1
|
Demir EA, Demir S, Mungan SA, Alemdar NT, Menteşe A, Aliyazıcıoğlu Y. Chlorogenic acid protects against cisplatin-induced testicular damage: a biochemical and histological study. Arh Hig Rada Toksikol 2025; 76:130-137. [PMID: 40561414 DOI: 10.2478/aiht-2025-76-3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 06/01/2025] [Indexed: 06/28/2025] Open
Abstract
One of the adverse effects of cisplatin (CIS) treatment is its reproductive toxicity, which limits its clinical use in male patients. The aim of our study was to investigate the potential protective effects and mechanisms of chlorogenic acid (CHA), a well-known antioxidant and anti-inflammatory polyphenol, in a CIS-induced testicular toxicity model. To this end we divided 30 Sprague-Dawley rats into five groups: control and four groups receiving either CHA alone (3 mg/kg), CIS alone (5 mg/kg), or their weaker and stronger combinations: CIS+CHA (1.5 mg/kg) and CIS+CHA (3 mg/kg), respectively. In the combination groups the rats first received a single 5 mg/kg dose of CIS, followed by either 1.5 or 3 mg/kg of CHA administered intraperitoneally for three consecutive days. Testicular tissues were harvested on the fifth day of the experiment. The level of testicular oxidative stress and inflammation induced by CIS and the histopathological changes observed were restored to normal following treatment with both doses of CHA. Furthermore, treatment with CHA led to the regeneration of Nrf2 and HO-1 levels, which had been suppressed by CIS. Consequently, the levels of endoplasmic reticulum stress and apoptosis were reduced. These findings indicate that CHA may counter the reproductive toxicity of CIS and may therefore serve as its add-on in cancer therapy.
Collapse
Affiliation(s)
- Elif Ayazoğlu Demir
- Karadeniz Technical University Macka Vocational School, Department of Chemistry and Chemical Processing Technologies, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University Faculty of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Sevdegül Aydın Mungan
- Karadeniz Technical University Faculty of Medicine, Department of Medical Pathology, Trabzon, Turkey
| | - Nihal Türkmen Alemdar
- Recep Tayyip Erdogan University Vocational School of Health Services, Department of Medical Services and Techniques, Rize, Turkey
| | - Ahmet Menteşe
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Yüksel Aliyazıcıoğlu
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| |
Collapse
|
2
|
Huang Q, Shan Q, Ma F, Li S, Sun P. Chlorogenic acid mitigates heat stress-induced oxidative damage in bovine mammary epithelial cells by inhibiting NF-κB-mediated NLRP3 inflammasome activation via upregulating the Nrf2 signaling pathway. Int J Biol Macromol 2025; 301:140133. [PMID: 39842566 DOI: 10.1016/j.ijbiomac.2025.140133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Chlorogenic acid (CGA), a polyphenolic bioactive molecule derived from medicinal plants, is known for its strong antioxidant and anti-inflammatory properties. Previous studies have demonstrated that dietary supplementation with Lonicera japonica extract, rich in CGA, effectively enhances the production performance of lactating dairy cows under heat stress (HS) conditions. However, the molecular mechanisms underlying CGA's protective effects remain unclear. This study aims to elucidate the mechanisms by which CGA alleviates HS-induced oxidative damage in bovine mammary epithelial cells (bMECs), focusing on its pharmacological activity and potential application as a natural therapeutic agent for bovine mammary disorders. The results demonstrated that HS activates the NF-κB and NLRP3 signaling pathways by increasing ROS generation, leading to oxidative stress and inflammatory response in bMECs. CGA mitigates these effects by scavenging intracellular ROS, activating the Nrf2 signaling pathway, and inhibiting key molecules in the NF-κB and NLRP3 signaling pathways. This study provides new insights into the underlying molecular mechanisms of CGA's protective effects, highlighting its potential as a natural antioxidant for bovine mammary health and contributing to the broader application of polyphenolic compounds in managing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Shan
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Tang X, Meng Y, Li H, Liu K, Wang X, Zhong Z, Ye J, Chen J. Characterization of metalaxyl-induced notochord toxicity based on biochemical and transcriptomics in zebrafish (Danio rerio) model. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136985. [PMID: 39764961 DOI: 10.1016/j.jhazmat.2024.136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 03/12/2025]
Abstract
Metalaxyl is an acylanilide systemic fungicide that is widely applied and can readily enter ecosystems through leaching and soil runoff. This research utilized zebrafish as a model organism to thoroughly investigate the detrimental impacts of environmentally relevant levels of metalaxyl on the development of the notochord in zebrafish embryos and to elucidate the underlying molecular mechanisms through transcriptomics, pharmacological intervention and molecular biological detection. The preliminary results demonstrated that metalaxyl induced significant modifications in the developmental parameters of zebrafish embryos. This study has also assessed the long-term consequences of metalaxyl exposure during the embryonic development of zebrafish. This study have demonstrated that zebrafish exposed to metalaxyl exhibit a range of abnormalities, including defects in notochord vacuole biogenesis, somite segmentation disorders, anomalous notochord curvatures, craniofacial cartilage deformities, and irregular chordacentra mineralisation. Through transcriptomic and bioinformatics analysis, it was found that most of the genes exhibiting differential expression were linked to oxidative stress. Furthermore, the evidence indicated that oxidative stress was present, as demonstrated by increased malondialdehyde (MDA) production and a decrease in antioxidant enzyme activity (CAT, SOD, GSH). Interestingly, the developmental dysfunction induced by metalaxyl was partially rescued by chlorogenic acid. Overall, metalaxyl disrupts notochord and skeletal formation in zebrafish embryos by modulating oxidative stress mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Yunlong Meng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Haining Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Kangyu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Xinyao Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China.
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China.
| |
Collapse
|
4
|
Jeon HJ, Lee BS, Park C. Extraction of Chlorogenic Acid Using Single and Mixed Solvents. Molecules 2025; 30:481. [PMID: 39942586 PMCID: PMC11820232 DOI: 10.3390/molecules30030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Chlorogenic acid, which is extracted from a wide range of natural sources, is attracting the attention of many researchers in the pharmaceutical and biomedical fields due to its various positive effects, such as such as anti-inflammatory and antibacterial properties. Considering the effects of economics and solvent toxicity, water, ethanol, and their mixtures were selected as the solvents for extracting chlorogenic acid at various temperatures (298~318 K) and over a whole range of concentrations. The solubility of chlorogenic acid increased with temperature regardless of the solvents, and the solubility was higher in pure ethanol than in pure water. The solubility of chlorogenic acid in mixed solvents exhibited a gradual rise as the water content increased, reaching a maximum at a specific water weight fraction. These trends were well predicted by the COSMO-SAC model and Hansen solubility parameter method. By comparing the σ-profile, it was confirmed that the maximum solubility in mixed solvent comes from the similarity of σ-profiles between chlorogenic acid and mixed solvent which represents the surface charge density of the molecule.
Collapse
Affiliation(s)
- Hyeon Ji Jeon
- Department of Chemical Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Bong-Seop Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Changhyup Park
- Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
5
|
Hao H, Xu Y, Chen R, Qi S, Liu X, Lin B, Chen X, Zhang X, Yue L, Chen C. Protective effects of chlorogenic acid against cyclophosphamide induced liver injury in mice. Biotech Histochem 2024; 99:33-43. [PMID: 38018995 DOI: 10.1080/10520295.2023.2287452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
We investigated possible protective effects of chlorogenic acid (CGA) against cyclophosphamide (CP) induced hepatic injury in mice. We measured aminotransferase alanine transaminase (ALT) and aspartate transaminase (AST) levels in the serum. We assayed catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in hepatic tissue. We assessed expression of nuclear transcription factor 2 (Nrf2) and Kelch sample related protein-1 (keap1) proteins in hepatic tissues using immunohistochemistry. The relative mRNA expression levels of heme oxygenase-1 (HO-1), NADH quinone oxidoreductase 1 (NQO1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Hematoxylin & eosin staining was used to assess liver histopathology. We found that administration of CGA prior to induction of injury by CP decreased serum ALT, AST and MDA expressions in hepatic tissue, while CAT, SOD, GSH and GSH-Px concentrations were increased. We found that hepatocytes of animals administered CGA gradually returned to normal morphology. CGA increased the protein expression of Nrf2 in murine hepatic tissue. Administration of CGA up-regulated mRNA expression levels of HO-1, NQO1, TNF-α and IL-6 in hepatic tissue. CGA exhibited a marked protective effect on CP induced liver injury in mice.
