1
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Demissie S, Mekonen S, Awoke T, Teshome B, Mengistie B. Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study. Toxicol Rep 2024; 12:100-110. [PMID: 38229921 PMCID: PMC10789645 DOI: 10.1016/j.toxrep.2024.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Background The carcinogenic properties of arsenic make it one of the most hazardous chemicals globally. Nevertheless, the exact level of human exposure to arsenic and the associated risks of cancer and non-cancer effects through different pathways in Ethiopia are still uncertain. Objective The primary aim of this study was to evaluate the risk of both cancer and non-cancer outcomes among children and adults who have been exposed to arsenic through drinking water in the Adami Tulu Jido Kombolcha district of Ethiopia. Methods For this study, a longitudinal study design was employed. A total of 45 groundwater sources were sampled using the census sampling method. The concentrations of total arsenic were measured using Agilent 7900 series inductively coupled plasma mass spectrometry. Carcinogenic and noncarcinogenic risk assessments were conducted by calculating lifetime cancer risk and hazard quotients. Microsoft Office Excel was utilized to calculate human health risk indices, and descriptive statistical analysis were performed using SPSS software. Results Our findings revealed that during the dry season, the mean arsenic concentration in the groundwater samples was 11.15 ± 9.38 µg/L, while during the rainy season, it was 10.67 ± 8.16 µg/L. The total cancer risk for children, resulting from oral ingestion and skin contact, was 1.15 × 10-2 and 1.07 × 10-2 during the dry and rainy seasons, respectively. For adults, the total cancer risk from oral ingestion and skin contact during the dry and rainy seasons was 4.95 × 10-3 and 4.59 × 10-3, respectively. Furthermore, the total hazard quotients for children via oral ingestion and skin absorption were 25.9 and 24.0 during the dry and rainy seasons, respectively. For adults, the total hazard quotients from ingestion and dermal contact during the dry and rainy seasons were 11 and 10, respectively. Conclusions The findings indicate that the risks of cancer and non-cancer effects resulting from arsenic exposure through ingestion and dermal exposure were found to exceed the acceptable thresholds in both seasons. These results emphasize the urgent need for focused attention on the study population in the study area due to the high likelihood of experiencing adverse health outcomes.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, University of Gondar, Ethiopia
| | - Birhanu Teshome
- Division of Epidemiology and Biostatistics, Stellenbosch University, South Africa
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| |
Collapse
|
3
|
Martinez-Morata I, Parvez F, Wu H, Eunus M, Goldsmith J, Ilievski V, Slavkovich V, Balac O, Izuchukwu C, Glabonjat RA, Ellis T, Nasir Uddin M, Islam T, Sadat Arif A, van Geen A, Navas-Acien A, Graziano JH, Gamble MV. Influence of folic acid and vitamin B12 supplementation on arsenic methylation: A double-blinded, placebo-controlled trial in Bangladeshi children. ENVIRONMENT INTERNATIONAL 2024; 187:108715. [PMID: 38728816 PMCID: PMC11316459 DOI: 10.1016/j.envint.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inorganic arsenic is metabolized to monomethyl- (MMAs) and dimethyl- (DMAs) species via one-carbon metabolism (OCM); this facilitates urinary arsenic elimination. OCM is influenced by folate and vitamin B12 and previous randomized control trials (RCTs) showed that folic acid (FA) supplementation increases arsenic methylation in adults. This RCT investigated the effects of FA + B12 supplementation on arsenic methylation in children, a key developmental stage where OCM supports growth. METHODS A total of 240 participants (8-11 years, 53 % female) drinking from wells with arsenic concentrations > 50 μg/L, were encouraged to switch to low arsenic wells and were randomized to receive 400 μg FA + 5 μg B12 or placebo daily for 12-weeks. Urine and blood samples were collected at baseline, week 1 (only urine) and week 12. Generalized estimated equation (GEE) models were used to assess treatment effects on arsenic species in blood and urine. RESULTS At baseline, the mean ± SD total blood and urinary arsenic were 5.3 ± 2.9 μg/L and 91.2 ± 89.5 μg/L. Overall, total blood and urine arsenic decreased by 11.7% and 17.6%, respectively, at the end of follow up. Compared to placebo, the supplementation group experienced a significant increase in the concentration of blood DMAs by 14.0% (95% CI 5.0, 25.0) and blood secondary methylation index (DMAs/MMAs) by 0.19 (95% CI: 0.09, 0.35) at 12 weeks. Similarly, there was a 1.62% (95% CI: 0.43, 20.83) significantly higher urinary %DMAs and -1.10% (95% CI: -1.73, -0.48) significantly lower urinary %MMAs in the supplementatio group compared to the placebo group after 1 week. The direction of the changes in the urinary %iAs, %MMAs, and %DMAs at week 12 were consistent with those at week 1, though estimates were not significant. Treatment effects were stronger among participants with higher baseline blood arsenic concentrations. Results were consistent across males and females, and participants with higher and lower folate and B12 status at baseline. CONCLUSION This RCT confirms that FA + B12 supplementation increases arsenic methylation in children as reflected by decreased MMAs and increased DMAs in blood and urine. Nutritional interventions may improve arsenic methylation and elimination in children, potentially reducing arsenic toxicity while also improving nutritional status.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mahbubul Eunus
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Chiugo Izuchukwu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, NY, USA; Minnesota Pollution Control Agency, St. Paul, MN, USA
| | - Mohammad Nasir Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Anwar Sadat Arif
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA.
| |
Collapse
|
4
|
Oncina-Cánovas A, Vioque J, Riutort-Mayol G, Soler-Blasco R, Irizar A, Barroeta Z, Fernández-Somoano A, Tardón A, Vrijheid M, Guxens M, Carey M, Meharg C, Ralphs K, McCreanor C, Meharg A, Signes-Pastor AJ. Pro-vegetarian dietary patterns and essential and heavy metal exposure in children of 4-5-years from the INfancia y medio Ambiente cohort (INMA). Int J Hyg Environ Health 2024; 257:114344. [PMID: 38430670 DOI: 10.1016/j.ijheh.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.
Collapse
Affiliation(s)
- Alejandro Oncina-Cánovas
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| | - Jesús Vioque
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Raquel Soler-Blasco
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ziortza Barroeta
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ana Fernández-Somoano
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Adonina Tardón
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Martine Vrijheid
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Mònica Guxens
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Manus Carey
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Caroline Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Kathryn Ralphs
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Coalain McCreanor
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Andrew Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Antonio J Signes-Pastor
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| |
Collapse
|
5
|
Sanyal T, Das A, Bhattacharjee S, Gump BB, Bendinskas K, Bhattacharjee P. Targeting the 'DNA methylation mark': Analysis of early epigenetic-alterations in children chronically exposed to arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169049. [PMID: 38052388 DOI: 10.1016/j.scitotenv.2023.169049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Chronic exposure to arsenic causes adverse health effects in children. Aberrant epigenetic modifications including altered DNA methylation pattern are one of the major steps towards malignant transformation of cells. Our group has previously identified significant alteration in DNA methylation mark in arsenic exposed adults, affecting major biological pathways. Till date, no information is available exploring the altered DNA methylation mark in telomere regulation and altered mitochondrial functionality in association with DNA damage in arsenic-exposed children. Our study aims in identifying signature epigenetic pattern associated with telomere lengthening, mitochondrial functionality and DNA damage repair in children with special emphasis on DNA methylation. Biological samples (blood and urine) and drinking water were collected from the children aged between 5 and 16 years of arsenic exposed areas (N = 52) of Murshidabad district and unexposed areas (N = 50) of East Midnapur districts, West Bengal, India. Methylation-specific PCR was performed to analyse subtelomeric methylation status and promoter methylation status of target genes. Results revealed altered DNA methylation profile in the exposed children compared to unexposed. Promoter hypermethylation was observed in MLH1 and MSH2 (p < 0.05 and p < 0.001) indicating inefficiency in DNA damage repair. Hypomethylation in mitochondrial D-loop (p < 0.05) and TFAM promoter region (p < 0.05) along with increased mitochondrial DNA copy number among exposed children was also observed. Significant increase in telomere length and region specific subtelomeric hypermethylation (XpYp, p < 0.05) was found. Analysis of S-Adenosyl Methionine (SAM) and 8-oxoDG level revealed significant depletion of SAM (p < 0.001) and elevated oxidative DNA damage (p < 0.001) respectively in arsenic toxicity. Our study identified key methylation patterns in arsenic-exposed children which may act as an early predictive biomarker in the near future. Further in-depth studies involving large sample size and transcriptomic analysis are required for understanding the mechanistic details.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ankita Das
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | | | - Brooks B Gump
- Department of Chemistry, State University of New York College at Oswego, Oswego, NY 13126, USA
| | - Kestutis Bendinskas
- Falk College of Sport and Human Dynamics, Department of Public Health, Syracuse University, Syracuse, NY 13244, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
6
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Cheff DM, Skröder H, Akhtar E, Cheng Q, Hall MD, Raqib R, Kippler M, Vahter M, Arnér ES. Arsenic exposure and increased C-reactive protein are independently associated with lower erythrocyte glutathione peroxidase activity in Bangladeshi children. REDOX BIOCHEMISTRY AND CHEMISTRY 2023; 5-6:100015. [PMID: 37908807 PMCID: PMC10613583 DOI: 10.1016/j.rbc.2023.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Toxic metal contaminants present in food and water have widespread effects on health and disease. Chalcophiles, such as arsenic, cadmium, and mercury, show a high affinity to selenium and exposure to these metals could have a modulating effect on enzymes dependent on selenocysteine in their active sites. The aim of this study was to assess the influence of these metals on the activity of the selenoprotein glutathione peroxidase 1 (GPX1) in erythrocytes of 100 children residing in rural Bangladesh, where drinking water often contains arsenic. GPX1 expression, as measured using high-throughput immunoblotting, showed little correlation with GPX activity (rs = 0.02, p = 0.87) in blood samples. Toxic metals and selenium measured in erythrocytes using inductively coupled plasma mass spectrometry (ICP-MS) and C-reactive protein (CRP) measured in plasma, were all considered as effectors of this divergence in GPX enzymatic activity. Arsenic concentrations in erythrocytes were most influential for GPX1 activity (rs = -0.395, p < 0.0001), and CRP levels also negatively impacted GPX1 activity (rs = -0.443, p < 0.0001). These effects appear independent of each other as arsenic concentrations and CRP showed no correlation (rs = 0.124, p = 0.2204). Erythrocyte selenium, cadmium, and mercury did not show any correlation with GPX1 activity, nor with CRP or arsenic. Our findings suggest that childhood exposure to inorganic arsenic, as well as inflammation triggering the release of CRP, may negatively affect GPX1 activity in erythrocytes.
