participants. NO2 and ozone levels at participant residential locations were estimated with validated models. RESULTS From 1995 to 2011, 9,570 incident cases of hypertension occurred in a total of 348,154 person-years (median follow-up time, 11 years). The multivariable HRs per interquartile range of NO2 (9.7 ppb) and ozone (6.7 ppb) were 0.92 (95% CI = 0.86, 0.98) and 1.09 (95% CI = 1.00, 1.18). CONCLUSIONS In this large cohort of African American women, higher ozone levels were associated with an increase in hypertension incidence. Higher NO2 levels were not associated with greater hypertension incidence; indeed, incidence was lower at higher NO2 levels.
Collapse
Affiliation(s)
| | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey Yu
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard T Burnett
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Julian D Marshall
- Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Traci N Bethea
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, USA
| |
Collapse
|
29
|
Impact of seasonality and air pollutants on carotid-femoral pulse wave velocity and wave reflection in hypertensive patients. PLoS One 2017; 12:e0172550. [PMID: 28231259 PMCID: PMC5322949 DOI: 10.1371/journal.pone.0172550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/05/2017] [Indexed: 12/22/2022] Open
Abstract
Objective The effects of seasonality on blood pressure (BP) and cardiovascular (CV) events are well established, while the influence of seasonality and other environmental factors on arterial stiffness and wave reflection has never been analyzed. This study evaluated whether seasonality (daily number of hours of light) and acute variations in outdoor temperature and air pollutants may affect carotid-femoral pulse wave velocity (PWV) and pressure augmentation. Design and method 731 hypertensive patients (30–88 years, 417 treated) were enrolled in a cross-sectional study during a 5-year period. PWV, central BP, Augmentation Index (AIx) and Augmentation Pressure (AP) were measured in a temperature-controlled (22–24°C) room. Data of the local office of the National Climatic Data Observatory were used to estimate meteorological conditions and air pollutants (PM10, O3, CO, N2O) exposure on the same day. Results PWV (mean value 8.5±1.8 m/s) was related to age (r = 0.467, p<0.001), body mass index (r = 0.132, p<0.001), central systolic (r = 0.414, p<0.001) and diastolic BP (r = 0.093, p = 0.013), daylight hours (r = -0.176, p<0.001), mean outdoor temperature (r = -0.082, p = 0.027), O3 (r = -0.135, p<0.001), CO (r = 0.096, p = 0.012), N2O (r = 0.087, p = 0.022). In multiple linear regression analysis, adjusted for confounders, PWV remained independently associated only with daylight hours (β = -0.170; 95% CI: -0.273 to -0.067, p = 0.001). No significant correlation was found between pressure augmentation and daylight hours, mean temperature or air pollutants. The relationship was stronger in untreated patients and women. Furthermore, a positive, independent association between O3 levels and PWV emerged in untreated patients (β: 0.018; p = 0.029; CI: 0.002 to 0.034) and in women (β: 0.027; p = 0.004; CI: 0.009 to 0.045). Conclusions PWV showed a marked seasonality in hypertensive patients. Environmental O3 levels may acutely reduce arterial stiffness in hypertensive women and in untreated patients.
Collapse
|
30
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|
31
|
TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicol Appl Pharmacol 2016; 324:51-60. [PMID: 27746315 DOI: 10.1016/j.taap.2016.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3ppm acrolein, 0.3ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles.
Collapse
|
32
|
Goodman JE, Prueitt RL, Sax SN, Pizzurro DM, Lynch HN, Zu K, Venditti FJ. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts. Crit Rev Toxicol 2016; 45:412-52. [PMID: 25959700 DOI: 10.3109/10408444.2015.1031371] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation.