Collapse
Affiliation(s)
- Hao Hao
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Youmei Xu
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Rui Chen
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Shanshan Qi
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiang Liu
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Beibei Lin
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaohua Chen
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaoying Zhang
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Lijuan Yue
- Department of Oncology, Hanzhong Central Hospital, Hanzhong, Shaanxi, China
| | - Chen Chen
- Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
6
|
Ji R, Chen J, Xu J, Zhang L, Liu L, Li F. Protective effect of chlorogenic acid on liver injury in heat-stressed meat rabbits. J Anim Physiol Anim Nutr (Berl) 2024; 108:1203-1213. [PMID: 38628061 DOI: 10.1111/jpn.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 11/21/2024]
Abstract
This study investigated the protective effects of chlorogenic acid (CGA) on production performance and liver function of rabbits under heat stress (HS) condition. A total of 120 healthy New Zealand weaned rabbits with similar initial body weight, were randomly divided into 3 treatments with 20 replicates per treatment and 2 weaned rabbits per replicate: control (CON) group (rabbits were housed at 25 ± 1°C and fed a basal diet), HS group (rabbits were housed at 35 ± 1°C and fed a basal diet), and HS + CGA group (rabbits were housed at 35 ± 1°C and fed a basal diet supplemented with 800 mg/kg CGA). The trial lasted for 28 days. The results showed that HS challenge decreased (p < 0.05) growth performance, induced oxidative stress and hepatic apoptosis, and caused liver damage in rabbits. However, dietary CGA supplementation increased (p < 0.05) body weight gain and feed efficiency, and enhanced (p < 0.05) antioxidative capacity in serum and liver in HS-challenged rabbits; attenuated HS-induced increases in urea nitrogen (p = 0.03), alanine aminotransferase (p = 0.03), aspartate aminotransferase (p = 0.01), caspase-8 (p = 0.02), and caspase-3 (p = 0.04) as well as decrease albumin (p = 0.04). Moreover, supplementation with CGA upregulated Nrf2/HO-1 pathway-related genes expressions, including Nrf2 (p = 0.009), HO-1 (p = 0.03) and SOD1 (p = 0.04) in HS-challenged rabbits. Our findings demonstrated that dietary CGA supplementation could alleviate HS-induced decline in growth performance, and protect against HS-induced liver damage partially through enhancing antioxidant capacity via acting Nrf2/HO-1 pathway and inhibiting hepatic apoptosis in rabbits.
Collapse
Affiliation(s)
- Rongmei Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Jiali Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Jian Xu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lirui Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Guo Q, Wu Z, Wang K, Shi J, Wei M, Lu B, Huang Z, Ji L. Forsythiaside-A improved bile-duct-ligation-induced liver fibrosis in mice: The involvement of alleviating mitochondrial damage and ferroptosis in hepatocytes via activating Nrf2. Free Radic Biol Med 2024; 222:27-40. [PMID: 38815774 DOI: 10.1016/j.freeradbiomed.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Liver fibrosis is a key and reversible stage in the progression of many chronic liver diseases to cirrhosis or hepatocellular carcinoma. Forsythiaside-A (FTA), a main compound isolated from Forsythiae Fructus, has an excellent liver protective activity. This study aims to investigate the efficacy of FTA in improving cholestatic liver fibrosis. Bile-duct-ligation (BDL) was conducted to induce liver fibrosis in mice. Hepatic collagen deposition was evaluated by Masson and Sirus red staining. The bile acid spectrum in the liver and serum was analyzed by mass spectrometry. Liver oxidative stress injury and mitochondria damage were observed by using Mito-Tracker Red fluorescence staining, transmission electron microscopy, etc. The level of ferrous iron (Fe2+) and the expression of ferroptosis-associated molecules were detected. The binding between FTA and its target protein was confirmed by Co-immunoprecipitation (Co-IP), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR). Our results demonstrated that FTA alleviated BDL-induced liver fibrosis in mice. FTA did not decrease the elevated amount of bile acids in BDL-treated mice, but reduced the bile acid-induced mitochondrial damage, oxidative stress and ferroptosis in hepatocytes, and also induced nuclear factor erythroid 2-related factor-2 (Nrf2) activation. In Nrf2 knock-out mice, the FTA-provided protection against BDL-induced liver fibrosis was disappeared, and FTA's inhibition on mitochondrial damage, oxidative stress and ferroptosis were lowered. Further results displayed that FTA could directly bind to Kelch-like ECH-associated protein-1 (Keap1), thereby activating Nrf2. Moreover, the BDL-induced liver fibrosis was markedly weakened in liver-specific Keap1 knockout mice. Hence, this study suggests that FTA alleviated the BDL-induced liver fibrosis through attenuating mitochondrial damage and ferroptosis in hepatocytes by activating Nrf2 via directly binding to Keap1.
Collapse
Affiliation(s)
- Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Laddha AP, Wu H, Manautou JE. Deciphering Acetaminophen-Induced Hepatotoxicity: The Crucial Role of Transcription Factors like Nuclear Factor Erythroid 2-Related Factor 2 as Genetic Determinants of Susceptibility to Drug-Induced Liver Injury. Drug Metab Dispos 2024; 52:740-753. [PMID: 38857948 DOI: 10.1124/dmd.124.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Orhan S, Turkmen R, Demirel HH, Akosman MS, Turkmen T, Fırat F. Chlorogenic acid mitigates potassium dichromate-induced acute hepato-nephrotoxicity by attenuating the NF-κB signalling pathway. Mol Biol Rep 2024; 51:798. [PMID: 39002019 DOI: 10.1007/s11033-024-09717-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Hexavalent chromium (CrVI) is known to be a potentially hepatotoxic and nephrotoxic contaminant in humans and other animals, whose toxicity is associated with oxidative stress and inflammation. The aim of this study was to evaluate the potential protective effect of chlorogenic acid (CGA), which has known anti-inflammatory and antioxidant effects, on potassium dichromate (PDC)-induced acute hepatotoxicity and nephrotoxicity in rats. METHODS AND RESULTS Thirty-six Wistar albino rats were treated with CGA (10, 20, or 40 mg/kg, intraperitoneally) and/or PDC (15 mg/kg/day, intraperitoneally) as a single dose. Serum, liver, and kidney tissues were examined biochemically, histopathologically, and immunohistochemically. Compared to the control group, a significant increase in interleukin-6 (IL-6) levels and a significant decrease in serum and renal reduced glutathione (GSH) levels, liver catalase (CAT), tumour necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) levels were observed in the PDC group. The administration of PDC led to histopathological and immunohistochemical changes in rat liver and kidney tissues. With the administration of CGA, especially at the 10 mg/kg dosage, the above-mentioned parameters approached normal levels. CONCLUSIONS CGA had antioxidant and anti-inflammatory effects that alleviated PDC-induced acute hepato- and nephrotoxicity.
