1
|
Jacobsen AL, Venturas MD, Hacke UG, Pratt RB. Sap flow through partially embolized xylem vessel networks. PLANT, CELL & ENVIRONMENT 2024; 47:3375-3392. [PMID: 38826042 DOI: 10.1111/pce.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Sap is transported through numerous conduits in the xylem of woody plants along the path from the soil to the leaves. When all conduits are functional, vessel lumen diameter is a strong predictor of hydraulic conductivity. As vessels become embolized, sap movement becomes increasingly affected by factors operating at scales beyond individual conduits, creating resistances that result in hydraulic conductivity diverging from diameter-based estimates. These effects include pit resistances, connectivity, path length, network topology, and vessel or sector isolation. The impact of these factors varies with the level and distribution of emboli within the network, and manifest as alterations in the relationship between the number and diameter of embolized vessels with measured declines in hydraulic conductivity across vulnerability to embolism curves. Divergences between measured conductivity and diameter-based estimates reveal functional differences that arise because of species- and tissue-specific vessel network structures. Such divergences are not uniform, and xylem tissues may diverge in different ways and to differing degrees. Plants regularly operate under nonoptimal conditions and contain numerous embolized conduits. Understanding the hydraulic implications of emboli within a network and the function of partially embolized networks are critical gaps in our understanding of plants occurring within natural environments.
Collapse
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California, USA
| | - Martin D Venturas
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Brandon Pratt
- Department of Biology, California State University, Bakersfield, California, USA
| |
Collapse
|
2
|
Camboué M, Janoueix A, Tandonnet JP, Spilmont AS, Moisy C, Mathieu G, Cordelières F, Teillon J, Santesteban LG, Ollat N, Cookson SJ. Phenotyping xylem connections in grafted plants using X-ray micro-computed tomography. PLANT, CELL & ENVIRONMENT 2024; 47:2351-2361. [PMID: 38516728 DOI: 10.1111/pce.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Plants are able to naturally graft or inosculate their trunks, branches and roots together, this mechanism is used by humans to graft together different genotypes for a range of purposes. Grafts are considered successful if functional vascular connections between the two genotypes occur. Various techniques can evaluate xylem connections across the graft interface. However, these methods are generally unable to assess the heterogeneity and three-dimensional (3D) structure of xylem vessel connections. Here we present the use of X-ray micro-computed tomography to characterize the 3D morphology of grafts of grapevine. We show that xylem vessels form between the two plants of natural root and human-made stem grafts. The main novelty of this methodology is that we were able to visualize the 3D network of functional xylem vessels connecting the scion and rootstock in human-made stem grafts thanks to the addition of a contrast agent to the roots and improved image analysis pipelines. In addition, we reveal the presence of extensive diagonal xylem connections between the main axial xylem vessels in 2-year old grapevine stems. In conclusion, we present a method that has the potential to provide new insights into the structure and function of xylem vessels in large tissue samples.
Collapse
Affiliation(s)
- Marilou Camboué
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne Janoueix
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Jean-Pascal Tandonnet
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Anne-Sophie Spilmont
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | - Cédric Moisy
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
- UMR AGAP Institut, UMT Geno Vigne, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Guillaume Mathieu
- IFV, French Institute of Vine and Wine, Domaine de l'Espiguette, Le Grau-du-Roi, France
| | | | - Jérémie Teillon
- Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, Bordeaux, France
| | - Luis Gonzaga Santesteban
- Departement of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra UPNA, Pamplona, Navarra, Spain
| | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| | - Sarah Jane Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, Bordeaux, France
| |
Collapse
|
3
|
Xiang Y, Kagawa A, Nagai S, Yasuda Y, Utsumi Y. Isotope Distribution Analysis in H₂ 18O Pulse-Labeled Trees Frozen with Liquid Nitrogen. PHYSIOLOGIA PLANTARUM 2024; 176:e14292. [PMID: 38685817 DOI: 10.1111/ppl.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Tracer injection has long been recognized as a valuable tool for delineating tree hydraulics and assessing water transport pathways. Recently, isotope tracers have emerged as innovative instruments for investigating tree hydraulics, providing new insights into tree water dynamics. Nevertheless, there is a critical need for further research to comprehensively grasp water movement and distribution within trees. A previously introduced technique for analyzing the isotopic ratio of water in wet tissues, offering millimeter-scale resolution for visualizing tracer movement, faces challenges due to its underdeveloped sample preparation techniques. In this study, we introduced an H2 18O tracer into S. gracilistyla samples, exclusively comprising indeterminate roots, stems, and leaves, cultivated through hydroponics and grown within the current year. Our objective was to assess the axial distribution of the tracer in the xylem. Additionally, we devised a novel method for preparing frozen wet tissue samples, enhancing the repeatability and success rate of experiments. The results demonstrated that all frozen wet tissue samples exhibited an average water loss rate of less than 0.6%. Isotopic analysis of these samples unveiled a consistent decline in tracer concentration with increasing height in all Salix specimens, with three out of five samples revealing a significant isotope gradient. Our findings affirm the efficacy and practicality of combining isotopic labeling with freezing, stabilization, and preparation techniques. Looking ahead, our isotopic labeling and analysis methods are poised to transcend woody plants, finding extensive applications in plant physiology and ecohydrology.
