1
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
2
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicol Sci 2021; 182:168-182. [PMID: 33988684 DOI: 10.1093/toxsci/kfab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of interindividual variability is a continuing challenge in risk assessment, particularly for compounds with complex metabolism and multi-organ toxicity. Toxicokinetic variability for perchloroethylene (perc) was previously characterized across 3 mouse strains and in 1 mouse strain with various degrees of liver steatosis. To further characterize the role of genetic variability in toxicokinetics of perc, we applied Bayesian population physiologically based pharmacokinetic (PBPK) modeling to the data on perc and metabolites in blood/plasma and tissues of male mice from 45 inbred strains from the Collaborative Cross (CC) mouse population. After identifying the most influential PBPK parameters based on global sensitivity analysis, we fit the model with a hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation. We found that the data from 3 commonly used strains were not representative of the full range of variability in perc and metabolite blood/plasma and tissue concentrations across the CC population. Using interstrain variability as a surrogate for human interindividual variability, we calculated dose-dependent, chemical-, and tissue-specific toxicokinetic variability factors (TKVFs) as candidate science-based replacements for the default uncertainty factor for human toxicokinetic variability of 100.5. We found that toxicokinetic variability factors for glutathione conjugation metabolites of perc showed the greatest variability, often exceeding the default, whereas those for oxidative metabolites and perc itself were generally less than the default. Overall, we demonstrate how a combination of a population-based mouse model such as the CC with Bayesian population PBPK modeling can reduce uncertainty in human toxicokinetic variability and increase accuracy and precision in quantitative risk assessment.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
3
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. PBPK modeling of impact of nonalcoholic fatty liver disease on toxicokinetics of perchloroethylene in mice. Toxicol Appl Pharmacol 2020; 400:115069. [PMID: 32445755 DOI: 10.1016/j.taap.2020.115069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disease in the Western countries with increasing prevalence worldwide, may substantially affect chemical toxicokinetics and thereby modulate chemical toxicity. OBJECTIVES This study aims to use physiologically-based pharmacokinetic (PBPK) modeling to characterize the impact of NAFLD on toxicokinetics of perchloroethylene (perc). METHODS Quantitative measures of physiological and biochemical changes associated with the presence of NAFLD induced by high-fat or methionine/choline-deficient diets in C57B1/6 J mice are incorporated into a previously developed PBPK model for perc and its oxidative and conjugative metabolites. Impacts on liver fat and volume, as well as blood:air and liver:air partition coefficients, are incorporated into the model. Hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation is conducted to characterize uncertainty, as well as disease-induced variability in toxicokinetics. RESULTS NAFLD has a major effect on toxicokinetics of perc, with greater oxidative and lower conjugative metabolism as compared to healthy mice. The NAFLD-updated PBPK model accurately predicts in vivo metabolism of perc through oxidative and conjugative pathways in all tissues across disease states and strains, but underestimated parent compound concentrations in blood and liver of NAFLD mice. CONCLUSIONS We demonstrate the application of PBPK modeling to predict the effects of pre-existing disease conditions as a variability factor in perc metabolism. These results suggest that non-genetic factors such as diet and pre-existing disease can be as influential as genetic factors in altering toxicokinetics of perc, and thus are likely contribute substantially to population variation in its adverse effects.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Cichocki JA, Luo YS, Furuya S, Venkatratnam A, Konganti K, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice. Toxicol Sci 2019; 167:126-137. [PMID: 30202895 DOI: 10.1093/toxsci/kfy223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accounting for genetic and other (eg, underlying disease states) factors that may lead to inter-individual variability in susceptibility to xenobiotic-induced injury is a challenge in human health assessments. A previous study demonstrated that nonalcoholic fatty liver disease (NAFLD), one of the common underlying disease states, enhances tetrachloroethylene (PERC)-associated hepatotoxicity in mice. Interestingly, NAFLD resulted in a decrease in metabolism of PERC to nephrotoxic glutathione conjugates; we therefore hypothesized that NAFLD would protect against PERC-associated nephrotoxicity. Male C57BL/6J mice were fed a low-fat (LFD), high-fat (31% fat, HFD), or high-fat methionine/choline/folate-deficient (31% fat, MCD) diets. After 8 weeks mice were administered either a single dose of PERC (300 mg/kg i.g.) and euthanized at 1-36 h post dose, or five daily doses of PERC (300 mg/kg/d i.g.) and euthanized 4 h after last dose. Relative to LFD-fed mice, HFD- or MCD-fed mice exhibited decreased PERC concentrations and increased trichloroacetate (TCA) in kidneys. S-(1,2,2-trichlorovinyl)glutathione (TCVG), S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), and N-acetyl-S-(1,2,2,-trichlorovinyl)-l-cysteine (NAcTCVC) were also significantly lower in kidney and urine of HFD- or MCD-fed mice compared with LFD-fed mice. Despite differences in levels of nephrotoxic PERC metabolites in kidney, LFD- and MCD-fed mice demonstrated similar degree of nephrotoxicity. However, HFD-fed mice were less sensitive to PERC-induced nephrotoxicity. Thus, whereas both MCD- and HFD-induced fatty liver reduced the delivered dose of nephrotoxic PERC metabolites to the kidney, only HFD was protective against PERC-induced nephrotoxicity, possibly due to greater toxicodynamic sensitivity induced by methyl and choline deficiency. These results therefore demonstrate that pre-existing disease conditions can lead to a complex interplay of toxicokinetic and toxicodynamic changes that modulate susceptibility to the toxicity of xenobiotics.