Collapse
Affiliation(s)
- Semiha Orhan
- Intensive Care Unit Afyonkarahisar, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ruhi Turkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | - Hasan Huseyin Demirel
- Department of Laboratory Research and Veterinary Medicine, Afyon Kocatepe University, Bayat Vocational School, Afyonkarahisar, Turkey
| | - Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Turkan Turkmen
- Faculty of Medical Microbiology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Fatma Fırat
- Department of Histology and Embryology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
10
|
Chatterjee A, Sarkar B. Polyphenols and terpenoids derived from Ocimum species as prospective hepatoprotective drug leads: a comprehensive mechanistic review. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 01/03/2025]
|
11
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
12
|
Liu C, Fisher D, Pronyuk K, Musabaev E, Thu Hien NT, Dang Y, Zhao L. Therapeutic potential of natural products in schistosomiasis-associated liver fibrosis. Front Pharmacol 2024; 15:1332027. [PMID: 38770001 PMCID: PMC11102961 DOI: 10.3389/fphar.2024.1332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease that endangers human health and social development. The granulomatous reaction of Schistosoma eggs in the liver is the main cause of hepatosplenomegaly and fibrotic lesions. Anti liver fibrosis therapy is crucial for patients with chronic schistosomiasis. Although Praziquantel is the only clinical drug used, it is limited in insecticide treatment and has a long-term large-scale use, which is forcing the search for cost-effective alternatives. Previous research has demonstrated that plant metabolites and extracts have effective therapeutic effects on liver fibrosis associated with schistosomiasis. This paper summarizes the mechanisms of action of metabolites and some plant extracts in alleviating schistosomiasis-associated liver fibrosis. The analysis was conducted using databases such as PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) databases. Some plant metabolites and extracts ameliorate liver fibrosis by targeting multiple signaling pathways, including reducing inflammatory infiltration, oxidative stress, inhibiting alternate macrophage activation, suppressing hepatic stellate cell activation, and reducing worm egg load. Natural products improve liver fibrosis associated with schistosomiasis, but further research is needed to elucidate the effectiveness of natural products in treating liver fibrosis caused by schistosomiasis, as there is no reported data from clinical trials in the literature.
Collapse
Affiliation(s)
- Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
14
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
16
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
17
|
Huang Z, Wu Z, Zhang J, Wang K, Zhao Q, Chen M, Yan S, Guo Q, Ma Y, Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol Toxicol 2023; 39:3269-3285. [PMID: 37816928 DOI: 10.1007/s10565-023-09832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a death-dealing liver disease with a fatality rate of up to 67%. In the study present, we explored the efficacy of andrographolide (Andro), a diterpene lactone from Andrographis Herba, in ameliorating the monocrotaline (MCT)-induced HSOS and the underlying mechanism. The alleviation of Andro on MCT-induced rats HSOS was proved by biochemical index detection, electron microscope observation, and liver histological evaluation. Detection of hepatic ATP content, mitochondrial DNA (mtDNA) copy number, and protein expression of nuclear respiratory factor-1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) demonstrated that Andro strengthened mitochondrial biogenesis in livers from MCT-treated rats. Chromatin immunoprecipitation assay exhibited that Andro enhanced the occupation of nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) in the promoter regions of both PPARGC1A and NRF1. Andro also activated the NRF2-dependent anti-oxidative response and alleviated liver oxidative injury. In Nrf2 knock-out mice, MCT induced more severe liver damage, and Andro showed no alleviation in it. Furthermore, the Andro-activated mitochondrial biogenesis and anti-oxidative response were reduced in Nrf2 knock-out mice. Contrastingly, knocking out Kelch-like ECH-associated protein 1 (Keap1), a NRF2 repressor, reduced MCT-induced liver damage. Results from co-immunoprecipitation, molecular docking analysis, biotin-Andro pull-down, cellular thermal shift assay, and surface plasmon resonance assay showed that Andro hindered the NRF2-KEAP1 interaction via directly binding to KEAP1. In conclusion, our results revealed that NRF2-dependent liver mitochondrial biogenesis and anti-oxidative response were essential for the Andro-provided alleviation of the MCT-induced HSOS. Graphical Headlights: 1. Andro alleviated MCT-induced HSOS via activating antioxidative response and promoting mitochondrial biogenesis. 2. Andro-activated antioxidative response and mitochondrial biogenesis were NRF2-dependent. 3. Andro activated NRF2 via binding to KEAP1.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yun Ma
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Science, King's College London, London, UK
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
Wei M, Gu X, Li H, Zheng Z, Qiu Z, Sheng Y, Lu B, Wang Z, Ji L. EGR1 is crucial for the chlorogenic acid-provided promotion on liver regeneration and repair after APAP-induced liver injury. Cell Biol Toxicol 2023; 39:2685-2707. [PMID: 36809385 DOI: 10.1007/s10565-023-09795-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023]
Abstract
Improper use of acetaminophen (APAP) will induce acute liver failure. This study is designed to investigate whether early growth response-1 (EGR1) participated in the promotion on liver repair and regeneration after APAP-induced hepatotoxicity provided by natural compound chlorogenic acid (CGA). APAP induced the nuclear accumulation of EGR1 in hepatocytes regulated by extracellular-regulated protein kinase (ERK)1/2. In Egr1 knockout (KO) mice, the liver damage caused by APAP (300 mg/kg) was more severe than in wild-type (WT) mice. Results of chromatin immunoprecipitation and sequencing (ChIP-Seq) manifested that EGR1 could bind to the promoter region in Becn1, Ccnd1, and Sqstm1 (p62) or the catalytic/modify subunit of glutamate-cysteine ligase (Gclc/Gclm). Autophagy formation and APAP-cysteine adduct (APAP-CYS) clearance were decreased in Egr1 KO mice administered with APAP. The EGR1 deletion reduced hepatic cyclin D1 expression at 6, 12, or 18 h post APAP administration. Meanwhile, the EGR1 deletion also decreased hepatic p62, Gclc and Gclm expression, GCL enzymatic activity, and glutathione (GSH) content and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activation and thus aggravated oxidative liver injury induced by APAP. CGA increased EGR1 nuclear accumulation; enhanced hepatic Ccnd1, p62, Gclc, and Gclm expression; and accelerated the liver regeneration and repair in APAP-intoxicated mice. In conclusion, EGR1 deficiency aggravated liver injury and obviously delayed liver regeneration post APAP-induced hepatotoxicity through inhibiting autophagy, enhancing liver oxidative injury, and retarding cell cycle progression, but CGA promoted the liver regeneration and repair in APAP-intoxicated mice via inducing EGR1 transcriptional activation.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhiyong Zheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhimiao Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Xue H, Wei M, Ji L. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154961. [PMID: 37453191 DOI: 10.1016/j.phymed.2023.154961] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Liver diseases have a negative impact on global health and are a leading cause of death worldwide. Chlorogenic acids (CGAs), a family of esters formed between certain trans-cinnamic acids and quinic acid, are natural polyphenols abundant in coffee, tea, and a variety of traditional Chinese medicines (TCMs). They are reported to have good hepatoprotective effects against various liver diseases. PURPOSE This review aims to analyze the available literature on the hepatoprotective effect of CGAs, with particular emphasis on their mechanisms. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and Web of Science databases were adopted to retrieve all relevant literature on CGAs for liver disease from 2013 to March 2023. RESULTS Research has indicated that CGAs play a crucial role in improving different types of liver diseases, including drug-induced liver injury (DILI), alcoholic liver disease (ALD), metabolic (dysfunction)-associated fatty liver disease (MAFLD), cholestatic liver disease (CLD), liver fibrosis, and liver cancer. CGAs display remarkable antioxidant and anti-inflammatory effects by activating erythroid 2-related factor 2 (Nrf2) and inhibiting toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathways. Some important molecules such as AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), and other key physiological processes like intestinal barrier and gut microbiota have also been discovered to participate in CGAs-provided amelioration on various liver diseases. CONCLUSION In this review, different studies indicate that CGAs have an excellent protective effect against various liver diseases associated with various signaling pathways.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
20
|
Wei M, Zhang T, Ouyang H, Huang Z, Lu B, Li J, Xu H, Wang Z, Ji L. Erianin alleviated liver steatosis by enhancing Nrf2-mediated VE-cadherin expression in vascular endothelium. Eur J Pharmacol 2023; 950:175744. [PMID: 37094711 DOI: 10.1016/j.ejphar.2023.175744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease and is closely associated with metabolic syndrome. Endothelial dysfunction was involved in many metabolic diseases, but the concrete participation of hepatic vascular endothelial dysfunction in liver steatosis that is an early stage of NAFLD is still unclear. In this study, the formation of liver steatosis and the elevation of serum insulin content were observed accompanying with the decreased vascular endothelial cadherin (VE-cadherin) expression in hepatic vessels from db/db mice, Goto-Kakizaki (GK) and high-fat diet (HFD)-fed rats. Liver steatosis was obviously enhanced in mice after the application of VE-cadherin neutralizing antibody. In vitro results showed that insulin decreased VE-cadherin expression and caused endothelial barrier breakdown. Furthermore, the alteration of VE-cadherin expression was found to be positively related with the transcriptional activation of nuclear erythroid 2-related factor 2 (Nrf2), and chromatin immunoprecipitation (ChIP) assay displayed that Nrf2 could directly regulate VE-cadherin expression. Insulin reduced Nrf2 activation by decreasing sequestosome-1 (p62/SQSTM1) expression downstream of insulin receptor. Moreover, the p300-mediated Nrf2 acetylation was weakened by enhancing the competitive binding of transcription factor GATA-binding protein 4 (GATA4) to p300. Finally, we found that erianin, a natural compound, could promote VE-cadherin expression by inducing Nrf2 activation, thereby alleviating liver steatosis in GK rats. Our results suggest that hepatic vascular endothelial dysfunction owing to the VE-cadherin deficiency dependent on the reduced Nrf2 activation promoted liver steatosis, and erianin alleviated liver steatosis through enhancing Nrf2-mediated VE-cadherin expression.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian Li
- The Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China.
