1
|
Zhang L, Zhang G, Mao W, Sun S, Tao S, Gao Y, Zhang N, Jiang G, Chen M, Lu X, Chen S. Xuebijing injection alleviates septic acute kidney injury by modulating inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Ren Fail 2025; 47:2483986. [PMID: 40148079 PMCID: PMC11951319 DOI: 10.1080/0886022x.2025.2483986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Xuebijing (XBJ) injection has been used to treat sepsis. However, the effect and mechanism of XBJ injection in the treatment of septic acute kidney injury (AKI) is unknown. This study aimed to explore the therapeutic effect of XBJ injection on septic AKI and elucidate its possible mechanisms. METHODS Network pharmacological analysis was conducted using databases of GeneCards, TCMSP, SwissTargetPrediction and STRING. In vivo, a septic AKI model was established in C57BL/6 mice by cecal ligation and puncture (CLP). The groups were Sham, XBJ, CLP, and CLP + XBJ (10 mL/kg IV) (n = 5). Tubular damage, renal function, and levels of inflammation and apoptosis in the kidneys were evaluated. In vitro model was lipopolysaccharide (LPS, 100 μg/mL) stimulated HK-2 cells. The groups were PBS, XBJ, LPS, and LPS + XBJ (XBJ injected at 10 dilutions). Cell viability, apoptosis, inflammation, mitochondrial function and, endoplasmic reticulum (ER) stress were also assessed. RESULTS Network pharmacological analysis identified Toll like receptor 4 (TLR4) as the core gene in XBJ against septic AKI, and the inflammatory response was the most enriched pathway. XBJ treatment significantly alleviated tubular damage in CLP mice by down-regulating serum creatinine (SCr), blood urea nitrogen (BUN), kidney injury molecule 1 (KIM1), and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, both in vivo and in vitro experiments demonstrated that XBJ treatment could inhibit apoptosis, inflammation, mitochondrial dysfunction, and ER stress via TLR4/MyD88/NF-κB axis. CONCLUSION This study indicates that XBJ injection is a promising drug for the treatment of septic AKI.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
| | - Weipu Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
| | - Shuchun Tao
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Yue Gao
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Nieke Zhang
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Guiya Jiang
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| | - Xun Lu
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
- Department of Urology, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, PR China
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, PR China
| |
Collapse
|
2
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
3
|
Lin WY, Cheng YH, Liu PY, Hsu SP, Lin SC, Chien CT. Carvedilol through ß1-Adrenoceptor blockade ameliorates glomerulonephritis via inhibition of oxidative stress, apoptosis, autophagy, ferroptosis, endoplasmic reticulum stress and inflammation. Biochem Pharmacol 2024; 230:116570. [PMID: 39401703 DOI: 10.1016/j.bcp.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Glomerulonephritis (GN) is one of the main causes of end stage renal disease and requires an effective treatment for inhibiting GN. Renal nerves through efferent (RENA) and afferent (RANA) innervation to glomeruli regulate the glomerular function. We delineated the role of RENA and RANA on anti-Thy1.1-induced GN. Female Wistar rats were divided into Control, Thy1.1 plus anti-Thy1.1, bilaterally renal nerve denervation (DNX) plus anti-Thy1.1, and topical capsaicin to bilateral renal nerves for selective ablation of RANA (DNAX) plus anti-Thy1.1. We examined RANA and RENA response to anti-Thy1.1 and compared the effect of DNX or DNAX on urinary oxidative stress, renal gp91, tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), apoptosis, autophagy, ferroptosis, antioxidant enzymes, endoplasmic reticulum (ER) stress and inflammation by western blot. Anti-Thy1.1 significantly enhanced RENA, but did not affect RANA. DNX significantly decreased TH and CGRP expression, whereas DNAX only reduced CGRP expression. Anti-Thy1.1 significantly increased glomerulosclerosis injury, urinary protein, electron paramagnetic resonance signals of alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone adducts, 8-isoprostane and nitrotyrosine levels, NADPH oxidase gp91phox (gp91), macrophage/monocyte (ED-1), GRP-78, Beclin-1/LC3-II, Bax/caspase-3/poly(ADP-ribose) polymerase expression, inflammatory cytokines levels and decreased renal Copper/Zinc superoxide dismutase, Cystine/glutamate transporter (xCT) and Glutathione peroxidase 4 (GPX4) expression vs. Control. The enhanced oxidative parameters or reduced antioxidant defense by anti-Thy1.1 were significantly attenuated by DNX but not DNAX. Additionally, oral ß1-adrenoceptor antagonist-Carvedilol at an early stage reduced anti-Thy1.1 increased proteinuria level and oxidative parameters. Our data suggest that DNX and ß1-adrenoceptor antagonist-Carvedilol efficiently attenuate oxidative stress, inflammation, ER stress, autophagy, ferroptosis and apoptosis in GN.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan; Department of Urology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 24213, Taiwan
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Pei-Yu Liu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shih-Ping Hsu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; Department of Industrial Management, Oriental Institute of Technology, New Taipei City 220, Taiwan; General Education Center, Lunghwa University of Science and Technology, Taoyuan, Taiwan.
| | - San-Chi Lin
- Division of Renal Section, Department of Internal Medicine, Keelung Hospital, Ministry of Health and Welfare, Keelung City 201, Taiwan.
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
4
|
Yu PH, Cheng YH, Chung SD, Chien CT. 1, 6-dilauroyl-D-fructofuranose ameliorates lipopolysaccharide-induced septic acute kidney injury via inhibiting caspase 1 mediated pyroptosis formation in rat. J Chin Med Assoc 2024; 87:1078-1089. [PMID: 39632381 DOI: 10.1097/jcma.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory state associated with acute kidney injury (AKI) and high mortality. However, sepsis-induced AKI cannot be effectively prevented or treated using current antimicrobial therapies and supportive measures. We explored the therapeutic effect of newly developed fructose esters on sepsis-induced AKI (S-AKI). METHODS We used the surface plasmon resonance technique and ultrasensitive chemiluminescence analyzer to characterize the lipopolysaccharide (LPS)/endotoxin binding activity and antioxidant capability of fructose esters. We assessed the extent of fructose ester gastrointestinal digestion using rat intestinal acetone powder. We examined the therapeutic effect of fructose esters on LPS-induced S-AKI by evaluating the blood and renal reactive oxygen species (ROS) amounts, caspase 1 mediated pyroptosis, inflammation, microcirculation, and renal dysfunction. RESULTS Our data showed that the fructose esters are not easily hydrolyzed by the rat intestinal acetone powder, suggesting their high stability in the gastrointestinal tract. 1,6-dilauroyl-D-fructofuranose (FDL) dose-dependently scavenged H2O2 and displayed a higher binding affinity to LPS compared to sialic acid and fructose did. LPS significantly enhanced caspase 1 mediated pyroptosis and increased leukocyte infiltration, blood and renal ROS amount, and blood urea nitrogen (BUN) and creatinine level, whereas FDL significantly depressed these LPS-enhanced parameters. In addition, the increased plasma inflammatory cytokines levels using LPS could be reduced by intravenous fructose ester FDL treatment. CONCLUSION Our data suggest that FDL, with its antioxidant activity against H2O2, can neutralize LPS toxicity using a high binding affinity, and attenuate S-AKI by inhibiting caspase 1 mediated pyroptosis, thereby ameliorating renal oxidative stress and dysfunction.
Collapse
Affiliation(s)
- Ping-Hsun Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Department of Emergency Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan, ROC
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Nursing and Healthcare Administration, College of Healthcare & Management, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
- General Education Center, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Xiong J, Zhao J. Pyroptosis: The Determinator of Cell Death and Fate in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:118-131. [PMID: 38751798 PMCID: PMC11095617 DOI: 10.1159/000535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is kidney damage that leads to a rapid decline in function. AKI primarily occurs when the tubular epithelium is damaged, causing swelling, loss of brush margin, and eventual apoptosis. Research has shown that tubular epithelial cell damage in AKI is linked to cell cycle arrest, autophagy, and regulation of cell death. Summary Pyroptosis, a type of programmed cell death triggered by inflammation, is believed to play a role in the pathophysiology of AKI. Cumulative evidence has shown that pyroptosis is the main cause of tubular cell death in AKI. Thus, targeted intervention of pyroptosis may be a promising therapeutic approach for AKI. This review delves deep into the cutting-edge research surrounding pyroptosis in the context of AKI, shedding light on its intricate mechanisms and potential implications for clinical practice. Additionally, we explore the exciting realm of potential preclinical treatment options for AKI, aiming to pave the way for future therapeutic advancements. Key Messages Pyroptosis, a highly regulated form of cell death, plays a crucial role in determining the fate of cells during the development of AKI. This intricate process involves the activation of inflammasomes, which are multi-protein complexes that initiate pyroptotic cell death. By understanding the mechanisms underlying pyroptosis, researchers aim to gain insights into the pathogenesis of AKI and potentially identify new therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
6
|
Chen L, Qiu H, Chen Q, Xiang P, Lei J, Zhang J, Lu Y, Wang X, Wu S, Yu C, Ma L. N-acetylneuraminic acid modulates SQSTM1/p62 sialyation-mediated ubiquitination degradation contributing to vascular endothelium dysfunction in experimental atherosclerosis mice. IUBMB Life 2024; 76:161-178. [PMID: 37818680 DOI: 10.1002/iub.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1β. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Jun Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| |
Collapse
|
7
|
Wang J, Yu Y, Zhang H, Li L, Wang J, Su S, Zhang Y, Song L, Zhou K. Gypenoside XVII attenuates renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-triggered pyroptosis. Eur J Pharmacol 2024; 962:176187. [PMID: 37984729 DOI: 10.1016/j.ejphar.2023.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) is one of the main causes of acute kidney injury (AKI), for which there is currently no effective treatment. Recently, the interaction between endoplasmic reticulum (ER) stress and pyroptosis during AKI has been investigated. AIM The purpose of this study was to investigate the protective effects of Gypenoside XVII (GP-17) against I/R-induced renal injury. METHODS In this study, mice were divided into 6 groups, sham group, I/R group, GP-17 low-, medium-, high-dose group, and positive control 4-PBA group. The renal I/R was performed in mice by clamping the bilateral renal pedicles for 40 min, and then reperfusing for 24 h. Blood and kidney samples were collected for analysis. RESULTS The results showed that GP-17 improved renal function and alleviated renal histopathological abnormalities caused by I/R. In addition, GP-17 pretreatment significantly decreased the expression or phosphorylation of ER stress response proteins including BIP, p-PERK, and CHOP. Besides, GP-17 inhibited the expression of pyroptosis proteins including caspase-1, GSDMD, and apoptotic protein BAX. The inflammatory factor IL-1β in these GP-17 pretreatment groups was also significantly reduced. CONCLUSION GP-17 blocked NLRP3 inflammasome activation by inhibiting ERS, thereby inhibiting renal tubular cell pyroptosis and apoptosis, and prevented renal I/R injury.
