1
|
Bae SDW, Nguyen R, Yuen L, Lam V, George J, Qiao L. Constitutive androstane receptor (CAR) functions as a tumor suppressor via regulating stemness in liver cancer. Sci Rep 2024; 14:30926. [PMID: 39730609 DOI: 10.1038/s41598-024-81571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
Constitutive androstane receptor (CAR) is a xenosensor that is almost exclusively expressed in the liver. Studies in rodents suggest an oncogenic role for CAR in liver cancer, but its role in human liver cancer is unclear. We aimed to investigate the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cells. We used bioinformatics to increase our understanding of CAR in human liver cancer and associated stem cell markers. We studied the functional roles of CAR in human liver cancer with a focus on the liver cancer stem cell using siRNA, modulation of CAR activity, and tumorsphere formation assays. We have revealed significant associations between CAR and a wide variety of signalling pathways including stemness signalling. Further in vitro studies have shown that activation of CAR significantly reduces cancer cell stemness and represses proliferation, migration, invasion, and the tumorsphere-forming abilities of liver cancer cells (p < 0.05). Our data demonstrates the unequivocal tumor-suppressive role of CAR in liver cancer. While more detailed mechanistic studies are warranted, the efficacy of CAR xeno-activators in the treatment of advanced hepatocellular carcinoma (HCC) may potentially open a new avenue for liver cancer therapy.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
- School of Medicine, University of Sydney, Sydney, Australia.
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Department of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
2
|
Wu C, Song X, Zhang M, Yang L, Lu P, Ding Q, Liu M. Contradictory Role of Gadd45β in Liver Diseases. J Cell Mol Med 2024; 28:e70267. [PMID: 39653679 PMCID: PMC11628191 DOI: 10.1111/jcmm.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024] Open
Abstract
There are three homologous proteins (α, β and γ) in the growth arrest and DNA damage 45 (Gadd45) family. These proteins act as cellular responders to physiological and environmental stimuli. Gadd45β plays a significant role in the pathogenesis of liver diseases. Liver injury and growth stimulation increase expression of Gadd45β, which promotes cell survival, growth and proliferation in normal liver cells. By contrast, Gadd45β plays a role in promoting apoptosis and inhibiting tumour function in hepatocellular carcinoma (HCC). Currently, it is believed that Gadd45β benefits the liver through two different pathways: binding to MAPK kinase 6 (MKK6) to increase PCD induced by p38 (inhibiting tumours) or binding to constitutive androstane receptor (CAR) to jointly activate transcription of liver synthesis metabolism (promoting liver regeneration). This article aims to systematically review the role of Gadd45β in liver diseases, including its regulatory mechanism on expression and involvement in liver cell damage, inflammation, fibrosis and HCC. In conclusion, we explore the potential of targeting Gadd45β as a therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Chi Wu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaozhen Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Miaoxin Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Longjun Yang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Goettel M, Werner C, Honarvar N, Gröters S, Fegert I, Haines C, Chatham LR, Vardy A, Lake BG. Mode of action analysis for fluxapyroxad-induced rat liver tumour formation: evidence for activation of the constitutive androstane receptor and assessment of human relevance. Toxicology 2024; 505:153828. [PMID: 38740169 DOI: 10.1016/j.tox.2024.153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 μM fluxapyroxad or 500 μM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid β-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 μM fluxapyroxad or 500 μM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 μM fluxapyroxad or 500 μM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats, Wistar
- Rats
- Fungicides, Industrial/toxicity
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Constitutive Androstane Receptor
- Humans
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Dose-Response Relationship, Drug
- Organ Size/drug effects
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- DNA Replication/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany.
| | - Christoph Werner
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sibylle Gröters
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ivana Fegert
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Corinne Haines
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
4
|
Minami K, Sato A, Tomiyama N, Ogata K, Kosaka T, Hojo H, Takahashi N, Suto H, Aoyama H, Yamada T. Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol 2024; 6:100168. [PMID: 38693933 PMCID: PMC11061706 DOI: 10.1016/j.crtox.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
The Comparative Thyroid Assay (CTA, USEPA) is a screening test for thyroid hormone (TH) disruption in peripheral blood of dams and offspring. Recently, we began investigating feasible improvements to the CTA by adding examination of offspring brain TH concentrations and brain histopathology. In addition, we hypothesize that the number of animals required could be reduced by 50 % while still maintaining sensitivity to characterize treatment related changes in THs. Previously, we showed that the prenatal test cohort of the modified CTA could detect 1000 ppm sodium phenobarbital (NaPB)-induced suppression of brain T3 (by 9 %) and T4 (by 33 %) with no significant changes in serum T3 and T4 (less than 8 %). In the current study we expanded the dose response in a prenatal test cohort. Pregnant SD rats (N = 10/group) were exposed to 0, 1000 or 1500 ppm NaPB in the diet from gestational days (GD) 6 to GD20. Serum THs concentrations in GD20 dams together with serum/brain THs concentrations and brain histopathology in the GD20 fetuses were examined. NaPB dose-dependently suppressed serum T3 (up to -26 %) and T4 (up to -44 %) in dams, with suppression of T3 in serum (up to -26 %) and brain (up to -18 %) and T4 in serum (up to -26 %) and brain (up to -29 %) of fetuses but without clear dose dependency. There were no remarkable findings that deviated significantly from controls in GD20 fetal brain by qualitative histopathology. Overall, the present study suggests that the prenatal test cohort of this modified CTA is able to detect the expected fetal TH disruptions by prenatal exposure to NaPB, while also reducing the number of animals used by 50 %, consistent with the results of our previous study. These findings add to the suggestion that lowering group sizes and adding endpoints may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Akira Sato
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroaki Aoyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
5
|
Kadic A, Oles P, Fischer BC, Reetz AE, Sylla BS, Feiertag K, Ritz V, Heise T, Marx-Stoelting P, Tralau T, Renko K, Solano MDLM. In vitro and in vivo investigation of a thyroid hormone system-specific interaction with triazoles. Sci Rep 2024; 14:6503. [PMID: 38499550 PMCID: PMC10948911 DOI: 10.1038/s41598-024-55019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Alterations in thyroid hormones (TH) and thyroid-stimulating hormone levels are frequently found following exposure to chemicals of concern. Dysregulation of TH levels can severely perturb physiological growth, metabolism, differentiation, homeostasis in the adult and developmental processes in utero. A frequently identified mode of action for this interaction is the induction of hepatic detoxification mechanisms (e.g. SULTs and UGTs), which lead to TH conjugation and elimination and therefore interfere with hormonal homeostasis, fulfilling the endocrine disruptors (EDs) definition. A short-term study in rats with dietary exposure to cyproconazole, epoxiconazole and prochloraz was conducted and hepatocyte hypertrophy, hepatic UGT activity and Phase 1/2 gene expression inductions were observed together with changes in TH levels and thyroid follicular hypertrophy and hyperplasia. To test for specific interaction with the thyroid hormone system, in vitro assays were conducted covering thyroidal I-uptake (NIS), TH transmembranal transport via MCT8 and thyroid peroxidase (TPO) function. Assays for iodothyronine deiodinases (DIO1-DIO3) and iodotyrosine deiodinase (DEHAL1) were included, and from the animal experiment, Dio1 and Dehal1 activities were measured in kidney and liver as relevant local indicators and endpoints. The fungicides did not affect any TH-specific KEs, in vitro and in vivo, thereby suggesting hepatic conjugation as the dominant MoA.