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
21
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
22
|
Liu Z, Yan J, Li N, Zheng Z, Zhang C, Liu Z, Song C, Mu S. Influence of Lonicera japonica and Radix Puerariae crude extracts on the Growth Performance, Antioxidant Capacity, and Immunological Functions of Finishing Pigs. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
23
|
Zha P, Wei L, Liu W, Chen Y, Zhou Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult Sci 2023; 102:102479. [PMID: 36669355 PMCID: PMC9871335 DOI: 10.1016/j.psj.2023.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to (DQ)-induced oxidative stress. In experiment 1, one hundred and ninety-two male one-day-old Ross 308 broiler chicks were distributed into 4 groups and fed a basal diet supplemented with 0, 250, 500, or 1,000 mg/kg CGA for 21 d. In experiment 2, an equivalent number of male one-day-old chicks were allocated to 4 treatments for a 21-d trial: 1) Control group, normal birds fed a basal diet; 2) DQ group, DQ-challenged birds fed a basal diet; and 3) and 4) CGA-treated groups: DQ-challenged birds fed a basal diet supplemented with 500 or 1,000 mg/kg CGA. The intraperitoneal DQ challenge was performed at 20 d. In experiment 1, CGA administration linearly increased 21-d body weight, and weight gain and feed intake during 1 to 21 d (P < 0.05). CGA linearly and/or quadratically increased total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase activities, elevated glutathione level, and reduced malondialdehyde accumulation in serum, liver, and/or jejunum (P < 0.05). In experiment 2, compared with the control group, DQ challenge reduced body weight ratio (P < 0.05), which was reversed by CGA administration (P < 0.05). DQ challenge increased serum total protein level, aspartate aminotransferase activity, and total bilirubin concentration (P < 0.05), which were normalized when supplementing 500 mg/kg and/or 1,000 mg/kg CGA (P < 0.05). DQ administration elevated hepatic interleukin-1β, tumor necrosis factor-α, and interleukin-6 levels (P < 0.05), and the values of interleukin-1β were normalized to control values when supplementing CGA (P < 0.05). DQ injection decreased serum superoxide dismutase activity, hepatic catalase activity, and serum and hepatic glutathione level, but increased malondialdehyde concentration in serum and liver (P < 0.05), and the values of these parameters (except hepatic catalase activity) were reversed by 500 and/or 1,000 mg/kg CGA. The results suggested that CGA could improve growth performance, alleviate oxidative stress, and ameliorate hepatic inflammation in DQ-challenged broilers.
Collapse
Affiliation(s)
| | | | | | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | |
Collapse
|
24
|
Hu B, Li J, Gong D, Dai Y, Wang P, Wan L, Xu S. Long-Term Consumption of Food-Derived Chlorogenic Acid Protects Mice against Acetaminophen-Induced Hepatotoxicity via Promoting PINK1-Dependent Mitophagy and Inhibiting Apoptosis. TOXICS 2022; 10:665. [PMID: 36355956 PMCID: PMC9693533 DOI: 10.3390/toxics10110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hepatotoxicity brought on by acetaminophen (APAP) is significantly impacted by mitochondrial dysfunction. Mitophagy, particularly PINK1-mediated mitophagy, maintains the stability of cell function by eliminating damaged mitochondria. One of the most prevalent dietary polyphenols, chlorogenic acid (CGA), has been shown to have hepatoprotective properties. It is yet unknown, nevertheless, whether its defense against hepatocyte apoptosis involves triggering PINK1-mediated mitophagy. In vitro and in vivo models of APAP-induced hepatotoxicity were established to observe CGA's effect and mechanism in preventing hepatotoxicity in the present study. Serum aminotransferase levels, mouse liver histology, and the survival rate of HepG2 cells and mice were also assessed. The outcomes showed that CGA could reduce the activities of serum enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), and alleviate liver injury in mice. It could also significantly increase the cell viability of HepG2 cells and the 24-h survival rate of mice. TUNEL labeling and Western blotting were used to identify the hepatocyte apoptosis level. According to data, CGA could significantly reduce liver cell apoptosis in vivo. Additionally, Tom20 and LC3II colocalization in mitochondria may be facilitated by CGA. CGA considerably increased the levels of genes and proteins associated with mitophagy (PINK1, Parkin, LC3II/LC3I), while considerably decreasing the levels of p62 and Tom20, suggesting that it might activate PINK1/Parkin-mediated mitophagy in APAP-induced liver damage. Additionally, the protection of CGA was reduced when PINK1 was knocked down by siPINK1 in HepG2 cells, and it did not upregulate mitophagy-related proteins (PINK1, Parkin, LC3II/LC3I). In conclusion, our findings revealed that long-term consumption of food-derived CGA could prevent APAP hepatotoxicity via increasing PINK1-dependent mitophagy and inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Bangyan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
25
|
Zhang D, Chang R, Ren Y, He Y, Guo S, Guan F, Yao M. Injectable and reactive oxygen species-scavenging gelatin hydrogel promotes neural repair in experimental traumatic brain injury. Int J Biol Macromol 2022; 219:844-863. [PMID: 35961554 DOI: 10.1016/j.ijbiomac.2022.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 12/26/2022]
Abstract
Oxidative stress caused by the overexpression of reactive oxygen species (ROS) plays an important role in the pathogenesis of traumatic brain injury (TBI). Accumulation of ROS can lead to cell death, neurodegeneration, and neurological deficit. Therefore, the design and application of functional materials with ROS scavenging ability is of great significance for neural repair. Herein, an injectable and antioxidant hydrogel was developed for TBI treatment based on the Schiff base reaction of gallic acid-conjugated gelatin (GGA) and oxidized dextran (Odex). The resulting GGA/Odex hydrogel could effectively scavenge DPPH and ABTS radicals, as well as protect cells from the oxidative damage in vitro. Moreover, GGA/Odex hydrogel possessed well biocompatible features. In a moderate TBI mouse model, in situ implantation of GGA6Odex hydrogel efficiently facilitated neurogenesis and promoted the motor, learning and memory abilities. Also, this composite hydrogel suppressed oxidative stress and inflammation via the activation of Nrf2/HO-1 pathway and the regulating of inflammatory factors secretion and macrophage/microglia polarization. Therefore, this injectable and ROS-scavenging GGA6Odex hydrogel is a promising biomaterial for tissue regenerative medicine, including TBI and other tissue repair relevant to raised ROS circumstance.