Collapse
Affiliation(s)
- Jiarui Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingli Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| | - Haorui Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shijia Su
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Zhou Z, Li Q. The Role of Pyroptosis in the Pathogenesis of Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:443-458. [PMID: 38089443 PMCID: PMC10712988 DOI: 10.1159/000531642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 01/21/2025]
Abstract
BACKGROUND Recently, in addition to apoptosis and necrosis, several other forms of cell death have been discovered, such as necroptosis, autophagy, pyroptosis, and ferroptosis. These cell death modalities play diverse roles in kidney diseases. Pyroptosis is a newly described type of proinflammatory programmed necrosis. Further exploring pyroptosis is helpful to slow the progression of kidney diseases and reduce their complications. SUMMARY Pyroptosis is mainly mediated by the cleavage of gasdermin D (GSDMD) along with downstream inflammasome activation. Activated caspase-1 induces the release of cytokines by cleaving GSDMD. Inflammation is a major pathogenic mechanism for kidney diseases. Increasing evidence corroborated that pyroptosis was closely related to the progression of renal diseases, including acute kidney injury, renal fibrosis, diabetic nephropathy, and kidney cancer. In this paper, we reviewed the role and the therapeutic treatment of pyroptosis in renal diseases. KEY MESSAGES The better understanding of the progress and new intervention approaches of pyroptosis in kidney diseases may pave the way for new therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Zhuanli Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhao M, Zhu Y, Wang H, Zhang W, Mu W. Recent advances on N-acetylneuraminic acid: Physiological roles, applications, and biosynthesis. Synth Syst Biotechnol 2023; 8:509-519. [PMID: 37502821 PMCID: PMC10369400 DOI: 10.1016/j.synbio.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
N-Acetylneuraminic acid (Neu5Ac), the most common type of Sia, generally acts as the terminal sugar in cell surface glycans, glycoconjugates, oligosaccharides, lipo-oligosaccharides, and polysaccharides, thus exerting numerous physiological functions. The extensive applications of Neu5Ac in the food, cosmetic, and pharmaceutical industries make large-scale production of this chemical desirable. Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac. In this review, the physiological roles of Neu5Ac was first summarized in detail. Second, the safety evaluation, regulatory status, and applications of Neu5Ac were discussed. Third, enzyme-catalyzed preparation, whole-cell biocatalysis, and microbial de novo synthesis of Neu5Ac were comprehensively reviewed. In addition, we discussed the main challenges of Neu5Ac de novo biosynthesis, such as screening and engineering of key enzymes, identifying exporters of intermediates and Neu5Ac, and balancing cell growth and biosynthesis. The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong, 250010, PR China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| |
Collapse
|
10
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Cheng YH, Yao CA, Yang CC, Hsu SP, Chien CT. Sodium thiosulfate through preserving mitochondrial dynamics ameliorates oxidative stress induced renal apoptosis and ferroptosis in 5/6 nephrectomized rats with chronic kidney diseases. PLoS One 2023; 18:e0277652. [PMID: 36795670 PMCID: PMC9934356 DOI: 10.1371/journal.pone.0277652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/01/2022] [Indexed: 02/17/2023] Open
Abstract
Chronic kidney disease (CKD) progression may be evoked through dysregulated mitochondrial dynamics enhanced oxidative stress and inflammation contributing to high cardiovascular morbidity and mortality. Previous study has demonstrated sodium thiosulfate (STS, Na2S2O3) could effectively attenuate renal oxidative injury in the animal model of renovascular hypertension. We explored whether the potentially therapeutic effect of STS is available on the attenuating CKD injury in thirty-six male Wistar rats with 5/6 nephrectomy. We determined the STS effect on reactive oxygen species (ROS) amount in vitro and in vivo by an ultrasensitive chemiluminescence-amplification method, ED-1 mediated inflammation, Masson's trichrome stained fibrosis, mitochondrial dynamics (fission and fusion) and two types of programmed cell death, apoptosis and ferroptosis by western blot and immunohistochemistry. Our in vitro data showed STS displayed the strongest scavenging ROS activity at the dosage of 0.1 g. We applied STS at 0.1 g/kg intraperitoneally 5 times/week for 4 weeks to these CKD rats. CKD significantly enhanced the degree in arterial blood pressure, urinary protein, BUN, creatinine, blood and kidney ROS amount, leukocytes infiltration, renal 4-HNE expression, fibrosis, dynamin-related protein 1 (Drp1) mediated mitochondrial fission, Bax/c-caspase 9/c-caspase 3/poly (ADP-ribose) polymerase (PARP) mediated apoptosis, iron overload/ferroptosis and the decreased xCT/GPX4 expression and OPA-1 mediated mitochondrial fusion. STS treatment significantly ameliorated oxidative stress, leukocyte infiltration, fibrosis, apoptosis and ferroptosis and improved mitochondrial dynamics and renal dysfunction in CKD rats. Our results suggest that STS as drug repurposing strategy could attenuate CKD injury through the action of anti-mitochondrial fission, anti-inflammation, anti-fibrosis, anti-apoptotic, and anti-ferroptotic mechanisms.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Chien-An Yao
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chih-Ching Yang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Office of Public Relation of Ministry of Health and Welfare, Taipei, Taiwan, ROC
- Center for General Education, Mackay College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Shih-Ping Hsu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Industrial Management, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Red Meat Derived Glycan, N-acetylneuraminic Acid (Neu5Ac) Is a Major Sialic Acid in Different Skeletal Muscles and Organs of Nine Animal Species-A Guideline for Human Consumers. Foods 2023; 12:foods12020337. [PMID: 36673429 PMCID: PMC9858279 DOI: 10.3390/foods12020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Sialic acids (Sias) are acidic monosaccharides and red meat is a notable dietary source of Sia for humans. Among the Sias, N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) play multiple roles in immunity and brain cognition. On the other hand, N-glycolylneuraminic acid (Neu5Gc) is a non-human Sia capable of potentiating cancer and inflammation in the human body. However, their expression within the animal kingdom remains unknown. We determined Neu5Ac and KDN in skeletal muscle and organs across a range (n = 9) of species using UHPLC and found that (1) caprine skeletal muscle expressed the highest Neu5Ac (661.82 ± 187.96 µg/g protein) following by sheep, pig, dog, deer, cat, horse, kangaroo and cattle; (2) Among organs, kidney contained the most Neu5Ac (1992−3050 µg/g protein) across species; (3) ~75−98% of total Neu5Ac was conjugated, except for in dog and cat muscle (54−58%); (4) <1% of total Sia was KDN, in which ~60−100% was unconjugated, with the exception of sheep liver and goat muscle (~12−25%); (5) Neu5Ac was the major Sia in almost all tested organs. This study guides consumers to the safest red meat relating to Neu5Ac and Neu5Gc content, though the dog and cat meat are not conventional red meat globally.
Collapse
|
13
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
14
|
Ban KY, Nam GY, Kim D, Oh YS, Jun HS. Prevention of LPS-Induced Acute Kidney Injury in Mice by Bavachin and Its Potential Mechanisms. Antioxidants (Basel) 2022; 11:2096. [PMID: 36358467 PMCID: PMC9686515 DOI: 10.3390/antiox11112096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) β and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCβ/MAPK/KLF5 axis.