Collapse
Affiliation(s)
- Yan Xiang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, Ibaraki, Japan
| | - Satoshi Nagai
- Forestry Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Yuko Yasuda
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima City Kagoshima, Japan
| | | |
Collapse
|
4
|
Gao C, Marker SJV, Gundlach C, Poulsen HF, Bohr T, Schulz A. Tracing the opposing assimilate and nutrient flows in live conifer needles. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6677-6691. [PMID: 37668473 DOI: 10.1093/jxb/erad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The vasculature along conifer needles is fundamentally different from that in angiosperm leaves as it contains a unique transfusion tissue inside the bundle sheath. In this study, we used specific tracers to identify the pathway of photoassimilates from mesophyll to phloem, and the opposing pathway of nutrients from xylem to mesophyll. For symplasmic transport we applied esculin to the tip of attached pine needles and followed its movement down the phloem. For apoplasmic transport we let detached needles take up a membrane-impermeable contrast agent and used micro-X-ray computed tomography to map critical water exchange interfaces and domain borders. Microscopy and segmentation of the X-ray data enabled us to render and quantify the functional 3D structure of the water-filled apoplasm and the complementary symplasmic domain. The transfusion tracheid system formed a sponge-like apoplasmic domain that was blocked at the bundle sheath. Transfusion parenchyma cell chains bridged this domain as tortuous symplasmic pathways with strong local anisotropy which, as evidenced by the accumulation of esculin, pointed to the phloem flanks as the preferred phloem-loading path. Simple estimates supported a pivotal role of the bundle sheath, showing that a bidirectional movement of nutrient ions and assimilates is feasible and emphasizing the role of the bundle sheath in nutrient and assimilate exchange.
Collapse
Affiliation(s)
- Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sean J V Marker
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Henning F Poulsen
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
5
|
Vuerich M, Petrussa E, Boscutti F, Braidot E, Filippi A, Petruzzellis F, Tomasella M, Tromba G, Pizzuto M, Nardini A, Secchi F, Casolo V. Contrasting Responses of Two Grapevine Cultivars to Drought: The Role of Non-structural Carbohydrates in Xylem Hydraulic Recovery. PLANT & CELL PHYSIOLOGY 2023; 64:920-932. [PMID: 37384580 DOI: 10.1093/pcp/pcad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.
Collapse
Affiliation(s)
- Marco Vuerich
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Elisa Petrussa
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Francesco Boscutti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Enrico Braidot
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Antonio Filippi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
- Dipartimento di Area Medica, Università di Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Mauro Pizzuto
- Vivai Cooperativi Rauscedo, Via Udine, 39, Rauscedo (PN) 33095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali, Alimentari (DISAFA), Università di Torino, Largo Paolo Braccini 2, Grugliasco (TO) 10095, Italy
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| |
Collapse
|
6
|
Xiang Y, Kagawa A, Nagai S, Yasuda Y, Utsumi Y. The difference in the functional water flow network between the stem and current-year root cross-sectional surfaces in Salix gracilistyla stem xylem. TREE PHYSIOLOGY 2023; 43:1326-1340. [PMID: 37098160 DOI: 10.1093/treephys/tpad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/19/2023]
Abstract
The dye injection method has been applied to many species to analyze the xylem water transport pathway in trees. However, traditional dye injection methods introduced dye tracers from the surface of cut stems, including several annual rings. Furthermore, the traditional dye injection method did not evaluate radial water movement from the outermost annual rings to the inner annual rings. In this study, we assessed the difference in radial water movement visualized by an injected dye, between stem base cut and current-year root cut samples of Salix gracilistyla Miq., with current-year roots grown hydroponically. The results showed that the number of stained annual rings in the root cut samples was smaller than that in the stem cut samples, and the percentage of stained vessels in the root cut samples was significantly smaller than that in the stem base cut samples in the second and third annual rings. In the current-year root cut samples, water transport mainly occurred in the outermost rings from the current-year roots to leaves. In addition, the theoretical hydraulic conductivity of stained vessels in the stem cut samples was higher in the current-year root cut samples in the second and third annual rings. These findings indicate that the previously reported dye injection method using stem cut samples overestimated the water transport pathway in the inner part of the stems. Moreover, previous hydraulic conductivity measurement methods might not have considered the effects of radial resistance through the annual ring boundary, and they might have overestimated the hydraulic conductivity in the inner annual rings.