Collapse
|
33
|
Frampton MW, Pietropaoli A, Dentler M, Chalupa D, Little EL, Stewart J, Frasier L, Oakes D, Wiltshire J, Vora R, Utell MJ. Cardiovascular effects of ozone in healthy subjects with and without deletion of glutathione-S-transferase M1. Inhal Toxicol 2015; 27:113-9. [PMID: 25600221 DOI: 10.3109/08958378.2014.996272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Exposure to ozone has acute respiratory effects, but few human clinical studies have evaluated cardiovascular effects. OBJECTIVE We hypothesized that ozone exposure alters pulmonary and systemic vascular function, and cardiac function, with more pronounced effects in subjects with impaired antioxidant defense from deletion of the glutathione-S-transferase M1 gene (GSTM1 null). METHODS Twenty-four young, healthy never-smoker subjects (12 GSTM1 null) inhaled filtered air, 100 ppb ozone and 200 ppb ozone for 3 h, with intermittent exercise, in a double-blind, randomized, crossover fashion. Exposures were separated by at least 2 weeks. Vital signs, spirometry, arterial and venous blood nitrite levels, impedance cardiography, peripheral arterial tonometry, estimation of pulmonary capillary blood volume (Vc), and blood microparticles and platelet activation were measured at baseline and during 4 h after each exposure. RESULTS Ozone inhalation decreased lung function immediately after exposure (mean ± standard error change in FEV1, air: -0.03 ± 0.04 L; 200 ppb ozone: -0.30 ± 0.07 L; p < 0.001). The immediate post-exposure increase in blood pressure, caused by the final 15-min exercise period, was blunted by 200 ppb ozone exposure (mean ± standard error change for air: 16.7 ± 2.6 mmHg; 100 ppb ozone: 14.5 ± 2.4 mmHg; 200 ppb ozone: 8.5 ± 2.5 mmHg; p = 0.02). We found no consistent effects of ozone on any other measure of cardiac or vascular function. All results were independent of the GSTM1 genotype. CONCLUSIONS We did not find convincing evidence for early acute adverse cardiovascular consequences of ozone exposure in young healthy adults. The ozone-associated blunting of the blood pressure response to exercise is of unclear clinical significance.
Collapse
|
34
|
Buckley B, Farraj A. Conceptual model for assessing criteria air pollutants in a multipollutant context: A modified adverse outcome pathway approach. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Pan WC, Eliot MN, Koutrakis P, Coull BA, Sorond FA, Wellenius GA. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly. PLoS One 2015; 10:e0134034. [PMID: 26258469 PMCID: PMC4721538 DOI: 10.1371/journal.pone.0134034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. METHODS We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. RESULTS A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. CONCLUSIONS In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.
Collapse
Affiliation(s)
- Wen-Chi Pan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Melissa N. Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Petros Koutrakis
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Brent A. Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Farzaneh A. Sorond
- Department of Neurology, Brigham and Women’s Hospital and Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States of America
| | - Gregory A. Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| |
Collapse
|
36
|
Prueitt RL, Lynch HN, Zu K, Sax SN, Venditti FJ, Goodman JE. Weight-of-evidence evaluation of long-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:791-822. [PMID: 25257962 DOI: 10.3109/10408444.2014.937855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We conducted a weight-of-evidence (WoE) analysis to assess whether the current body of research supports a causal relationship between long-term ozone exposure (defined by EPA as at least 30 days in duration) at ambient levels and cardiovascular (CV) effects. We used a novel WoE framework based on the United States Environmental Protection Agency's National Ambient Air Quality Standards causal framework for this analysis. Specifically, we critically evaluated and integrated the relevant epidemiology and experimental animal data and classified a causal determination based on categories proposed by the Institute of Medicine's 2008 report, Improving the Presumptive Disability Decision-making Process for Veterans. We found that the risks of CV effects are largely null across human and experimental animal studies. The few positive associations reported in studies of CV morbidity and mortality are very small in magnitude, mainly reported in single-pollutant models, and likely attributable to bias, chance, or confounding. The few positive effects in experimental animal studies were observed mainly in ex vivo studies at high exposures, and even the in vivo findings are not likely relevant to humans. The available data also do not support a biologically plausible mechanism for the effects of ozone on the CV system. Overall, the current WoE provides no convincing case for a causal relationship between long-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation; thus, we categorize the strength of evidence for a causal relationship between long-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
37
|