Collapse
Affiliation(s)
- Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Ga-Young Nam
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
| |
Collapse
|
15
|
Yuan S, Wang Y, Li Z, Chen X, Song P, Chen A, Qu Z, Wen S, Liu H, Zhu X. Gasdermin D is involved in switching from apoptosis to pyroptosis in TLR4-mediated renal tubular epithelial cells injury in diabetic kidney disease. Arch Biochem Biophys 2022; 727:109347. [PMID: 35809639 DOI: 10.1016/j.abb.2022.109347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) mediated pathway plays a pivotal role in promoting tubulointerstitial inflammation and contributes to the progression in type 2 diabetic kidney disease (T2DKD). As the first identified key pyroptosis executor, gasdermin D (GSDMD) is activated by caspases and might be the key protein to switch apoptosis to pyroptosis. It remains unclear that role of TLR4 on canonical pyroptosis pathway, and whether GSDMD is involved in switching from apoptosis to pyroptosis in the TLR4-related tubular injury in T2DKD. METHODS Immunohistochemistry staining was used to detect the expression of pyroptosis-related proteins in renal tissues of T2DKD patients. T2DKD models was induced in TLR4 knockout (TLR4-/-) mice through a high-fat diet combined with streptozotocin. Pyroptosis (caspase-1, GSDMD, interleukin 18(IL-18), interleukin 1β(IL-1β)) and apoptosis levels (caspase-3, Bax and Bcl-2) were detected by Western blot. HK-2 cells were cultured under high-glucose (HG) conditions as an in vitro model and then challenged with a TLR4-specific antagonist (TAK-242). GSDMD small interfering RNA (siRNA) and overexpression plasmid were transfected into HK-2 cells to down- or up-regulate GSDMD. The pyroptosis and apoptosis rates were determined by flow cytometry. RESULTS The expression levels of caspase-1, GSDMD, IL-18 and IL-1β were increased in renal biopsy tissues of T2DKD patients and GSDMD expression was positively correlated with tubular injury. Silencing GSDMD attenuated HG-induced IL-18, IL-1β, FN and α-SMA, and reduced pyroptotic cells rate in HK-2 cells. Up-regulation of GSDMD inhibited HG-induced expression of Bax and cleaved caspase-3 and reduced apoptosis rate. TLR4 knockout alleviated tubular injury and interstitial macrophages infiltration, improved impaired renal dysfunction, and decreased the expressions of active N-terminal of GSDMD(GSDMD-N), cleaved caspase-1(cl-caspase-1) and cleaved caspase-3(cl-caspase-3) in T2DKD mice. TLR4 inhibition reduced HG-induced pyroptosis and apoptosis level in HK-2 cells, while GSDMD up-regulation increased pyroptosis rate and decreased apoptosis rate. CONCLUSIONS TLR4 could exacerbate tubular injury and fibrosis via GSDMD-mediated canonical pyroptosis pathway in T2DKD. Activation of GSDMD could inhibit apoptosis and activate pyroptosis, which may involve the potential switch mechanism between TLR4-mediated pyroptosis and apoptosis in T2DKD.
Collapse
Affiliation(s)
- Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Youliang Wang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiaojun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Panai Song
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Anqun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zhong Qu
- Department of Emergency Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Si Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
16
|
Cheng YH, Chen KH, Sung YT, Yang CC, Chien CT. Intrarenal Arterial Transplantation of Dexmedetomidine Preconditioning Adipose Stem-Cell-Derived Microvesicles Confers Further Therapeutic Potential to Attenuate Renal Ischemia/Reperfusion Injury through miR-122-5p/Erythropoietin/Apoptosis Axis. Antioxidants (Basel) 2022; 11:1702. [PMID: 36139786 PMCID: PMC9495781 DOI: 10.3390/antiox11091702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Intravenous adipose mesenchymal stem cells (ADSCs) attenuate renal ischemia/reperfusion (IR) injury but with major drawbacks, including the lack of a specific homing effect after systemic infusion, cell trapping in the lung, and early cell death in the damaged microenvironment. We examined whether intrarenal arterial transplantation of dexmedetomidine (DEX) preconditioning ADSC-derived microvesicles (DEX-MVs) could promote further therapeutic potential to reduce renal IR injury. We evaluated the effect of DEX-MVs on NRK-52E cells migration, hypoxia/reoxygenation (H/R)-induced cell death, and reactive oxygen species (ROS) amount and renal IR model in rats. IR was established by bilateral 45 min ischemia followed by 4 h reperfusion. Intrarenal MVs or DEX-MVs were administered prior to ischemia. Renal oxidative stress, hemodynamics and function, western blot, immunohistochemistry, and tubular injury scores were determined. The miR-122-5p expression in kidneys was analyzed using microarrays and quantitative RT-PCR and its action target was predicted by TargetScan. DEX-MVs were more efficient than MVs to increase migration capability and to further decrease H/R-induced cell death and ROS level in NRK-52E cells. Consistently, DEX-MVs were better than MV in increasing CD44 expression, improving IR-depressed renal hemodynamics and renal erythropoietin expression, inhibiting IR-enhanced renal ROS level, tubular injury score, miR-122-5p expression, pNF-κB expression, Bax/caspase 3/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis, blood urea nitrogen, and creatinine levels. The use of NRK-52E cells confirmed that miR-122-5p mimic via inhibiting erythropoietin expression exacerbated Bax-mediated apoptosis, whereas miR-122-5p inhibitor via upregulating erythropoietin and Bcl-2 expression reduced apoptosis. In summary, intrarenal arterial DEX-MV conferred further therapeutic potential to reduce renal IR injury through the miR-122-5p/erythropoietin/apoptosis axis.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan; (Y.-H.C.); (Y.-T.S.)
| | - Kuo-Hsin Chen
- Department of Surgery, Division of General Surgery, Far-Eastern Memorial Hospital, New Taipei City 22056, Taiwan;
- Department of Electrical Engineering, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Yi-Ting Sung
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan; (Y.-H.C.); (Y.-T.S.)
| | - Chih-Ching Yang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan; (Y.-H.C.); (Y.-T.S.)
- Office of Public Relation of Ministry of Health and Welfare, No. 488, Section 6, Zhongxiao E. Rd., Nangang District, Taipei 115204, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan; (Y.-H.C.); (Y.-T.S.)
| |
Collapse
|
17
|
Augmenter of Liver Regeneration (ALR) Protects Kidney from Ischemia/Reperfusion (I/R) Injury via Regulation of TLR4/MAPK Signaling Pathway. J Immunol Res 2022; 2022:6869730. [PMID: 35983075 PMCID: PMC9381282 DOI: 10.1155/2022/6869730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) can mediate innate activation and inflammation, and it is typically expressed within the ischemic kidney. Augmenter of liver regeneration (ALR) acts as an immunoregulator with a high expression in the kidney induced by renal ischemia/reperfusion (I/R) injury. Exogenous ALR has indicated a role in protecting the kidney from I/R injury. The protective effect of ALR is due to the immune regulatory function which remains to be elucidated. In this study, rats induced by renal I/R were treated with recombinant human ALR (rhALR) and demonstrated that the animals were protected from kidney I/R injury, implying that the rhALR-treated rats had less tubular damage than those untreated rats. Meanwhile, tubular epithelial cell apoptosis, neutrophil (24 h) and macrophage (72 h) infiltration to tubulointerstitium, and levels of inflammatory cytokines were decreased considerably in the rhALR-treated rats as compared to control. Additionally, rhALR could downregulate mRNA expression of TLR4 endogenous ligands and restrain its activation in renal I/R injury rats. It has also been proved that anti-rhALR antibody blocked the inhibition of rhALR of the immune inflammatory response in hypoxia/reoxygenation (H/R) injury in vitro. In rhALR+anti-rhALR antibody-intervened H/R cells, the expression of inflammatory cytokines was upregulated compared with the rhALR-treated cells. Taken together, rhALR could regulate the TLR4 signaling pathway to relieve inflammatory response, thereby protecting renal I/R injury, indicating that ALR is likely to be introduced to develop novel immune therapies for renal I/R injury.
Collapse
|
18
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Chung CH, Chung SD, Cheng YH, Yang CP, Chien CT. RETRACTED: Long-Lasting Exendin-4-Loaded PLGA Nanoparticles Ameliorate Cerebral Ischemia/Reperfusion Damage in Diabetic Rats. J Pers Med 2022; 12:390. [PMID: 35330390 PMCID: PMC8951777 DOI: 10.3390/jpm12030390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Exendin-4 (Ex-4) is an incretin mimetic agent approved for diabetes treatment and neuronal protection. However, the required frequent injections restrict its clinical application. We prepared Ex-4-loaded poly(d,l-lactide-co-glycolide) nanoparticles (PEx-4) and investigated their effect on cerebral ischemia/reperfusion (IR) injury associated with micturition center damage-induced cystopathy in diabetic rats. Using ten minutes of bilateral carotid artery occlusion combined with hemorrhage-induced hypotension of the IR model in streptozotocin-induced type 1 diabetic (T1DM) Wistar rats, we compared the effects of Ex-4 and PEx-4 on prefrontal cortex edema, voiding function and oxidative stress including cerebral spinal fluid (CSF) reference H2O2 (RH2O2) and HOCl (RHOCl) levels, endoplasmic reticulum (ER) stress, apoptosis, autophagy and pyroptosis signaling in brain and bladder by Western blot and immunohistochemistry. Single injection of PEx-4 displayed higher CSF antioxidant activity and a long-lasting hypoglycemic effect compared to Ex-4 in rats. T1DM and IR primarily enhanced CSF RH2O2, and pIRE-1/caspase-12/pJNK/CHOP-mediated ER stress, caspase-3/PARP-mediated apoptosis, Beclin-1/LC3B-mediated autophagy and caspase-1/IL-1β-mediated pyroptosis signaling in the damaged brains. Our data further evidenced that PEx-4 were more efficient than Ex-4 in attenuating IR-evoked prefrontal cortex edema, the impairment in micturition center and the enhanced level of CSF RH2O2 and HOCl, ER stress, apoptosis, autophagy and pyroptosis parameters in the damaged brains, but had less of an effect on IR-induced voiding dysfunction in bladders of T1DM rats. In summary, PEx-4 with stronger antioxidant activity and long-lasting bioavailability may efficiently confer therapeutic efficacy to ameliorate IR-evoked brain damage through the inhibitory action on oxidative stress, ER stress, apoptosis, autophagy and pyroptosis signaling in diabetic rats.