Collapse
Affiliation(s)
- Yan Xiang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi Ward, Fukuoka city, Fukuoka, 819-0385, Japan
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, 1 Matsunosato, Tsukuba, Ibaraki 300-1244, Japan
| | - Satoshi Nagai
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Forestry and Forest Products Research Institute, 430 Yamasakicho Ikaba, Shiso, Hyogo 671-2515, Japan
| | - Yuko Yasuda
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, 1 Chome-21-24 Korimoto, Kagoshima City Kagoshima, 890-0065, Japan
| | - Yasuhiro Utsumi
- Kyushu University Forest, Kyushu University, 394-1 Tsubakuro, Sasaguri, Kasuya District, Fukuoka 811-2415, Japan
| |
Collapse
|
7
|
Migicovsky Z, Quigley MY, Mullins J, Ali T, Swift JF, Agasaveeran AR, Dougherty JD, Grant BM, Korkmaz I, Malpeddi MR, McNichol EL, Sharp AW, Harris JL, Hopkins DR, Jordan LM, Kwasniewski MT, Striegler RK, Dowtin AL, Stotts S, Cousins P, Chitwood DH. X-ray imaging of 30 year old wine grape wood reveals cumulative impacts of rootstocks on scion secondary growth and Ravaz index. HORTICULTURE RESEARCH 2022; 10:uhac226. [PMID: 36643757 PMCID: PMC9832875 DOI: 10.1093/hr/uhac226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Annual rings from 30 year old vines in a California rootstock trial were measured to determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient uptake were collected at the beginning (1995 to 1999) and end (2017 to 2020) of the lifetime of a vineyard initially planted in 1991 and removed in 2021. X-ray Computed Tomography (CT) was used to measure ring widths in 103 vines. Ring width was modeled as a function of ring number using a negative exponential model. Early and late wood ring widths, cambium width, and scion trunk radius were correlated with 27 traits. Modeling of annual ring width shows that scions alter the width of the first rings but that rootstocks alter the decay of later rings, consistently shortening ring width throughout the lifetime of the vine. Ravaz index, juice pH, photosynthetic assimilation and transpiration rates, and instantaneous water use efficiency are correlated with scion trunk radius. Ultimately, our research indicates that rootstocks modulate secondary growth over years, altering physiology and agronomic traits. Rootstocks act in similar but distinct ways from climate to modulate ring width, which borrowing techniques from dendrochronology, can be used to monitor both genetic and environmental effects in woody perennial crop species.
Collapse
Affiliation(s)
| | - Michelle Y Quigley
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Joey Mullins
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Tahira Ali
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Neuroscience, Michigan State University, East Lansing, MI, 48823, USA
| | - Joel F Swift
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Anita Rose Agasaveeran
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48823, USA
| | - Joseph D Dougherty
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Brendan Michael Grant
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Ilayda Korkmaz
- College of Natural Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Maneesh Reddy Malpeddi
- College of Social Science, Michigan State University, East Lansing, MI, 48823, USA
- Department of Economics, Michigan State University, East Lansing, MI, 48823, USA
| | - Emily L McNichol
- College of Engineering, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Andrew W Sharp
- College of Arts and Letters, Michigan State University, East Lansing, MI, 48823, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | | | | | - Lindsay M Jordan
- E. & J. Gallo Winery, Acampo, CA, 95220, USA
- Current affiliation: Constellation Brands, Soledad, CA, 93960, USA
| | - Misha T Kwasniewski
- Department of Food Science, The Pennsylvania State University, State College, PA, 16803, USA
| | | | - Asia L Dowtin
- Department of Forestry, Michigan State University, East Lansing, MI, 48823, USA
| | - Stephanie Stotts
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | | | | |
Collapse
|
8
|
Schreel JDM, Brodersen C, De Schryver T, Dierick M, Rubinstein A, Dewettinck K, Boone MN, Van Hoorebeke L, Steppe K. Foliar water uptake does not contribute to embolism repair in beech (Fagus sylvatica L.). ANNALS OF BOTANY 2022; 129:555-566. [PMID: 35141741 PMCID: PMC9007097 DOI: 10.1093/aob/mcac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Foliar water uptake has recently been suggested as a possible mechanism for the restoration of hydraulically dysfunctional xylem vessels. In this paper we used a combination of ecophysiological measurements, X-ray microcomputed tomography and cryo-scanning electron microscopy during a drought treatment to fully evaluate this hypothesis. KEY RESULTS Based on an assessment of these methods in beech (Fagus sylvatica L.) seedlings we were able to (1) confirm an increase in the amount of hydraulically redistributed water absorbed by leaves when the soil water potential decreased, and (2) locate this redistributed water in hydraulically active vessels in the stem. However, (3) no embolism repair was observed irrespective of the organ under investigation (i.e. stem, petiole or leaf) or the intensity of drought. CONCLUSIONS Our data provide evidence for a hydraulic pathway from the leaf surface to the stem xylem following a water potential gradient, but this pathway exists only in functional vessels and does not play a role in embolism repair for beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
