1
|
Mishin V, Heck DE, Jan YH, Richardson JR, Laskin JD. Distinct effects of form selective cytochrome P450 inhibitors on cytochrome P450-mediated monooxygenase and hydrogen peroxide generating NADPH oxidase. Toxicol Appl Pharmacol 2022; 455:116258. [PMID: 36174671 DOI: 10.1016/j.taap.2022.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
A characteristic of cytochrome P450 (CYP) enzymes is their ability to generate H2O2, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. H2O2 production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched β-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes. In the presence of 7,8-benzoflavone (2.0 μM) for CYP1A2 and 4-methylpyrazole (32 μM) or DMSO (16 mM) for CYP2E1, monooxygenase activity was blocked without affecting NADPH oxidase activity for both the recombinant enzymes and microsomal preparations. Ketoconazole (1.0 μM), a form selective inhibitor for CYP3A subfamily enzymes, completely inhibited monooxygenase activity of rat recombinant CYP3A1/3A2 and CYP3A subfamily in rat liver microsomes; it also partially inhibited NADPH oxidase activity. 7,8-benzoflavone is a type I ligand, which competes with substrate binding, while 4-methylpyrazole and DMSO are type II heme binding ligands. Interactions of heme with these type II ligands was not sufficient to interfere with oxygen activation, which is required for NADPH oxidase activity. Ketoconazole, a type II ligand known to bind multiple sites on CYP3A subfamily enzymes in close proximity to heme, also interfered, at least in part, with oxygen activation. These data indicate that form specific inhibitors can be used to distinguish between monooxygenase reactions and H2O2 generating NADPH oxidase of CYP1A2 and CYP2E1. Mechanisms by which ketoconazole inhibits CYP3A NADPH oxidase remain to be determined.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, USA
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol 2020; 17:171-178. [PMID: 33215946 DOI: 10.1080/17425255.2021.1853705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
3
|
El-Khateeb E, Achour B, Scotcher D, Al-Majdoub ZM, Athwal V, Barber J, Rostami-Hodjegan A. Scaling Factors for Clearance in Adult Liver Cirrhosis. Drug Metab Dispos 2020; 48:1271-1282. [PMID: 32978222 DOI: 10.1124/dmd.120.000152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2025] Open
Abstract
In vitro to in vivo extrapolation (IVIVE) enables prediction of in vivo clinical outcomes related to drug exposure in various populations from in vitro data. Prudent IVIVE requires scalars specific to the biologic characteristics of the system in each population. This study determined experimentally for the first time scalars in liver samples from patients with varying degrees of cirrhosis. Microsomal and cytosolic fractions were extracted from 13 noncirrhotic and 32 cirrhotic livers (six mild, 13 moderate, and 13 severe, based on Child-Pugh score). Fractional protein content was determined, and cytochrome P450 reductase activity was used to correct for microsomal protein loss. Although the median microsomal protein per gram liver (MPPGL) in mild, moderate, and severe cirrhosis (26.2, 32.4, and 30.8 mg⋅g-1, respectively) seemed lower than control livers (36.6 mg⋅g-1), differences were not statistically significant (Kruskal-Wallis test, P > 0.05). Corresponding values for cytosolic protein per gram liver were 88.2, 67.9, 62.2, and 75.4 (mg⋅g-1) for mild, moderate, and severe cirrhosis and control livers, respectively, with statistically lower values for severe versus controls (Mann-Whitney P = 0.006). Cirrhosis associated with cancer showed lower MPPGL (24.8 mg⋅g-1) than cirrhosis associated with cholestasis (38.3 mg⋅g-1, P = 0.003). Physiologically based pharmacokinetic simulations with disease-specific scalars captured cirrhosis impact on exposure to alfentanil, metoprolol, midazolam, and ethinylestradiol. These experimentally-determined scalars should alleviate the need for indirect scaling using functional liver volume. Scaling factors in cirrhosis might be a reflection of the etiology rather than the disease severity. Hence, bundling various cirrhotic conditions under the same umbrella when predicting hepatic impairment impact should be revisited. SIGNIFICANCE STATEMENT: Cirrhosis-specific scalars required for extrapolation from microsomal or cytosolic in vitro systems to liver tissue are lacking. These scalars can help in predicting drug clearance and selection of dosage regimens for cirrhosis populations. Attempts to consider potential changes have been empirical and ignored the potential impact of the cause of cirrhosis. We obtained experimental values for these scalars for the first time and assessed their impact on predicted exposure to various substrate drugs using physiologically-based pharmacokinetics simulations.