Collapse
Affiliation(s)
- Dan Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yikun Ren
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
He YM, Shen XL, Guo YN, Liang SS, Ding KN, Lu MH, Tang LP. Yinhuang oral liquid protects acetaminophen-induced acute liver injury by regulating the activation of autophagy and Nrf2 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114073. [PMID: 36115150 DOI: 10.1016/j.ecoenv.2022.114073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the protective effect and potential mechanism of Yinhuang oral liquid (YOL) against acetaminophen (APAP) induced liver injury in mice. C57BL/6 mice were randomly divided into control group, model group (300 mg/kg APAP), NAC group and YOL group. Mice were treated intragastrical with YOL (8 g/kg) and N-Acetylcysteine (NAC, 300 mg/kg) 6 h before and 6 h after the APAP (300 mg/kg) intraperitoneal injection. 12 h after APAP exposure, blood and liver samples were collected for subsequent testing. The results showed that APAP decreased liver index, induced liver pathological injury with hepatocytes swelling, necrosis and apoptosis and inflammatory cell infiltration. APAP exposure significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels to 35 and 6 multiples than their original levels. YOL alleviated liver pathological damage, decreased the serum levels of ALT and AST in APAP exposure mice, and it worked better than NAC. Moreover, APAP promoted oxidative stress by increasing lipid peroxidation (MDA) and decreasing anti-oxidant enzyme activities of SOD and GSH, inhibited the mRNA levels of Nrf2, HO-1, Gclc and Gclm, and decreased the protein levels of Nrf2, HO-1 and Keap1, compared to control group. Furthermore, APAP exposure significantly down-regulated the mRNA and protein levels of autophagy related genes (Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7). However, the gene levels of mTOR and p-mTOR increased, and p-ULK1 protein level decreased in liver of APAP treated mice. Additionally, YOL alleviated the oxidative injury by up-regulating Nrf2 pathway. The gene and protein levels of autophagy-related genes Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7 reached the basal levels after YOL treatment. In conclusion, YOL had a protective and therapeutic role in APAP-induced liver injury in mice by activating Nrf2 signaling pathway and autophagy.
Collapse
Affiliation(s)
- Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
27
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
28
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
29
|
Yang L, Jia L, Li X, Zhang K, Wang X, He Y, Hao M, Rayman MP, Zhang J. Prooxidant activity-based guideline for a beneficial combination of (-)-epigallocatechin-3-gallate and chlorogenic acid. Food Chem 2022; 386:132812. [PMID: 35364491 DOI: 10.1016/j.foodchem.2022.132812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
In the current study, the prooxidant activities of (-)-epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) were systematically compared both in multiple in vitro models and in mice. At equimolar concentrations in vitro and in vivo, EGCG displayed powerful prooxidant effects though CGA exhibited none. In vitro, though CGA and EGCG synergistically produced hydrogen peroxide, CGA was able to scavenge hydroxyl radicals generated by EGCG/copper. Consistent with the selective modulation of reactive oxygen species produced from EGCG, CGA lowered hepatotoxicity but did not perturb hepatic AMPK activation nor the increase of hepatic Nrf2-associated proteins induced by high-dose EGCG. CGA, along with low-dose EGCG, synergistically activated hepatic AMPK and increased hepatic Nrf2-associated proteins without causing toxicity in mice. This proof-of-principle study suggests that polyphenols with potent prooxidant activities (e.g., EGCG) together with antioxidant polyphenols with noticeably low prooxidant activities (e.g., CGA) may yield health benefits with a low risk of side effects.
Collapse
Affiliation(s)
- Lumin Yang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Lijie Jia
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xiuli Li
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ke Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xiaoxiao Wang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yufeng He
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Meng Hao
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
30
|
Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4566949. [PMID: 35958020 PMCID: PMC9363170 DOI: 10.1155/2022/4566949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/11/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
Radiotherapy produces excessive reactive oxygen species (ROS), which can lead to DNA damage and apoptosis in tumor cells, thereby killing malignant cells. Chlorogenic acid (CGA) is a well-known antioxidant in coffee due to its strong ability to remove ROS. However, the effect of CGA on radiotherapeutic efficacy remains unclear. In this study, we showed that CGA could hinder the therapeutic effect of radiotherapy by inhibiting radiation-induced apoptosis and DNA damage via scavenging excessive ROS and activating the NF-E2-related factor 2 (Nrf2) antioxidant system in hepatocellular carcinoma (HCC) cells and a murine model. The knockdown of Nrf2 reversed CGA-mediated radiation resistance in HCC cells. In conclusion, CGA might be a potential tumor-protective compound upon irradiation and reduce the efficacy of radiotherapy via ROS scavenging and Nrf2 activation.
Collapse
|
31
|
Zhu Y, Jin H, Huo X, Meng Q, Wang C, Sun P, Ma X, Sun H, Dong D, Wu J, Liu K. Protective effect of Rhein against vancomycin-induced nephrotoxicity through regulating renal transporters and Nrf2 pathway. Phytother Res 2022; 36:4244-4262. [PMID: 35820659 DOI: 10.1002/ptr.7559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022]
Abstract
Vancomycin (VCM)'s nephrotoxicity limits its application and therapeutic efficiency. The aim of this study was to determine the protective effect of rhein against VCM-induced nephrotoxicity (VIN). VIN models were established in rats and NRK-52E cells. Rhein up-regulated the expressions of renal organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2), mammal multidrug and toxin extrusion proteins 1 (Mate 1) and P-glycoprotein (P-gp) to facilitate the efflux of plasma creatinine, blood urea nitrogen (BUN), and plasma indoxyl sulfate. Rhein increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate the expression of Mrp2, P-gp, and Mate 1. The increased level of superoxide dismutase (SOD), decreased level of malondialdehyde (MDA) and reduced number of apoptosis cells were observed after treatment of rhein. Rhein decreased the number of apoptosis cells as well as increased the expression of B-cell lymphoma-2 (Bcl-2) and decreased expressions of Bcl-2-like protein 4 (Bax). ML385, as a typical inhibitor of Nrf2, reversed the protective effects of rhein in cells. Rhein oriented itself in the site of Keap1, inhibiting the Keap1-Nrf2 interaction. Rhein ameliorated VIN mainly through regulating the expressions of renal transporters and acting on Nrf2 pathway.
Collapse
Affiliation(s)
- Yanna Zhu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huan Jin
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
33
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Zhou Q, Zhang N, Hu T, Xu H, Duan X, Liu B, Chen F, Wang M. Dietary phenolic-type Nrf2-activators: implications in the control of toxin-induced hepatic disorders. Food Funct 2022; 13:5480-5497. [PMID: 35411358 DOI: 10.1039/d1fo04237h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous studies have exemplified the importance of nuclear factor erythroid 2-related factor 2 (Nrf2) activation in the alleviation of toxin-induced hepatic disorders primarily through eliminating oxidative stress. Whereafter, increasingly more efforts have been contributed to finding Nrf2-activators, especially from dietary polyphenols. The present review summarized the phenolic-type Nrf2-activators published in the past few decades, analyzed their effectiveness based on their structural characteristics and outlined their related mechanisms. It turns out that flavonoids are the largest group of phenolic-type Nrf2-activators, followed by nonflavonoids and phenolic acids. When counting on subgroups, the top three types are flavonols, flavones, and hydroxycinnamic acids, with curcuminoids having the highest effective doses. Moreover, most polyphenols work through the phosphorylation of Nrf2. Besides, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) are the frequent targets of these Nrf2-activators, which indirectly mediate the behavior of Nrf2. However, current data are not sufficient to conclude any structure-activity relationship.