Collapse
Affiliation(s)
- Asya Kadic
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Patricia Oles
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Benjamin Christian Fischer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne Elisabeth Reetz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Veterinary Pathology (WE12), Freie University Berlin, Berlin, Germany
| | - Boubacar Sidiki Sylla
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Katreece Feiertag
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Vera Ritz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Heise
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Marize de Lourdes Marzo Solano
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
6
|
Huillet M, Lasserre F, Gratacap MP, Engelmann B, Bruse J, Polizzi A, Fougeray T, Martin CMP, Rives C, Fougerat A, Naylies C, Lippi Y, Garcia G, Rousseau-Bacquie E, Canlet C, Debrauwer L, Rolle-Kampczyk U, von Bergen M, Payrastre B, Boutet-Robinet E, Gamet-Payrastre L, Guillou H, Loiseau N, Ellero-Simatos S. Pharmacological activation of constitutive androstane receptor induces female-specific modulation of hepatic metabolism. JHEP Rep 2024; 6:100930. [PMID: 38149074 PMCID: PMC10749885 DOI: 10.1016/j.jhepr.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background & Aims The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.
Collapse
Affiliation(s)
- Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Justine Bruse
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Géraldine Garcia
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Rousseau-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Bernard Payrastre
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
- Laboratoire d’Hématologie, CHU de Toulouse, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Fukunaga S, Ogata K, Eguchi A, Matsunaga K, Sakurai K, Abe J, Cohen SM, Asano H. Evaluation of the mode of action and human relevance of liver tumors in male mice treated with epyrifenacil. Regul Toxicol Pharmacol 2022; 136:105268. [DOI: 10.1016/j.yrtph.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022]
|
8
|
Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol 2022; 96:2739-2754. [PMID: 35881160 PMCID: PMC9352639 DOI: 10.1007/s00204-022-03338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72–144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2′-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.
Collapse
|
9
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
10
|
Yoshinari K, Shizu R. Distinct Roles of the Sister Nuclear Receptors PXR and CAR in Liver Cancer Development. Drug Metab Dispos 2022; 50:1019-1026. [PMID: 35184041 DOI: 10.1124/dmd.121.000481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/08/2022] [Indexed: 02/13/2025] Open
Abstract
Pregnane X receptor (PXR) and constitutively active receptor/constitutive androstane receptor (CAR) are xenobiotic-responsible transcription factors belonging to the same nuclear receptor gene subfamily and highly expressed in the liver. These receptors are activated by a variety of chemicals and play pivotal roles in many liver functions, including xenobiotic metabolism and disposition. Phenobarbital, an enzyme inducer and liver tumor promoter, activates both rodent and human CAR but causes liver tumors only in rodents. Although the precise mechanism for phenobarbital/CAR-mediated liver tumor formation remains to be established, intracellular pathways, including the Hippo pathway/Yes-associated protein-TEA-domain family members system and β-catenin signaling, seem to be involved. In contrast to CAR, previous findings by our group suggest that PXR activation does not promote hepatocyte proliferation but it enhances the proliferation induced by various stimuli. Moreover, and surprisingly, PXR may have antitumor effects in both rodents and humans by targeting inflammatory cytokine signals, angiogenesis and epithelial-mesenchymal transition. In this review, we summarize the current knowledge on the associations of PXR and CAR with hepatocyte proliferation and liver tumorigenesis and their molecular mechanisms and species differences. SIGNIFICANCE STATEMENT: Pregnane X receptor and constitutively active receptor/constitutive androstane receptor have very similar functions in the gene regulation associated with xenobiotic disposition, as suggested by their identification as xenosensors for enzyme induction. In contrast, recent reports clearly suggest that these receptors play distinct roles in the control of hepatocyte proliferation and liver cancer development. Understanding these differences at the molecular level may help us evaluate the human safety of chemical compounds and develop novel drugs targeting liver cancers.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
11
|
van Kesteren P, Pronk M, Heusinkveld H, Luijten M, Hakkert B. Letter to the editor regarding the review article by Yamada et al. (2021) titled "Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR)". Crit Rev Toxicol 2022; 52:397-398. [PMID: 36102316 DOI: 10.1080/10408444.2022.2115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Petra van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marja Pronk
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Harm Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Betty Hakkert
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
12
|
Yamada T, Cohen SM, Lake BG. Response to Letter to the Editor from Drs. van Kesteren, Pronk, Heusinkveld, Luijten and Hakkert concerning Yamada et al. (2021): Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit. Rev. Toxicol. Vol. 51: 373-394. Crit Rev Toxicol 2022; 52:399-402. [PMID: 35971811 DOI: 10.1080/10408444.2022.2101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tomoya Yamada
- Sumitomo Chemical Company Ltd, Environmental Health Science Laboratory, Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- School of Biosciences and Medicine Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
13
|
Li Z, Kwon SM, Li D, Li L, Peng X, Zhang J, Sueyoshi T, Raufman JP, Negishi M, Wang XW, Wang H. Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. J Biol Chem 2022; 298:101885. [PMID: 35367211 PMCID: PMC9052153 DOI: 10.1016/j.jbc.2022.101885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - So Mee Kwon
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Xiwei Peng
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio, USA
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Office of Research and Development, Biomedical Laboratory Research and Development, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Tian J, Locker J. Gadd45 in the Liver: Signal Transduction and Transcriptional Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:87-99. [DOI: 10.1007/978-3-030-94804-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Skoda J, Dohnalova K, Chalupsky K, Stahl A, Templin M, Maixnerova J, Micuda S, Grøntved L, Braeuning A, Pavek P. Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochem Pharmacol 2021; 197:114905. [PMID: 34971590 DOI: 10.1016/j.bcp.2021.114905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klara Dohnalova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aaron Stahl
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Markus Templin
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Lars Grøntved
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M 5230, Denmark
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Kisoh K, Sugahara G, Ogawa Y, Furukawa S, Ishida Y, Okanoue T, Kohara M, Tateno C. Estimating Drug Efficacy with a Diet-Induced NASH Model in Chimeric Mice with Humanized Livers. Biomedicines 2021; 9:1647. [PMID: 34829876 PMCID: PMC8615377 DOI: 10.3390/biomedicines9111647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023] Open
Abstract
Nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is the most common liver disorder in developed countries. Although many new therapeutics for NASH are present in the drug development pipeline, there are still no approved drugs. One of the reasons that makes NASH drug development challenging is the lack of appropriate animal NASH models that resolve issues arising from inter-species differences between humans and rodents. In the present study, we developed a choline-deficient, L-amino-acid-defined, high-fat-diet (CDAHFD)-induced human NASH model using human liver chimeric mice. We demonstrated human hepatocyte injury by an elevation of plasma human alanine aminotransferase 1 in mice fed CDAHFD. Histological analysis showed that CDAHFD feeding induced similar histological changes to human NASH patients, including ballooning, inflammation, apoptosis, regeneration of human hepatocytes, and pericellular and perisinusoidal fibrosis. The chimeric mice fed CDAHFD were treated with a peroxisome-proliferator-activated receptor α/δ agonist, Elafibranor. Elafibranor ameliorated steatosis, ballooning of hepatocytes, and preserved fibrosis progression. We developed a novel humanized NASH model that can elucidate pathophysiological mechanisms and predict therapeutic efficacy in human NASH. This model will be useful in exploring new drugs and biomarkers in the early stages of human NASH.