Goodman JE, Prueitt RL, Sax SN, Lynch HN, Zu K, Lemay JC, King JM, Venditti FJ. Weight-of-evidence evaluation of short-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:725-90. [PMID: 25257961 DOI: 10.3109/10408444.2014.937854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a relatively large body of research on the potential cardiovascular (CV) effects associated with short-term ozone exposure (defined by EPA as less than 30 days in duration). We conducted a weight-of-evidence (WoE) analysis to assess whether it supports a causal relationship using a novel WoE framework adapted from the US EPA's National Ambient Air Quality Standards causality framework. Specifically, we synthesized and critically evaluated the relevant epidemiology, controlled human exposure, and experimental animal data and made a causal determination using the same categories proposed by the Institute of Medicine report Improving the Presumptive Disability Decision-making Process for Veterans ( IOM 2008). We found that the totality of the data indicates that the results for CV effects are largely null across human and experimental animal studies. The few statistically significant associations reported in epidemiology studies of CV morbidity and mortality are very small in magnitude and likely attributable to confounding, bias, or chance. In experimental animal studies, the reported statistically significant effects at high exposures are not observed at lower exposures and thus not likely relevant to current ambient ozone exposures in humans. The available data also do not support a biologically plausible mechanism for CV effects of ozone. Overall, the current WoE provides no convincing case for a causal relationship between short-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation. Thus, we categorize the strength of evidence for a causal relationship between short-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
38
|
Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, Campen MJ. Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. Toxicol Sci 2015; 146:244-53. [PMID: 25962394 DOI: 10.1093/toxsci/kfv093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.
Collapse
Affiliation(s)
- Michael L Paffett
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Katherine E Zychowski
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington and
| | - Sarah Robertson
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - John M Weaver
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Selita N Lucas
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico,
| |
Collapse
|
39
|
Arjomandi M, Wong H, Donde A, Frelinger J, Dalton S, Ching W, Power K, Balmes JR. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects. Am J Physiol Heart Circ Physiol 2015; 308:H1499-509. [PMID: 25862833 DOI: 10.1152/ajpheart.00849.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/31/2015] [Indexed: 01/03/2023]
Abstract
Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. HRV was measured and blood samples were obtained immediately before (0 h), immediately after (4 h), and 20 h after (24 h) each exposure. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 20 h after exposure. Regression modeling was used to examine dose-response trends between the endpoints and ozone exposure. Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure.
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; Pulmonary Research Group, San Francisco Veterans Affairs Medical Center, San Francisco, California;
| | - Hofer Wong
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California
| | - Aneesh Donde
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California
| | - Jessica Frelinger
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; Pulmonary Research Group, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Sarah Dalton
- Pulmonary Research Group, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Wendy Ching
- Pulmonary Research Group, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Karron Power
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California
| | - John R Balmes
- Human Exposure Laboratory, Division of Occupational and Environmental Medicine, San Francisco General Hospital Medical Center, San Francisco, California; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California; School of Public Health, University of California Berkeley, Berkeley, California
| |
Collapse
|
40
|
Campen M, Robertson S, Lund A, Lucero J, McDonald J. Engine exhaust particulate and gas phase contributions to vascular toxicity. Inhal Toxicol 2015; 26:353-60. [PMID: 24730681 DOI: 10.3109/08958378.2014.897776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiovascular health effects of near-roadway pollution appear more substantial than other sources of air pollution. The underlying cause of this phenomenon may simply be concentration-related, but the possibility remains that gases and particulate matter (PM) may physically interact and further enhance systemic vascular toxicity. To test this, we utilized a common hypercholesterolemic mouse model (Apolipoprotein E-null) exposed to mixed vehicle emission (MVE; combined gasoline and diesel exhausts) for 6 h/d × 50 d, with additional permutations of removing PM by filtration and also removing gaseous species from PM by denudation. Several vascular bioassays, including matrix metalloproteinase-9 protein, 3-nitrotyrosine and plasma-induced vasodilatory impairments, highlighted that the whole emissions, containing both particulate and gaseous components, was collectively more potent than MVE-derived PM or gas mixtures, alone. Thus, we conclude that inhalation of fresh whole emissions induce greater systemic vascular toxicity than either the particulate or gas phase alone. These findings lend credence to the hypothesis that the near-roadway environment may have a more focused public health impact due to gas-particle interactions.