Collapse
Affiliation(s)
- Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Varinder Athwal
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
4
|
Monroe JJ, Tanis KQ, Podtelezhnikov AA, Nguyen T, Machotka SV, Lynch D, Evers R, Palamanda J, Miller RR, Pippert T, Cabalu TD, Johnson TE, Aslamkhan AG, Kang W, Tamburino AM, Mitra K, Agrawal NGB, Sistare FD. Application of a Rat Liver Drug Bioactivation Transcriptional Response Assay Early in Drug Development That Informs Chemically Reactive Metabolite Formation and Potential for Drug-induced Liver Injury. Toxicol Sci 2020; 177:281-299. [PMID: 32559301 PMCID: PMC7553701 DOI: 10.1093/toxsci/kfaa088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug-induced liver injury is a major reason for drug candidate attrition from development, denied commercialization, market withdrawal, and restricted prescribing of pharmaceuticals. The metabolic bioactivation of drugs to chemically reactive metabolites (CRMs) contribute to liver-associated adverse drug reactions in humans that often goes undetected in conventional animal toxicology studies. A challenge for pharmaceutical drug discovery has been reliably selecting drug candidates with a low liability of forming CRM and reduced drug-induced liver injury potential, at projected therapeutic doses, without falsely restricting the development of safe drugs. We have developed an in vivo rat liver transcriptional signature biomarker reflecting the cellular response to drug bioactivation. Measurement of transcriptional activation of integrated nuclear factor erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) electrophilic stress, and nuclear factor erythroid 2-related factor 1 (NRF1) proteasomal endoplasmic reticulum (ER) stress responses, is described for discerning estimated clinical doses of drugs with potential for bioactivation-mediated hepatotoxicity. The approach was established using well benchmarked CRM forming test agents from our company. This was subsequently tested using curated lists of commercial drugs and internal compounds, anchored in the clinical experience with human hepatotoxicity, while agnostic to mechanism. Based on results with 116 compounds in short-term rat studies, with consideration of the maximum recommended daily clinical dose, this CRM mechanism-based approach yielded 32% sensitivity and 92% specificity for discriminating safe from hepatotoxic drugs. The approach adds new information for guiding early candidate selection and informs structure activity relationships (SAR) thus enabling lead optimization and mechanistic problem solving. Additional refinement of the model is ongoing. Case examples are provided describing the strengths and limitations of the approach.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna Lynch
- Safety Assessment & Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Jairam Palamanda
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | - Randy R Miller
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | - Tamara D Cabalu
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | | | | - Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | - Kaushik Mitra
- Safety Assessment & Laboratory Animal Resources
- Janssen Research & Development, LLC, Spring House, PA 19486
| | - Nancy G B Agrawal
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc, West Point, Pennsylvania 19486
| | | |
Collapse
|
5
|
Mishin V, Heck DE, Laskin DL, Laskin JD. The amplex red/horseradish peroxidase assay requires superoxide dismutase to measure hydrogen peroxide in the presence of NAD(P)H. Free Radic Res 2020; 54:620-628. [PMID: 32912004 PMCID: PMC7874521 DOI: 10.1080/10715762.2020.1821883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
A sensitive fluorescence assay based on Amplex Red (AR) oxidation by horseradish peroxidase (AR/HRP) is described which continuously monitor rates of H2O2 production by microsomal enzymes in the presence of relatively high concentrations of NADPH. NADPH and NADH are known to interact with HRP and generate significant quantities of superoxide anion, a radical that spontaneously dismutates to form H2O2 which interferes with the AR/HRP assay. Microsomal enzymes generate H2O2 as a consequence of electron transfer from NADPH to cytochrome P450 hemoproteins with subsequent oxygen activation. We found that superoxide anion formation via the interaction of NADPH with HRP was inhibited by superoxide dismutase (SOD) without affecting H2O2 generation by microsomal enzymes. Using SOD in enzyme assays, we consistently detected rates of H2O2 production using microgram quantities of microsomal proteins (2.62 ± 0.20 picomol/min/µg protein for liver microsomes from naïve female rats, 12.27 ± 1.29 for liver microsomes from dexamethasone induced male rats, and 2.17 ± 0.25 picomol/min/µg protein for human liver microsomes). This method can also be applied to quantify rates of H2O2 production by oxidases where superoxide anion generation by NADH or NADPH and HRP can interfere with enzyme assays.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, Valhalla, New York 10595
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| |
Collapse
|
6
|
Kim KH, Park JW, Yang YM, Song KD, Cho BW. Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells. Anim Biosci 2020; 34:312-319. [PMID: 32898949 PMCID: PMC7876717 DOI: 10.5713/ajas.20.0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.