Collapse
Affiliation(s)
- Keishi Kisoh
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
| | - Go Sugahara
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
| | - Yuko Ogawa
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
| | - Suzue Furukawa
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
| | - Yuji Ishida
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, 1-2 Kawazonocho, Suita 564-0013, Japan;
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan;
| | - Chise Tateno
- Research and Development Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan; (K.K.); (G.S.); (Y.O.); (S.F.); (Y.I.)
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
17
|
Yamada T. Application of humanized mice to toxicology studies: Evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). J Toxicol Pathol 2021; 34:283-297. [PMID: 34629731 PMCID: PMC8484926 DOI: 10.1293/tox.2021-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
The constitutive androstane receptor (CAR)-mediated mode of action (MOA) for phenobarbital (PB)-induced rodent liver tumor formation has been established, with increased hepatocyte proliferation, which is a key event in tumor formation. Previous studies have demonstrated that PB and other CAR-activators stimulate proliferation in cultured rodent hepatocytes, but not in cultured human hepatocytes. However, in the genetically humanized CAR and pregnane X receptor (PXR) mouse (hCAR/hPXR mouse, downstream genes are still mouse), PB increased hepatocyte proliferation and tumor production in vivo. In contrast to the hCAR/hPXR mouse, studies with chimeric mice with human hepatocytes (PXB-mouse, both receptor and downstream genes are human) demonstrated that PB did not increase human hepatocyte proliferation in vivo. PB increased hepatocyte proliferation in a chimeric mouse model with rat hepatocytes, indicating that the lack of human hepatocyte proliferation is not due to any functional defect in the chimeric mouse liver environment. Gene expression analysis demonstrated that the downstream genes of CAR/PXR activation were similar in hCAR/hPXR and CD-1 mice, but differed from those observed in chimeric mice with human hepatocytes. These findings strongly support the conclusion that the MOA for CAR-mediated rodent liver tumor formation is qualitatively implausible for humans. Indeed, epidemiological studies have found no causal link between PB and human liver tumors. There are many similarities with respect to hepatic effects and species differences between rodent CAR and peroxisome proliferator-activated receptor α activators. Based on our research, the chimeric mouse with human hepatocytes (PXB-mouse) is reliable for human cancer risk assessment of test chemicals.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
18
|
Yamada T, Ohara A, Ozawa N, Maeda K, Kondo M, Okuda Y, Abe J, Cohen SM, Lake BG. Comparison of the Hepatic Effects of Phenobarbital in Chimeric Mice Containing Either Rat or Human Hepatocytes With Humanized Constitutive Androstane Receptor and Pregnane X Receptor Mice. Toxicol Sci 2021; 177:362-376. [PMID: 32735318 DOI: 10.1093/toxsci/kfaa125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to phenobarbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/β-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/β-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.
Collapse
Affiliation(s)
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Naoya Ozawa
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | | | - Yu Okuda
- Environmental Health Science Laboratory
| | - Jun Abe
- Environmental Health Science Laboratory
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
19
|
Eguchi A, Fukunaga S, Ogata K, Kushida M, Asano H, Cohen SM, Sukata T. Chimeric Mouse With Humanized Liver Is an Appropriate Animal Model to Investigate Mode of Action for Porphyria-Mediated Hepatocytotoxicity. Toxicol Pathol 2021; 49:1243-1254. [PMID: 34238059 PMCID: PMC8521358 DOI: 10.1177/01926233211027474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrinogenic compounds are known to induce porphyria-mediated hepatocellular injury and subsequent regenerative proliferation in rodents, ultimately leading to hepatocellular tumor induction. However, an appropriate in vivo experimental model to evaluate an effect of porphyrinogenic compounds on human liver has not been fully established. Recently, the chimeric mouse with humanized liver (PXB mice) became widely used as a humanized model in which human hepatocytes are transplanted. In the present study, we examined the utility of PXB mice as an in vivo experimental model to evaluate the key events of the porphyria-mediated cytotoxicity mode of action (MOA) in humans. The treatment of PXB mice with 5-aminolevulinic acid, a representative porphyrinogenic compound, for 28 days caused protoporphyrin IX accumulation, followed by hepatocyte necrosis, increased mitosis, and an increase in replicative DNA synthesis in human hepatocytes, indicative of cellular injury and regenerative proliferation, similar to findings in patients with porphyria or experimental porphyria models and corresponding to the key events of the MOA for porphyria-mediated hepatocellular carcinogenesis. We conclude that the PXB mouse is a useful model to evaluate the key events of the porphyria-mediated cytotoxicity MOA in humans and suggest the utility of PXB mice for clarifying the human relevancy of findings in mice.
Collapse
Affiliation(s)
- Ayumi Eguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| |
Collapse
|
20
|
Foreman JE, Koga T, Kosyk O, Kang BH, Zhu X, Cohen SM, Billy LJ, Sharma AK, Amin S, Gonzalez FJ, Rusyn I, Peters JM. Diminished hepatocarcinogenesis by a potent, high affinity human PPARα agonist in PPARA-humanized mice. Toxicol Sci 2021; 183:70-80. [PMID: 34081128 DOI: 10.1093/toxsci/kfab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ppara-null and PPARA-humanized mice are refractory to hepatocarcinogenesis caused by the peroxisome proliferator-activated receptor-α (PPARα) agonist Wy-14,643. However, the duration of these earlier studies was limited to approximately one year of treatment, and the ligand used has higher affinity for the mouse PPARα compared to the human PPARα. Thus, the present study examined the effect of long-term administration of a potent, high affinity human PPARα agonist (GW7647) on hepatocarcinogenesis in wild-type, Ppara-null, or PPARA-humanized mice. In wild-type mice, GW7647 caused hepatic expression of known PPARα target genes, hepatomegaly, hepatic MYC expression, hepatic cytotoxicity, and a high incidence of hepatocarcinogenesis. By contrast, these effects were essentially absent in Ppara-null mice or diminished in PPARA-humanized mice, although hepatocarcinogenesis was observed in both genotypes. Enhanced fatty change (steatosis) was also observed in both Ppara-null and PPARA-humanized mice independent of GW7647. PPARA-humanized mice administered GW7647 also exhibited increased necrosis after five weeks of treatment. Results from these studies demonstrate that the mouse PPARα is required for hepatocarcinogenesis induced by GW7647 administered throughout adulthood. Results also indicate that a species difference exists between rodent and human PPARα in the response to ligand activation of PPARα. The hepatocarcinogenesis observed in control and treated Ppara-null mice is likely mediated in part by increased hepatic fatty change, whereas the hepatocarcinogenesis observed in PPARA-humanized mice may also be due to enhanced fatty change and cytotoxicity that could be influenced by minimal activity of the human PPARα in this mouse line on downstream mouse PPARα target genes. The Ppara-null and PPARA-humanized mouse models are valuable tools for examining the mechanisms of PPARα-induced hepatocarcinogenesis but the background level of liver cancer must be controlled for in the design and interpretation of studies that use these mice.