Collapse
Affiliation(s)
- Dorian M. Cheff
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Evana Akhtar
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Rubhana Raqib
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Elias S.J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
8
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
9
|
Du C, Li Z. Contamination and health risks of heavy metals in the soil of a historical landfill in northern China. CHEMOSPHERE 2023; 313:137349. [PMID: 36435322 DOI: 10.1016/j.chemosphere.2022.137349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Landfill-induced heavy metal (HM) contamination of soils is a widespread and complex problem. The levels and potential hazards of HM contamination in landfills must be evaluated before they can be reused for any purpose. In order to reuse a historical landfill in northern China, 376 sampling sites were selected in 2019 using the checkerboard layout method, and the levels of arsenic (As), mercury (Hg), antimony (Sb), copper (Cu), lead (Pb), cadmium (Cd), nickel (Ni), zinc (Zn), and thallium (Tl) in the soil were measured. Multiple evaluation methods established the HM pollution levels, agricultural suitability, and health risks associated with the sampling sites. In most parts of the study area, the concentrations of all nine HMs exceeded the screening levels and maximum allowable concentrations for agricultural soils. Only the soils in Zones 5 and 6 can be used for agricultural activity. Moreover, the deep soils were heavily contaminated with HMs in certain areas, possibly because of leaching and infiltration in the surface soil and the rise and diffusion of polluted groundwater. The soil HMs in the study area posed a higher carcinogenic risks to both adults and children. The average carcinogenic risk associated with As was 6.12 × 10-4, which was the major contributor to carcinogenic risk at all HM-contaminated sites. The results of this work empirically demonstrated that soil HM pollution is severe and problematic in the study area and remedial measures are urgently required.
Collapse
Affiliation(s)
- Chuan Du
- State Nuclear Electric Power Planning Design and Research Institute CO., LTD, Beijing, 100095, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhanping Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China; Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Malin Igra A, Rahman A, Johansson AL, Pervin J, Svefors P, Arifeen SE, Vahter M, Persson LÅ, Kippler M. Early Life Environmental Exposure to Cadmium, Lead, and Arsenic and Age at Menarche: A Longitudinal Mother-Child Cohort Study in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27003. [PMID: 36729392 PMCID: PMC9894154 DOI: 10.1289/ehp11121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several metals act as endocrine disruptors, but there are few large longitudinal studies about associations with puberty onset. OBJECTIVES We evaluated whether early life cadmium, lead, and arsenic exposure was associated with timing of menarche. METHODS In a mother-child cohort in rural Bangladesh (n=935), the exposure was assessed by concentrations in maternal erythrocytes in early pregnancy and in girls' urine at 5 and 10 years of age using inductively coupled plasma mass spectrometry. The girls were interviewed twice, at average ages 13.3 [standard deviation (SD)=0.43] and 13.8 (SD=0.43) y, and the date of menarche, if present, was recorded. Associations were assessed using Kaplan-Meier analysis and multivariable-adjusted Cox regression. RESULTS In total, 77% of the girls (n=717) had reached menarche by the second follow-up. The median age of menarche among all girls was 13.0 y (25th-75th percentiles: 12.4-13.7 y). At 10 years of age, median urinary cadmium was 0.25μg/L (5th-95th percentiles: 0.087-0.72μg/L), lead 1.6μg/L (0.70-4.2μg/L), and arsenic 54μg/L (19-395μg/L). Given the same age, girls in the highest quartile of urinary cadmium at 5 and 10 years of age had a lower rate of menarche than girls in the lowest quartile, with an adjusted hazard ratio of (HR) 0.80 (95% CI: 0.62, 1.01) at 5 years of age, and 0.77 (95% CI: 0.60, 0.98) at 10 years of age. This implies that girls in the highest cadmium exposure quartile during childhood had a higher age at menarche. Comparing girls in the highest to the lowest quartile of urinary lead at 10 years of age, the former had a higher rate of menarche [adjusted HR = 1.23 (95% CI: 0.97, 1.56)], implying lower age at menarche, whereas there was no association with urinary lead at 5 years of age. Girls born to mothers in the highest quartile of erythrocyte arsenic during pregnancy were less likely to have attained menarche than girls born to mothers in the lowest quartile [adjusted HR= 0.79 (95% CI: 0.62, 0.99)]. No association was found with girls' urinary arsenic exposure. DISCUSSION Long-term childhood cadmium exposure was associated with later menarche, whereas the associations with child lead exposure were inconclusive. Maternal exposure to arsenic, but not cadmium or lead, was associated with later menarche. https://doi.org/10.1289/EHP11121.
Collapse
Affiliation(s)
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anna L.V. Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Pernilla Svefors
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Åke Persson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Carberry CK, Ferguson SS, Beltran AS, Fry RC, Rager JE. Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicol In Vitro 2022; 83:105412. [PMID: 35688329 PMCID: PMC9296547 DOI: 10.1016/j.tiv.2022.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen S Ferguson
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, USA
| | - Adriana S Beltran
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Bilici N, Doğan E, Sevinç E, Sevinç N, Akinci G, Musmul A, Cengiz M, Şahin IK, Aslanipour B, Ayhanci A. Blood and Stool Arsenic Levels Are Decisive for Diagnosing Children's Functional Gastrointestinal Disease (FGD). Biol Trace Elem Res 2022; 200:3050-3059. [PMID: 34564832 DOI: 10.1007/s12011-021-02919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Pediatric gastroenteritis is a potentially fatal disease that accounts for 10% of childhood deaths. The main risk is environmental factors and nutrition. Arsenic (As) is commonly found in the earth's crust. As is an essential element that can form many organic compounds. In children, it causes diarrhea, gums, tongue lesions, diabetes, conjunctivitis, ocular opacity, and impaired immune response. It also causes low growth, mental retardation, and neurological problems. It is also known as the cause of many cancers that originate at an early age. Regionally, there is an iron and steel industry for almost a century. According to the Rome IV criteria, the blood and stools of 50 children aged 6-18 years, male and female, living in our province with functional gastrointestinal disease (FGD), were screened for As, and compared with the Healthy group (control) of 30 children. The results were evaluated with the Mann-Whitney Rank Sum Test. When blood and stool As values in males were compared with control samples, a high level of significance (p = 0.001) was found between both blood and stool As values in sick males and the control group (p < 0.005). In females, blood and stool As median values were also highly significant when compared with the control group (p = 0.001). According to these data, when the sick children (children with male and female gender) are compared with the healthy ones, the difference is highly significant (p < 0.005). High blood As levels in children indicate environmental pollution. It can be said that blood As levels are high as a result of food, water, and inhaler exposure. The presence of a high level of significant difference in stool means that the amount of As is high in the foods consumed daily. High levels of As are in blood and stools; It was evaluated that FGD could be the cause of nausea, diarrhea, vomiting, and colic. The increase in blood and stool As values due to environmental pollution is an important reason for FGD. For diseases of uncertain cause (such as FGD) resulting from chronic As exposure, blood and especially stool As values are more significant than urinary As levels. In conclusion, As a diagnostic criterion, it was concluded that blood and stool As values are an important marker in children with functional abdominal pain with other metals.
Collapse
Affiliation(s)
- Namik Bilici
- Faculty of Medicine Department of Medical Pharmacology, Karabuk University, Karabuk, Turkey
| | - Erkan Doğan
- Faculty of Medicine Department of Child Health and Diseases, Karabük University, Karabuk, Turkey
| | - Eylem Sevinç
- Faculty of Medicine Department of Child Health and Diseases, Karabük University, Karabuk, Turkey
| | - Nergiz Sevinç
- Faculty of Medicine Department of Public Health, Karabuk University, Karabuk, Turkey
| | | | - Ahmet Musmul
- Department of Medical Services and Techniques Medical Documentation and Secretariat Program, ESOGU Vocational School of Health Services, Eskisehir, Turkey
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkey.
| | | | - Behnaz Aslanipour
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Adnan Ayhanci
- Faculty of Arts and Science, Department of Biology, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
13
|
Signes-Pastor AJ, Sayarath V, Jackson B, Cottingham KL, Punshon T, Karagas MR. Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2022; 15:269-279. [PMID: 36873246 PMCID: PMC9971144 DOI: 10.1007/s12403-022-00489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 06/18/2023]
Abstract
Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00489-x.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicki Sayarath
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH USA
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| |
Collapse
|
14
|
Du X, Luo L, Huang Q, Zhang J. Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153325. [PMID: 35074374 DOI: 10.1016/j.scitotenv.2022.153325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Lots of people are at the risk of arsenic-contaminated drinking water. Arsenic exposure was confirmed to be closely linked to neurocognitive deficits, particularly during childhood. The multi-omics approaches are known be well suitable for toxicological research. Thus, this study aimed to explore the molecular mechanisms of arsenic-induced learning and memory function impairments through the integrative proteome and metabolome analysis of cortex in rats. The weaned rats were exposed to arsenic-contaminated drinking water for six months to mimic the developmental exposure. 220 differential proteins and 19 differential metabolites were identified in the cortex, and nine potential biomarkers were found to be related to impaired Morris water maze (MWM) indicators. Chronic arsenic exposure affected the cognitive function by inducing the overproduction of amyloid-β (Aβ) peptides and the redox imbalance in the mitochondria. Glycolysis and tricarboxylic acid (TCA) cycle enhancement driven by the increased heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a low-dose protective mechanism against arsenic-induced ATP deficiency and oxidative stress. Moreover, apoptosis is another important pathway of arsenic-induced neurotoxicity. This study provides new evidence about the alterations of proteins and metabolites in the cortex of the exposed rats under arsenic toxicity. These findings suggest hnRNP L could be a potential target for the treatment of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| |
Collapse
|
15
|
Malin Igra A, Warnqvist A, Rahman SM, Ekström EC, Rahman A, Vahter M, Kippler M. Environmental metal exposure and growth to 10 years of age in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 156:106738. [PMID: 34246127 DOI: 10.1016/j.envint.2021.106738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life exposure to arsenic (As), cadmium (Cd), and lead (Pb) has been linked to smaller birth and early childhood anthropometry, but little is known beyond the first years in life. OBJECTIVES To evaluate the impact of gestational and childhood exposures to As, Cd, and Pb on growth up to 10 years of age. METHODS We studied 1530 mother-child dyads from a nested sub-cohort of the MINIMat trial in rural Matlab, Bangladesh. Metal concentrations in maternal erythrocytes during pregnancy and in children's urine at 10y were measured by inductively coupled plasma mass spectroscopy. Child height and weight were measured at 19 occasions from birth until 10y and converted to height-for-age Z-scores (HAZ) and weight-for-age Z-scores (WAZ). Associations between log2-transformed metal concentrations and growth parameters were assessed with multivariable-adjusted regression models. RESULTS Children's concurrent urinary Cd (median 0.24 µg/L), reflecting long-term exposure, was inversely associated with WAZ (B: -0.072; 95% confidence interval (CI): -0.12, -0.020; p = 0.007), and possibly HAZ (B: -0.046; 95% CI: -0.096, 0.0014; p = 0.057), at 10y. The association with WAZ was stronger in boys than in girls. Maternal erythrocyte Cd (median 0.90 µg/kg) during pregnancy was inversely associated with WAZ during childhood only in boys (B: -0.071, 95% CI: -0.14, -0.0047, p = 0.036). Concurrent urinary Pb (median 1.6 µg/L) was inversely associated with WAZ (B: -0.084; 95% CI: -0.16, -0.0085; p = 0.029) and HAZ (B: -0.087; 95% CI: -0.15, -0.021; p = 0.010) in boys, but not in girls. Neither gestational nor childhood As exposure (median maternal erythrocyte As 4.3 µg/kg and children's urinary As 57 µg/L) was associated with growth up to 10y. CONCLUSIONS While all effect estimates were small, environmental exposure to Cd and Pb is common and impaired growth is of public health concern, especially for children already at risk of reduced growth due to malnutrition. Gender differences in susceptibility need further investigation.