- For correspondence. E-mail
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, USA
| | - Thomas De Schryver
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Manuel Dierick
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | | | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Matthieu N Boone
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Luc Van Hoorebeke
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
9
|
Fontes CG, Pinto‐Ledezma J, Jacobsen AL, Pratt RB, Cavender‐Bares J. Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clarissa G. Fontes
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | - Jesús Pinto‐Ledezma
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | | | | | | |
Collapse
|
10
|
Mrad A, Johnson DM, Love DM, Domec JC. The roles of conduit redundancy and connectivity in xylem hydraulic functions. THE NEW PHYTOLOGIST 2021; 231:996-1007. [PMID: 33908055 DOI: 10.1111/nph.17429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Wood anatomical traits shape a xylem segment's hydraulic efficiency and resistance to embolism spread due to declining water potential. It has been known for decades that variations in conduit connectivity play a role in altering xylem hydraulics. However, evaluating the precise effect of conduit connectivity has been elusive. The objective here is to establish an analytical linkage between conduit connectivity and grouping and tissue-scale hydraulics. It is hypothesized that an increase in conduit connectivity brings improved resistance to embolism spread due to increased hydraulic pathway redundancy. However, an increase in conduit connectivity could also reduce resistance due to increased speed of embolism spread with respect to pressure. We elaborate on this trade-off using graph theory, percolation theory and computational modeling of xylem. The results are validated using anatomical measurements of Acer branch xylem. Considering only species with vessels, increases in connectivity improve resistance to embolism spread without negatively affecting hydraulic conductivity. The often measured grouping index fails to capture the totality of the effect of conduit connectivity on xylem hydraulics. Variations in xylem network characteristics, such as conduit connectivity, might explain why hypothesized trends among woody species, such as the 'safety-efficiency' trade-off hypothesis, are weaker than expected.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, USA
- Department of Engineering, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - David M Love
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, Gradignan Cedex, 33175, France
| |
Collapse
|
11
|
Avila RT, Cardoso AA, Batz TA, Kane CN, DaMatta FM, McAdam SAM. Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. PHYSIOLOGIA PLANTARUM 2021; 172:2142-2152. [PMID: 33942915 DOI: 10.1111/ppl.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Xylem resistance to embolism is a key metric determining plant survival during drought. Yet, we have a limited understanding of the degree of plasticity in vulnerability to embolism. Here, we tested whether light availability influences embolism resistance in leaves and stems. The optical vulnerability method was used to assess stem and leaf resistance to embolism in Phellodendron amurense and Ilex verticillata acclimated to sun and shade microenvironments within the same canopy. In both species, we found considerable segmentation in xylem resistance to embolism between leaves and stems, but only minor acclimation in response to light availability. With the addition of a third species, Betula pubescens, which shows no vulnerability segmentation, we sought to investigate xylem anatomical traits that might correlate with strong vulnerability segmentation. We found a correlation between the area fraction of vessels in the xylem and embolism resistance across species and tissue types. Our results suggest that minimal acclimation of embolism resistance occurs in response to light environment in the same individual and that the degree of vulnerability segmentation between leaves and stems might be determined by the vessel lumen fraction of the xylem.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
13
|
Bortolami G, Farolfi E, Badel E, Burlett R, Cochard H, Ferrer N, King A, Lamarque LJ, Lecomte P, Marchesseau-Marchal M, Pouzoulet J, Torres-Ruiz JM, Trueba S, Delzon S, Gambetta GA, Delmas CEL. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3914-3928. [PMID: 33718947 DOI: 10.1093/jxb/erab117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/11/2021] [Indexed: 05/26/2023]
Abstract
Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure.