Collapse
Affiliation(s)
- Jennifer E Foreman
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Takayuki Koga
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Oksana Kosyk
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Chemon, Yangji-Myeon, Yongin, 17162, Gu Cheoin-, Si, Gyeonggi-Do Korea
| | - Xiaoyang Zhu
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-3135
| | - Laura J Billy
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
21
|
Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. An Evaluation of the Human Relevance of the Liver Tumors Observed in Female Mice Treated With Permethrin Based on Mode of Action. Toxicol Sci 2021; 175:50-63. [PMID: 32040184 DOI: 10.1093/toxsci/kfaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In 2-year studies, the nongenotoxic pyrethroid insecticide permethrin produced hepatocellular tumors in CD-1 mice but not in Wistar rats. Recently, we demonstrated that the mode of action (MOA) for mouse liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), resulting in a mitogenic effect. In the present study, the effects of permethrin and 2 major permethrin metabolites, namely 3-phenoxybenzoic acid and trans-dichlorochrysanthemic acid, on cytochrome P450 mRNA levels and cell proliferation (determined as replicative DNA synthesis) were evaluated in cultured CD-1 mouse, Wistar rat, and human hepatocytes. Permethrin and 3-phenoxybenzoic acid induced CYP4A mRNA levels in both mouse and human hepatocytes, with trans-dichlorochrysanthemic acid also increasing CYP4A mRNA levels in mouse hepatocytes. 3-Phenoxybenzoic acid induced CYP4A mRNA levels in rat hepatocytes, with trans-dichlorochrysanthemic acid increasing both CYP4A mRNA levels and replicative DNA synthesis. Permethrin, 3-phenoxybenzoic acid, and trans-dichlorochrysanthemic acid stimulated replicative DNA synthesis in mouse hepatocytes but not in human hepatocytes, demonstrating that human hepatocytes are refractory to the mitogenic effects of permethrin and these 2 metabolites. Thus, although some of the key (eg, PPARα activation) and associative (eg, CYP4A induction) events in the established MOA for permethrin-induced mouse liver tumor formation could occur in human hepatocytes at high doses of permethrin, 3-phenoxybenzoic acid, and/or trans-dichlorochrysanthemic acid, increased cell proliferation (an essential step in carcinogenesis by nongenotoxic PPARα activators) was not observed. These results provide additional evidence that the established MOA for permethrin-induced mouse liver tumor formation is not plausible for humans.
Collapse
Affiliation(s)
- Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroko Kikumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
22
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
23
|
The 2-year rodent bioassay in drug and chemical carcinogenicity testing: Performance, utility, and configuration for cancer hazard identification. J Pharmacol Toxicol Methods 2021; 110:107070. [PMID: 33905862 DOI: 10.1016/j.vascn.2021.107070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
For several intended uses of chemicals, the 2-year rodent bioassay (RCB) has been the benchmark method to screen the carcinogenicity to humans of substances, according to the hazard identification sphere. Despite the ongoing controversy around this traditional testing, the RCB is in force and being used by stakeholders. After assembling the RCB's ability to forecast the carcinogenicity to humans of substances, the current review aimed to provide a discussion on the RCB's (1) sensitivity and specificity; (2) utility; (3) configuration, and (4) provisional role in the regulatory policy. In general, RCBs conducted at maximum tolerated doses (MTDs) exhibited a functional ability to (1) not missing the great majority of human carcinogens, and to (2) not responding to the large majority of human non-carcinogens. There is citable evidence supporting the use of MTDs to render RCBs as sensitive as possible, particularly provided the ethically-justified small samples used in RCBs. The literature shows that rodent-specific mechanisms of chemical carcinogenesis contribute significant unspecificity to RCBs. Nonetheless, the paradox between a functional sensitivity and a significant unspecificity can be predictively resolved through the application of Bayesian forecasting. In terms of performance to forecast the carcinogenicity to humans of either genotoxic or non-genotoxic substances, 2-species-RCBs added no value over the rat-RCB. Nevertheless, there is preliminary evidence cautioning that 15% of the rodent carcinogens probably carcinogenic to humans could be missed if mouse-RCBs are indiscriminately discontinued. More than thirteen RCB-related issues relevant to regulatory pharmacology and toxicology were discussed and summarized in this review.
Collapse
|
24
|
Bae SDW, Nguyen R, Qiao L, George J. Role of the constitutive androstane receptor (CAR) in human liver cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188516. [PMID: 33529650 DOI: 10.1016/j.bbcan.2021.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily (subfamily 1, group I, member 3, also known as NR1I3) that is almost exclusively expressed in the liver. CAR interacts with key signalling pathways such as those involved in drug, energy and bilirubin metabolism. In mouse models, activation of CAR leads to tumorigenesis by inducing pro-proliferative and anti-apoptotic signalling. However, many previous reports have shown species differences between CAR activity in animal models and humans. Recent studies have demonstrated that the mode of action of CAR in rodent liver tumorigenesis is not applicable to humans. Despite this, many studies still continue to study the role of CAR in animal models, hence, there is a need to further explore the role of CAR in human diseases particularly cancers. While there is limited evidence for a role of CAR in human cancers, some studies have proposed a tumour-suppressive role of CAR in liver cancer. In addition, recent studies exploring CAR in human livers demonstrated a hepato-protective role for CAR in and more specifically, its ability to drive differentiation and liver regeneration. This review will discuss the role of CAR in liver cancer, with a focus on species differences and its emerging, tumour-suppressive role in liver cancer and its role in the regulation of liver cancer stem cells.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
25
|
Cai X, Feng Y, Xu M, Yu C, Xie W. Gadd45b is required in part for the anti-obesity effect of constitutive androstane receptor (CAR). Acta Pharm Sin B 2021; 11:434-441. [PMID: 33643822 PMCID: PMC7893119 DOI: 10.1016/j.apsb.2020.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Crosstalk between xenobiotic metabolism and energy metabolism in the liver has provided a potential opportunity to target xenobiotic receptors to treat metabolic diseases. Activation of constitutive androstane receptor (CAR), a xenobiotic-sensing nuclear receptor, has been shown to inhibit obesity, suppress hepatic gluconeogenesis, and ameliorate hyperglycemia in rodent models of obesity and type 2 diabetes. However, the underlying molecular mechanism remains to be defined. The growth arrest and DNA damage-inducible gene 45b (Gadd45b), a well-known anti-apoptotic factor, has been shown to be an inducible coactivator of CAR in promoting rapid liver growth. It is unknown whether the effect of CAR on energy metabolism depends on GADD45B. In the present study and by using a high fat diet (HFD)-induced obesity model, we show that reduced body weight gain and improved insulin sensitivity by the CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) were markedly blunted in Gadd45b knockout mice. Mechanistically, the TCPOBOP-responsive inhibition of hepatic lipogenesis, gluconeogenesis, and adipose inflammation observed in wild type mice were largely abolished in Gadd45b knockout mice. We conclude that Gadd45b is required in part for the metabolic benefits of CAR activation.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Endocrinology and Metabolic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
26
|
Yamasaki C, Ishida Y, Yanagi A, Yoshizane Y, Kojima Y, Ogawa Y, Kageyama Y, Iwasaki Y, Ishida S, Chayama K, Tateno C. Culture density contributes to hepatic functions of fresh human hepatocytes isolated from chimeric mice with humanized livers: Novel, long-term, functional two-dimensional in vitro tool for developing new drugs. PLoS One 2020; 15:e0237809. [PMID: 32915792 PMCID: PMC7485858 DOI: 10.1371/journal.pone.0237809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023] Open
Abstract
Chimeric mice with humanized livers are considered a useful animal model for predicting human (h-) drug metabolism and toxicity. In this study, the characteristics of fresh h-hepatocytes (cFHHs, PXB-cells®) isolated from chimeric mice (PXB-mice®) were evaluated in vitro to confirm their utility for drug development. cFHHs cultured at high density (2.13 × 105 cells/cm2) displayed stable production of h-albumin and cytochrome P450 (CYP) 3A activities for at least 21 days. The mRNA expression levels of 10 of 13 CYP, UDP-glucuronosyltransferase (UGT), and transporters were maintained at >10% of the levels of freshly isolated cFHHs after 21 days. From 1 week, many bile canaliculi were observed between cFHHs, and the accumulation of the multidrug resistance-associated protein and bile salt export pump substrates in these bile canaliculi was clearly inhibited by cyclosporin A. Microarray analysis of cFHHs cultured at high density and at low density (0.53 × 105 cells/cm2) revealed that high density culture maintained high expressions of some transcription factors (HNF4α, PXR, and FXR) perhaps involved in the high CYP, UGT and transporter gene expressions of cFHHs. These results strongly suggest that cFHHs could be a novel in vitro tool for drug development studies.