Collapse
Affiliation(s)
- Annachiara Malin Igra
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Obiri-Nyarko F, Duah AA, Karikari AY, Agyekum WA, Manu E, Tagoe R. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment. CHEMOSPHERE 2021; 282:131007. [PMID: 34087555 DOI: 10.1016/j.chemosphere.2021.131007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of lead (Pb), zinc (Zn), copper (Cu), mercury (Hg), and arsenic (As) in soils at the Kpone landfill site (Ghana) were determined using Atomic Absorption Spectrophotometry (AAS). Further analyses allowed establishing the degree of heavy metals (HMs) pollution, suitability of the soils for agriculture, sources of the HMs and their ecological and health risks. The site was divided into five zones, A, B, C, D, and E, and in all, seventeen (17) soil samples were collected. Average concentrations of Cu fell within the allowable range for agricultural soils in all the zones while average concentrations of Pb, Zn, Hg, and As exceeded the range in some or all the zones. Concentrations of the HMs generally exceeded their respective background value, with all zones showing very high degree of HMs contamination. The pollution load index (PLI) was 16.48, signifying extreme HMs pollution of the entire site. Multivariate statistical analyses revealed that Cu, Zn, and Pb in the soils originated from the deposited waste materials as well as traffic-related activities (e.g. wear and tear of tyres, brakes, and engines) at the site. Hg also originated from the deposited waste materials as well as cement production and oil and coal combustion activities in the study area, while As derived from industrial discharges and metal smelting activities. All the zones exhibited very high ecological risk. The carcinogenic and non-carcinogenic health risks posed by the HMs were also above acceptable levels, with children being more vulnerable than adults to these health risks.
Collapse
Affiliation(s)
| | - Anthony A Duah
- CSIR-Water Research Institute, P. O. Box M 32, Accra, Ghana
| | | | | | - Evans Manu
- CSIR-Water Research Institute, P. O. Box M 32, Accra, Ghana; German Research Center for Geoscience, Potsdam, Germany; University of Potsdam, Potsdam Germany
| | - Ralph Tagoe
- CSIR-Water Research Institute, P. O. Box M 32, Accra, Ghana
| |
Collapse
|
17
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
18
|
Sijko M, Kozłowska L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II-Human Studies. TOXICS 2021; 9:259. [PMID: 34678956 PMCID: PMC8541625 DOI: 10.3390/toxics9100259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 01/25/2023]
Abstract
Exposure to various forms of arsenic (As), the source of which may be environmental as well as occupational exposure, is associated with many adverse health effects. Therefore, methods to reduce the adverse effects of As on the human body are being sought. Research in this area focuses, among other topics, on the dietary compounds that are involved in the metabolism of this element. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of inorganic As (iAs) metabolism and the reduction in the severity of the whole spectrum of disorders related to As exposure. In this review, which included 62 original papers (human studies) we present the current knowledge in the area. In human studies, these compounds (methionine, choline, folic acid, vitamin B2, B6, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency may impair iAs metabolism and increase As toxicity. Taking into account the results of studies conducted in populations exposed to As, it is reasonable to carry out prophylactic activities. In particular nutritional education seems to be important and should be focused on informing people that an adequate intake of those dietary compounds potentially has a modulating effect on iAs metabolism, thus, reducing its adverse effects on the body.
Collapse
Affiliation(s)
- Monika Sijko
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Lucyna Kozłowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
19
|
Warwick M, Marcelo C, Marcelo C, Shaw J, Qayyum R. The relationship between chronic arsenic exposure and body measures among US adults: National Health and Nutrition Examination Survey 2009-2016. J Trace Elem Med Biol 2021; 67:126771. [PMID: 33991841 DOI: 10.1016/j.jtemb.2021.126771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Current research on the relationship between arsenic and body measures is inconclusive. We explored the relationship between arsenic and body measures in a large cohort representative of the United States population. METHODS Data were analyzed from the 2009-2016 National Health and Nutrition Examination Survey (NHANES). We examined the relationship between quartiles of urinary arsenic metabolites and BMI as a continuous variable, BMI by obesity category, and waist circumference, using linear regression models without and with adjustment for gender, age, diabetes, hypertension, race, smoking, and alcohol use. A piecewise linear spline model with a knot at 4.26 μg/L/day, the urinary-flow-rate-adjusted dimethylarsinic acid median, modeled a non-linear relationship between dimethylarsinic acid and BMI. RESULTS The 6,848 participants were 51.4 % female, 13.6 % diabetic, 37.7 % hypertensive, 40.3 % white, 38 % obese, 20.3 % non-drinkers, and 56.0 % never-smokers. Compared to the lowest quartile, the highest quartile of daily excretion of all urinary arsenic metabolites was associated with lower BMI, waist circumference, and obesity except for dimethylarsinic acid in unadjusted and adjusted analyses. The same relationship was found with analysis of BMI and waist circumference as continuous variables. Urinary-flow-rate-adjusted dimethylarsinic acid was found to have a non-linear relationship with BMI with increasing excretion up to the median (4.78, 95 %CI = 0.30, 9.27; p = 0.04), and decreasing excretion beyond (-0.69, 95 %CI=-1.23, -0.16; p = 0.01). CONCLUSION We found a strong inverse relationship between body measures and daily excretion of all urinary arsenic metabolites except dimethylarsinic acid, which had a positive relationship with BMI up to 4.26 μg/L/day, and an inverse relationship beyond it.
Collapse
Affiliation(s)
- Melissa Warwick
- Virginia Commonwealth University School of Medicine, Division of Hospital Medicine, Department of Internal Medicine, Richmond, VA, 23298, United States.
| | - Catherine Marcelo
- Virginia Commonwealth University School of Medicine, Division of Hospital Medicine, Department of Internal Medicine, Richmond, VA, 23298, United States
| | - Carolyn Marcelo
- Virginia Commonwealth University School of Medicine, Division of Hospital Medicine, Department of Internal Medicine, Richmond, VA, 23298, United States
| | - Jawaid Shaw
- Virginia Commonwealth University School of Medicine, Division of Hospital Medicine, Department of Internal Medicine, Richmond, VA, 23298, United States
| | - Rehan Qayyum
- Virginia Commonwealth University School of Medicine, Division of Hospital Medicine, Department of Internal Medicine, Richmond, VA, 23298, United States; Eastern Virginia Medical School, Department of Internal Medicine, Norfolk, VA, 23507, United States
| |
Collapse
|
20
|
Olmos V, Astolfo MA, Sassone AH, Villaamil Lepori EC. The level of exposure affects the arsenic urinary methylation profile of a population of children. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125623. [PMID: 33740719 DOI: 10.1016/j.jhazmat.2021.125623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/29/2020] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Differences in the As methylation capacity of Argentine children, exposed to different levels of As in drinking water were evaluated, considering the gender and the presence of the As3MT T860C gene polymorphism. Inorganic As (%IAs), monomethylated As (%MMA) and dimethylated As (%DMA), primary methylation index (PMI) and secondary methylation index (SMI) were evaluated and represented the As methylation capacity. Urinary As ranged from 18 to 5106 µg/g creatinine. Comparisons were performed between lowest and highest quartiles of urinary As. The level of exposure was positively related to urinary %MMA and negatively to %DMA and to SMI. Considering the presence of the As3MT T860C polymorphism, the level of exposure increased %MMA, and decreased %DMA and the SMI in carriers of the T/T genotype. SMI OR for T/T carriers was 10.61 (95% CI: 2.16-52.16, p: 0.0036). Regarding the gender, the level of exposure increased %MMA, and decreased %DMA and the SMI in girls and boys. SMI OR for girls was 8.71 (95% CI: 1.48-51.08, p: 0.0165) and for boys, OR: 18.15 (95% CI: 2.03-162.35, p: 0.0095). It was possible to identify the level of exposure as a factor that can modify the influence that other factors have on the methylation of As.