Collapse
Affiliation(s)
- Qian Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Nana Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Tingyan Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Xinxing Duan
- Schlegel Research Institute for Aging & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China. .,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.
| |
Collapse
|
35
|
Wang K, Yang L, Zhou J, Pan X, He Z, Liu J, Zhang Y. Smilax china L. Polysaccharide Alleviates Oxidative Stress and Protects From Acetaminophen-Induced Hepatotoxicity via Activating the Nrf2-ARE Pathway. Front Pharmacol 2022; 13:888560. [PMID: 35571121 PMCID: PMC9098950 DOI: 10.3389/fphar.2022.888560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
The alleviation of oxidative stress is considered an effective treatment for acetaminophen (APAP)-induced acute liver injury (AILI). However, it remains unknow whether the potential antioxidant Smilax china L. polysaccharide (SCLP) protects against AILI. In this study, in vitro and in vivo experiments were conducted to verify the hepatoprotective effect of SCLP against AILI and explore the potential mechanism. We found that SCLP relieved liver histopathological changes; reversed the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and reactive oxygen species (ROS); reversed the change in liver myeloperoxidase (MPO) activity; and enhanced liver antioxidant (GSH, GSH-Px, and t-SOD) levels in APAP-treated mice, thereby significantly reducing APAP-induced liver toxicity. SCLP rescued the cell viability and alleviated oxidative stress in H2O2-treated mouse AML12 (Alpha mouse liver 12) hepatocytes. The results of the mechanistic studies showed that SCLP upregulated nuclear factor E2 related factor (Nrf2) expression, promoted Nrf2 nuclear translocation, and enhanced the ability of Nrf2 to bind antioxidant response elements (AREs). Furthermore, SCLP activated Nrf2-ARE pathway, thus upregulating the expression of oxidative stress-related proteins heme oxygenase 1(HO-1), NAD(P)H quinone dehydrogenase 1(NQO-1) and glutamic acid cysteine ligase catalytic subunit (GCLC). In conclusion, this study confirmed the close correlation between liver protection by SCLP upon exposure to APAP and activated of the Nrf2-ARE pathway. These findings suggest that SCLP is an attractive therapeutic candidate drug for the treatment of AILI.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xianglin Pan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Yu Zhang,
| |
Collapse
|
36
|
Siswanto FM, Sakuma R, Oguro A, Imaoka S. Chlorogenic acid activates Nrf2/SKN-1 and prolongs the lifespan of Caenorhabditis elegans via the Akt-FOXO3/DAF16a-DDB1 pathway and activation of DAF16f. J Gerontol A Biol Sci Med Sci 2022; 77:1503-1516. [PMID: 35279029 DOI: 10.1093/gerona/glac062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
Chlorogenic acid (CGA) is the most abundant polyphenol in coffee. It has been widely reported to exhibit antioxidant activity by activating nuclear factor erythroid 2-related factor 2 (Nrf2) potentially via the canonical Keap1-Nrf2 pathway. We herein demonstrated that the knockdown of WDR23, but not Keap1, abolished the effects of CGA on the activation of Nrf2. CGA decreased the expression of DDB1, an adaptor for WDR23-Cullin 4A-RING ligase (CRL4A WDR23). FOXO3, a major target for inactivation by the PI3K/Akt pathway, was identified as the transcription factor responsible for the basal and CGA-inhibited expression of the DDB1 gene. CGA blocked FOXO3 binding to importin-7 (IPO7), thereby inhibiting the nuclear accumulation of FOXO3, down-regulating the expression of DDB1, inhibiting the activity of CRL4 WDR23, and ultimately increasing that of Nrf2. This pathway was conserved in Caenorhabditis elegans, and CGA extended the lifespan partly through this pathway. We found that in C. elegans, the isoform DAF-16a, but not DAF-16f, regulated the expression levels of ddb-1 mRNA and SKN-1 protein. CGA prolonged the mean lifespan of DAF-16a- and DAF-16f-rescued worms by 24% and 9%, respectively, suggesting that both isoforms involve in lifespan-extending effects of CGA, with DAF-16a being more important than DAF-16f. Based on these results, we established a novel Akt-FOXO3/DAF16a-DDB1 axis that links nutrient sensing and oxidative stress response pathways. Our results also provide a novel molecular mechanism for Nrf2/SKN-1 activation by CGA and the increased lifespan of C. elegans by CGA via this pathway.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Japan
| | - Rika Sakuma
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Japan
| | - Ami Oguro
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Japan
| |
Collapse
|
37
|
Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L. Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 2022; 36:1386-1401. [PMID: 35133045 DOI: 10.1002/ptr.7401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022]
Abstract
As one of the major diabetic microvascular complications, diabetic retinopathy (DR) is mainly initiated by the blood-retinal barrier (BRB) dysfunction. Chlorogenic acid (CGA) is a natural polyphenolic compound in Lonicerae Japonicae Flos, which traditionally has the beneficial function for eyes and is commonly included in many anti-diabetic formulas. In this study, the potential protective mechanism of CGA against DR was investigated. Streptozotocin (STZ) was used to induce diabetes in mice. CGA attenuated BRB dysfunction and reversed endothelial-mesenchymal transition (EndoMT) and epithelial-mesenchymal transition (EMT) in retinas in vivo. CGA inhibited microglia activation and reduced tumor necrosis factor (TNF)α release both in vivo and in vitro. CGA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) activation and prevented EndoMT/EMT in TNFα-treated human retinal endothelial cells (HRECs) or retinal pigment epithelial APRE19 cells. CGA alleviated endothelial/epithelial barrier oxidative injury in HRECs or APRE19 cells stimulated with TNFα, but this effect was disappeared in cells co-incubated with Nrf2 inhibitor. Additionally, the CGA-supplied alleviation on BRB damage and EndoMT/EMT was markedly weakened in retinas from STZ-treated Nrf2 knock-out mice. All results suggest that CGA improves DR through attenuating BRB injury by reducing microglia-initiated inflammation and preventing TNFα-induced EndoMT/EMT and oxidative injury via inducing Nrf2 activation.
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyu Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Asgharian S, Lorigooini Z, Bijad E, Hosseinkhani H, Abbasian Z, Rafieian-Kopaei M. Protective effect of Rheum ribes extract against lead-induced hepatotoxicity in male rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | - Elham Bijad
- Shahrekord University of Medical Sciences, Iran
| | | | | | | |
Collapse
|
39
|
The Timing and Effects of Low-Dose Ethanol Treatment on Acetaminophen-Induced Liver Injury. Life (Basel) 2021; 11:life11101094. [PMID: 34685467 PMCID: PMC8539755 DOI: 10.3390/life11101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) overdose is the major cause of drug-induced liver injury and acute liver failure. Approximately 10% of APAP is metabolized by cytochrome P450 (CYP2E1) into toxic N-acetyl-p-benzoquinone imine (NAPQI). CYP2E1 also contributes to ethanol metabolism, especially during conditions of high blood ethanol concentration. Acute and chronic ethanol consumption appears to have opposite effects on APAP-induced liver injury. We determined the effects of different doses, pre- and post-treatment, and various schedules of ethanol exposure in APAP-induced liver injury. Treatment with ethanol (0.5 g/kg) after 1 h of APAP (300 mg/kg) administration decreased serum ALT levels, histopathological features, and inflammatory cell infiltration. Moreover, ethanol treatment 1 h after APAP treatment reduced APAP-induced liver injury compared with later administration. Interestingly, ethanol pretreatment did not provide any protective effect. Furthermore, ethanol treatment was associated with a significant decrease in ERK and AKT phosphorylation during the acute injury phase. Ethanol exposure also increased CYP2E1 expression and decreased PCNA expression during the liver regeneration phase.
Collapse
|
40
|
Yan S, Zhang S, Du A, Miao H, Lu B, Huang Z, Ji L. Network pharmacology-based identification of significant pathway for protection of Yinhuang granule in a mice model of metabolic-associated fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153666. [PMID: 34339944 DOI: 10.1016/j.phymed.2021.153666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a spectrum of liver disorders. Nonalcoholic steatohepatitis (NASH) is defined as a more serious process of MAFLD with liver inflammation. PURPOSE This study aims to observe the alleviation of Yinhuang granule (YHG), a Chinese patent medicine, on methionine and choline-deficient diet (MCD)-induced MAFLD in mice. METHODS Network pharmacology was used to analyze the improving effect of YHG on MAFLD and possible targets. MAFLD was induced in mice by MCD diet feeding for 6 weeks. In the last 2 weeks, the mice were orally given with YHG (400, 800 mg/kg) every day. Biochemical parameters of serum and liver, as well as hepatic gene expression were detected. RESULTS Network pharmacology showed that YHG could improve MAFLD, inflammation, liver fibrosis, and oxidative stress. In animal experiments, YHG reduced hepatocellular damage and hepatic lipids accumulation which induced by MCD. In terms of liver inflammation, YHG attenuated MCD-induced liver inflammation in mice. YHG also inhibited the activation of hepatic stellate cells (HSCs) and alleviated liver fibrosis in MCD-fed mice. Through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, YHG alleviated liver oxidative stress injury in mice which induced by MCD. CONCLUSION YHG ameliorated MCD-induced MAFLD in mice by reducing hepatic lipids accumulation, alleviating liver oxidative, inflammatory injury and attenuating hepatic fibrosis.