Collapse
Affiliation(s)
| | - Elena Farolfi
- INRAE, BSA, ISVV, SAVE, 33882 Villenave d'Ornon, France
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Regis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
| | - Herve Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, 91192, France
| | - Laurent J Lamarque
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | | | | | - Jerome Pouzoulet
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Jose M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Santiago Trueba
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | | | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
14
|
Skelton RP, Anderegg LDL, Diaz J, Kling MM, Papper P, Lamarque LJ, Delzon S, Dawson TE, Ackerly DD. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proc Natl Acad Sci U S A 2021; 118:e2008987118. [PMID: 33649205 PMCID: PMC7958251 DOI: 10.1073/pnas.2008987118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks (Quercus spp.). Optical visualization showed that 50% of embolism occurs at water potentials below -2.7 MPa in all 19 species, and -6.6 MPa in the most resistant species. By mapping the evolution of xylem vulnerability to embolism onto a fossil-dated phylogeny of the western North American oaks, we found large differences between clades (sections) while closely related species within each clade vary little in their capacity to withstand air entry. Phylogenetic conservatism in xylem physical tolerance, together with a significant correlation between species distributions along rainfall gradients and their dehydration tolerance, suggests that closely related species occupy similar climatic niches and that species' geographic ranges may have shifted along aridity gradients in accordance with their physical tolerance. Such trends, coupled with evolutionary associations between capacity to withstand xylem embolism and other hydraulic-related traits, yield wide margins of safety against embolism in oaks from diverse habitats. Evolved responses of the vascular system to aridity support the embolism avoidance hypothesis and reveal the importance of quantifying plant capacity to withstand xylem embolism for understanding function and biogeography of some of the Northern Hemisphere's most ecologically and economically important plants.
Collapse
Affiliation(s)
- Robert P Skelton
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- Fynbos Node, South African Environmental Observation Network, Newlands 7735, Cape Town, South Africa
| | - Leander D L Anderegg
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93117
| | - Jessica Diaz
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Matthew M Kling
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Prahlad Papper
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Laurent J Lamarque
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| |
Collapse
|
15
|
Koddenberg T, Greving I, Hagemann J, Flenner S, Krause A, Laipple D, Klein KC, Schmitt U, Schuster M, Wolf A, Seifert M, Ludwig V, Funk S, Militz H, Nopens M. Three-dimensional imaging of xylem at cell wall level through near field nano holotomography. Sci Rep 2021; 11:4574. [PMID: 33633184 PMCID: PMC7907381 DOI: 10.1038/s41598-021-83885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Detailed imaging of the three-dimensionally complex architecture of xylary plants is important for studying biological and mechanical functions of woody plants. Apart from common two-dimensional microscopy, X-ray micro-computed tomography has been established as a three-dimensional (3D) imaging method for studying the hydraulic function of wooden plants. However, this X-ray imaging method can barely reach the resolution needed to see the minute structures (e.g. pit membrane). To complement the xylem structure with 3D views at the nanoscale level, X-ray near-field nano-holotomography (NFH) was applied to analyze the wood species Pinus sylvestris and Fagus sylvatica. The demanded small specimens required focused ion beam (FIB) application. The FIB milling, however, influenced the image quality through gallium implantation on the cell-wall surfaces. The measurements indicated that NFH is appropriate for imaging wood at nanometric resolution. With a 26 nm voxel pitch, the structure of the cell-wall surface in Pinus sylvestris could be visualized in genuine detail. In wood of Fagus sylvatica, the structure of a pit pair, including the pit membrane, between two neighboring fibrous cells could be traced tomographically.
Collapse
Affiliation(s)
- Tim Koddenberg
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz-Zentrum Geesthacht, Max Plank Straße1, 21502, Geesthacht, Germany
| | - Johannes Hagemann
- Deutsches Elektronen Synchrotron-DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz-Zentrum Geesthacht, Max Plank Straße1, 21502, Geesthacht, Germany
| | - Andreas Krause
- Thünen-Institute of Wood Research, Leuschnerstraße 91, Hamburg-Bergedorf, 21031, Hamburg, Germany
| | - Daniel Laipple
- Institute of Materials Physics, Helmholtz-Zentrum Geesthacht, Max Plank Straße1, 21502, Geesthacht, Germany
| | - Kim C Klein
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Uwe Schmitt
- Thünen-Institute of Wood Research, Leuschnerstraße 91, Hamburg-Bergedorf, 21031, Hamburg, Germany
| | - Max Schuster
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommel-Strasse 1, 91058, Erlangen, Germany
| | - Andreas Wolf
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommel-Strasse 1, 91058, Erlangen, Germany
| | - Maria Seifert
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommel-Strasse 1, 91058, Erlangen, Germany
| | - Veronika Ludwig
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommel-Strasse 1, 91058, Erlangen, Germany
| | - Stefan Funk
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommel-Strasse 1, 91058, Erlangen, Germany
| | - Holger Militz
- Wood Biology and Wood Products, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Martin Nopens
- Thünen-Institute of Wood Research, Leuschnerstraße 91, Hamburg-Bergedorf, 21031, Hamburg, Germany.