Collapse
Affiliation(s)
- Valentina Olmos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Junin 956, 7th Floor, Buenos Aires C1113AAD, Argentina.
| | - María Agustina Astolfo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Junin 956, 7th Floor, Buenos Aires C1113AAD, Argentina
| | - Adriana H Sassone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Junin 956, 7th Floor, Buenos Aires C1113AAD, Argentina
| | - Edda C Villaamil Lepori
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Junin 956, 7th Floor, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
21
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Saxena R, Liu X, Navas-Acien A, Parvez F, LoIacono NJ, Islam T, Uddin MN, Ilievski V, Slavkovich V, Balac O, Graziano JH, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation in Bangladeshi adolescents. ENVIRONMENTAL RESEARCH 2021; 195:110750. [PMID: 33476663 PMCID: PMC7987757 DOI: 10.1016/j.envres.2021.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Over 57 million people in Bangladesh are chronically exposed to arsenic-contaminated drinking water. Ingested inorganic arsenic (InAs) undergoes hepatic methylation generating monomethyl- (MMAs) and dimethyl- (DMAs) arsenic species in a process that facilitates urinary As (uAs) elimination. One-carbon metabolism (OCM), a biochemical pathway that is influenced by folate and vitamin B12, facilitates the methylation of As. OCM also supports nucleotide and amino acid synthesis, particularly during periods of rapid growth such as adolescence. While folate supplementation increases As methylation and lowers blood As (bAs) in adults, little data is available for adolescents. OBJECTIVES To examine the associations between OCM-related micronutrients and As methylation in Bangladeshi adolescents chronically exposed to As-contaminated drinking water. METHODS We conducted a cross-sectional study of 679 Bangladeshi adolescents, including 320 boys and 359 girls aged 14-16 years. Nutritional status was assessed by red blood cell (RBC) folate, plasma folate, plasma B12 and homocysteine (Hcys). Arsenic-related outcomes included blood arsenic (bAs), urinary arsenic (uAs), and urinary arsenic metabolites expressed as a percentage of total urinary As: %InAs, %MMAs, %DMAs. RESULTS Boys had significantly lower B12, higher Hcys, higher bAs, higher uAs, higher %MMAs, and a trend toward lower RBC folate compared to girls. Therefore, regression analyses controlling for water As and BMI were sex stratified. Among girls, RBC folate was inversely associated with bAs, plasma B12 was inversely associated with uAs, and plasma Hcys was inversely associated with %MMA. Among boys, plasma folate was inversely associated with %InAs and positively associated with %DMA, RBC folate was inversely associated with %InAs and positively associated with %MMA, while Hcys was positively associated with %InAs. CONCLUSIONS These findings suggest that associations between OCM nutritional status, bAs, and distribution of As metabolites in adolescents are similar to previously reported observations in adults and in children. The As methylation findings are statistically significant among boys but not among girls; this may be related to estrogen which more strongly influences OCM in females. The inverse association between Hcys and %MMA in girls is somewhat unexpected given that Hcys is known to be an indicator of impaired OCM and low folate/B12 in adults. Overall, these results indicate that the associations between OCM-related micronutrients and arsenic methylation in adolescents are generally similar to prior findings in adults, though these associations may differ by sex. Additionally, these findings suggest that more investigation into the role of Hcys in adolescent physiology is needed, perhaps particularly for girls. Additional studies are needed to evaluate the impact of OCM and As methylation on As-related adverse health outcomes (such as cancer and cardiovascular disease) in people exposed to As during adolescence.
Collapse
Affiliation(s)
| | - Xinhua Liu
- Mailman School of Public Health, New York, NY, USA
| | | | | | | | - Tariqul Islam
- Columbia University Arsenic Project Office, Mohakhali, Dhaka, Bangladesh
| | | | | | | | - Olgica Balac
- Mailman School of Public Health, New York, NY, USA
| | | | | |
Collapse
|
23
|
Akhtar E, Roy AK, Haq MA, von Ehrenstein OS, Ahmed S, Vahter M, Ekstrom EC, Kippler M, Wagatsuma Y, Raqib R. A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116333. [PMID: 33535364 DOI: 10.1016/j.envpol.2020.116333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
There is growing interest in understanding the contribution of environmental toxicant exposure in early life to development of cardiometabolic diseases (CMD) in adulthood. We aimed to assess associations of early life exposure to arsenic and cadmium with biomarkers of CMD in children in rural Bangladesh. From a longitudinal mother-child cohort in Matlab, Bangladesh, we followed up 540 pairs. Exposure to arsenic (U-As) and cadmium (U-Cd) was assessed by concentrations in urine from mothers at gestational week 8 (GW8) and children at ages 4.5 and 9 years. Blood pressure and anthropometric indices were measured at 4.5 and 9 years. Metabolic markers (lipids, glucose, hemoglobin A1c, adipokines, estimated glomerular filtration rate (eGFR) were determined in plasma/blood of 9 years old children. In linear regression models, adjusted for child sex, age, height-for-age z score (HAZ), BMI-for-age z score (BAZ), socioeconomic status (SES) and maternal education, each doubling of maternal and early childhood U-Cd was associated with 0.73 and 0.82 mmHg increase in systolic blood pressure (SBP) respectively. Both early and concurrent childhood U-Cd was associated with diastolic (D)BP (β = 0.80 at 4.5 years; β = 0.75 at 9 years). Each doubling of U-Cd at 9 years was associated with decrements of 4.98 mg/dL of total cholesterol (TC), 1.75 mg/dL high-density lipoprotein (HDL), 3.85 mg/dL low-density lipoprotein (LDL), 0.43 mg/dL glucose and 4.29 units eGFR. Each doubling of maternal U-Cd was associated with a decrement of 1.23 mg/dL HDL. Both maternal and childhood U-As were associated with decrement in TC and HDL. Multiple comparisons were checked with family-wise error rate Bonferroni-type-approach. The negative associations of arsenic and cadmium with biomarkers of CMD in preadolescent children indicated influence of both metal(loid)s on fat and carbohydrate metabolism, while cadmium additionally influenced kidney function and BP. Thus, fewer outcomes were associated with U-As compared to U-Cd at preadolescence.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Anjan Kumar Roy
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Md Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Ondine S von Ehrenstein
- Department of Community Health Sciences and Epidemiology, Fielding School of Public Health, University of California Los Angeles, USA
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, SE- 171 77, Stockholm, Sweden
| | - Eva-Charlotte Ekstrom
- Department of Women's and Children's Health, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE- 171 77, Stockholm, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh.
| |
Collapse
|
24
|
Rodríguez PF, Martín-Aranda RM, López Colón JL, de Mendoza JH. Ammonium acetate as a novel buffer for highly selective robust urinary HPLC-ICP-MS arsenic speciation methodology. Talanta 2021; 221:121494. [PMID: 33076099 DOI: 10.1016/j.talanta.2020.121494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Ammonium acetate is employed in order to develop a novel HPLC-ICP-MS arsenic speciation methodology applicable to six arsenic species, i.e, AC, AB, AsIII, AsV, DMA and MMA. The most predominant species in the toxicological field are covered in a 30-min chromatogram with reproducible and repeatability peak area ratio. Moreover, typical problems from traditional methods are sorted out by using a robust, high-selective and 75ArCl+ interference-free methodology. Chromatographic and detector optimization ensures low LOQs for each species with acceptable precision and accuracy values obtained using four urinary arsenic speciation PTS enabling to be useful for sub ng mL-1 arsenic exposure assessments.
Collapse
Affiliation(s)
- P F Rodríguez
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey 9, 28040, Madrid, Spain; Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain.
| | - R M Martín-Aranda
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey 9, 28040, Madrid, Spain
| | - J L López Colón
- Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain
| | - J H de Mendoza
- Departamento de Espectroscopía Atómica de Emisión, Instituto de Toxicología de La Defensa (ITOXDEF), Glorieta Del Ejército 1, 28047, Madrid, Spain
| |
Collapse
|
25
|
Arsenic metabolism differs between child and adult patients during acute arsenic poisoning. Toxicol Appl Pharmacol 2020; 410:115352. [PMID: 33264645 DOI: 10.1016/j.taap.2020.115352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Epidemiological studies on chronic arsenic poisoning have clarified the relationship between various adverse effects and methylation efficiency or methylation capacity. However, no study has similarly investigated such effects on patients with acute arsenic poisoning. In the present work, we studied 61 patients with acute oral arsenic poisoning occurring after consumption of an arsenic trioxide-laced meal (curry soup). The cohort included children (defined as under 15 year old [y/o], n = 22) and adults (over 16 y/o, n = 39) whose urinary arsenic profiles were analyzed. None of these patients had received treatment with chelating agents. The estimated median (IQR) arsenic intake was 64.5 mg (48.3-80.5 mg) in children and 76.0 mg (56.0-91.0 mg) in adults, and these values were not significantly different. Symptoms of poisoning in children improved approximately 1 week after hospitalization. However, the symptoms in most adults deteriorated with severe signs of arsenic poisoning. Urinary arsenic profiles of all the patients were analyzed to obtain the following information: % monomethylarsonic acid (MMA), % dimethylarsinic acid (DMA), second methylation ratio (DMA/MMA), and secondary methylation index (SMI, DMA/MMA + DMA). The levels of these parameters may help identify patients at risk for worsening symptoms. %MMA, an indicator of incomplete methylation, increased more in adults, who experienced more severe symptom progression, compared with children. In contrast, %DMA, which indicates more complete and efficient methylation, increased particularly in children with mild symptoms. Overall the present results indicate that children possess an excellent capacity for methylation (second methylation ratio) of arsenic to DMA and therefore, experience relatively less severe progression of symptomology during acute arsenic poisoning.
Collapse
|
26
|
Bocca B, Pino A, Brumatti LV, Rosolen V, Ronfani L, D'Aversa J, Ruggieri F, Petrucci F, Calamandrei G, Barbone F, Alimonti A. Children exposure to inorganic and organic arsenic metabolites: A cohort study in Northeast Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114826. [PMID: 32454361 DOI: 10.1016/j.envpol.2020.114826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to provide urinary levels of total arsenic (TAs) and As species as arsenobetaine (AsB), arsenocholine (AsC), inorganic As (i.e., [As(III)+As(V)]), methylarsonic acid (MMA) and dimethylarsinic acid (DMA) in 7 year-old-children (n = 200) enrolled in the Northern Adriatic Cohort II (NACII), a prospective cohort in a coastal area of Northeast Italy. TAs was determined by sector field-inductively coupled plasma mass spectrometry (SF-ICP-MS) and AsB, AsC, As(III), As(V), MMA and DMA by ion chromatography coupled to ICP-MS (IC-ICP-MS). The geometric mean (GM) for TAs was 12.9 μg/L and for [iAs + MMA + DMA] was 4.26 μg/L. The species AsB (GM of 5.09 μg/L) and DMA (GM of 3.20 μg/L) had the greatest percentage contribution to TAs levels; a greater percentage contribution from AsB is seen at TAs >10 μg/L and from DMA at TAs <10 μg/L. Urinary [iAs + MMA] levels were positively associated with [iAs + MMA + DMA] and DMA with AsB levels. Fish, shellfish and crustaceans consumption increased the AsB and TAs levels, while rice intake, mothers' education level and selenium (Se) concentration influenced the DMA concentration. Children have a high capacity to metabolize and detoxify the iAs because of the higher secondary methylation index (ratio DMA/MMA) with respect to primary methylation index (ratio MMA/iAs). In addition, the median level of [iAs + MMA + DMA] in the whole population of children was lower than the Biomonitoring Equivalent (BE) value for non-cancer endpoints. Also the Margin of Safety (MOS) value based on the population median was greater than 1, thus the exposure to the toxicologically relevant As species was not likely to be of concern.