Collapse
Affiliation(s)
| | - Yuji Ishida
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Ami Yanagi
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | | | - Yuha Kojima
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Yuko Ogawa
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | | | - Yumiko Iwasaki
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Seiichi Ishida
- Department of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Chise Tateno
- PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
27
|
Negishi M, Kobayashi K, Sakuma T, Sueyoshi T. Nuclear receptor phosphorylation in xenobiotic signal transduction. J Biol Chem 2020; 295:15210-15225. [PMID: 32788213 DOI: 10.1074/jbc.rev120.007933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear pregnane X receptor (PXR, NR1I2) and constitutive active/androstane receptor (CAR, NR1I3) are nuclear receptors characterized in 1998 by their capability to respond to xenobiotics and activate cytochrome P450 (CYP) genes. An anti-epileptic drug, phenobarbital (PB), activates CAR and its target CYP2B genes, whereas PXR is activated by drugs such as rifampicin and statins for the CYP3A genes. Inevitably, both nuclear receptors have been investigated as ligand-activated nuclear receptors by identifying and characterizing xenobiotics and therapeutics that directly bind CAR and/or PXR to activate them. However, PB, which does not bind CAR directly, presented an alternative research avenue for an indirect ligand-mediated nuclear receptor activation mechanism: phosphorylation-mediated signal regulation. This review summarizes phosphorylation-based mechanisms utilized by xenobiotics to elicit cell signaling. First, the review presents how PB activates CAR (and other nuclear receptors) through a conserved phosphorylation motif located between two zinc fingers within its DNA-binding domain. PB-regulated phosphorylation at this motif enables nuclear receptors to form communication networks, integrating their functions. Next, the review discusses xenobiotic-induced PXR activation in the absence of the conserved DNA-binding domain phosphorylation motif. In this case, phosphorylation occurs at a motif located within the ligand-binding domain to transduce cell signaling that regulates hepatic energy metabolism. Finally, the review delves into the implications of xenobiotic-induced signaling through phosphorylation in disease development and progression.
Collapse
Affiliation(s)
- Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsutomu Sakuma
- School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology 2020; 439:152465. [PMID: 32320717 DOI: 10.1016/j.tox.2020.152465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 μM PBO, 10-1000 μM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 μM PBO and 10-1000 μM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.
Collapse
|
29
|
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol 2020; 16:343-351. [PMID: 32202166 DOI: 10.1080/17425255.2020.1746268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The nuclear receptor CAR plays an important role in the regulation of hepatic responses to xenobiotic exposure, including the induction of hepatocyte proliferation and chemical carcinogenesis. Phenobarbital, a well-known liver cancer promoter, has been found to promote hepatocyte proliferation via CAR activation. However, the molecular mechanisms by which CAR induces liver carcinogenesis remain unknown. In addition, it is believed that CAR-mediated liver carcinogenesis shows a species difference; phenobarbital treatment induces hepatocyte proliferation and liver cancer in rodents but not in humans. However, the mechanisms are also unknown.Areas covered: Several reports indicate that the key oncogenic signaling pathways Wnt/β-catenin and Hippo/YAP are involved in CAR-mediated liver carcinogenesis. We introduce current data about the possible molecular mechanisms involved in CAR-mediated liver carcinogenesis and species differences by focusing on these two signaling pathways.Expert opinion: CAR may activate both the Wnt/β-catenin and Hippo/YAP signaling pathways. The synergistic activation of both signaling pathways seems to be important for CAR-mediated liver cancer development. Low homology between the ligand binding domains of human CAR and rodent CAR might cause species differences in the interactions with proteins that control the Wnt/β-catenin and Hippo/YAP pathways as well as liver cancer induction.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
30
|
Yoshinari K. Role of Nuclear Receptors PXR and CAR in Xenobiotic-Induced Hepatocyte Proliferation and Chemical Carcinogenesis. Biol Pharm Bull 2020; 42:1243-1252. [PMID: 31366862 DOI: 10.1248/bpb.b19-00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear receptors pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR) are xenobiotic-responsible transcriptional factors that belong to the same subfamily and are expressed abundantly in the liver. They play crucial roles in various liver functions including xenobiotic disposition and energy metabolism. CAR is also involved in xenobiotic-induced hepatocyte proliferation and hepatocarcinogenesis in rodents. However, there are some open questions on the association between chemical carcinogenesis and these nuclear receptors. These include the molecular mechanism for CAR-mediated hepatocyte proliferation and hepatocarcinogenesis. Another important question is whether PXR is associated with hepatocyte proliferation. We have recently reported a novel and unique function of PXR associated with murine hepatocyte proliferation: PXR activation alone does not induce hepatocyte proliferation but accelerates hepatocyte proliferation induced by various types of stimuli including CAR- or peroxisome proliferator-activated receptor alpha activating compounds, liver injury, and growth factors. We have also reported a role of yes-associated protein (YAP), a transcriptional cofactor controlling organ size and cell growth under the Hippo pathway, in CAR-mediated hepatocyte proliferation in mice. In this review, I will introduce our recent results as well as related studies on the roles of PXR and CAR in xenobiotic-induced hepatocyte proliferation and their molecular mechanisms.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
31
|
Analysis of β-catenin gene mutations and gene expression in liver tumours of C57BL/10J mice produced by chronic administration of sodium phenobarbital. Toxicology 2019; 430:152343. [PMID: 31836555 DOI: 10.1016/j.tox.2019.152343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
In this study liver tumours produced in male and female mice of the low spontaneous liver tumour incidence C57BL/10J strain treated for 99 weeks with 1000 ppm in the diet with the model constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were analysed for β-catenin mutations by Western immunoblotting and DNA/RNA analysis. Some gene array analysis was also performed to identify genes involved in CAR activation and in β-catenin and Hras gene mutations. Analysis of 8 male and 2 female NaPB-induced liver tumour samples (comprising 2 adenomas, 6 carcinomas and 2 samples containing separate adenomas and carcinomas) revealed truncated β-catenin forms in just 4 male liver tumour samples, with the presence of the truncated β-catenin forms being confirmed by β-catenin exon 1-3 mutation analysis. Microarray gene expression analysis was performed with three of the NaPB-induced male mouse liver tumour samples where β-catenin mutations had not been identified by Western immunoblotting and DNA/RNA analysis and with three liver samples from both NaPB-induced non-tumour tissue and control animals. Treatment with NaPB resulted in induction of Cyp2b subfamily gene expression in both NaPB-induced mouse liver tumours and in NaPB-treated non-tumour tissue. In addition, the gene expression analysis demonstrated that the β-catenin and Hras pathways were not modified in NaPB-induced mouse liver tumours not exhibiting truncated β-catenin forms. Overall, while chronic administration of the model CAR activator NaPB results in both hepatocellular adenoma and carcinoma in the low spontaneous liver tumour incidence C57BL/10J mouse strain, only 40 % of the liver tumours evaluated in this study had β-catenin mutations. These results are in agreement with previous studies with the CAR activator oxazepam and demonstrate that mouse liver tumours induced by nongenotoxic CAR activators in the absence of initiation with a genotoxic agent are due to a number of mechanisms, including those largely independent of either the Wnt/β-catenin signalling pathway or Hras oncogene mutations.