Collapse
Affiliation(s)
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences
| | | | | | | | | | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Igor P Pogribny
- National Center for Toxicological Research, US FDA, Jefferson, Arkansas 72079
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences
| |
Collapse
|
5
|
Zhang SH, Guo AJ, Zhao WX, Gu JL, Zhang R, Wei N. Urinary trichloroacetic acid and high blood pressure: A cross-sectional study of general adults in Shijiazhuang, China. ENVIRONMENTAL RESEARCH 2019; 177:108640. [PMID: 31416009 DOI: 10.1016/j.envres.2019.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Exposure to trichloroacetic acid (TCAA) and its parent chemicals potentially linked to cardiovascular disease. However, the association between TCAA and blood pressure (BP) has not been studied to date. The purpose of this study was to examine the potential association between urinary TCAA levels and BP in a Chinese population. We measured BP parameters (including systolic BP, diastolic BP and pulse pressure) and TCAA concentrations in the urine of 569 adults from a primary health care clinic in Shijiazhuang, China. Logistic and linear regressions were used to investigate the relationships between the urinary TCAA levels and BP parameters. To evaluate the robustness of the results, we conducted sensitivity analyses by re-analysing data after excluding urine samples with extreme specific creatinine values. We found that urine TCAA levels were positively associated with systolic BP and pulse pressure based on trend tests after adjusting for potential confounders (both p for trend < 0.05). Finally, only the association of TCAA with systolic BP remained significant in the sensitivity analyses (p < 0.05). Our results suggested that TCAA exposure was associated with increased BP in adults. Because urinary TCAA has been proposed as a valid biomarker of disinfection by-product (DBP) ingestion through disinfected drinking water, our results further suggest that exposure to drinking water DBPs may contribute to high BP in humans. Additional research is needed to confirm these findings and to evaluate opportunities for intervention.
Collapse
Affiliation(s)
- Shao-Hui Zhang
- Experiment Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ai-Jing Guo
- Department of Physico-chemical Inspection, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Wei-Xin Zhao
- Experiment Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia-Ling Gu
- Experiment Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong Zhang
- Departments of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Wei
- Experiment Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, Cave MC. Mechanisms of Environmental Contributions to Fatty Liver Disease. Curr Environ Health Rep 2019; 6:80-94. [PMID: 31134516 PMCID: PMC6698418 DOI: 10.1007/s40572-019-00232-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Jian Jin
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Josiah E Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Erica F Daly
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Irina A Kirpich
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Hepatobiology & Toxicology COBRE Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA.
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
- The Jewish Hospital Liver Transplant Program, Louisville, KY, 40202, USA.
- Kosair Charities Clinical & Translational Research Building, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Arman T, Lynch KD, Montonye ML, Goedken M, Clarke JD. Sub-Chronic Microcystin-LR Liver Toxicity in Preexisting Diet-Induced Nonalcoholic Steatohepatitis in Rats. Toxins (Basel) 2019; 11:E398. [PMID: 31323923 PMCID: PMC6669744 DOI: 10.3390/toxins11070398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Microcystin-LR (MCLR) is a hepatotoxic cyanotoxin reported to cause a phenotype similar to nonalcoholic steatohepatitis (NASH). NASH is a common progressive liver disease that advances in severity due to exogenous stressors such as poor diet and toxicant exposure. Our objective was to determine how sub-chronic MCLR toxicity affects preexisting diet-induced NASH. Sprague-Dawley rats were fed one of three diets for 10 weeks: control, methionine and choline deficient (MCD), or high fat/high cholesterol (HFHC). After six weeks of diet, animals received vehicle, 10 µg/kg, or 30 µg/kg MCLR via intraperitoneal injection every other day for the final 4 weeks. Incidence and severity scoring of histopathology endpoints suggested that MCLR toxicity drove NASH to a less fatty and more fibrotic state. In general, expression of genes involved in de novo lipogenesis and fatty acid esterification were altered in favor of decreased steatosis. The higher MCLR dose increased expression of genes involved in fibrosis and inflammation in the control and HFHC groups. These data suggest MCLR toxicity in the context of preexisting NASH may drive the liver to a more severe phenotype that resembles burnt-out NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Michelle L Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Michael Goedken
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08901, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
8
|
Luo YS, Cichocki JA, Hsieh NH, Lewis L, Wright FA, Threadgill DW, Chiu WA, Rusyn I. Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67011. [PMID: 31246107 PMCID: PMC6792382 DOI: 10.1289/ehp5105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism-associated genes [ Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 ( Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism-associated genes ( Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/ Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/ Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism-toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Joseph A. Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Lauren Lewis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Fred A. Wright