Collapse
Affiliation(s)
- Cheng-Hsun Chung
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Nursing, College of Healthcare & Management, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- General Education Center, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, No. 117, Shatian Road, Shalu District, Taichung City 433, Taiwan
- Department of Nutrition, Huang-Kuang University, Taichung 433, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, No. 88, Tingzhou Road, Taipei City 116, Taiwan; (C.-H.C.); (Y.-H.C.)
| |
Collapse
|
20
|
Yang CC, Liao PH, Cheng YH, Chien CY, Cheng KH, Chien CT. Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats. J Chin Med Assoc 2022; 85:346-357. [PMID: 35019864 DOI: 10.1097/jcma.0000000000000691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Diabetes or hypertension contributes to erectile dysfunction (ED). We hypothesized that excess reactive oxygen species (ROS) production evoked by diabetes combined with hypertension may further suppress endothelial nitric oxide (NO) expression/activity and promote oxidative stress in the ED penis. METHODS Twenty-four adult male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were divided into four groups: normal WKY, diabetic WKY, normal SHR and diabetic SHR. Intraperitoneal streptozotocin (65 mg/kg) was applied to induce type I diabetes. After 4-week diabetes and/or hypertension induction, we determined the intra-cavernous pressure (ICP) using electrical stimulation of cavernous nerves, intra-cavernosum NO amount using an electrochemical NO probe, and blood ROS using an ultrasensitive chemiluminescence-amplified analyzer. Western blot analysis and immunohistochemistry were used to explore the pathophysiologic mechanisms of inflammation, apoptosis and autophagy in the penis. A novel NO donor, CysaCysd Lu-5 (CCL5, (RCH2CH2S)(R'R"CHCH2S)Fe(NO)2, 1-4 µg), was intravenously administered to these ED rats for evaluating their ICP responses. RESULTS In the baseline status, the lucigenin- and luminol-amplified blood ROS were significantly enhanced in the diabetic SHR rats vs normal WKY rats. Significantly decreased ICP, eNOS expression and NO amount were found in the normal SHR, diabetic WKY, and diabetic SHR vs normal WKY rats. Intravenous NO donor L-Arginine markedly increased ICP and NO amount, whereas eNOS inhibitor, Nω-Nitro-L-Arginine methyl ester hydrochloride depressed ICP in all four groups. Diabetes and/or hypertension alone increased fibrosis, proinflammatory NF-kB/ICAM-1 expression, mast cell numbers, CD68 expression and infiltration, Caspase 3-mediated apoptosis, Beclin-1/LC3-II-mediated autophagy and mild Nrf-2/HO-1 expression and depressed eNOS expression in the ED penis. The novel NO donor, CCL5, was more efficient than L-arginine to improve diabetes and/or hypertension-induced ED by the significant increase of ICP. CONCLUSION Diabetes combined with hypertension synergistically exacerbated ED through enhanced oxidative stress, inflammation, apoptosis and autophagy and depressed eNOS activity and NO production.
Collapse
Affiliation(s)
- Chih-Ching Yang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Office of Public Relation of Ministry of Health and Welfare, Taipei, Taiwan, ROC
- Center for General Education, Mackay College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Pin-Hao Liao
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Yu-Hsiuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Kuo-Hsin Cheng
- Division of General Surgery, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
22
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
23
|
Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cells pyroptosis in culture involved in ROS/NLRP3/Caspase-1 signaling. Free Radic Res 2022; 56:40-52. [DOI: 10.1080/10715762.2022.2032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Xia Zou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Gang Xu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Yunchang Cao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| |
Collapse
|
24
|
Zhang KJ, Wu Q, Jiang SM, Ding L, Liu CX, Xu M, Wang Y, Zhou Y, Li L. Pyroptosis: A New Frontier in Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6686617. [PMID: 34007404 PMCID: PMC8102120 DOI: 10.1155/2021/6686617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Pyroptosis is a pattern of programmed cell death that significantly differs from apoptosis and autophagy in terms of cell morphology and function. The process of pyroptosis is characterized predominantly by the formation of gasdermin protein family-mediated membrane perforation, cell collapse, and the release of inflammatory factors, including IL-1β and IL-18. In recent years, with the rise of pyroptosis research, scholars have devoted time to study the mechanism of pyroptosis in kidney-related diseases. Pyroptosis is probably involved in kidney diseases through two pathways: the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated noncanonical pathway. In addition, some scholars have identified targets for the treatment of kidney-related diseases from the viewpoint of pyroptosis and developed corresponding medicines, which may become a recommendation for prognosis, targeted treatment, and clinical diagnosis of kidney diseases. This paper focuses on the up-to-date advances in the field of pyroptosis, especially on the key pathogenic role of pyroptosis in the development and progression of kidney diseases. It presents a more in-depth understanding of the pathogenesis of kidney diseases and introduces novel therapeutic targets for the prevention and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Ke-jia Zhang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Shi-min Jiang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Lei Ding
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Chao-xia Liu
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Ming Xu
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Ying Wang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Yao Zhou
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| |
Collapse
|
25
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Xiao G, Zou J, Xiao X. Sialic acid-conjugated PLGA nanoparticles enhance the protective effect of lycopene in chemotherapeutic drug-induced kidney injury. IET Nanobiotechnol 2021; 14:341-345. [PMID: 32463025 DOI: 10.1049/iet-nbt.2019.0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lycopene (LYC) is known to protect cells from oxidative damage caused by free radicals in human tissues. In the present study, the authors designed a LYC-loaded sialic acid (SA)-conjugated poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (LYC-NP) to enhance the therapeutic efficacy of LYC in acute kidney injury. The characteristics of the LYC-NPs were defined according to particle size, morphology, and in vitro drug release. The LYC-NPs exhibited a controlled release of LYC over 48 h. Confocal laser scanning microscopy clearly highlighted the targeting potential of SA. Enhanced green fluorescence was observed for the LYC-NPs in H2O2-treated human umbilical vein endothelial cells, indicating enhanced internalisation of NPs. The LYC-NPs showed significantly greater cell viability than H2O2-treated cells. In addition, the LYC-NPs remarkably reduced proinflammatory cytokine levels, attributable mainly to the increased cellular internalisation of the SA-based carrier delivery system. Furthermore, protein levels of caspase-3 and -9 were significantly down-regulated after treatment with the LYC-NPs. Overall, they have demonstrated that SA-conjugated PLGA-NPs containing LYC could be used to treat kidney injury.
Collapse
Affiliation(s)
- Gong Xiao
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Junlin Zou
- Department of Cardiology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
27
|
Inaba A, Tuong ZK, Riding AM, Mathews RJ, Martin JL, Saeb-Parsy K, Clatworthy MR. B Lymphocyte-Derived CCL7 Augments Neutrophil and Monocyte Recruitment, Exacerbating Acute Kidney Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1376-1384. [PMID: 32737150 PMCID: PMC7444279 DOI: 10.4049/jimmunol.2000454] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
AKI is a serious condition affecting one fifth of hospital patients. In AKI, B cells produce CCL7 and facilitate neutrophil and monocyte recruitment. CCL7 blockade in mice reduces myeloid cell infiltration and ameliorates AKI.
Acute kidney injury (AKI) is a serious condition affecting one fifth of hospital inpatients. B lymphocytes have immunological functions beyond Ab production and may produce cytokines and chemokines that modulate inflammation. In this study, we investigated leukocyte responses in a mouse model of AKI and observed an increase in circulating and kidney B cells, particularly a B220low subset, following AKI. We found that B cells produce the chemokine CCL7, with the potential to facilitate neutrophil and monocyte recruitment to the injured kidney. Siglec-G–deficient mice, which have increased numbers of B220low innate B cells and a lower B cell activation threshold, had increased Ccl7 transcripts, increased neutrophil and monocyte numbers in the kidney, and more severe AKI. CCL7 blockade in mice reduced myeloid cell infiltration into the kidney and ameliorated AKI. In two independent cohorts of human patients with AKI, we observed significantly higher CCL7 transcripts compared with controls, and in a third cohort, we observed an increase in urinary CCL7 levels in AKI, supporting the clinical importance of this pathway. Together, our data suggest that B cells contribute to early sterile inflammation in AKI via the production of leukocyte-recruiting chemokines.
Collapse
Affiliation(s)
- Akimichi Inaba
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom; .,Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom.,Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1RQ, United Kingdom
| | - Alexandra M Riding
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Rebeccah J Mathews
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Jack L Martin
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom.,Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; and
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; and.,National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom.,Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom.,Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1RQ, United Kingdom.,National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
28
|
Knockdown of LncRNA DLX6-AS1 inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway in lipopolysaccharide-induced acute kidney injury. J Bioenerg Biomembr 2020; 52:367-376. [PMID: 32666494 DOI: 10.1007/s10863-020-09845-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Sepsis-induced acute kidney injury (AKI) represents a severe medical complication. Recently, there is growing evidence indicating the regulatory role of long non-coding RNAs (lncRNAs) in AKI pathophysiology. The present study investigated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) expression in septic AKI patients and to decipher the relevant mechanisms underlying DLX6-AS1-mediated HK-2 cell pyroptosis in lipopolysaccharide (LPS)-induced AKI. The results revealed that DLX6-AS1 was up-regulated in the serum from septic AKI patients. DLX6-AS1 expression were positively associated with the creatinine levels in the serum from the septic AKI patients. In vitro studies showed that LPS induced cytotoxicity and enhanced DLX6-AS1 expression of HK-2 cells; increased NLR family pyrin domain containing 3 (NLRP3), interleukin (IL)-1β and IL-18 expression. DLX6-AS1 overexpression promoted cytotoxicity and pyroptosis of HK-2 cells; while DLX6-AS1 knockdown counteracted the LPS-induced cytotoxicity and pyroptosis of HK-2 cells. More importantly, DLX6-AS1 sponged miR-223-3p resulting in repression of miR-223-3p expression in HK-2 cells. MiR-223-3p could bind to the 3' untranslated region of NLRP3, which results in the suppressed NLRP3 expression of HK-2 cells. Further rescue experiments showed that enhanced miR-223-3p expression partially reversed the cytotoxicity and pyroptosis of HK-2 cells upon LPS stimulation or with DLX6-AS1 overexpression. Conclusively, this study identified enhanced DLX6-AS1 expression in the serum from AKI patients. Further mechanistic findings deciphered that DLX6-AS1 mediated LPS-mediated cytotoxicity and pyroptosis in HK-2 via miR-223-3p/NLRP3 axis.