Collapse
|
32
|
Yamaguchi T, Maeda M, Ogata K, Abe J, Utsumi T, Kimura K. The effects on the endocrine system under hepatotoxicity induction by phenobarbital and di(2-ethylhexyl)phthalate in intact juvenile male rats. J Toxicol Sci 2019; 44:459-469. [PMID: 31270302 DOI: 10.2131/jts.44.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phenobarbital (PB) and Di (2-ethylhexyl) phthalate (DEHP), an anti-epileptic drug and a plasticizer used in flexible polyvinylchloride formulations, respectively, are well-known typical hepatotoxicants. This study investigated the effects of PB (100 mg/kg/day) or DEHP (500 mg/kg/day) on the endocrine system in intact juvenile/peripubertal male rats exposed for 31 days beginning on postnatal day 23. Slight hormone level changes, histopathological changes in thyroid gland or induction of UDP-glucuronosyltransferase in liver were observed in both the PB and DEHP groups. One of the assumed mechanisms inducing thyroid effects is predictable to be secondary changes based on the enhancement in thyroid hormone metabolism via the induction of hepatic microsomal enzymes. No reproductive system-related changes in organ weights, histopathology, and sexual maturation were observed in both groups. Lower testosterone level was observed in the PB group. CYP2B and CYP3A, which are involved in testosterone metabolism, were induced in liver of the PB group. There was no change of 17β-hydroxysteroid dehydrogenase activity in testis of both groups. Lower testosterone level in the PB-treated male rats was attributed to an indirect, hepatotoxicity-associated effect on the reproductive system and not to direct effects on testis such as the antiandrogenic activity and the inhibition of steroidogenesis. These results did not indicate that PB or DEHP exposure affects the endocrine system directly.
Collapse
Affiliation(s)
- Takafumi Yamaguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.,Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Minoru Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Toru Utsumi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | - Koji Kimura
- Laboratory of Animal Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
33
|
Wiemann C, Goettel M, Vardy A, Elcombe BM, Elcombe CR, Chatham LR, Wang H, Li L, Buesen R, Honarvar N, Treumann S, Marxfeld H, Groeters S, Lake BG. Metazachlor: Mode of action analysis for rat liver tumour formation and human relevance. Toxicology 2019; 426:152282. [DOI: 10.1016/j.tox.2019.152282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
|
34
|
Peffer RC, Cowie DE, Currie RA, Minnema DJ. Sedaxane-Use of Nuclear Receptor Transactivation Assays, Toxicogenomics, and Toxicokinetics as Part of a Mode of Action Framework for Rodent Liver Tumors. Toxicol Sci 2019; 162:582-598. [PMID: 29244179 DOI: 10.1093/toxsci/kfx281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental data demonstrate a mode of action (MOA) for liver tumors in male rats and mice treated with sedaxane that starts with activation of CAR, followed by altered expression of CAR-responsive genes, increased cell proliferation, and eventually clonal expansion of preneoplastic cells, leading to the development of altered foci and tumors. This MOA is nonrelevant to human risk assessments. Methods and results in the MOA work for sedaxane illustrate promising directions that future MOA studies may be able to employ, in the spirit of "Tox21" and reduction of in vivo animal use: (1) currently available in vitro CAR and PXR reporter assays demonstrated that sedaxane is a direct CAR activator in mice and rats, and a weak PXR activator in rats; (2) mouse liver microarray results compared with a published CAR biomarker signature (based on 83 genes) showed a clear, statistical match, and a lack of correlation to similar biomarker signatures for AhR, PPARα, and STAT5B; (3) Ki67 immunohistochemistry and zonal image analysis showed significant increases in this marker of cell proliferation in mouse liver, without the need to dose a DNA labeling agent; and (4) toxicokinetic analysis of Cmax levels of sedaxane in blood showed a marked species difference between mice and rats that helps to explain differences in sensitivity to sedaxane. Incorporating these tools into the study plan for a new agrochemical or drug during development offers a promising alternative to the traditional need to conduct later, specialized MOA studies after the results of chronic bioassays are known.
Collapse
Affiliation(s)
- Richard C Peffer
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| | - David E Cowie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Richard A Currie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Daniel J Minnema
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| |
Collapse
|
35
|
Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Arch Toxicol 2018; 92:3471-3486. [DOI: 10.1007/s00204-018-2321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
|
36
|
Mackowiak B, Hodge J, Stern S, Wang H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab Dispos 2018; 46:1361-1371. [PMID: 29759961 PMCID: PMC6124513 DOI: 10.1124/dmd.118.081042] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jessica Hodge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
37
|
Yamada T. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb) 2018; 7:681-696. [PMID: 30090614 PMCID: PMC6062351 DOI: 10.1039/c7tx00288b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent carcinogenicity studies are useful for screening for human carcinogens but they are not perfect. Some modes of action (MOAs) lead to cancers in both experimental rodents and humans, but others that lead to cancers in rodents do not do so in humans. Therefore, analysing the MOAs by which chemicals produce tumours in rodents and determining the relevance of such tumour data for human risk are critical. Recently, experimental data were obtained as case examples of an evaluation of the human relevance of pyrethroid (metofluthrin and momfluorothrin)- and pyrethrins-induced liver tumours in rats based on MOA. The MOA analysis, based on the International Programme on Chemical Safety (IPCS) framework, concluded that experimental data strongly support that the postulated MOA for metofluthrin-, momfluorothrin- and pyrethrins-produced rat hepatocellular tumours is mediated by constitutive androstane receptor (CAR) activation. Since metofluthrin and momfluorothrin are close structural analogues, reproducible outcomes for both chemicals provide confidence in the MOA findings. Furthermore, cultured human hepatocyte studies and humanized chimeric mouse liver studies demonstrated species difference between human hepatocytes (refractory to the mitogenic effects of these compounds) and rat hepatocytes (sensitive to their mitogenic effects). These data strongly support the hypothesis that the CAR-mediated MOA for liver tumorigenesis is of low carcinogenic risk for humans. In this research, in addition to cultured human hepatocyte studies, the usefulness of the humanized chimeric liver mouse models was clearly demonstrated. These data substantially influenced decisions in regulatory toxicology. In this review I comprehensively discuss the human relevance of the CAR-mediated MOA for rodent liver tumorigenesis based on published information, including our recent molecular research on CAR-mediated MOA.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
38
|
Lake BG. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol Res (Camb) 2018; 7:697-717. [PMID: 30090615 PMCID: PMC6060665 DOI: 10.1039/c8tx00008e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023] Open
Abstract
A large number of nongenotoxic chemicals have been shown to increase the incidence of liver tumours in rats and/or mice by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with the model CAR activator phenobarbital (PB) and its sodium salt (sodium phenobarbital; NaPB) have demonstrated that the key and associative events for rat and mouse liver tumour formation include CAR activation, increased hepatocyte replicative DNA synthesis (RDS), induction of cytochrome P450 CYP2B subfamily enzymes, liver hypertrophy, increased altered hepatic foci and hepatocellular adenomas/carcinomas. The key species difference between the rat and mouse compared to humans, is that human hepatocytes are refractory to the mitogenic effects of PB/NaPB and other CAR activators. While PB/NaPB and other CAR activators stimulate RDS in rat and mouse hepatocytes in both in vitro and in vivo studies, such compounds do not stimulate RDS in cultured human hepatocytes and in in vivo studies performed in chimeric mice with humanised livers. In terms of species differences in RDS, unlike the rat and mouse, humans are similar to other species such as the Syrian hamster and guinea pig in being nonresponsive to the mitogenic effects of CAR activators. Overall, the MOA for rat and mouse liver tumour formation by PB/NaPB and other CAR activators is considered qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies, which demonstrate that chronic treatment with PB does not increase the incidence of liver cancer in humans.