Collapse
Affiliation(s)
- Kyoung Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea.,Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea
| | - Ki-Duk Song
- Department of Agriculture Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea.,Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
7
|
Influence of incubation conditions on microsomal metabolism of xanthine-derived A 1 adenosine receptor ligands. J Pharmacol Toxicol Methods 2018; 95:16-26. [PMID: 30476620 DOI: 10.1016/j.vascn.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022]
Abstract
INTRODUCTION In vitro metabolism models such as liver microsomes represent an important tool for the development of novel radioligands. Comparability and physiological relevance of in vitro metabolism data critically depend on the careful evaluation and optimization of assay protocols. We therefore investigated the influence of incubation conditions on the microsomal stability of xanthine-derived A1 adenosine receptor (A1AR) ligands which have been developed for positron emission tomography (PET). METHODS Substrate depletion assays using rat liver microsomes (RLM) were performed for three analogous compounds which differ with regard to the metabolically vulnerable substituent at the xanthine C8 position. Incubation conditions were varied systematically. Additionally, the stability of the cofactor NADPH during incubation was investigated. RESULTS Microsomal metabolism was strongly influenced by buffer pH, organic solvents and preincubation time. Substrate depletion values varied up to 5-fold depending on incubation matrix composition, however, the rank order of metabolic stability remained unchanged. Prolonged incubation periods led to drastic loss in enzyme activity which could not be prevented by addition of metal chelators or antioxidants. Cofactor NADPH was rapidly oxidized in microsomal matrix, even in the absence of cytochrome P450 substrates. DISCUSSION In summary, short incubation times, precise pH control and minimal concentrations of organic solvents are mandatory to obtain reliable microsomal stability data. Furthermore, in vitro metabolic stability of the tested A1AR ligands varied largely depending on the particular C8 substituent. Consequently, structural modifications at the xanthine C8 position appear to be a promising strategy for the improvement of A1AR PET radioligands.
Collapse
|
8
|
Breitenbach M, Rinnerthaler M, Weber M, Breitenbach-Koller H, Karl T, Cullen P, Basu S, Haskova D, Hasek J. The defense and signaling role of NADPH oxidases in eukaryotic cells : Review. Wien Med Wochenschr 2018; 168:286-299. [PMID: 30084091 PMCID: PMC6132560 DOI: 10.1007/s10354-018-0640-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023]
Abstract
This short review article summarizes what is known clinically and biochemically about the seven human NADPH oxidases. Emphasis is put on the connection between mutations in the catalytic and regulatory subunits of Nox2, the phagocyte defense enzyme, with syndromes like chronic granulomatous disease, as well as a number of chronic inflammatory diseases. These arise paradoxically from a lack of reactive oxygen species production needed as second messengers for immune regulation. Both Nox2 and the six other human NADPH oxidases display signaling functions in addition to the functions of these enzymes in specialized biochemical reactions, for instance, synthesis of the hormone thyroxine. NADPH oxidases are also needed by Saccharomyces cerevisiae cells for the regulation of the actin cytoskeleton in times of stress or developmental changes, such as pseudohyphae formation. The article shows that in certain cancer cells Nox4 is also involved in the re-structuring of the actin cytoskeleton, which is required for cell mobility and therefore for metastasis.