Collapse
Affiliation(s)
- Matthew Campen
- College of Pharmacy, University of New Mexico , Albuquerque, NM , USA
| | | | | | | | | |
Collapse
|
41
|
Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol 2014; 11:70. [PMID: 25487431 PMCID: PMC4276095 DOI: 10.1186/s12989-014-0070-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Traffic-related air pollution may contribute to cardiovascular morbidity. In urban areas, exposures during physical activity are of interest owing to increased breathing rates and close proximity to vehicle emissions. METHODS We conducted a cross-over study among 53 healthy non-smoking women in Montreal, Canada during the summer of 2013. Women were exposed to traffic pollutants for 2-hours on three separate occasions during cycling on high and low-traffic routes as well as indoors. Personal air pollution exposures (PM(2.5), ultrafine particles (UFP), black carbon, NO₂, and O₃) were evaluated along each route and linear mixed-effects models with random subject intercepts were used to estimate the impact of air pollutants on acute changes in blood pressure, heart rate variability, and micro-vascular function in the hours immediately following exposure. Single and multi-pollutant models were examined and potential effect modification by mean regional air pollution concentrations (PM(2.5), NO₂, and O₃) was explored for the 24-hour and 5-day periods preceding exposure. RESULTS In total, 143 exposure routes were completed. Each interquartile increase (10,850/cm³) in UFP exposure was associated with a 4.91% (95% CI: -9.31, -0.512) decrease in reactive hyperemia index (a measure of micro-vascular function) and each 24 ppb increase in O₃ exposure corresponded to a 2.49% (95% CI: 0.141, 4.84) increase in systolic blood pressure and a 3.26% (95% CI: 0.0117, 6.51) increase in diastolic blood pressure 3-hours after exposure. Personal exposure to PM(2.5) was associated with decreases in HRV measures reflecting parasympathetic modulation of the heart and regional PM(2.5) concentrations modified these relationships (p < 0.05). In particular, stronger inverse associations were observed when regional PM(2.5) was higher on the days prior to the study period. Regional PM(2.5) also modified the impact of personal O₃ on the standard deviation of normal to normal intervals (SDNN) (p < 0.05): a significant inverse relationship was observed when regional PM(2.5) was low prior to study periods and a significant positive relationship was observed when regional PM(2.5) was high. CONCLUSION Exposure to traffic pollution may contribute to acute changes in blood pressure, autonomic and micro-vascular function in women. Regional air pollution concentrations may modify the impact of these exposures on autonomic function.
Collapse
Affiliation(s)
- Scott Weichenthal
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, K1A 0K9, Ottawa, ON, Canada.
| | - Marianne Hatzopoulou
- Department of Civil Engineering, McGill University, Macdonald Engineering Building, 817 Sherbrooke Street West, H3A 0C3, Montreal, Quebec, Canada.
| | - Mark S Goldberg
- Division of Clinical Epidemiology, McGill University Health Center, 687 Pine Avenue West, H3A 1A1, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
Campen MJ. To breathe or not to breathe: negative data on ozone and vascular function in an established research model. Toxicol Sci 2014; 135:263-4. [PMID: 24158039 DOI: 10.1093/toxsci/kft169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, 1 University of New Mexico MSC09 5360, Albuquerque, New Mexico 87131-0001
| |
Collapse
|