| |
Collapse
|
16
|
Secchi F, Pagliarani C, Cavalletto S, Petruzzellis F, Tonel G, Savi T, Tromba G, Obertino MM, Lovisolo C, Nardini A, Zwieniecki MA. Chemical inhibition of xylem cellular activity impedes the removal of drought-induced embolisms in poplar stems - new insights from micro-CT analysis. THE NEW PHYTOLOGIST 2021; 229:820-830. [PMID: 32890423 DOI: 10.1111/nph.16912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino, 10135, Italy
| | - Silvia Cavalletto
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Giulia Tonel
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Tadeja Savi
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maria Margherita Obertino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Gauthey A, Peters JMR, Carins-Murphy MR, Rodriguez-Dominguez CM, Li X, Delzon S, King A, López R, Medlyn BE, Tissue DT, Brodribb TJ, Choat B. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. THE NEW PHYTOLOGIST 2020; 228:884-897. [PMID: 32542732 DOI: 10.1111/nph.16746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Madeline R Carins-Murphy
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Celia M Rodriguez-Dominguez
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Sylvain Delzon
- UMR BIOGECO, INRA, Univ Bordeaux, Talence, 33450, France
| | - Andrew King
- L'Orme de Merisiers, Synchrotron SOLEIL, 91190 Saint-Aubin-BP48, Gif-sur-Yvette Cedex, France
| | - Rosana López
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
- PIAF, INRA, University of Clermont-Auvergne, 63100, Clermont-Ferrand, France
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas, 7001, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
18
|
Natalio F. Tracking the Biological Incorporation of Exogenous Molecules into Cellulose Fibers with Non‐Radioactive Iodinated Glucose. Isr J Chem 2020. [DOI: 10.1002/ijch.202000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Filipe Natalio
- Kimmel Center for Archaeological Science Weizmann Institute of Science Rehovot 76100 Israel
- Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
19
|
Pratt RB, Castro V, Fickle JC, Madsen A, Jacobsen AL. Factors controlling drought resistance in grapevine (Vitis vinifera, chardonnay): application of a new microCT method to assess functional embolism resistance. AMERICAN JOURNAL OF BOTANY 2020; 107:618-627. [PMID: 32232845 DOI: 10.1002/ajb2.1450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
PREMISE Quantifying resistance to embolism in woody plants is important for understanding their drought response. Methods to accurately quantify resistance to embolism continue to be debated. METHODS We used a new microCT-based approach that quantifies embolized conduits and also analyzes conductive conduits by using an x-ray-dense, iodine-rich tracer that moves though the vascular system and can easily be observed in microCT images. Many previous microCT studies assumed that all conduits were initially conductive, which may not be the case if there are developing or occluded conduits. We compared microCT results to a standard benchtop dehydration method and a centrifuge method. During dehydration, we measured gas exchange and quantified water potential at mortality. RESULTS Our microCT curves agreed with previously published microCT curves from the same greenhouse-grown cultivar. We found a significant difference in embolism estimates if we assumed that all water-filled conduits were functional rather than only those containing tracer. Embolism estimates from microCT differed from both the benchtop and centrifuge methods. The benchtop and centrifuge methods did not differ from one another. CONCLUSIONS The new microCT method presented here is valuable in sampling species that may contain nonconductive conduits. Disagreement between microCT and two other methods was likely due to differences in the ways they quantify embolism. MicroCT assess the theoretical effect of embolism, whereas benchtop and centrifuge methods directly measure hydraulic conductivity. The theoretical approach does not fully account for the resistances of flow through a complex 3D vascular network.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University-Bakersfield, Bakersfield, CA, 93311, USA
| | - Viridiana Castro
- Department of Biology, California State University-Bakersfield, Bakersfield, CA, 93311, USA
| | - Jaycie C Fickle
- Department of Biology, California State University-Bakersfield, Bakersfield, CA, 93311, USA
| | - Angela Madsen
- Department of Biology, California State University-Bakersfield, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- Department of Biology, California State University-Bakersfield, Bakersfield, CA, 93311, USA
| |
Collapse
|
20
|