Collapse
Affiliation(s)
| | | | - Manuela Weber
- Department of Bioscienes, University of Salzburg, Salzburg, Austria
| | | | - Thomas Karl
- Department of Bioscienes, University of Salzburg, Salzburg, Austria
| | - Paul Cullen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, USA
| | - Sukaniya Basu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, USA
| | - Dana Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| |
Collapse
|
9
|
Castrignanò S, D'Avino S, Di Nardo G, Catucci G, Sadeghi SJ, Gilardi G. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:116-125. [PMID: 28734977 DOI: 10.1016/j.bbapap.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Silvia Castrignanò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Serena D'Avino
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
10
|
Rohr-Udilova N, Klinglmüller F, Seif M, Hayden H, Bilban M, Pinter M, Stolze K, Sieghart W, Peck-Radosavljevic M, Trauner M. Oxidative stress mediates an increased formation of vascular endothelial growth factor in human hepatocarcinoma cells exposed to erlotinib. Oncotarget 2017; 8:57109-57120. [PMID: 28915658 PMCID: PMC5593629 DOI: 10.18632/oncotarget.19055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/19/2017] [Indexed: 02/05/2023] Open
Abstract
The tyrosine kinase inhibitor erlotinib targets the receptor of epidermal growth factor (EGFR) involved in development of hepatocellular carcinoma (HCC). Although inefficient in established HCC, erlotinib has been recently proposed for HCC chemoprevention. Since Cyp3A4 and Cyp1A2 enzymes metabolize erlotinib in the liver, the insights into the mechanisms of erlotinib effects on liver cells with maintained drug metabolizing activity are needed. We applied erlotinib to both commercially available (SNU398, Huh7) and established in Austria HCC cell lines (HCC-1.2, HCC-3). Cyp3A4 and Cyp1A2, microarray gene expression, cell viability, LDH release, DHFC fluorescence were assessed. VEGF expression was analysed by real-time RT-PCR and ELISA. Higher cumulative expression of erlotinib metabolizing enzymes was observed in HCC-1.2 and HCC-3 cells. Gene expression microarray analysis showed upregulation of VEGF signalling by erlotinib. VEGF was increased up to 134 ± 14% (n = 5, p = 0.002) in HCC-1.2, HCC-3 and Huh7 cells. Interventions by Cyp1A2 and Mek2siRNA, MEK inhibitor UO126, diphenylene iodonium, as well as a combination of N-acetylcysteine with selenium all inhibited VEGF upregulation caused by erlotinib. Thus, erlotinib increases VEGF production by mechanisms involving Cyp1A2, oxidative stress and MEK1/2. VEGF may favour angiogenesis and growth of early HCC tumours limiting the therapeutic and chemopreventive effects of erlotinib.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Florian Klinglmüller
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martha Seif
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hubert Hayden
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Bilban
- Clinical Institute for Laboratory Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Klaus Stolze
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, A-1220 Vienna, Austria
| | - Wolfgang Sieghart
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Markus Peck-Radosavljevic
- Clinic Klagenfurth, Division of Gastroenterology and Hepatology, 9020 Klagenfurt am Wörthersee, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, Martin F, Elamin A, Merg C, Ivanov NV, Frentzel S, Peitsch MC, Hoeng J. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chem Res Toxicol 2016; 29:1252-69. [PMID: 27404394 DOI: 10.1021/acs.chemrestox.6b00174] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alain Sewer
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Radina Kostadinova
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant , Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Patrice Leroy
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Céline Merg
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development , Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
13
|
Szilagyi JT, Mishin V, Heck DE, Jan YH, Aleksunes LM, Richardson JR, Heindel ND, Laskin DL, Laskin JD. Selective Targeting of Heme Protein in Cytochrome P450 and Nitric Oxide Synthase by Diphenyleneiodonium. Toxicol Sci 2016; 151:150-9. [PMID: 26880746 PMCID: PMC4914801 DOI: 10.1093/toxsci/kfw031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 μM. Higher (4.6-23.9 μM), but not lower (0.06-1.9 μM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.
Collapse
Affiliation(s)
- John T Szilagyi
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595
| | - Yi-Hua Jan
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jeffrey D Laskin
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| |
Collapse
|
14
|
Kilgore MB, Augustin MM, May GD, Crow JA, Kutchan TM. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids. FRONTIERS IN PLANT SCIENCE 2016; 7:225. [PMID: 26941773 PMCID: PMC4766306 DOI: 10.3389/fpls.2016.00225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4'-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4'-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot.
Collapse
Affiliation(s)
| | | | | | - John A. Crow
- National Center for Genome ResourcesSanta Fe, NM, USA
| | | |
Collapse
|