Collapse
Affiliation(s)
| | - Anna Pino
- Istituto Superiore di Sanità, Rome, Italy
| | | | - Valentina Rosolen
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | | | | | | | - Fabio Barbone
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | |
Collapse
|
27
|
Natriuretic peptides and echocardiographic parameters in Mexican children environmentally exposed to arsenic. Toxicol Appl Pharmacol 2020; 403:115164. [DOI: 10.1016/j.taap.2020.115164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 01/31/2023]
|
28
|
Kong C, Yang L, Yu J, Li H, Wei B, Guo Z, Xia Y, Wu K. Changes in urinary arsenic species and methylation capacity in original arsenic exposure cohort after water quality improvement. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2841-2851. [PMID: 32034620 DOI: 10.1007/s10653-020-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Water quality improvement is the most efficient way to prevent arsenic exposure. After the cessation of arsenic ingestion, arsenic methylation capacity of the exposed population can change significantly. The factors associated with these changes remain poorly understood. Therefore, arsenic methylation capacity in a study cohort was estimated before and after water quality improvement in the present study. Results indicated that urinary content of the arsenic species in the study cohort significantly decreased after water quality improvement. In addition, the proportions of inorganic arsenic (%iAs) and monomethyl arsenic acid (%MMA) were significantly decreased, while proportions of dimethyl arsenic (%DMA) increased. The primary methylation index (PMI) and secondary methylation index (SMI) increased from 0.85 to 0.92 and 0.82 to 0.84, respectively. Arsenic species urinary content and arsenic methylation index varied slightly between the study cohort after water quality improvement and the control cohort. The rate of increase in PMI was higher than that in SMI. The study group aged 31-50 years had the highest increase in PMI. Logistic regression revealed that %DMA before water quality improvement was negatively associated with the increase in PMI, while %iAs were positively related, and %MMA were positively associated with the increase in SMI. It is concluded that urinary arsenic species content and arsenic methylation capacity increased to the levels of the control cohort after water quality improvement. An increase in primary arsenic methylation capacity may be a burden on the secondary arsenic methylation capacity. The main role of arsenic methylation capacity recovery may be the cessation of arsenic exposure.
Collapse
Affiliation(s)
- Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Huairou, People's Republic of China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
| | - Zhiwei Guo
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Yajuan Xia
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
29
|
Desai G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Vitamin B-6 Intake Is Modestly Associated with Arsenic Methylation in Uruguayan Children with Low-Level Arsenic Exposure. J Nutr 2020; 150:1223-1229. [PMID: 31913474 PMCID: PMC7198313 DOI: 10.1093/jn/nxz331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Detoxification of inorganic arsenic (iAs) occurs when it methylates to form monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Lower proportions of urinary iAs and MMA, and higher proportions of DMA indicate efficient methylation. The role of B-vitamins in iAs methylation in children with low-level arsenic exposure is understudied. OBJECTIVES Our study objective was to assess the association between B-vitamin intake and iAs methylation in children with low-level arsenic exposure (<50 µg/L in water; urinary arsenic 5-50 µg/L). METHODS We conducted a cross-sectional study in 290 ∼7-y-old children in Montevideo. Intake of thiamin, riboflavin, niacin, vitamin B-6, and vitamin B-12 was calculated by averaging 2 nonconsecutive 24-h recalls. Total urinary arsenic concentration was measured as the sum of urinary iAs, MMA, and DMA, and adjusted for urinary specific gravity; iAs methylation was measured as urinary percentage As, percentage MMA, and percentage DMA. Arsenic concentrations from household water sources were assessed. Linear regressions tested the relationships between individual energy-adjusted B-vitamins and iAs methylation. RESULTS Median (range) arsenic concentrations in urine and water were 9.9 (2.2-48.7) and 0.45 (0.1-18.9) µg/L, respectively. The median (range) of urinary percentage iAs, percentage MMA, and percentage DMA was 10.6% (0.0-33.8), 9.7% (2.6-24.8), and 79.1% (58.5-95.4), respectively. The median (range) intake levels of thiamin, riboflavin, niacin, and vitamin B-6 were 0.81 (0.19-2.56), 1.0 (0.30-2.24), 8.6 (3.5-23.3), and 0.67 (0.25-1.73) mg/1000 kcal, respectively, whereas those of folate and vitamin B-12 were 216 (75-466) and 1.7 (0.34-8.3) µg/1000 kcal, respectively. Vitamin B-6 intake was inversely associated with urinary percentage MMA (β = -1.60; 95% CI: -3.07, -0.15). No other statistically significant associations were observed. CONCLUSIONS Although vitamin B-6 intake was inversely associated with urinary percentage MMA, our findings suggest limited support for a relation between B-vitamin intake and iAs methylation in children exposed to low-level arsenic.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA,Address correspondence to GD (e-mail: )
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
30
|
Zwolak I. The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific Literature. Biol Trace Elem Res 2020; 193:44-63. [PMID: 30877523 PMCID: PMC6914719 DOI: 10.1007/s12011-019-01691-w] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/28/2019] [Indexed: 02/01/2023]
Abstract
Arsenic (As) and cadmium (Cd) are elements arousing major public health concerns associated with environmental pollution, high toxicity potential, and carcinogenic nature. However, selenium (Se) at low doses and incorporated into enzymes and proteins has antioxidant properties and protects animals and humans from the risk of various diseases. It also has an exceptionally narrow range between necessary and toxic concentrations, which is a well-known hindrance in its use as a dietary supplement. The present article aims to update and expand the role of Se in As and Cd toxicity discussed in our earlier paper. In general, recent reports show that Se, regardless of its form (as selenite, selenomethionine, nanoSe, or Se from lentils), can reduce As- or Cd-mediated toxicity in the liver, kidney, spleen, brain, or heart in animal models and in cell culture studies. As was suggested in our earlier review, Se antagonizes the toxicity of As and Cd mainly through sequestration of these elements into biologically inert complexes and/or through the action of Se-dependent antioxidant enzymes. An increase in the As methylation efficiency is proposed as a possible mechanism by which Se can reduce As toxicity. However, new studies indicate that Se may also diminish As or Cd toxicity by activation of the Nrf2 pathway. In addition, this paper discusses possible signs of Se toxic effects, which may be a challenge for its future use in the therapy of As and Cd poisoning and provide future directions to address this issue.
Collapse
Affiliation(s)
- Iwona Zwolak
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1 J, 20-708, Lublin, Poland.
| |
Collapse
|
31
|
Santiago-Saenz YO, Monroy-Torres R, Rocha-Amador DO, Hernández-Fuentes AD. Effect of a Supplementation with Two Quelites on Urinary Excretion of Arsenic in Adolescents Exposed to Water Contaminated with the Metalloid in a Community in the State of Guanajuato, Mexico. Nutrients 2019; 12:E98. [PMID: 31905888 PMCID: PMC7019896 DOI: 10.3390/nu12010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Quelites are Mexican wild plants, reported as excellent sources of nutritional compounds such as amino acids (serine, glycine, and cysteine), minerals (Mg, Fe, and Zn), and phytochemicals, as phenolic acids (chlorogenic acid) and flavonoids (phloridzin and naringenin); on the other hand, high biological activity has been shown in these compounds. This work aimed to evaluate the effect of a supplementation with two endemic quelites of Mexico (Chenopodium berlandieri L. and Portulaca Oleracea L.); in addition to supplementation, a nutritional intervention was performed; the biomarkers of hemoglobin (Hb), urinary malondialdehyde (UMDA), and urinary arsenic (UAs) were measured in adolescents exposed to arsenic. A clinical intervention study was conducted in 27 adolescents ages 11 to 12 years for 4 weeks. Weekly anthropometric and dietary evaluations were carried out, as well as the concentration of Hb; the UMDA and UAs were performed by plate-based colorimetric measurement and atomic absorption spectrophotometry with the hydrides generation system, respectively. The results showed that UMDA concentrations had a significant improvement in the supplemented group (SG) vs. control group (CG) (SG = 1.59 ± 0.89 µM/g creatinine vs. CG = 2.90 ± 0.56 µM/g creatinine) in the second week of intervention; on the other hand, the supplemented group showed an increase in Hb levels (15.12 ± 0.99 g/dL) in the same week; finally after the second week, an increase in UAs levels was observed significantly compared to the baseline value (Baseline: 56.85; Week 2: 2.02 µg/g creatinine). Therefore, the results show that the mixture of quelites (a rich source of phytochemicals and nutrients) improved hemoglobin and UMDA levels, and urinary arsenic excretion from the second week in the exposed population.
Collapse
Affiliation(s)
- Yair Olovaldo Santiago-Saenz
- Área Académica de Ingeniería Agroindustrial e Ingeniería en Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico;
| | - Rebeca Monroy-Torres
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Universidad de Guanajuato, León 37670, Mexico
| | - Diana Olivia Rocha-Amador
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico;
| | - Alma Delia Hernández-Fuentes
- Área Académica de Ingeniería Agroindustrial e Ingeniería en Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico;
| |
Collapse
|
32
|
Bjørklund G, Tippairote T, Rahaman MS, Aaseth J. Developmental toxicity of arsenic: a drift from the classical dose-response relationship. Arch Toxicol 2019; 94:67-75. [PMID: 31807801 DOI: 10.1007/s00204-019-02628-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023]
Abstract
Arsenic is a well-known natural environmental contaminant distributed in food, water, air, and soil. The developmental toxicity of arsenic exposure is a significant concern in large parts of the world. Unlike acute toxic exposure, the classical dose-response relationship is not adequate for estimating the possible impact of chronic low-level arsenic exposure. The real-life risk and impact assessments require the consideration of the co-exposure to multiple toxins, individual genetic and nutritional predisposition, and the particularly vulnerable stages of the neurodevelopment. This context shifts the assessment model away from the 'one-exposure-for-one-health-effect.' We underscore the need for a comprehensive risk assessment that takes into account all relevant determinants. We aim to elaborate a model that can serve as a basis for an understanding of complex interacting factors in a long-lasting and ongoing low-level arsenic exposure, to identify, protect, and support the children at risk.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Torsak Tippairote
- BBH Hospital, Bangkok, Thailand.,Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
33
|
Smits JE, Krohn RM, Akhtar E, Hore SK, Yunus M, Vandenberg A, Raqib R. Food as medicine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh. ENVIRONMENTAL RESEARCH 2019; 176:108561. [PMID: 31299617 DOI: 10.1016/j.envres.2019.108561] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Chronic arsenic (As) exposure is a major environmental threat to human health affecting >100 million people worldwide. Low blood selenium (Se) increases the risk of As-induced health problems. Our aim was to reduce As toxicity through a naturally Se-rich lentil diet. In a randomized, double-blind, placebo-control trial in Bangladesh, 405 participants chronically exposed to As were enrolled. The intervention arm (Se-group) consumed Se-rich lentils (55 μg Se/day); the control arm received lentils of similar nutrient profile except with low Se (1.5 μg Se/day). Anthropometric measurements, blood, urine and stool samples, were taken at baseline, 3 and 6 months; hair at baseline and 6 months after intervention. Morbidity data were collected fortnightly. Measurements included total As in all biological samples, As metabolites in urine, and total Se in blood and urine. Intervention with Se-rich lentils resulted in higher urinary As excretion (p = 0.001); increased body mass index (p ≤ 0.01), and lower incidence of asthma (p = 0.05) and allergy (p = 0.02) compared to the control group. The Se-group demonstrated increased excretion of urinary As metabolite, dimethylarsinic acid (DMA) at 6 months compared to control group (p = 0.008). Consuming Se-rich lentils can increase As excretion and improve the health indicators in the presence of continued As exposure.