Collapse
Affiliation(s)
- Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hui Miao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
41
|
Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L. Chlorogenic Acid Enhances Doxorubicin-Mediated Cytotoxic Effect in Osteosarcoma Cells. Int J Mol Sci 2021; 22:8586. [PMID: 34445291 PMCID: PMC8395331 DOI: 10.3390/ijms22168586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the recurring outbreak of resistance mechanisms and adverse reactions, doxorubicin (Doxo) still remains the standard-of-care for several cancers, including osteosarcoma (OS). As an appealing source of phytochemical compounds, naturally occurring molecules have extensively been reported to overcome Doxo limitations in preclinical models. Unlike other dietary polyphenols, only few studies recognize chlorogenic acid (CGA) as a potential partner in combination therapy, while, conversely, its anticancer evidence is steadily growing, ultimately in OS. On this basis, herein we examine the cooperating effects between CGA and Doxo in U2OS and MG-63 human OS cells. With respect to Doxo alone, the concomitant administration of CGA further decreased cell viability and growth, promoting cell death potentially via apoptosis induction. Furthermore, a longer-lasting reduction in clonogenic potential deeply supported the CGA ability to improve Doxo efficacy in those cells. Remarkably, CGA treatment ameliorated Doxo-induced cytotoxicity in H9c2 rat cardiomyocyte cells instead. Although inactivation of p44/42 MAPK was detected in response to CGA plus Doxo, PD98059-mediated p44/42 MAPK impairment enhanced the combination outcome in OS cells. These findings firstly propose CGA as a promising chemosensitizer and cardioprotective agent in OS therapy, suggesting the p44/42 MAPK pathway as relevantly involved in CGA-mediated Doxo susceptibility.
Collapse
Affiliation(s)
| | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.S.); (A.R.); (A.S.); (L.S.)
| | | |
Collapse
|
42
|
Kolb H, Martin S, Kempf K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021; 13:nu13041144. [PMID: 33807132 PMCID: PMC8066601 DOI: 10.3390/nu13041144] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Prospective epidemiological studies concur in an association between habitual coffee consumption and a lower risk of type 2 diabetes. Several aspects of these studies support a cause–effect relationship. There is a dependency on daily coffee dose. Study outcomes are similar in different regions of the world, show no differences between sexes, between obese versus lean, young versus old, smokers versus nonsmokers, regardless of the number of confounders adjusted for. Randomized controlled intervention trials did not find a consistent impact of drinking coffee on acute metabolic control, except for effects of caffeine. Therefore, lowering of diabetes risk by coffee consumption does not involve an acute effect on the post-meal course of blood glucose, insulin or insulin resistance. Several studies in animals and humans find that the ingestion of coffee phytochemicals induces an adaptive cellular response characterized by upregulation and de novo synthesis of enzymes involved in cell defense and repair. A key regulator is the nuclear factor erythroid 2-related factor 2 (Nrf2) in association with the aryl hydrocarbon receptor, AMP-activated kinase and sirtuins. One major site of coffee actions appears to be the liver, causing improved fat oxidation and lower risk of steatosis. Another major effect of coffee intake is preservation of functional beta cell mass via enhanced mitochondrial function, lower endoplasmic reticulum stress and prevention or clearance of aggregates of misfolded proinsulin or amylin. Long-term preservation of proper liver and beta cell function may account for the association of habitual coffee drinking with a lower risk of type 2 diabetes, rather than acute improvement of metabolic control.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-566036016
| |
Collapse
|
43
|
Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharmacol Res 2021; 167:105577. [PMID: 33774182 DOI: 10.1016/j.phrs.2021.105577] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Collapse
|
44
|
Changizi Z, Moslehi A, Rohani AH, Eidi A. Chlorogenic acid induces 4T1 breast cancer tumor's apoptosis via p53, Bax, Bcl-2, and caspase-3 signaling pathways in BALB/c mice. J Biochem Mol Toxicol 2021; 35:e22642. [PMID: 33058431 DOI: 10.1002/jbt.22642] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023]
Abstract
Despite all the new treatments, metastatic breast cancer (BC) causes many deaths. Chlorogenic acid (CGA) is a polyphenol compound with various pharmacological traits, such as anticancer properties. Targeting apoptotic death pathways has been propounded as the most effective therapeutic method in various cancers. In the current study, apoptotic agents such as p53, Bax, Bcl-2, and caspase-3 have been investigated. The experimental groups included saline, BC, CGA, protective (PR), and treatment (TM) groups. First, 4T1 mouse BC was established and then the effects of treatment with CGA were investigated through measurement of tumor weight and volume, metastatic nodules, liver biochemical tests, hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, and real-time reverse transcription-polymerase chain reaction (RT-PCR) in experimental groups. The findings showed that CGA reduced tumor weight and volume in the PR group (P < .05) and in the TM group (P < .001). Surprisingly, it eliminated the tumors in the TM group. Metastatic nodules in the PR and TM groups were significantly reduced as compared with the BC group (P < .001). The evaluation by H&E staining showed cell apoptosis in both the PR and TM groups. The results of real-time RT-PCR showed that CGA therapy increased the expression ratio of Bax/Bcl-2 (P < .001 and P < .05, respectively) and the expression of p53 (P < .001 and P < .05, respectively) and caspase-3 genes (P < .01) in the PR and TM groups. The IHC data regarding the Bax/Bcl-2 ratio confirmed the other results (P < .001). The findings demonstrate that CGA plays a significant role in the induction of apoptosis and the treatment of 4T1 BC tumors in BALB/c mice.
Collapse
Affiliation(s)
- Zahra Changizi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Ali Haeri Rohani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Shi L, Zhang S, Huang Z, Hu F, Zhang T, Wei M, Bai Q, Lu B, Ji L. Baicalin promotes liver regeneration after acetaminophen-induced liver injury by inducing NLRP3 inflammasome activation. Free Radic Biol Med 2020; 160:163-177. [PMID: 32682928 DOI: 10.1016/j.freeradbiomed.2020.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Liver regeneration has become a new hotspot in the study of drug-induced liver injury (DILI). Baicalin has already been reported to alleviate acetaminophen (APAP)-induced acute liver injury in our previous study. This study aims to observe whether baicalin also promotes liver regeneration after APAP-induced liver injury and to elucidate its engaged mechanism. Baicalin alleviated APAP-induced hepatic parenchymal cells injury and enhanced the number of mitotic and proliferating cell nuclear antigen (PCNA)-positive hepatocytes in APAP-intoxicated mice. Baicalin increased hepatic PCNA and cyclinD1 expression in APAP-intoxicated mice. Baicalin induced the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, leading to the increased hepatic expression of interleukin-18 (IL-18) and IL-1β in APAP-intoxicated mice. The results in vitro demonstrated that IL-18 promoted the proliferation of human normal liver L-02 cells. Moreover, the baicalin-provided promotion on liver regeneration in APAP-intoxicated mice was diminished after the application of NLRP3 inhibitor MCC950 and the recombinant mouse IL-18 binding protein (rmIL-18BP). Baicalin induced the cytosolic accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), and increased the interaction between Nrf2 with Nlrp3, ASC and pro-caspase-1 in livers from APAP-intoxicated mice. Furthermore, the baicalin-provided NLRP3 inflammasome activation and promotion on liver regeneration after APAP-induced liver injury in wild-type mice were diminished in Nrf2 knockout mice. In conclusion, baicalin promoted liver regeneration after APAP-induced acute liver injury in mice via inducing Nrf2 accumulation in cytoplasm that led to NLRP3 inflammasome activation, and then caused the increased expression of IL-18, which induced hepatocytes proliferation.