Pratt RB, Castro V, Fickle JC, Jacobsen AL. Embolism resistance of different aged stems of a California oak species (Quercus douglasii): optical and microCT methods differ from the benchtop-dehydration standard. TREE PHYSIOLOGY 2020; 40:5-18. [PMID: 31553460 DOI: 10.1093/treephys/tpz092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Vulnerability of xylem to embolism is an important trait related to drought resistance of plants. Methods continue to be developed and debated for measuring embolism. We tested three methods (benchtop dehydration/hydraulic, micro-computed tomography (microCT) and optical) for assessing the vulnerability to embolism of a native California oak species (Quercus douglasii Hook. & Arn.), including an analysis of three different stem ages. All three methods were found to significantly differ in their estimates, with a greater resistance to embolism as follows: microCT > optical > hydraulic. Careful testing was conducted for the hydraulic method to evaluate multiple known potential artifacts, and none was found. One-year-old stems were more resistant than older stems using microCT and optical methods, but not hydraulic methods. Divergence between the microCT and optical methods from the standard hydraulic method was consistent with predictions based on known errors when estimating theoretical losses in hydraulic function in both microCT and optical methods. When the goal of a study is to describe or predict losses in hydraulic conductivity, neither the microCT nor optical methods are reliable for accurately constructing vulnerability curves of stems; nevertheless, these methods may be useful if the goal of a study is to identify embolism events irrespective of hydraulic conductivity or hydraulic function.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Viridiana Castro
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, 9001 Stockdale Hwy, Bakersfield, CA
| |
Collapse
|
21
|
Bouda M, Windt CW, McElrone AJ, Brodersen CR. In vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine. Nat Commun 2019; 10:5645. [PMID: 31822680 PMCID: PMC6904565 DOI: 10.1038/s41467-019-13673-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
Leaves lose approximately 400 H2O molecules for every 1 CO2 gained during photosynthesis. Most long-distance water transport in plants, or xylem sap flow, serves to replace this water to prevent desiccation. Theory predicts that the largest vessels contribute disproportionately to overall sap flow because flow in pipe-like systems scales with the fourth power of radius. Here, we confront these theoretical flow predictions for a vessel network reconstructed from X-ray μCT imagery with in vivo flow MRI observations from the same sample of a first-year grapevine stem. Theoretical flow rate predictions based on vessel diameters are not supported. The heterogeneity of the vessel network gives rise to transverse pressure gradients that redirect flow from wide to narrow vessels, reducing the contribution of wide vessels to sap flow by 15% of the total. Our results call for an update of the current working model of the xylem to account for its heterogeneity. Plants require long-distance water transport to avoid desiccation. Here, via μCT and MRI of grapevine stem, Bouda et al. show evidence of pressure gradient heterogeneity and flow redirection from wide to narrow vessels that suggests narrow vessels contribute more to xylem sap flow than previously appreciated.
Collapse
Affiliation(s)
- Martin Bouda
- School of Forestry & Environmental Studies, Yale University, 195 Prospect St., New Haven, CT, 06511, USA. .,Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic.
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Straße 1, 52428, Jülich, Germany
| | - Andrew J McElrone
- Department of Viticulture & Enology, University of California, 595 Hilgard Ln, Davis, CA, 95616, USA.,USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, CA, USA
| | - Craig R Brodersen
- School of Forestry & Environmental Studies, Yale University, 195 Prospect St., New Haven, CT, 06511, USA
| |
Collapse
|
22
|
Holmlund HI, Pratt RB, Jacobsen AL, Davis SD, Pittermann J. High-resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccation-tolerant fern. THE NEW PHYTOLOGIST 2019; 224:97-105. [PMID: 31318447 DOI: 10.1111/nph.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Desiccation-tolerant (DT) plants can dry past -100 MPa and subsequently recover function upon rehydration. Vascular DT plants face the unique challenges of desiccating and rehydrating complex tissues without causing structural damage. However, these dynamics have not been studied in intact DT plants. We used high resolution micro-computed tomography (microCT), light microscopy, and fluorescence microscopy to characterize the dynamics of tissue desiccation and rehydration in petioles (stipes) of intact DT ferns. During desiccation, xylem conduits in stipes embolized before cellular dehydration of living tissues within the vascular cylinder. During resurrection, the chlorenchyma and phloem within the stipe vascular cylinder rehydrated before xylem refilling. We identified unique stipe traits that may facilitate desiccation and resurrection of the vascular system, including xylem conduits containing pectin (which may confer flexibility and wettability); chloroplasts within the vascular cylinder; and an endodermal layer impregnated with hydrophobic substances that impede apoplastic leakage while facilitating the upward flow of water within the vascular cylinder. Resurrection ferns are a novel system for studying extreme dehydration recovery and embolism repair in the petioles of intact plants. The unique anatomical traits identified here may contribute to the spatial and temporal dynamics of water movement observed during desiccation and resurrection.