Collapse
Affiliation(s)
- Judit E Smits
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Regina M Krohn
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive, Calgary, AB T2N 4Z6, Canada
| | - Evana Akhtar
- Infectious Diseases Division, Icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Samar Kumar Hore
- Infectious Diseases Division, Icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Yunus
- Infectious Diseases Division, Icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Rubhana Raqib
- Infectious Diseases Division, Icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
34
|
Medina-Pizzali M, Damián-Bastidas N, Vargas-Reyes M. Arsenic in baby foods: health effects and dietary exposure. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Medina-Pizzali
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - N. Damián-Bastidas
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - M. Vargas-Reyes
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| |
Collapse
|
35
|
Welch BM, Branscum A, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Ibne Hasan MOS, Rahman ML, Quamruzzaman Q, Christiani DC, Kile ML. Arsenic exposure and serum antibody concentrations to diphtheria and tetanus toxoid in children at age 5: A prospective birth cohort in Bangladesh. ENVIRONMENT INTERNATIONAL 2019; 127:810-818. [PMID: 31051324 PMCID: PMC6513691 DOI: 10.1016/j.envint.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/07/2019] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arsenic can impair immune function. Timing of exposure can influence potential immunotoxicity of arsenic exposure. We examined the association between drinking water arsenic concentrations (W-As) measured repeatedly during different exposure windows in early life and serum concentrations of IgG antibodies against diphtheria and tetanus toxoids (diphtheria and tetanus antibody). METHODS A prospective cohort of pregnant women was recruited in Bangladesh (2008-2011). Averaged W-As levels were calculated for: pregnancy (W-Aspregnancy): ≤16 weeks gestation and <1 month; toddlerhood (W-Astoddlerhood): 12 and 20-40 months; and early childhood (W-Aschildhood): 4-5 years. Serum was collected from 502 vaccinated children at age 5 and concentrations of diphtheria and tetanus toxoid IgG (i.e. antibody) were quantified. Antibody concentrations >0.1 IU/mL were considered clinically sufficient for protection. Associations were estimated using linear and logistic regression models. RESULTS Inverse associations were observed between W-Aspregnancy and serum diphtheria antibody levels, while null associations were observed between W-As and tetanus antibody. Children within the highest versus lowest tertile of W-Aspregnancy had 91% greater odds of having clinically insufficient concentrations of diphtheria antibody (Odds ratio:1.91, 95% confidence interval (CI): 1.03, 3.56). Among females, a doubling in W-Aspregnancy was associated with 12.3% (95%CI: -20.1%, -4.5%) lower median concentrations of diphtheria antibody. Tetanus antibody was only associated with W-Aspregnancy among females (percent change in median: -9.5%, 95%CI: -17.6%, -1.3%). Among children who were stunted or underweight, a doubling in W-Aspregnancy was associated with decreased diphtheria antibody of 19.8% (95%CI: -32%, -7.5%) and 14.3% (95%CI: -26.7%, -2%), respectively. CONCLUSIONS Among vaccinated children, W-As measured during pregnancy was associated with decreased diphtheria antibody levels, but not tetanus antibody. However, W-As measured during toddlerhood and early childhood were not associated with either antibody outcome. Children's sex and malnutrition status were important effect modifiers of W-As for both diphtheria and tetanus antibody levels, highlighting the importance of these factors and the timing of the exposure when evaluating the effect of arsenic on humoral immunity.
Collapse
Affiliation(s)
- Barrett M Welch
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, USA.
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sharia M Ahmed
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | | | | | | | | | - David C Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| |
Collapse
|
36
|
Su CT, Hsieh RL, Chung CJ, Huang PT, Lin YC, Ao PL, Shiue HS, Chen WJ, Huang SR, Lin MI, Mu SC, Hsueh YM. Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. ENVIRONMENTAL RESEARCH 2019; 171:52-59. [PMID: 30654249 DOI: 10.1016/j.envres.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Inefficient arsenic methylation capacity has been associated with developmental delay in preschool children. Selenium has antioxidant and anti-inflammatory properties that protect experimental animals from chemically induced neurotoxicity. The present study was designed to explore whether plasma selenium levels affects arsenic methylation capacity related to developmental delay in preschool children. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 178 children with a developmental delay and 88 children without a delay were recruited. High-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry were used to determine urinary arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Plasma selenium levels were measured by inductively coupled plasma mass spectrometry. As results, plasma selenium concentration was significantly inversely associated with the odds ratio (OR) of developmental delay. Plasma selenium concentration was positively associated with arsenic methylation capacity [percentage of inorganic arsenic and percentage of MMAV (MMAV%) decreased, and percentage of DMAV (DMAV%) increased]. High plasma selenium concentration and high DMA% significantly and additively interacted to decrease the OR of developmental delay; the OR and 95% confidence interval were 0.40 (0.18-0.90). This is the first study to show a combined dose-response effect of plasma selenium concentration and that efficient arsenic methylation capacity decreased the OR of developmental delay in preschool children.
Collapse
Affiliation(s)
- Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Zhang X, Xu X, Zhong Y, Power MC, Taylor BD, Carrillo G. Serum folate levels and urinary arsenic methylation profiles in the US population: NHANES, 2003-2012. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:323-334. [PMID: 29483566 DOI: 10.1038/s41370-018-0021-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/11/2017] [Accepted: 10/22/2017] [Indexed: 06/08/2023]
Abstract
Arsenic is a prevalent environmental contaminant, and its folate-dependent methylation is important for detoxification in the body. In this study, we investigated the association between serum folate levels and methylation using data from the US National Health and Nutrition Examination Survey (NHANES) (2003-2012) (N = 11,016). Multivariate linear regression and penalized spline regression models were used to examine the association and possible upper limit of folate level regarding its impact on methylation in children (≤18 years) and adults (>18 years), respectively. Serum folate levels, methylation metabolites including urinary monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)), and demographic variables were extracted from NHANES. Results showed that urinary percentage of DMA(V) (%DMA(V)) was positively associated with log(serum folate levels) after adjustment in children (β = 1.93, p < 0.01); urinary percentage of MMA(V) (%MMA(V)) was positively associated with log (serum folate levels) after adjustment in adults (β = 0.40, p < 0.01). No upper limit of folate level regarding its impact on arsenic methylation was identified. More than 50% of Non-Hispanic black and smokers with high total urinary arsenic levels had low serum folate levels. Our results indicate that folate promotes arsenic methylation, but the patterns are different in children versus in adults. Future interventions may be needed for the population exposed to high level of arsenic but with low serum folate to protect against the potential adverse health effects of arsenic.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA.
| | - Yan Zhong
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University School of Public health, College Station, TX, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, Texas A&M University School of Public health, College Station, TX, USA
| |
Collapse
|
38
|
De Loma J, Tirado N, Ascui F, Levi M, Vahter M, Broberg K, Gardon J. Elevated arsenic exposure and efficient arsenic metabolism in indigenous women around Lake Poopó, Bolivia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:179-186. [PMID: 30537579 DOI: 10.1016/j.scitotenv.2018.11.473] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 05/12/2023]
Abstract
Elevated concentrations of inorganic arsenic, one of the most potent environmental toxicants and carcinogens, have been detected in well water around Lake Poopó, Bolivia. This study aimed to assess human exposure to arsenic in villages around Lake Poopó, and also to elucidate whether the metabolism and detoxification of arsenic in this population is as efficient as previously indicated in other Andean areas. We recruited 201 women from 10 villages around Lake Poopó. Arsenic exposure was determined as the sum concentration of arsenic metabolites (inorganic arsenic; monomethylarsonic acid, MMA; and dimethylarsinic acid, DMA) in urine (U-As), measured by HPLC-HG-ICP-MS. Efficiency of arsenic metabolism was assessed by the relative fractions of the urinary metabolites. The women had a wide variation in U-As (range 12-407 μg/L, median 65 μg/L) and a markedly efficient metabolism of arsenic with low %MMA (median 7.7%, range: 2.2-18%) and high %DMA (80%, range: 54-91%) in urine. In multivariable-adjusted linear regression models, ethnicity (Aymara-Quechua vs. Uru), body weight, fish consumption and tobacco smoking were associated with urinary arsenic metabolite fractions. On average, the Uru women had 2.5 lower % (percentage unit) iAs, 2.2 lower %MMA and 4.7 higher %DMA compared with the Aymara-Quechua women. Our study identified several factors that may predict these women's arsenic methylation capacity, particularly ethnicity. Further studies should focus on mechanisms underlying these differences in arsenic metabolism efficiency, and its importance for the risk of arsenic-related health effects.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Tirado
- Genetics Institute, Genotoxicology Unit, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural (SAFCI), Ministerio de Salud Bolivia, Bolivia
| | - Michael Levi
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden.