Collapse
Affiliation(s)
- Brian G Lake
- Centre for Toxicology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|
39
|
Minimum datasets to establish a CAR-mediated mode of action for rodent liver tumors. Regul Toxicol Pharmacol 2018; 96:106-120. [DOI: 10.1016/j.yrtph.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
|
40
|
Haines C, Elcombe BM, Chatham LR, Vardy A, Higgins LG, Elcombe CR, Lake BG. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes. Toxicology 2018; 396-397:23-32. [PMID: 29425889 DOI: 10.1016/j.tox.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators.
Collapse
Affiliation(s)
- Corinne Haines
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Barbara M Elcombe
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom.
| | - Larry G Higgins
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Clifford R Elcombe
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Brian G Lake
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom; Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
41
|
Felter SP, Foreman JE, Boobis A, Corton JC, Doi AM, Flowers L, Goodman J, Haber LT, Jacobs A, Klaunig JE, Lynch AM, Moggs J, Pandiri A. Human relevance of rodent liver tumors: Key insights from a Toxicology Forum workshop on nongenotoxic modes of action. Regul Toxicol Pharmacol 2018; 92:1-7. [PMID: 29113941 PMCID: PMC11350555 DOI: 10.1016/j.yrtph.2017.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The Toxicology Forum sponsored a workshop in October 2016, on the human relevance of rodent liver tumors occurring via nongenotoxic modes of action (MOAs). The workshop focused on two nuclear receptor-mediated MOAs (Constitutive Androstane Receptor (CAR) and Peroxisome Proliferator Activated Receptor-alpha (PPARα), and on cytotoxicity. The goal of the meeting was to review the state of the science to (1) identify areas of consensus and differences, data gaps and research needs; (2) identify reasons for inconsistencies in current regulatory positions; and (3) consider what data are needed to demonstrate a specific MOA, and when additional research is needed to rule out alternative possibilities. Implications for quantitative risk assessment approaches were discussed, as were implications of not considering MOA and dose in hazard characterization and labeling schemes. Most, but not all, participants considered the CAR and PPARα MOAs as not relevant to humans based on quantitative and qualitative differences. In contrast, cytotoxicity is clearly relevant to humans, but a threshold applies. Questions remain for all three MOAs concerning what data are necessary to determine the MOA and to what extent it is necessary to exclude other MOAs.
Collapse
Affiliation(s)
- Susan P Felter
- Procter and Gamble, Central Product Safety, Mason, OH, United States.
| | | | - Alan Boobis
- Department of Medicine, Imperial College London, London, UK
| | - J Christopher Corton
- National Health and Environmental Effects Research Lab, US EPA, Durham, NC, United States
| | - Adriana M Doi
- BASF Corporation, Research Triangle Park, NC, United States
| | - Lynn Flowers
- Office of Science Policy, US EPA, Washington DC, United States
| | - Jay Goodman
- Michigan State University, Dept. Pharmacology and Toxicology, East Lansing, MI, United States
| | - Lynne T Haber
- Risk Science Center, Dept. of Environmental Health, University of Cincinnati, Cincinnati, OH, United States
| | - Abigail Jacobs
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | | - Jonathan Moggs
- Novartis Institutes for BioMedical Research, Preclinical Safety, Translational Medicine, Basel, Switzerland
| | - Arun Pandiri
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
42
|
Sanoh S, Ohta S. [Contribution of chimeric mice with a humanized liver to the evaluation of pharmacology, toxicity, and pharmacokinetics in drug discovery and development]. Nihon Yakurigaku Zasshi 2018; 151:213-220. [PMID: 29760366 DOI: 10.1254/fpj.151.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To develop new drugs with high efficacy and safety, it is important to predict the pharmacological, toxicological, and pharmacokinetic profiles of drug candidates in humans. Chimeric mice with a humanized liver are mice in which human hepatocytes have been transplanted, such that mouse liver cells are replaced with human hepatocytes; these mice have been used as prediction models. Studies performed thus far indicate that chimeric mice with a humanized liver can be used for the prediction of human-specific metabolite formation and plasma concentration-time curves for several drugs. Furthermore, studies advocate the utility of chimeric mice with a humanized liver for modelling drug-induced hepatotoxicity and disease such as hepatitis virus infection in safety and pharmacological evaluations respectively. Taken together, these findings indicate that chimeric mice with a humanized liver can be used to evaluate the relationship between pharmacokinetics, toxicity, and efficacy; the contribution by active metabolites may also be assessed. In recent years, new and improved animal models have been developed to overcome the disadvantages of chimeric mice with a humanized liver. It is expected that their usefulness for optimization of drug candidates and translational research in drug discovery and development will further increase.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
43
|
Ohara A, Takahashi Y, Kondo M, Okuda Y, Takeda S, Kushida M, Kobayashi K, Sumida K, Yamada T. Candidate genes responsible for early key events of phenobarbital-promoted mouse hepatocellular tumorigenesis based on differentiation of regulating genes between wild type mice and humanized chimeric mice. Toxicol Res (Camb) 2017; 6:795-813. [PMID: 30090543 PMCID: PMC6062386 DOI: 10.1039/c7tx00163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
Phenobarbital (PB) is a nongenotoxic hepatocellular carcinogen in rodents. PB induces hepatocellular tumors by activating the constitutive androstane receptor (CAR). Some previous research has suggested the possible involvement of epigenetic regulation in PB-promoted hepatocellular tumorigenesis, but the details of its molecular mechanism are not fully understood. In the present study, comprehensive analyses of DNA methylation, hydroxymethylation and gene expression using microarrays were performed in mouse hepatocellular adenomas induced by a single 90 mg kg-1 intraperitoneal injection dose of diethylnitrosamine (DEN) followed by 500 ppm PB in the diet for 27 weeks. DNA modification and expression of hundreds of genes are coordinately altered in PB-induced mouse hepatocellular adenomas. Of these, gene network analysis showed alterations of CAR signaling and tumor development-related genes. Pathway enrichment analysis revealed that differentially methylated or hydroxymethylated genes belong mainly to pathways involved in development, immune response and cancer cells in contrast to differentially expressed genes belonging primarily to the cell cycle. Furthermore, overlap was evaluated between the genes with altered expression levels with 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) alterations in mouse hepatocellular adenoma induced by DEN/PB and the genes with altered expression levels in the liver of CD-1 mice or humanized chimeric mice treated with PB for 7 days. With the integration of transcriptomic and epigenetic approaches, we detected candidate genes responsible for early key events of PB-promoted mouse hepatocellular tumorigenesis. Interestingly, these genes did not overlap with genes altered by the PB treatment of humanized chimeric mice, thus suggesting a species difference between the effects of PB in mouse and human hepatocytes.