Collapse
Affiliation(s)
- Liang Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingyun Bai
- School of Chemical and Biological Engineering, Yichun University, Jiangxi, 336000, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
46
|
Huang Z, Chen M, Wei M, Lu B, Wu X, Wang Z, Ji L. Liver Inflammatory Injury Initiated by DAMPs-TLR4-MyD88/TRIF-NFκB Signaling Pathway Is Involved in Monocrotaline-Induced HSOS. Toxicol Sci 2020; 172:385-397. [PMID: 31504964 DOI: 10.1093/toxsci/kfz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) causes considerable morbidity and mortality in clinic. Up to now, the molecular mechanisms involved in the development of HSOS still remain unclear. Here, we report that hepatic inflammation initiated by damage-associated molecular patterns (DAMPs) plays a critical role in the development of HSOS. Monocrotaline (MCT) belongs to pyrrolizidine alkaloids. Monocrotaline-induced HSOS in mice and rats was evidenced by the increased serum alanine/aspartate aminotransferase (ALT/AST) activities, the elevated hepatic metalloproteinase 9 (MMP9) expression, and results from liver histological evaluation and scanning electron microscope observation. However, MCT-induced HSOS was markedly attenuated in myeloid differentiation primary response gene 88 (MyD88), TIR-domain-containing adapter-inducing interferon-β (TRIF) and toll like receptor 4 (TLR4) knock-out mice. Monocrotaline increased liver myeloperoxidase activity, serum contents of proinflammatory cytokines, hepatic aggregation of immune cells, and nuclear accumulation of nuclear factor κB (NFκB). However, these inflammatory responses induced by MCT were all diminished in MyD88, TRIF, and TLR4 knock-out mice. Monocrotaline elevated serum contents of DAMPs including high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) both in mice and in rats. HSOS was markedly exacerbated and serum contents of HMGB1 and HSP60 were elevated in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice treated with MCT. Our findings indicate that hepatic inflammatory injury mediated by DAMPs-initiated TLR4-MyD88/TRIF-NFκB inflammatory signal pathway plays an important role in HSOS development.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
47
|
Hu F, Guo Q, Wei M, Huang Z, Shi L, Sheng Y, Ji L. Chlorogenic acid alleviates acetaminophen-induced liver injury in mice via regulating Nrf2-mediated HSP60-initiated liver inflammation. Eur J Pharmacol 2020; 883:173286. [PMID: 32603696 DOI: 10.1016/j.ejphar.2020.173286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP)-induced acute liver failure is a serious clinic issue. Our previous study showed that chlorogenic acid (CGA) alleviated APAP-induced liver inflammatory injury, but its concrete mechanism is still not clear. This study aims to elucidate the engaged mechanism involved in the CGA-provided alleviation on APAP-induced liver inflammation. CGA reduced the increased hepatic infiltration of immune cells and the elevated serum contents of high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) in mice treated with APAP. CGA decreased the enhanced hepatic mRNA expression of some pro-inflammatory molecules in mice treated with APAP and in RAW264.7 cells stimulated with HMGB1 or HSP60. CGA attenuated liver mitochondrial injury, rescued the decreased lon protease homolog (Lon) protein expression, and reduced mitochondrial HSP60 release in mice treated with APAP. Moreover, the CGA-provided alleviation on APAP-induced liver inflammatory injury was diminished in mice treated with anti-HSP60 antibody. Further results showed that the CGA-provided alleviation on APAP-induced liver inflammation was also diminished in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice. Meanwhile, the CGA-provided reduce on serum HSP60 content and restore of mitochondrial Lon protein expression were all diminished in Nrf2 knock-out mice treated with APAP. In conclusion, our study revealed that CGA alleviated APAP-induced liver inflammatory injury initiated by HSP60 or HMGB1, and Nrf2 was critical for regulating the mitochondrial HSP60 release via rescuing the reduced mitochondrial Lon protein expression.
Collapse
Affiliation(s)
- Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liang Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
48
|
Sapio L, Salzillo A, Illiano M, Ragone A, Spina A, Chiosi E, Pacifico S, Catauro M, Naviglio S. Chlorogenic acid activates ERK1/2 and inhibits proliferation of osteosarcoma cells. J Cell Physiol 2020; 235:3741-3752. [PMID: 31602671 DOI: 10.1002/jcp.29269] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS) is a very aggressive metastatic pediatric and adolescent tumor. Due to its recurrent development of chemotherapy resistance, clinical outcome for OS patients remains poor. Therefore, discovering more effective anticancer agents is needed. Chlorogenic acid (CGA) is a phenolic compound contained in plant-related products that modulates many cellular functions and inhibits cell proliferation in several cancer types. However, few evidence is available in OS. Here, we investigate the effects of CGA in U2OS, Saos-2, and MG-63 OS cells. By multiple approaches, we demonstrate that CGA acts as anticancer molecule affecting the cell cycle and provoking cell growth inhibition mainly by apoptosis induction. We also provide evidence that CGA strongly activates extracellular-signal-regulated kinase1/2 (ERK1/2). Strikingly, ERK1/2 inhibitor PD98059 sensitizes the cells to CGA. Altogether, our data enforce the evidence of the anticancer activity mediated by CGA and provide the rationale for the development of innovative therapeutic strategies in OS cure.
Collapse
Affiliation(s)
- Luigi Sapio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Salzillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Illiano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annamaria Spina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emilio Chiosi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Severina Pacifico
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
49
|
Wan J, Kuang G, Zhang L, Jiang R, Chen Y, He Z, Ye D. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. Int Immunopharmacol 2020; 83:106435. [PMID: 32222641 DOI: 10.1016/j.intimp.2020.106435] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a common antipyretic and analgesic drug, but its overdose can induce acute liver failure with lack of effective therapies. Hesperetin, a dihydrogen flavonoid compound, has been revealed to exert multiple pharmacological activities. Here, we explored the protective effects and mechanism of hesperetin on APAP-induced hepatotoxicity. The results showed that pretreatment with hesperetin dose-dependently attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities, hepatic pathological damage and apoptosis. Moreover, hesperetin mitigated APAP-induced oxidative stress and inflammatory response in mice by inhibiting oxidative molecules but increasing antioxidative molecules production, reducing inflammatory cells infiltration and proinflammatory cytokines production, blocking Toll-like receptor (TLR)-4 signal activation. In vitro experiment indicated that hesperetin dose-dependently inhibited APAP-primed cytotoxicity, apoptosis, and reactive oxygen species (ROS) in murine AML12 hepatocytes. Notably, hesperetin up-regulated expression of heme oxygenase-1 (HO-1) mRNA and protein in the liver of mice and AML12 cells exposed to APAP. Furthermore, knockdown of HO-1 by adenovirus-mediated HO-1 siRNA reverted these beneficial effects of hesperetin on APAP-induced hepatocytotoxicity as well as ROS and inflammatory response in vivo and in vitro. These findings demonstrated that hesperetin exerted a protective prophylaxis on APAP-induced acute liver injury by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via up-regulating HO-1 expression.
Collapse
Affiliation(s)
- Jingyuan Wan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 40016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 40016, China
| | - Yongtao Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen He
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Duyun Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
50
|
Chang L, Xu D, Zhu J, Ge G, Kong X, Zhou Y. Herbal Therapy for the Treatment of Acetaminophen-Associated Liver Injury: Recent Advances and Future Perspectives. Front Pharmacol 2020; 11:313. [PMID: 32218738 PMCID: PMC7078345 DOI: 10.3389/fphar.2020.00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury worldwide, and mitochondrial oxidative stress is considered the major event responsible for APAP-associated liver injury (ALI). Despite the identification of N-acetyl cysteine, a reactive oxygen species scavenger that is regarded as an effective clinical treatment, therapeutic effectiveness remains limited due to rapid disease progression and diagnosis at a late phase, which leads to the need to explore various therapeutic approaches. Since the early 1990s, a number of natural products and herbs have been found to have hepatoprotective effects against APAP-induced hepatotoxicity in terms of acute liver failure prevention and therapeutic amelioration of ALI. In this review, we summarize the hepatoprotective effects and mechanisms of medicinal plants, including herbs and fruit extracts, along with future perspectives that may provide guidance to improve the current status of herbal therapy against ALI.
Collapse
Affiliation(s)
- Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|