| | - Jacques Gardon
- Hydrosciences Montpellier, Institut de Recherche pour le Développement, CNRS, University of Montpellier, France
| |
Collapse
|
39
|
Stajnko A, Šlejkovec Z, Mazej D, France-Štiglic A, Briški AS, Prpić I, Špirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croatian-Slovenian population from PHIME-CROME study. ENVIRONMENTAL RESEARCH 2019; 170:301-319. [PMID: 30612060 DOI: 10.1016/j.envres.2018.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The relationships between inorganic arsenic (iAs) metabolism, selenium (Se) status, and genetic polymorphisms of various genes, commonly studied in populations exposed to high levels of iAs from drinking water, were studied in a Croatian-Slovenian population from the wider PHIME-CROME project. Population consisted of 136 pregnant women in the 3rd trimester and 176 non-pregnant women with their children (n = 176, 8-9 years old). Their exposure to iAs, defined by As (speciation) analyses of biological samples, was low. The sums of biologically active metabolites (arsenite + arsenate + methylated As forms) for pregnant women, non-pregnant women, and children, respectively were: 3.23 (2.84-3.68), 1.83 (1.54-2.16) and 2.18 (1.86-2.54) ng/mLSG; GM (95 CI). Corresponding plasma Se levels were: 54.8 (52.8-56.9), 82.3 (80.4-84.0) and 65.8 (64.3-67.3) ng/mL; GM (95 CI). As methylation efficiency indexes confirmed the relationship between pregnancy/childhood and better methylation efficiency. Archived blood and/or saliva samples were used for single nucleotide polymorphism (SNP) genotyping of arsenic(3+) methyltransferase - AS3MT (rs7085104, rs3740400, rs3740393, rs3740390, rs11191439, rs10748835, rs1046778 and the corresponding AS3MT haplotype); methylene tetrahydrofolate reductase - MTHFR (rs1801131, rs1801133); aquaporin - AQP 4 and 9 (rs9951307 and rs2414539); selenoprotein P1 - SELENOP (rs7579, rs3877899); indolethylamine N-methyltransferase - INMT (rs6970396); and metallothionein 2A - MT2A (rs28366003). Associations of SNPs with As parameters and urine Se were determined through multiple regression analyses adjusted using appropriate confounders (blood As, plasma Se, ever smoking, etc.). SNPs' influence on As methylation, defined particularly by the secondary methylation index (SMI), confirmed the 'protective' role of minor alleles of six AS3MT SNPs and their haplotype only among non-pregnant women. Among the other investigated genes, the carriers of AQP9 (rs2414539) were associated with more efficient As methylation and higher urine concentration of As and Se among non-pregnant women; poorer methylation was observed for carriers of AQP4 (rs9951307) among pregnant women and SELENOP (rs7579) among non-pregnant women; MT2A (rs28366003) was associated with higher urine concentration of AsIII regardless of the pregnancy status; and INMT (rs6970396) was associated with higher As and Se concentration in non-pregnant women. Among confounders, the strongest influence was observed for plasma Se; it reduced urine AsIII concentration during pregnancy and increased secondary methylation index among non-pregnant women. In the present study of populations with low As exposure, we observed a few new As-gene associations (particularly with AQPs). More reliable interpretations will be possible after their confirmation in larger populations with higher As exposure levels.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Zdenka Šlejkovec
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Alenka France-Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Alenka Sešek Briški
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, Krešimirova 42, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, Rijeka, Croatia
| | - Zdravko Špirić
- Green infrastructure ltd., Fallerovo šetalište 22, Zagreb, Croatia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Skröder H, Kippler M, De Loma J, Raqib R, Vahter M. Predictors of selenium biomarker kinetics in 4-9-year-old Bangladeshi children. ENVIRONMENT INTERNATIONAL 2018; 121:842-851. [PMID: 30342415 DOI: 10.1016/j.envint.2018.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Biomarker selenium concentrations vary greatly between studies. Concentrations in erythrocytes, urine, and hair vary even at similar plasma concentrations, suggesting that unknown factors influence the distribution of selenium between body compartments. OBJECTIVE To assess predictors of the different selenium biomarkers in children. DESIGN We used a mother-child cohort, nested in a population-based supplementation trial in rural Bangladesh (MINIMat), established for evaluation of arsenic toxicity. Selenium was measured in plasma (n = 223), erythrocytes, urine, and hair at 9 years (n = 395) and in erythrocytes and urine at 4.5 years (n = 259) using inductively coupled plasma mass spectrometry. We also measured concentrations of arsenic (all biospecimen) and cadmium (erythrocytes and urine). Genotyping for INMT, a methyltransferase involved in selenium metabolism, was performed using TaqMan probes. RESULTS At 9 years, the selenium concentrations ranged 51-139 μg/L in plasma, 128-281 μg/L in erythrocytes, 2.2-55 μg/L in urine, and 258-723 μg/kg in hair. Correlations (rS) between biomarkers ranged 0.12-0.37, and were strongest between blood compartments and between erythrocytes and hair (long-term markers). In multivariable-adjusted linear regression analyses, plasma selenium differed by sampling season (highest in food-secure pre-monsoon season) and was inversely associated with plasma arsenic (range < 0.0080-20 μg/L; B = -1.1, 95% CI: -1.8, -0.41). In contrast, erythrocyte selenium was positively associated with erythrocyte arsenic (range 0.95-50 μg/L; B = 0.58, 95% CI: 0.26, 0.91) and inversely associated with erythrocyte cadmium (range 0.27-3.1 μg/L; B = -12, 95% CI: -17, -6.9). These associations were similar at 4.5 years. Only selenium in hair and urine were influenced by INMT polymorphisms. Finally, chronic malnutrition seemed to increase selenium retention, measured as the ratio plasma/urinary selenium. CONCLUSIONS Selenium biomarkers seem to be influenced by malnutrition, genetics, and exposure to metal pro-oxidants. This might affect the evaluation of deficiency/sufficiency, normally assessed by selenium in plasma/serum.
Collapse
Affiliation(s)
- Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Jessica De Loma
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Rubhana Raqib
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
41
|
De Loma J, Skröder H, Raqib R, Vahter M, Broberg K. Arsenite methyltransferase (AS3MT) polymorphisms and arsenic methylation in children in rural Bangladesh. Toxicol Appl Pharmacol 2018; 357:80-87. [DOI: 10.1016/j.taap.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
|
42
|
Gliga AR, Engström K, Kippler M, Skröder H, Ahmed S, Vahter M, Raqib R, Broberg K. Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Arch Toxicol 2018; 92:2487-2500. [PMID: 29947889 PMCID: PMC6063321 DOI: 10.1007/s00204-018-2239-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023]
Abstract
Exposure to inorganic arsenic (As), a carcinogen and epigenetic toxicant, has been associated with lower circulating levels of insulin-like growth factor 1 (IGF1) and impaired growth in children of pre-school age. The aim of this study was to assess the potential impact of exposure to As on IGF1 and insulin-like growth factor-binding protein 3 (IGFBP3) as well as DNA methylation changes in 9-year-old children. To this end, we studied 9-year-old children from a longitudinal mother-child cohort in rural Bangladesh (n = 551). Prenatal and concurrent exposure to As was assessed via concentrations in maternal urine at gestational week 8 and in child urine at 9 years, measured by HPLC-HG-ICPMS. Plasma IGF1 and IGFBP3 concentrations were quantified with immunoassays. DNA methylation was measured in blood mononuclear cells at 9 years in a sub-sample (n = 113) using the Infinium HumanMethylation450K BeadChip. In multivariable-adjusted linear regression models, prenatal As (natural log-transformed), but not children's concurrent urinary As, was positively associated with IGFBP3 concentrations (β = 76, 95% CI 19, 133). As concentrations were not associated with IGF1. DNA methylation analysis revealed CpGs associated with both prenatal As and IGFBP3. Mediation analysis suggested that methylation of 12 CpG sites for all children was mediator of effect for the association between prenatal As and IGFBP3. We also found differentially methylated regions, generally hypermethylated, that were associated with both prenatal As and IGFBP3. In all, our study revealed that prenatal exposure to As was positively associated with IGFBP3 concentrations in children at 9 years, independent of IGF1, and this association may, at least in part, be epigenetically mediated.
Collapse
Affiliation(s)
- Anda R Gliga
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sultan Ahmed
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rubhana Raqib
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
43
|
Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24394-24402. [PMID: 29948723 DOI: 10.1007/s11356-018-2512-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Little was known about the arsenic metabolism and arsenic methylation associated with the changes of skin lesions after reducing the arsenic in drinking water (WAs). Therefore, urinary concentrations and proportions of arsenic species were determined for recovery (RC), improvement (IC), persistent (PE), aggravation (AC), new incidence (NC), and no sign (HC) groups based on the changes of skin lesions between before (in 2004) and after (in 2017) WAs reduction. The results indicate that the urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total arsenic (TAs) were much higher for RC and IC groups than for the other groups in 2004, while these values varied slightly among the groups in 2017. The urinary %iAs of all the groups was significantly decreased after WAs reduction. In contrast, the urinary %DMA of RC, IC, AC, and NC groups was increased. From 2004 to 2017, the PE and HC groups had lower decrease rate of %iAs and %MMA, and increase rate of %DMA, primary methylation index (PMI), and secondary methylation index (SMI) after WAs reduction. The adjusted odd ratios (ORs) showed that the RC, IC, AC, and NC groups were positively related with %iAs and %MMA and were negatively correlated with %DMA, PMI, and SMI before WAs reduction. It can be concluded that higher urinary %iAs and %MMA before WAs reduction increased the probability of skin lesions recovery and improvement, and the risks of skin lesions aggravation and incidence. Higher increase rate of urinary %DMA was positively associated with of skin lesions recovery and improvement. Moreover, higher urinary %iAs and %MMA or lower increase rate of urinary %DMA might increase the risk of skin lesions aggravation.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Yajuan Xia
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
44
|
Limón-Pacheco JH, Jiménez-Córdova MI, Cárdenas-González M, Sánchez Retana IM, Gonsebatt ME, Del Razo LM. Potential Co-exposure to Arsenic and Fluoride and Biomonitoring Equivalents for Mexican Children. Ann Glob Health 2018; 84:257-273. [PMID: 30873793 PMCID: PMC6748235 DOI: 10.29024/aogh.913] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mexico is included in the list of countries with concurrent arsenic and fluoride contamination in drinking water. Most of the studies have been carried out in the adult population and very few in the child population. Urinary arsenic and urinary fluoride levels have been accepted as good biomarkers of exposure dose. The Biomonitoring Equivalents (BE) values are useful tools for health assessment using human biomonitoring data in relation to the exposure guidance values, but BE information for children is limited. METHODS We conducted a systematic review of the reported levels of arsenic and fluoride in drinking water, urinary quantification of speciated arsenic (inorganic arsenic and its methylated metabolites), and urinary fluoride levels in child populations. For BE values, urinary arsenic and fluoride concentrations reported in Mexican child populations were revised discussing the influence of factors such as diet, use of dental products, sex, and metabolism. RESULTS Approximately 0.5 and 6 million Mexican children up to 14 years of age drink water with arsenic levels over 10 μg/L and fluoride over 1.5 mg/L, respectively. Moreover, 40% of localities with arsenic levels higher than 10 μg/L also present concurrent fluoride exposure higher than 1.5 mgF/L. BE values based in urinary arsenic of 15 μg/L and urinary fluoride of 1.2 mg/L for the environmentally exposed child population are suggested. CONCLUSIONS An actual risk map of Mexican children exposed to high levels of arsenic, fluoride, and both arsenic and fluoride in drinking water was generated. Mexican normativity for maximum contaminant level for arsenic and fluoride in drinking water should be adjusted and enforced to preserve health. BE should be used in child populations to investigate exposure.