Collapse
Affiliation(s)
- Ayako Ohara
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Yasuhiko Takahashi
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Miwa Kondo
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Yu Okuda
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Shuji Takeda
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Masahiko Kushida
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Kentaro Kobayashi
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Kayo Sumida
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
44
|
Nagahori H, Nakamura K, Sumida K, Ito S, Ohtsuki S. Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone Carbonitrile. J Proteome Res 2017; 16:3634-3645. [PMID: 28825834 DOI: 10.1021/acs.jproteome.7b00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcriptomic, proteomic, phosphoproteomic, and metabolomic analyses were combined to determine the role of pregnane X receptor (PXR) in nongenotoxic signaling and energy homeostasis in liver after rats were repeatedly orally dosed with the PXR agonist pregnenolone carbonitrile (PCN) for 7 days. Analyses of mRNAs and proteins in the supernatant, membrane, and cytosolic fractions of enlarged liver homogenates showed diverse expression profiles. Gene set enrichment analysis showed that the synchronous increase in mRNAs and proteins involved in chemical carcinogenesis and the response to drug was possibly mediated by the PXR pathway and proteasome core complex assembly was possibly mediated by the Nrf2 pathway. In addition, levels of proteins in the endoplasmic reticulum lumen and involved in the acute-phase response showed specific increase with no change in mRNA level, and those composed of the mitochondrial inner membrane showed specific decrease. The analysis of phosphorylated peptides of poly(A) RNA binding proteins showed a decrease in phosphorylation, possibly by casein kinase 2, which may be related to the regulation of protein expression. Proteins involved in insulin signaling pathways showed an increase in phosphorylation, possibly by protein kinase A, and those involved in apoptosis showed a decrease. Metabolomic analysis suggested the activation of the pentose phosphate and anaerobic glycolysis pathways and the increase of amino acid and fatty acid levels, as occurs in the Warburg effect. In conclusion, the results of combined analyses suggest that PXR's effects are due to transcriptional and post-transcriptional regulation with alteration of nongenotoxic signaling pathways and energy homeostasis.
Collapse
Affiliation(s)
- Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | | |
Collapse
|
45
|
Okuda Y, Kushida M, Sumida K, Nagahori H, Nakamura Y, Higuchi H, Kawamura S, Lake BG, Cohen SM, Yamada T. Editor’s Highlight: Mode of Action Analysis for Rat Hepatocellular Tumors Produced by the Synthetic Pyrethroid Momfluorothrin: Evidence for Activation of the Constitutive Androstane Receptor and Mitogenicity in Rat Hepatocytes. Toxicol Sci 2017; 158:412-430. [DOI: 10.1093/toxsci/kfx102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Terranova R, Vitobello A, Del Rio Espinola A, Wolf CR, Schwarz M, Thomson J, Meehan R, Moggs J. Progress in identifying epigenetic mechanisms of xenobiotic-induced non-genotoxic carcinogenesis. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Arch Toxicol 2017; 91:2895-2907. [DOI: 10.1007/s00204-016-1925-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
|
48
|
Okuda Y, Kushida M, Kikumoto H, Nakamura Y, Higuchi H, Kawamura S, Cohen SM, Lake BG, Yamada T. Evaluation of the human relevance of the constitutive androstane receptor-mediated mode of action for rat hepatocellular tumor formation by the synthetic pyrethroid momfluorothrin. J Toxicol Sci 2017; 42:773-788. [DOI: 10.2131/jts.42.773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yu Okuda
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
- Graduate School of Environmental and Life Science, Okayama University
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Hiroko Kikumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | | | - Hashihiro Higuchi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Canter, USA
| | - Brian G. Lake
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, United Kingdom
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| |
Collapse
|
49
|
Cohen SM, Arnold LL. Critical role of toxicologic pathology in a short-term screen for carcinogenicity. J Toxicol Pathol 2016; 29:215-227. [PMID: 27821906 PMCID: PMC5097964 DOI: 10.1293/tox.2016-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
Carcinogenic potential of chemicals is currently evaluated using a two year bioassay in rodents. Numerous difficulties are known for this assay, most notably, the lack of information regarding detailed dose response and human relevance of any positive findings. A screen for carcinogenic activity has been proposed based on a 90 day screening assay. Chemicals are first evaluated for proliferative activity in various tissues. If negative, lack of carcinogenic activity can be concluded. If positive, additional evaluation for DNA reactivity, immunosuppression, and estrogenic activity are evaluated. If these are negative, additional efforts are made to determine specific modes of action in the animal model, with a detailed evaluation of the potential relevance to humans. Applications of this approach are presented for liver and urinary bladder. Toxicologic pathology is critical for all of these evaluations, including a detailed histopathologic evaluation of the 90 day assay, immunohistochemical analyses for labeling index, and involvement in a detailed mode of action analysis. Additionally, the toxicologic pathologist needs to be involved with molecular evaluations and evaluations of new molecularly developed animal models. The toxicologic pathologist is uniquely qualified to provide the expertise needed for these evaluations.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| |
Collapse
|
50
|
Groll N, Petrikat T, Vetter S, Wenz C, Dengjel J, Gretzmeier C, Weiss F, Poetz O, Joos TO, Schwarz M, Braeuning A. Inhibition of β-catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology 2016; 370:94-105. [PMID: 27693619 DOI: 10.1016/j.tox.2016.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
The antiepileptic drug phenobarbital (PB) exerts hepatic effect based on indirect activation of the constitutive androstane receptor (CAR) via inhibition of the epidermal growth factor receptor (EGFR) and the kinase Src. It has furthermore been observed that in mice PB suppresses the growth of hepatocellular carcinoma with overactive signaling through the oncogenic Wnt/β-catenin pathway, thus suggesting an interference of PB with β-catenin signaling. The present work was aimed to characterize effects of PB on β-catenin signaling at different cellular levels and to elucidate molecular details of the interaction of PB and β-catenin in an in vitro system of mouse hepatoma cells. PB efficiently inhibited signaling through β-catenin. This phenomenon was in-depth characterized at the levels of β-catenin protein accumulation and transcriptional activity. Mechanistic analyses revealed that the effect of PB on β-catenin signaling was independent of the activation of CAR and also independent of the cytosolic multi-protein complex responsible for physiological post-translation control of the β-catenin pathway via initiation of β-catenin degradation. Instead, evidence is provided that PB diminishes β-catenin protein production by inhibition of protein synthesis via signal transduction through EGFR and Src. The proposed mechanism is well in agreement with previously published activities of PB at the EGFR and Src-mediated regulation of β-catenin mRNA translation. Inhibition of β-catenin signaling by PB through the proposed mechanism might explain the inhibitory effect of PB on the growth of specific sub-populations of mouse liver tumors. In conclusion, the present data comprehensively characterize the effect of PB on β-catenin signaling in mouse hepatoma cells in vitro and provides mechanistic insight into the molecular processes underlying the observed effect.
Collapse
Affiliation(s)
- Nicola Groll
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Tamara Petrikat
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Christine Wenz
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Joern Dengjel
- University of Fribourg, Dept. of Biology, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Christine Gretzmeier
- University of Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Frederik Weiss
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Michael Schwarz
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany; Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|