Collapse
|
29
|
Liao Y, Peng Z, Wang L, Li D, Yue J, Liu J, Liang C, Liu S, Yan H, Nüssler AK, Rong S, Liu L, Hao L, Yang W. Long noncoding RNA Gm20319, acting as competing endogenous RNA, regulated GNE expression by sponging miR-7240-5p to involve in deoxynivalenol-induced liver damage in vitro. Food Chem Toxicol 2020; 141:111435. [PMID: 32439590 DOI: 10.1016/j.fct.2020.111435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
The regulatory effects of competing endogenous RNA (ceRNA) network have been highlighted on the occurrence and development of diseases. However, the effect of ceRNA network in liver with subchronic deoxynivalenol (DON) exposure has remained unclear so far. Here, lncRNA Gm20319-miR-7240-5p-GNE (glucosamine UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase) network was identified in DON exposed-liver tissues after DON exposure for 90 days. Subchronic DON exposure induced the mild inflammation in liver tissues. In DON-treated liver tissues and Hepa 1-6 cell line, the expression of Gm20319 and GNE were both downregulated while miR-7240-5p expression was upregulated. The gain- and loss-of-function expression in vitro revealed there was a mutual repression between Gm20319 and miR-7240-5p, and they regulated GNE expression in an opposite direction. Dual luciferase reporter assays showed miR-7240-5p inhibited Gm20319 and GNE expression by directly binding. Co-transfection experiment in vitro revealed Gm20319 and miR-7240-5p could indirectly regulate sialic acid level by directly modulating GNE expression, thereby also influencing the expression of SOD1 and IL-1β. This study revealed Gm20319-miR-7240-5p-GNE network reduced sialic acid level to influence the expression of SOD1 and IL-1β in liver, which might involve in liver damage induced by DON. Gm20319 might be a potential research molecular target for DON-induced liver damage.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Liangliang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Junhong Yue
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Jiayan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Chaohan Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Shuang Liu
- Hubei Center for Disease Control and Prevention, 6 North Zhuodaoquan Road, Wuhan, 430079, China
| | - Hong Yan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China.
| |
Collapse
|
30
|
Lu QB, Du Q, Wang HP, Tang ZH, Wang YB, Sun HJ. Salusin-β mediates tubular cell apoptosis in acute kidney injury: Involvement of the PKC/ROS signaling pathway. Redox Biol 2019; 30:101411. [PMID: 31884071 PMCID: PMC6939056 DOI: 10.1016/j.redox.2019.101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Salusin-β is abundantly expressed in many organs and tissues including heart, blood vessels, brain and kidneys. Recent studies have identified salusin-β as a bioactive peptide that contributes to various diseases, such as atherosclerosis, hypertension, diabetes and metabolic syndrome. However, the role of salusin-β in the pathogenesis of acute kidney injury (AKI) is largely unclear. In the present study, we investigated the roles of salusin-β in cisplatin or lipopolysaccharide (LPS)-induced renal injury. Herein, we found that salusin-β expression was upregulated in both renal tubular cells and kidney tissues induced by both cisplatin and LPS. In vitro, silencing of salusin-β diminished, whereas overexpression of salusin-β exaggerated the increased PKC phosphorylation, oxidative stress, histone γH2AX expression, p53 activation and apoptosis in either cisplatin or LPS-challenged renal tubular cells. More importantly, salusin-β overexpression-induced tubular cell apoptosis were abolished by using the PKC inhibitor Go 6976, reactive oxygen species (ROS) scavenger NAC, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin (Apo) or p53 inhibitor Pifithrin-α. In animals, blockade of salusin-β alleviated PKC phosphorylation, ROS accumulation, DNA damage, and p53 activation as well as renal dysfunction in mice after administration of cisplatin or LPS. Taken together, these results suggest that overexpressed salusin-β is deleterious in AKI by activation of the PKC/ROS signaling pathway, thereby priming renal tubular cells for apoptosis and death.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
31
|
Raina R, Chauvin A, Chakraborty R, Nair N, Shah H, Krishnappa V, Kusumi K. The Role of Endothelin and Endothelin Antagonists in Chronic Kidney Disease. KIDNEY DISEASES 2019; 6:22-34. [PMID: 32021871 DOI: 10.1159/000504623] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Background Endothelins (ET) are a family of peptides that act as potent vasoconstrictors and pro-fibrotic growth factors. ET-1 is integral to renal and cardiovascular pathophysiology and exerts effects via autocrine, paracrine and endocrine signaling pathways tied to regulation of aldosterone, catecholamines, and angiotensin. In the kidney, ET-1 is critical to maintaining renal perfusion and controls glomerular arteriole tone and hemodynamics. It is hypothesized that ET-1 influences the progression of chronic kidney disease (CKD), and the objective of this review is to discuss the pathophysiology, and role of ET and endothelin receptor antagonists (ERAs) in CKD. Summary The use of ERAs in hypertensive nephropathy has the potential to decrease proteinuria, and in diabetic nephropathy has the potential to restore glycocalyx thickness, also decreasing proteinuria. Focal segmental glomerular sclerosis has no specific Food and Drug Administration-approved therapy currently, however, ERAs show promise in decreasing proteinuria and slowing tissue damage. ET-1 is a potential biomarker for autosomal dominant polycystic kidney disease progression and so it is thought that ERAs may be of some therapeutic benefit. Key Messages Multiple studies have shown the utility of ERAs in CKD. These agents have shown to reduce blood pressure, proteinuria, and arterial stiffness. However, more clinical trials are needed, and the results of active or recently concluded studies are eagerly awaited.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Akron Children's Hospital, Akron, Ohio, USA
| | | | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| | - Nikhil Nair
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Haikoo Shah
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Vinod Krishnappa
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
32
|
Zhang J, Wang L, Gong D, Yang Y, Liu X, Chen Z. Inhibition of the SIRT1 signaling pathway exacerbates endoplasmic reticulum stress induced by renal ischemia/reperfusion injury in type 1 diabetic rats. Mol Med Rep 2019; 21:695-704. [PMID: 31974604 PMCID: PMC6947889 DOI: 10.3892/mmr.2019.10893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/28/2019] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to investigate whether the diabetic kidney is more susceptible to ischemia/reperfusion (I/R) injury, and identify the potential mechanisms involved. An animal model of type 1 diabetes was created by treating rats with streptozotocin (STZ). This model was then used, along with healthy controls, to investigate the effect of diabetes mellitus (DM) on renal I/R injury. After 45 min of ischemia and 24 h of reperfusion, kidney and serum samples were acquired and used to evaluate function and histopathological injury in the kidneys. Western blotting was also used to determine the expression levels of key proteins. Rats experiencing renal I/R exhibited significant characteristics of renal dysfunction, reduced levels of Sirtuin 1 (SIRT1) protein (a key signaling protein in the kidneys), increased endoplasmic reticulum stress (ERS) and pyroptosis. Furthermore, diabetic rats exhibited further reductions in the levels of SIRT1 in response to renal I/R injury and an increase in the levels of ERS. These effects were all alleviated by the administration of a SIRT1 agonist. The present analysis revealed that the SIRT1-mediated activation of ER stress and pyroptosis played a pivotal role in diabetic rats subjected to renal I/R injury. Downregulation of the SIRT1 signaling pathway were exacerbated in response to renal I/R injury-induced acute kidney injury (AKI). The present data indicated that DM enhanced ER stress and increased pyroptosis by downregulating the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Daojing Gong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuanyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
He D, Zheng J, Hu J, Chen J, Wei X. Long non-coding RNAs and pyroptosis. Clin Chim Acta 2019; 504:201-208. [PMID: 31794769 DOI: 10.1016/j.cca.2019.11.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts longer than 200 nucleotides that have no or only a low coding potential. They are involved in the progression of multiple diseases by the regulation of mechanisms related to epigenetic modifications and transcriptional and posttranscriptional processing. Recent studies have revealed an important function of lncRNAs in the regulation of pyroptosis, a type of programmed cell death associated with inflammatory responses that plays a critical role in many diseases. Through direct or indirect action on proteins related to the pyroptosis signaling pathway, lncRNAs are involved in the pathological processes related to cardiovascular diseases, kidney diseases, immune diseases and other diseases. Based on the expression characteristics of lncRNAs, this paper reviews the role of lncRNAs in regulating pyroptosis, aiming to provide new ideas for the research of lncRNAs regulating pyroptosis and treating pyroptosis-related diseases.