- Bioinformatics Research Center and Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - David W. Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Lang AL, Beier JI. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol Chem 2019; 399:1237-1248. [PMID: 29924722 DOI: 10.1515/hsz-2017-0324] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Occupational and environmental exposures to industrial chemicals are known to cause hepatotoxicity and liver injury, in humans and in animal models. Historically, research has focused on severe acute liver injury (e.g. fulminant liver failure) or endstage diseases (e.g. cirrhosis and HCC). However, it has become recently recognized that toxicants can cause more subtle changes to the liver. For example, toxicant-associated steatohepatitis, characterized by hepatic steatosis, and inflammation, was recently recognized in an occupational cohort exposed to vinyl chloride. At high occupational levels, toxicants are sufficient to cause liver damage and disease even in healthy subjects with no comorbidities for liver injury. However, it is still largely unknown how exposure to toxicants initiate and possibly more importantly exacerbate liver disease, when combined with other factors, such as underlying non-alcoholic fatty liver disease caused by poor diet and/or obesity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease. The purpose of this review is to summarize established and proposed mechanisms of volatile organic compound-induced liver injury and to highlight key signaling events known or hypothesized to mediate these effects.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.,Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, USA.,University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Clarke JD, Dzierlenga A, Arman T, Toth E, Li H, Lynch KD, Tian DD, Goedken M, Paine MF, Cherrington N. Nonalcoholic fatty liver disease alters microcystin-LR toxicokinetics and acute toxicity. Toxicon 2019; 162:1-8. [PMID: 30849452 PMCID: PMC6447445 DOI: 10.1016/j.toxicon.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023]
Abstract
Microcystin-LR (MCLR) is a cyanotoxin produced by blue-green algae that causes liver and kidney toxicities. MCLR toxicity is dependent on cellular uptake through the organic anion transporting polypeptide (OATP) transporters. Nonalcoholic fatty liver disease (NAFLD) progresses through multiple stages, alters expression of hepatic OATPs, and is associated with chronic kidney disease. The purpose of this study was to determine whether NAFLD increases systemic exposure to MCLR and influences acute liver and kidney toxicities. Rats were fed a control diet or two dietary models of NAFLD; methionine and choline deficient (MCD) or high fat/high cholesterol (HFHC). Two studies were performed in these groups: 1) a single dose intravenous toxicokinetic study (20 μg/kg), and 2) a single dose intraperitoneal toxicity study (60 μg/kg). Compared to control rats, plasma MCLR area under the concentration-time curve (AUC) in MCD rats doubled, whereas biliary clearance (Clbil) was unchanged; in contrast, plasma AUC in HFHC rats was unchanged, whereas Clbil approximately doubled. Less MCLR bound to PP2A was observed in the liver of MCD rats. This shift in exposure decreased the severity of liver pathology only in the MCD rats after a single toxic dose of MCLR (60 μg/kg). In contrast, the single toxic dose of MCLR increased hepatic inflammation, plasma cholesterol, proteinuria, and urinary KIM1 in HFHC rats more than MCLR exposed control rats. In conclusion, rodent models of NAFLD alter MCLR toxicokinetics and acute toxicity and may have implications for liver and kidney pathologies in NAFLD patients.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| | - Anika Dzierlenga
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Erica Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08901, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Nathan Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
11
|
Li X, Wang Z, Klaunig JE. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Toxicology 2019; 416:1-14. [DOI: 10.1016/j.tox.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
|
12
|
Klaunig JE, Li X, Wang Z. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicol Res (Camb) 2018; 7:664-680. [PMID: 30090613 PMCID: PMC6062016 DOI: 10.1039/c7tx00326a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a major cause of chronic liver pathology in humans. Fatty liver disease involves the accumulation of hepatocellular fat in hepatocytes that can progress to hepatitis. Steatohepatitis is categorized into alcoholic (ASH) or non-alcoholic (NASH) steatohepatitis based on the etiology of the insult. Both pathologies involve an initial steatosis followed by a progressive inflammation of the liver and eventual hepatic fibrosis (steatohepatitis) and cirrhosis. The involvement of pharmaceuticals and other chemicals in the initiation and progression of fatty liver disease has received increased study. This review will examine not only how xenobiotics initiate hepatic steatosis and steatohepatitis but also how the presence of fatty liver may modify the metabolism and pathologic effects of xenobiotics. The feeding of a high fat diet results in changes in the expression of nuclear receptors that are involved in adaptive and adverse liver effects following xenobiotic exposure. High fat diets also modulate cellular and molecular pathways involved in inflammation, metabolism, oxidative phosphorylation and cell growth. Understanding the role of hepatic steatosis and steatohepatitis on the sequelae of toxic and pathologic changes seen following xenobiotic exposure has importance in defining proper and meaningful human risk characterization of the drugs and other chemical agents.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Xilin Li
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Zemin Wang
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| |
Collapse
|