Collapse
Affiliation(s)
- Jorge H Limón-Pacheco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MX
| | | | | | - Ilse M Sánchez Retana
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MX
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, MX
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, MX
| |
Collapse
|
45
|
Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T, Eunus M, Islam MT, Hasan R, Graziano JH, Ahsan H, Pierce BL. A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. ENVIRONMENTAL RESEARCH 2018; 164:346-355. [PMID: 29567420 PMCID: PMC6647858 DOI: 10.1016/j.envres.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chronic arsenic exposure is associated with increased risk for arsenical skin lesions, cancer, and other adverse health outcomes. One potential mechanism of arsenic toxicity is telomere dysfunction. However, prior epidemiological studies of arsenic exposure, telomere length (TL), and skin lesion are small and cross-sectional. We investigated the associations between arsenic exposure and TL and between baseline TL and incident skin lesion risk among individuals participating in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2000-2009). METHODS Quantitative PCR was used to measure the average TL of peripheral blood DNA collected at baseline. The association between baseline arsenic exposure (well water and urine) and TL was estimated in a randomly-selected subcohort (n = 1469). A nested case-control study (466 cases and 464 age- and sex-matched controls) was used to estimate the association between baseline TL and incident skin lesion risk (diagnosed < 8 years after baseline). RESULTS No association was observed between arsenic exposure (water or urine) and TL. Among incident skin lesion cases and matched controls, we observed higher skin lesion risk among individuals with shorter TL (Ptrend = 1.5 × 10-5) with odds ratios of 2.60, 1.59, and 1.10 for the first (shortest), second, and third TL quartiles compared to the fourth (longest). CONCLUSIONS Arsenic exposure was not associated with TL among Bangladeshi adults, suggesting that leukocyte TL may not reflect a primary mode of action for arsenic's toxicity. However, short TL was associated with increased skin lesion risk, and may be a biomarker of arsenic susceptibility modifying arsenic's effect on skin lesion risk.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Jianjun Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | | | | | | | | | | | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States; Department of Medicine, University of Chicago, Chicago, IL 60615, United States
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States.
| |
Collapse
|
46
|
Desai G, Barg G, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K. A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. ENVIRONMENTAL RESEARCH 2018; 164:124-131. [PMID: 29486343 PMCID: PMC5911190 DOI: 10.1016/j.envres.2018.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have evaluated the association between low-level arsenic (As) exposure and cognitive performance among children. OBJECTIVES In this cross-sectional study, we assessed the association between low-level As exposure and cognitive performance among 5-8 year-old children in Montevideo, and tested effect modification by As methylation capacity and children's dietary folate intake. METHODS We measured total urinary As (UAs) concentrations and the proportion of monomethylarsonic acid (MMA) in the urine of 328 children. Seven subtests of the standardized Woodcock-Muñoz cognitive battery were used to assess cognitive performance, from which, the general intellectual abilities (GIA) score was derived. Total folate intake was estimated from two 24-h dietary recalls. Linear regression analyses were performed. Effect modification was assessed by stratifying at the median %MMA value and tertiles of total folate intake calculated as micrograms (µg) of dietary folate equivalents (dfe). RESULTS The median UAs was 11.9 µg/l (range = 1.4-93.9), mean folate intake was 337.4 (SD = 123.3) µg dfe, and median %MMA was 9.42 (range = 2.6-24.8). There was no association between UAs and cognitive abilities, and no consistent effect modification by %MMA. UAs was associated inversely with concept formation, and positively with cognitive efficiency and numbers reversed subtest in the lowest folate intake tertile; UAs was also positively associated with sound integration in the second tertile and concept formation in the highest tertile of folate intake. There was no consistent pattern of effect modification by %MMA or folate intake. CONCLUSION There was no association between low-level As exposure and general cognitive abilities.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
47
|
Skröder H, Engström K, Kuehnelt D, Kippler M, Francesconi K, Nermell B, Tofail F, Broberg K, Vahter M. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:027001. [PMID: 29398653 PMCID: PMC6066347 DOI: 10.1289/ehp1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. OBJECTIVES We aimed to investigate potential interactions in the methylation of selenium and arsenic. METHODS Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women (n=226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. RESULTS Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe (INMT rs6970396 AG+AA, n=74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA (p-interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. CONCLUSIONS Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.
Collapse
Affiliation(s)
- Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Engström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University , Lund, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, Graz, Austria
| | - Barbro Nermell
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fahmida Tofail
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Skröder H, Kippler M, Tofail F, Vahter M. Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:117003. [PMID: 29116931 PMCID: PMC5947942 DOI: 10.1289/ehp1691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND In older adults, selenium status has been positively associated with cognitive function. We recently reported a positive association between maternal selenium status in pregnancy and children's cognitive function at 1.5 y. OBJECTIVE We followed up the children to assess if prenatal and childhood selenium status was associated with cognitive abilities at 5 and 10 y. METHODS This longitudinal cohort study was nested in Maternal and Infant Nutrition Interventions in Matlab (MINIMat), a population-based, randomized supplementation trial in pregnancy in rural Bangladesh. Selenium in maternal blood [erythrocyte fraction (Ery-Se) at baseline] and in child hair and urine was measured using inductively coupled plasma mass spectrometry. Children's cognition at 5 and 10 y was assessed using the Wechsler Preschool and Primary Scale of Intelligence™ and the Wechsler Intelligence Scale for Children®, respectively. In total, 1,408 children were included. RESULTS Multivariable-adjusted linear regression analyses showed that prenatal selenium status was positively associated with children's cognitive function at 5 and 10 y. An increase in maternal Ery-Se from the fifth to the 95th percentile [median: 0.44μg/g hemoglobin (Hb)] was associated with an increase in full developmental score of 3.5 [95% confidence interval (CI): 0.1, 7.0], corresponding to 0.16 standard deviation (SD) at 5 y, and 8.1 (95% CI: 3.8, 13), corresponding to 0.24 SD at 10 y. In addition, urine and hair selenium concentrations at 5 and 10 y of age were positively associated with cognitive function at 10 y, although associations were inverse for concentrations ≥98th percentile. Some associations were slightly stronger for girls than for boys. CONCLUSIONS Measures of prenatal and childhood (below the 98th percentile) selenium status were associated with higher cognitive function scores at 5 and 10 y of age. https://doi.org/10.1289/EHP1691.
Collapse
Affiliation(s)
- Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fahmida Tofail
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Signes-Pastor AJ, Vioque J, Navarrete-Muñoz EM, Carey M, García de la Hera M, Sunyer J, Casas M, Riaño-Galán I, Tardón A, Llop S, Amorós R, Amiano P, Bilbao JR, Karagas MR, Meharg AA. Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. ENVIRONMENTAL RESEARCH 2017; 159:69-75. [PMID: 28772151 PMCID: PMC5985515 DOI: 10.1016/j.envres.2017.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/18/2023]
Abstract
Inorganic arsenic (i-As) has been related to wide-ranging health effects in children, leading to lifelong concerns. Proportionally, dietary i-As exposure dominates in regions with low arsenic drinking water. This study aims to investigate the relation between rice and seafood consumption and urinary arsenic species during childhood and to assess the proportion of urinary i-As metabolites. Urinary arsenic species concentration in 400 4-year-old children living in four geographical areas of Spain, in addition to repeated measures from 100 children at 7 years of age are included in this study. Rice and seafood products intake was collected from children's parents using a validated food frequency questionnaire (FFQ). At 4 years of age, children's urine i-As and monomethylarsonic acid (MMA) concentrations increased with rice product consumption (p-value = 0.010 and 0.018, respectively), and urinary arsenobetaine (AsB) with seafood consumption (p = 0.002). Four-year-old children had a higher consumption of both rice and seafood per body weight and a higher urinary %MMA (p-value = 0.001) and lower % dimethylarsinic acid (DMA) (p-value = 0.017). This study suggests increased dietary i-As exposure related to rice product consumption among children living in Spain, and the younger ones may be especially vulnerable to the health impacts of this exposure also considering that they might have a lower i-As methylation capacity than older children. In contrast, seafood consumption did not appear to influence the presence of potentially toxic arsenic species in this population of children.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland, UK.
| | - Jesus Vioque
- University Miguel Hernández, Faculty of Medicine and Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Ctra. Valencia s/n, 03550 Sant Joan d ́Alacant, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Eva M Navarrete-Muñoz
- University Miguel Hernández, Faculty of Medicine and Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Ctra. Valencia s/n, 03550 Sant Joan d ́Alacant, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Manus Carey
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| | - Manoli García de la Hera
- University Miguel Hernández, Faculty of Medicine and Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Ctra. Valencia s/n, 03550 Sant Joan d ́Alacant, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Pediatric Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; IUOPA-Universidad de Oviedo, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, Universitat Jaume I-Universitat de València, València, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO, Valencia, Spain
| | - Rubén Amorós
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO, Valencia, Spain
| | - Pilar Amiano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Carlos III Institute of Health, Avenida Monforte de Lemos 5, 28029 Madrid, Spain; Public Health Department of Gipuzkoa, Government of the Basque Country, Avenida Navarra, 4, 20013, San Sebastian, Spain; Biodonostia Research Institute, Paseo Dr Beguiristain s/n, 20014, San Sebastian, Spain
| | - José R Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, 7927 Rubin Bldg, Lebanon NH03766, USA
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| |
Collapse
|
50
|
Uppal JS, Shuai Q, Li Z, Le XC. Arsenic biotransformation and an arsenite S-adenosylmethionine methyltransferase in plankton. J Environ Sci (China) 2017; 61:118-121. [PMID: 29191309 DOI: 10.1016/j.jes.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Jagdeesh S Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Qin Shuai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China.
| | - Zhuang Li
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3.
| |
Collapse
|