Collapse
Affiliation(s)
- Dong He
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; School of Nursing, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Jun Zheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421002, China
| | - Jia Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Juan Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xing Wei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
34
|
Dai XG, Xu W, Li T, Lu JY, Yang Y, Li Q, Zeng ZH, Ai YH. Involvement of phosphatase and tensin homolog-induced putative kinase 1-Parkin-mediated mitophagy in septic acute kidney injury. Chin Med J (Engl) 2019; 132:2340-2347. [PMID: 31567378 PMCID: PMC6819035 DOI: 10.1097/cm9.0000000000000448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies have reported mitophagy activation in renal tubular epithelial cells (RTECs) in acute kidney injury (AKI). Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and E3 ubiquitin-protein ligase Parkin are involved in mitophagy regulation; however, little is known about the role of PINK1-Parkin mitophagy in septic AKI. Here we investigated whether the PINK1-Parkin mitophagy pathway is involved in septic AKI and its effects on cell apoptosis in vitro and on renal functions in vivo. METHODS Mitophagy-related gene expression was determined using Western blot assay in human RTEC cell line HK-2 stimulated with bacterial lipopolysaccharide (LPS) and in RTECs from septic AKI rats induced by cecal ligation and perforation (CLP). Autophagy-related ultrastructural features in rat RTECs were observed using electron microscopy. Gain- and loss-of-function approaches were performed to investigate the role of the PINK1-Parkin pathway in HK-2 cell mitophagy. Autophagy activators and inhibitors were used to assess the effects of mitophagy modulation on cell apoptosis in vitro and on renal functions in vivo. RESULTS LPS stimulation could significantly induce LC3-II and BECN-1 protein expression (LC3-II: 1.72 ± 0.05 vs. 1.00 ± 0.05, P < 0.05; BECN-1: 5.33 ± 0.57 vs. 1.00 ± 0.14, P < 0.05) at 4 h in vitro. Similarly, LC3-II, and BECN-1 protein levels were significantly increased and peaked at 2 h after CLP (LC3-II: 3.33 ± 0.12 vs. 1.03 ± 0.15, P < 0.05; BECN-1: 1.57 ± 0.26 vs. 1.02 ± 0.11, P < 0.05) in vivo compared with those after sham operation. Mitochondrial deformation and mitolysosome-mediated mitochondria clearance were observed in RTECs from septic rats. PINK1 knockdown significantly attenuated LC3-II protein expression (1.35 ± 0.21 vs. 2.38 ± 0.22, P < 0.05), whereas PINK1 overexpression markedly enhanced LC3-II protein expression (2.07 ± 0.21 vs. 1.29 ± 0.19, P < 0.05) compared with LPS-stimulated HK-2 cells. LPS-induced proapoptotic protein expression remained unchanged in autophagy activator-treated HK-2 cells and was significantly attenuated in PINK1-overexpressing cells, but was remarkably upregulated in autophagy inhibitor-treated and in PINK1-depleted cells. Consistent results were observed in flow cytometric apoptosis assay and in renal function indicators in rats. CONCLUSION PINK1-Parkin-mediated mitophagy might play a protective role in septic AKI, serving as a potential therapeutic target for septic AKI.
Collapse
Affiliation(s)
- Xin-Gui Dai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Wei Xu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Jia-Ying Lu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yang Yang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Qiong Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000, China
| | - Zhen-Hua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu-Hang Ai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
35
|
Tajima T, Yoshifuji A, Matsui A, Itoh T, Uchiyama K, Kanda T, Tokuyama H, Wakino S, Itoh H. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int 2019; 95:1120-1137. [PMID: 30826015 DOI: 10.1016/j.kint.2018.11.034] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023]
Abstract
Ketone bodies including β-hydroxybutyrate (β-OHB) have been shown to protect against ischemic tissue injury when present at low concentrations. We evaluated the impact of β-OHB on renal ischemia/reperfusion injury (IRI). Mice were treated with a continuous infusion of β-OHB using an osmotic mini-pump before and after IRI. We also tested the effects of increasing endogenous serum β-OHB levels by fasting. Renal IRI was attenuated by β-OHB treatment compared to saline control, with similar results in the fasting condition. β-OHB treatment reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and increased expression of forkhead transcription factor O3 (FOXO3), an upstream regulator of pyroptosis. Although β-OHB treatment did not impact markers of apoptosis, it decreased the expression of caspase-1 and proinflammatory cytokines, indicating that β-OHB blocked pyroptosis. In a human proximal tubular cell line exposed to hypoxia and reoxygenation, β-OHB reduced cell death in a FOXO3-dependent fashion. Histone acetylation was decreased in kidneys exposed to IRI and in proximal tubular cells exposed to hypoxia and reoxygenation, and this effect was ameliorated by β-OHB through the inactivation of histone deacetylases. In vitro, β-OHB treatment restored histone acetylation at the FOXO3 promoter. Consistent with epigenetic molecular effects, the renoprotective effects of β-OHB were still observed when the continuous infusion was stopped at the time of IRI. Thus, β-OHB attenuates renal IRI through anti-pyroptotic effects, likely mediated by an epigenetic effect on FOXO3 expression.
Collapse
Affiliation(s)
- Takaya Tajima
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
36
|
ATF4 Involvement in TLR4 and LOX-1-Induced Host Inflammatory Response to Aspergillus fumigatus Keratitis. J Ophthalmol 2018; 2018:5830202. [PMID: 30647960 PMCID: PMC6311808 DOI: 10.1155/2018/5830202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose Activating transcription factor 4 (ATF4) is induced by various stressors. Here, we investigated the expression of ATF4 in the host inflammatory response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods A. fumigatus keratitis mouse models developed by intrastromal injection as well as corneal epithelium scratching were examined daily with a slit lamp microscope for corneal opacification and ulceration. Subsequent in vitro experimentation was carried out in human corneal epithelial cells (HCECs) as well as THP-1 macrophages infected with A. fumigatus. Inhibitors, including CLI-095, Poly (I), SCH772984, and SP600125, were used to assess the role of proteins like toll-like receptor 4 (TLR4), lectin-type oxidized LDL receptor 1 (LOX-1), extracellular signal-regulated kinases (ERK1/2), and c-Jun N-terminal kinase (JNK) in ATF4 expression as a response to A. fumigatus infection. This assessment was made in both mouse models and HCECs using western blot. Results Compared to the controls, ATF4 was increased in corneas from two kinds of A. fumigatus keratitis models at 3 days after infection. ATF4 expression was upregulated with A. fumigatus conidia both in HCECs and THP-1 macrophages 16 hours after stimulation. Furthermore, ATF4 expression in response to A. fumigatus infection was shown to be dependent on TLR4 and LOX-1 expression, and ERK1/2 and JNK contributed to the expression of ATF4 in response to A. fumigatus. Conclusion Our results clearly indicate that ATF4 was involved in the host antifungal immune response to A. fumigatus keratitis; expression was found to be dependent on TLR4, LOX-1 expression, and MAPKs pathway.
Collapse
|
37
|
Lou Y, Wang S, Qu J, Zheng J, Jiang W, Lin Z, Zhang S. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3222-3235. [PMID: 31949697 PMCID: PMC6962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 06/10/2023]
Abstract
As a complex pathophysiological event, myocardial ischemia/reperfusion injury (IRI) can cause heart failure, which has been associated with pyroptosis, a pro-inflammatory programmed cell death. Small endogenous non-coding RNAs have been shown to be involved in myocardial IRI. In the present study, we aimed to investigate whether miR-424 modulated pyroptosis in response to myocardial IRI and determine its underlying regulatory mechanism. An in vivo mouse model of cardiac IRI was established, and contractile function was evaluated by echography. The serum and heart tissue were harvested 24 h after reperfusion to assess the status of pyroptosis. For the in vitro study, H9C2 cells (a rat heart cell line) were subjected to 6 h of hypoxia, followed by 18 h of reoxygenation. The gene expressions at the mRNA level were assessed by real-time PCR, and the expressions at the protein level were examined by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). Bioinformatic analysis was applied to predict miR-424 targets, which were then confirmed by a luciferase reporter assay. We found that the expressions of pyroptosis-related proteins, including caspase-1, caspase-11, IL-1β, and IL-18, were significantly increased upon myocardial IRI. Similarly, hypoxia/reoxygenation injury (HRI) also induced pyroptosis in H9C2 cells. Furthermore, our study revealed that the miR-424 expression was substantially increased in I/R heart tissue and H/R-challenged H9C2 cells. In addition, we found that exogenous expression of miR-424 directly targeted cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) and up-regulated the expressions of caspase-1 and the pro-inflammatory cytokines IL-1β and IL-18. Taken together, our findings provided a new signaling pathway of miR-424/CRISPLD2 in cardiac pyroptosis under IRI conditions.
Collapse
Affiliation(s)
- Yunpeng Lou
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
- Department of Critical Care Medicine, 401 Hospital of PLAQingdao, Shandong, China
| | - Shiying Wang
- Department of Disinfection Supply, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jinlong Qu
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jinhao Zheng
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Weiwei Jiang
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Zhaofen Lin
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Sheng Zhang
- Department of Emergency and Critical Care, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
38
|
Monguió-Tortajada M, Franquesa M, Sarrias MR, Borràs FE. Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis 2018; 9:499. [PMID: 29717111 PMCID: PMC5931601 DOI: 10.1038/s41419-018-0520-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
TLR sensing of pathogens triggers monocyte activation to initiate the host innate immune response to infection. Monocytes can dynamically adapt to different TLR agonists inducing different patterns of inflammatory response, and the sequence of exposure to TLRs can dramatically modulate cell activation. Understanding the interactions between TLR signalling that lead to synergy, priming and tolerance to TLR agonists may help explain how prior infections and inflammatory conditioning can regulate the innate immune response to subsequent infections. Our goal was to investigate the role of MyD88-independent/dependent TLR priming on modulating the monocyte response to LPS exposure. We stimulated human blood monocytes with agonists for TLR4 (LPS), TLR3 (poly(I:C)) and TLR7/8 (R848) and subsequently challenged them to low doses of endotoxin. The different TLR agonists promoted distinct inflammatory signatures in monocytes. Upon subsequent LPS challenge, LPS- and R848-primed monocytes did not enhance the previous response, whereas poly(I:C)-primed monocytes exhibited a significant inflammatory response concomitant with a sharp reduction on cell viability. Our results show that TLR3-primed monocytes are prompted to cell death by apoptosis in the presence of low endotoxin levels, concurrent with the production of high levels of TNFα and IL6. Of note, blocking of TNFR I/II in those monocytes did reduce TNFα production but did not abrogate cell death. Instead, direct signalling through TLR4 was responsible of such effect. Collectively, our study provides new insights on the effects of cross-priming and synergism between TLR3 and TLR4, identifying the selective induction of apoptosis as a strategy for TLR-mediated host innate response.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Badalona, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.
| |
Collapse
|
39
|
Chang HH, Chien CY, Chen KH, Huang SC, Chien CT. Catechins Blunt the Effects of oxLDL and its Primary Metabolite Phosphatidylcholine Hydroperoxide on Endothelial Dysfunction Through Inhibition of Oxidative Stress and Restoration of eNOS in Rats. Kidney Blood Press Res 2017; 42:919-932. [PMID: 29161690 DOI: 10.1159/000485082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 06/06/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We explored the effects of catechins (decaffeinated green tea extracts containing (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate) on atherosclerosis risk factors, oxidized low-density lipoprotein (oxLDL) and its primary metabolite, phosphatidylcholine hydroperoxide (PCOOH) induced oxidative injury in cultured endothelial cell line and rats. METHODS We used endothelial cell line and male Wistar rats to determine the effect of catechins on oxLDL or PCOOH induced oxidative injury including apoptosis, H2O2 level, vascular responses and urinary 8-isoprostane and nitrite/nitrate concentration. Plasma catechins concentration was determined by a CoulArray HPLC. Responses of aortic and renal vasoconstriction were evaluated by a transonic meter and a full-field laser perfusion imager. RESULTS PCOOH administration significantly increased H2O2 amounts and cell apoptosis and decreased endothelial nitric oxide synthase (eNOS) expression in the cultured endothelial cells. Catechins pretreatment significantly reduced PCOOH-elevated H2O2 amounts, endothelial cell apoptosis and partly recovered eNOS expression. Intravenous administration of oxLDL, PCOOH or H2O2, not native LDL, significantly decreased renal and aortic blood flow associated with enhanced ICAM-1 expression and 4-hydroxynoneal (4-HNE) accumulation, and decreased eNOS expression in the male Wistrar rats. One hour after oral intake of green tea extracts, 4 peaks of catechins were found in the rat plasma. The increased plasma catechins significantly inhibited oxLDL-, PCOOH- or H2O2-induced renal and aortic vasoconstriction, decreased urinary 8-isoprostane levels, renal ICAM-1 expression and 4-HNE accumulation, and restored nitrite/nitrate amounts and eNOS activity. CONCLUSIONS Our data suggests that catechins pretreatment decrease PCOOH-induced endothelial apoptosis and arterial vasoconstriction through the action of H2O2 inhibition and eNOS restoration.
Collapse
Affiliation(s)
- Hao-Hsiang Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
| | - Kuo-Hsin Chen
- Division of General Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Shih-Chung Huang
- Department of Cardiology, Kuang-Tien General Hospital, Taichung, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
40
|
Yuan L, Liu J, Deng H, Gao C. Benzo[a]pyrene Induces Autophagic and Pyroptotic Death Simultaneously in HL-7702 Human Normal Liver Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9763-9773. [PMID: 28990778 DOI: 10.1021/acs.jafc.7b03248] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a common polycyclic aromatic hydrocarbon compound, benzo[a]pyrene (BaP) is readily produced in processing of oil and fatty foods. It is not only a strong carcinogen but also a substance with strong immunotoxicity and reproduction toxicity. Autophagy and pyroptosis are two types of programmed cell death. Whether or not BaP damages body tissues via autophagy or pyroptosis remains unknown. The present study investigated the effects of BaP on autophagy and pyroptosis in HL-7702 cells. The results showed that BaP induced cell death in HL-7702 cells enhanced the intracellular levels of ROS and arrested the cell cycle at the S phase. Additionally, BaP resulted in cell death through autophagy and pyroptosis. Compared with the BaP group, the autophagy inhibitor 3-MA significantly (p < 0.01) inhibited the release of LDH by 70.53% ± 0.46 and NO by 50.36% ± 0.80, the increase of electrical conductivity by 12.08% ± 0.55, and the expressions of pyroptotic marker proteins (Caspase-1, Cox-2, IL-1β, IL-18). The pyroptosis inhibitor Ac-YVAD-CM also notably (p < 0.01) blocked BaP-induced autophagic cell death characterized by the increase of autophagic vacuoles and overexpression of Beclin-1 and LC3-II. In conclusion, BaP led to injury by inducing autophagy and pyroptosis simultaneously, the two of which coexisted and promoted each other in HL-7702 cells.
Collapse
Affiliation(s)
- Li Yuan
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Junyi Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Hong Deng
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| | - Chunxia Gao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University , Xi'an, 710119, China
| |
Collapse
|
41
|
Prognostic value of a 25-gene assay in patients with gastric cancer after curative resection. Sci Rep 2017; 7:7515. [PMID: 28790411 PMCID: PMC5548732 DOI: 10.1038/s41598-017-07604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
This study aimed to develop and validate a practical, reliable assay for prognosis and chemotherapy benefit prediction compared with conventional staging in Gastric cancer (GC). Twenty-three candidate genes with significant correlation between quantitative hybridization and microarray results plus 2 reference genes were selected to form a 25-gene prognostic classifier, which can classify patients into 3 distinct groups of different risk of mortality obtained by analyzing microarray data from 78 frozen tumor specimens. The 25-gene assay was associated with overall survival in both training (P = 0.017) and testing cohort (P = 0.005) (462 formalin-fixed paraffin-embedded samples). The risk prediction in stages I + II is significantly better than that in stages III. Analysis demonstrated that this 25-gene signature is an independent prognostic predictor and show higher prognostic accuracy than conventional TNM staging in early stage patients. Moreover, only high-risk patients in stage I + II were found benefit from adjuvant chemotherapy (P = 0.043), while low-risk patients in stage III were not found benefit from adjuvant chemotherapy. In conclusion, our results suggest that this 25-gene assay can reliably identify patients with different risk for mortality after surgery, especially for stage I + II patients, and might be able to predict patients who benefit from chemotherapy.
Collapse
|
42
|
Han Q, Deng Y, Chen S, Chen R, Yang M, Zhang Z, Sun X, Wang W, He Y, Wang F, Pan X, Li P, Lai W, Luo H, Huang P, Guan X, Deng Y, Yan J, Xu X, Wen Y, Chen A, Hu C, Li X, Li S. Downregulation of ATG5-dependent macroautophagy by chaperone-mediated autophagy promotes breast cancer cell metastasis. Sci Rep 2017; 7:4759. [PMID: 28684853 PMCID: PMC5500507 DOI: 10.1038/s41598-017-04994-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/23/2017] [Indexed: 12/24/2022] Open
Abstract
Recent data have shown that the expression of lysosome-associated membrane protein type 2 A (LAMP2A), the key protein in the chaperone-mediated autophagy (CMA) pathway, is elevated in breast tumor tissues. However, the exact effects and mechanisms of CMA during breast cancer metastasis remain largely unknown. In this study, we found that the LAMP2A protein level was significantly elevated in human breast cancer tissues, particularly in metastatic carcinoma. The increased LAMP2A level was also positively correlated with the histologic grade of ductal breast cancer. High LAMP2A levels also predicted shorter overall survival of breast cancer patients. Downregulation of CMA activity by LAMP2A knockdown significantly inhibited the growth and metastasis of both MDA-MB-231 and MDA-MB-468 breast cancer cells in vivo and in vitro, while upregulation of CMA activity by LAMP2A overexpression had the opposite effect. Mechanistically, we found that elevated CMA activity mediated increased growth and metastasis of human breast cancer cells by downregulating the activity of autophagy-related gene 5 (ATG5)-dependent macroautophagy. Collectively, these results indicate that the anti-macroautophagic property is a key feature of CMA-mediated tumorigenesis and metastasis and may, in some contexts, serve as an attractive target for breast cancer therapies.
Collapse
Affiliation(s)
- Qi Han
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Sha Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Rui Chen
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhujun Zhang
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiongshan Sun
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Wei Wang
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ying He
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Wenjing Lai
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jun Yan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xianjie Xu
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Wen
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Chuanmin Hu
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Bettaieb A, Koike S, Chahed S, Zhao Y, Bachaalany S, Hashoush N, Graham J, Huma F, Havel PJ, Gruzdev A, Zeldin DC, Hammock BD, Haj FG. Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury. FEBS J 2017; 284:1970-1986. [PMID: 28485854 PMCID: PMC5515292 DOI: 10.1111/febs.14100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide (LPS)-induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte-specific sEH-deficient (pod-sEHKO) mice. Following LPS challenge, podocyte sEH-deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL-6, IL-1β, and TNFα were significantly lower in LPS-treated pod-sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS-induced NF-κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria. ENZYMES Soluble epoxide hydrolase: EC 3.3.2.10.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Samah Chahed
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Yi Zhao
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN 37996
| | - Santana Bachaalany
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Nader Hashoush
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - James Graham
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Fatima Huma
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Peter J. Havel
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, One Shields Ave, Davis, CA 95616
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, North Carolina, NC 27709
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
| | - Fawaz G. Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817
| |
Collapse
|
44
|
Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury. Theranostics 2017; 7:2204-2219. [PMID: 28740545 PMCID: PMC5505054 DOI: 10.7150/thno.19571] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewisx antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.
Collapse
Affiliation(s)
- Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Liang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ping Yang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Sai-Ping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
45
|
Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med 2017; 44:e897-903. [PMID: 27058465 DOI: 10.1097/ccm.0000000000001735] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The histopathologic changes associated with septic acute kidney injury are poorly understood, in part, because of the lack of biopsy data in humans. Animal models of septic acute kidney injury may help define such changes. Therefore, we performed a systematic review of the histopathologic changes found in modern experimental septic acute kidney injury models. DATA SOURCES MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and PubMed (from January 2007 to February 2015). STUDY SELECTION We reviewed experimental studies reporting findings on the histopathology of contemporary experimental septic acute kidney injury. DATA EXTRACTION We focused on the presence or the absence of acute tubular necrosis, tubular cell apoptosis, and other nonspecific findings. DATA SYNTHESIS We identified 102 studies in 1,059 animals. Among the 1,059 animals, 53 (5.0%) did not have any renal histopathologic changes, but acute tubular necrosis was found in 184 (17.4%). The prevalence of acute tubular necrosis was not related to animal size or model of sepsis and was only found in models with low cardiac output and decreased renal blood flow (p < 0.0001). Only 21 studies (170 animals) assessed the prevalence of tubular cell apoptosis, which was reported in 158 animals (92.9%). The prevalence of tubular cell apoptosis was significantly higher in studies using small animals (p < 0.0001) and in peritonitis models (p < 0.0001). Simultaneous acute tubular necrosis and tubular cell apoptosis was rare (55 animals [32.4%]) and only seen with decreased cardiac output and renal blood flow. Nonspecific changes (vacuolization of tubular cells, loss of brush border, and tubular cell swelling) were each observed in 423 (39.9%), 250 (23.6%) and 243 (22.9%) animals, respectively. CONCLUSIONS In models of experimental septic acute kidney injury in contemporary articles, acute tubular necrosis was relatively uncommon and, when present, reflected the presence of an associated low cardiac output or low renal blood flow syndrome. Tubular cell apoptosis seemed frequent in the few studies in which it was investigated. Nonspecific morphologic changes, however, were the most common histopathologic findings.
Collapse
|
46
|
Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci Rep 2017; 7:43152. [PMID: 28230089 PMCID: PMC5322462 DOI: 10.1038/srep43152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ETB deficient (ETB def) or transgenic control (TG-con) rats were used in the presence or absence of ETA receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ETB def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ETA blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ETB def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ETA receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ETB receptor has protective effects. These results highlight targeting the ETA receptor as a therapeutic approach against ER stress-induced kidney injury.
Collapse
|
47
|
Tien AJ, Chien CY, Chen YH, Lin LC, Chien CT. Fruiting Bodies of Antrodia cinnamomea and Its Active Triterpenoid, Antcin K, Ameliorates N-Nitrosodiethylamine-Induced Hepatic Inflammation, Fibrosis and Carcinogenesis in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:173-198. [PMID: 28081627 DOI: 10.1142/s0192415x17500124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antrodia cinnamomea (A. cinnamomea), a popular medicinal mushroom in Taiwan, is widely used to prevent or treat liver diseases. Systematic studies on the anti-inflammatory effect of A. cinnamomea and its molecular mechanisms have not yet been fully investigated. HPLC fingerprint analysis identified seven ergostane-type triterpenoids from A. cinnamomea water extract (ACW), including high amounts of Antcin K (AC), Antcin C, Antcin H, Dehydrosulphurenic acid, Antcin B, Antcin A and Dehydroeburicoic acid. Here, we explored the effects and mechanisms of ACW and the highest content AC on N-nitrosodiethylamine (DEN) induced liver inflammation, fibrosis and carcinogenesis in rats. In the in vitro study, we measured how ACW and AC dose-dependently scavenged O[Formula: see text], H2O2 and HOCl by a chemiluminescence analyzer. In the in vivo experiment, oral intake ACW and AC significantly inhibited DEN-enhanced hepatocellular inflammation, fibrosis and carcinoma by pathologic observation, the elevated bile and liver reactive oxygen species (ROS) amounts, plasma [Formula: see text]-glutamyl transpeptidase, and oxidative stress including 3-nitrotyrosine, 4-hydroxynonenal and Kuppfer cell infiltration (ED-1 stains) in the inflammatory livers. DEN enhanced nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) translocation, whereas ACW and AC suppressed DEN-enhanced NF-[Formula: see text]B translocation through the inhibition of its upstream signaling of p85/phosphoinositide-3-kinase, mitogen activated protein kinase and CYP2E1 expression. In conclusion, DEN can induce hepatocellular inflammation, fibrosis and carcinoma by increasing NF-[Formula: see text]B translocation to the nucleus, and oxidative injury. ACW and its active component, Antcin K, counteract DEN-induced hepatic injury and inflammation by the protective and therapeutic mechanisms of a direct scavenging ROS activity and an upregulation of anti-oxidant defense mechanisms.
Collapse
Affiliation(s)
- An-Jan Tien
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Chen-Yen Chien
- † Department of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan, R.O.C.,‡ Mackay Junior College of Medicine, Nursing and Management, New Taipei City 252, Taiwan, R.O.C
| | - Yueh-Hsi Chen
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Lung-Chin Lin
- § Department of Internal Medicine, Kuang-Tien General Hospital, Taichung City 433, Taiwan, R.O.C
| | - Chiang-Ting Chien
- * Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| |
Collapse
|
48
|
Röhrig CH, Choi SSH, Baldwin N. The nutritional role of free sialic acid, a human milk monosaccharide, and its application as a functional food ingredient. Crit Rev Food Sci Nutr 2016; 57:1017-1038. [DOI: 10.1080/10408398.2015.1040113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sharon S. H. Choi
- Intertek Scientific & Regulatory Consultancy, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Scientific & Regulatory Consultancy, Hampshire, United Kingdom
| |
Collapse
|
49
|
Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder. Sci Rep 2016; 6:36110. [PMID: 27824068 PMCID: PMC5099933 DOI: 10.1038/srep36110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis-associated pelvic ischemia has been reported to be a risk factor for bladder dysfunction and subsequent lower urinary tract symptoms (LUTS) in the elderly population. However, the molecular mechanisms of this association remain unclear. We hypothesized that stress-induced cellular responses might play a role in the pathogenesis of ischemia-induced bladder dysfunction. In the present study, the animal model of bladder ischemia was induced by bilateral partial arterial occlusion (BPAO) in rats. We found that BPAO significantly induced the presence of detrusor overactivity (DO) and upregulated the expression of several molecular reactions, including biomarkers in endoplasmic reticulum stress (78 kDa glucose-regulated protein, GRP78 and C/EBP-homologous protein, CHOP), autophagy (Beclin-1, p62 and LC3 II) and apoptosis (caspase 3). BPAO also disturbed the Kelch-like ECH-associated protein 1–nuclear factor erythroid-2-related factor 2 (Keap1–Nrf2) pathways. These responses might collectively alter muscarinic and purinergic signaling and contribute to the presence of DO in the ischemic bladder. Therapeutically, treatment with neither a muscarinic nor purinergic receptor antagonist restored bladder function. Interestingly, sulforaphane effectively attenuated ischemia-enhanced endoplasmic reticulum stress, autophagy and apoptosis in the bladder, subsequently ameliorated ischemia-induced bladder dysfunction and might emerge as a novel strategy to protect the bladder against ischemia-induced oxidative damage.
Collapse
|
50
|
Liu B, Sun R, Luo H, Liu X, Jiang M, Yuan C, Yang L, Hu J. Both intrinsic and extrinsic apoptotic pathways are involved in Toll-like receptor 4 (TLR4)-induced cell death in monocytic THP-1 cells. Immunobiology 2016; 222:198-205. [PMID: 27720227 DOI: 10.1016/j.imbio.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
Abstract
Our previous study showed that TLR3 induces apoptosis via both death receptors and mitochondial in human endothelial cells. We report here that the activation of TLR4 induced dose- and time-dependent cell death in moncytic THP-1 cells. LPS treatment of THP-1 cells induced the activation of both caspase 8 and 9, suggesting the involvement of intrinsic and extrinsic apoptosis pathways. TNFα was induced by TLR4 activation at both mRNA and protein levels, but its neutralization did not down-regulated TLR4-induced cell death. TLR4 activation also induced the up-regulation of TRAIL and its receptors DR4 and DR5, and the neutralization of TRAIL ameliorated TLR4 induced apoptosis, suggesting the involvement of TRAIL and its receptors DR4 and DR5 in LPS-induced cell death. Meanwhile, LPS treatment down-regulated the expression of FLICE inhibitory protein (FLIP), a suppressor of death receptor-induced cell death. In addition, TLR4 activation down-regulated the anti-apoptotic protein bcl-2, and up-regulated the pro-apoptotic proteins Noxa and Puma, suggesting that mitochondrial apoptotic pathway was also involved in LPS-induced cell death. Furthermore, we found that TAP63α might confer to the activation of intrinsic and extrinsic apoptotic pathways. The treatment of THP-1 cells with LPS induced the translocation of TAP63α from cytoplasm to nucleus. Taken together, our study suggested that both death receptors and mitochondial were involved in TLR4-induced cell death, and TAP63α may be a target for the prevention of LPS-induced cell death.
Collapse
Affiliation(s)
- Bei Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China; Department of Pathology, Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ruili Sun
- Department of Laboratory Medicine, XinXiang Medical University, XinXiang, China
| | - Hongbo Luo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Li Yang
- Tuberculosis Research Center, Changsha Central Hospital, Changsha, China.
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, China.
| |
Collapse
|