Collapse
Affiliation(s)
- Helen I Holmlund
- University of California, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - R Brandon Pratt
- California State University, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- California State University, 9001 Stockdale Hwy, Bakersfield, CA, 93311, USA
| | - Stephen D Davis
- Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Jarmila Pittermann
- University of California, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| |
Collapse
|
23
|
Wason JW, Brodersen CR, Huggett BA. The functional implications of tracheary connections across growth rings in four northern hardwood trees. ANNALS OF BOTANY 2019; 124:297-306. [PMID: 31330537 PMCID: PMC6758585 DOI: 10.1093/aob/mcz076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Deciduous angiosperm trees transport xylem sap through trunks and branches in vessels within annual growth rings. Utilizing previous growth rings for sap transport could increase vessel network size and redundancy but may expose new xylem to residual air embolisms in the network. Despite the important role of vessel networks in sap transport and drought resistance, our understanding of cross-ring connections within and between species is limited. METHODS We studied cross-ring connections in four temperate deciduous trees using dye staining and X-ray microcomputed tomography (microCT) to detect xylem connectivity across growth rings and quantify their impact on hydraulic conductivity. KEY RESULTS Acer rubrum and Fraxinus americana had cross-ring connections visible in microCT but only A. rubrum used previous growth rings for axial sap flow. Fagus grandifolia and Quercus rubra, however, did not have cross-ring connections. Accounting for the number of growth rings that function for axial transport improved hydraulic conductivity estimates. CONCLUSIONS These data suggest that the presence of cross-ring connections may help explain aspects of whole-tree xylem sap transport and should be considered for plant hydraulics measurements in these species and others with similar anatomy.
Collapse
Affiliation(s)
- Jay W Wason
- School of Forest Resources, University of Maine, Orono, ME, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
- For correspondence. E-mail
| | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | | |
Collapse
|
24
|
Chen L, Cao Y, Zhang Z, Liu X, Teramage MT, Zhang X, Sun X. Characteristics of chemical components in the trunk xylem sap of pine trees by means of a centrifugation collection method. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:482-489. [PMID: 31437742 DOI: 10.1016/j.plaphy.2019.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Knowledge of the characteristics of chemical components transported in the xylem sap of trunks remains deficient and limited because no appropriate method exists to extract the xylem sap from this part of the tree. We thus explored the differences in xylem sap components extracted by means of centrifugation and water displacement methods and depicted the level and behavior of chemical components in the xylem sap of trunks and branches of different aged trees from a pine forest in northern China. There were no significant differences between the two methods with respect to nitrogen (N) compounds and inorganic ions in the xylem sap. Potassium concentrations obtained by the methods were similar and consistent with the values obtained from earlier publications on woody species. This suggests that contamination of the xylem sap by the centrifugation method is negligible, and this method would be a reliable and robust tool for collection of the trunk xylem sap. Dissolved organic N was the dominant component of total N followed by nitrate (NO3-) and ammonium (NH4+). Potassium and chloride were the predominant cation and anion, respectively, of the xylem sap. The NO3- concentration basically did not change, whereas the NH4+ concentration was larger transported from the trunk to branches for the large tree class during foliage senescence. More inorganic N components (mainly NO3-) were found in young trees than in old trees. Our study contributes to improve the diagnostic assessments of tree physiological processes and growth in mature forest trees under environmental changes.
Collapse
Affiliation(s)
- Lingling Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yanhong Cao
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhao Zhang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xueyan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | | | - Xiaoda Zhang
- Tianjin Forest Tree Seed Management Station, Tianjin, 300074, China
| | - Xinchao Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
25
|
Venturas MD, Pratt RB, Jacobsen AL, Castro V, Fickle JC, Hacke UG. Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics. PLANT, CELL & ENVIRONMENT 2019; 42:2422-2436. [PMID: 30997689 DOI: 10.1111/pce.13565] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
During periods of dehydration, water transport through xylem conduits can become blocked by embolism formation. Xylem embolism compromises water supply to leaves and may lead to losses in productivity or plant death. Vulnerability curves (VCs) characterize plant losses in conductivity as xylem pressures decrease. VCs are widely used to characterize and predict plant water use at different levels of water availability. Several methodologies for constructing VCs exist and sometimes produce different results for the same plant material. We directly compared four VC construction methods on stems of black cottonwood (Populus trichocarpa), a model tree species: dehydration, centrifuge, X-ray-computed microtomography (microCT), and optical. MicroCT VC was the most resistant, dehydration and centrifuge VCs were intermediate, and optical VC was the most vulnerable. Differences among VCs were not associated with how cavitation was induced but were related to how losses in conductivity were evaluated: measured hydraulically (dehydration and centrifuge) versus evaluated from visual information (microCT and optical). Understanding how and why methods differ in estimating vulnerability to xylem embolism is important for advancing knowledge in plant ecophysiology, interpreting literature data, and using accurate VCs in water flux models for predicting plant responses to drought.
Collapse
Affiliation(s)
- Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, Utah, USA
| | - R Brandon Pratt
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Anna L Jacobsen
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Viridiana Castro
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Jaycie C Fickle
- Department of Biology, California State University Bakersfield, Bakersfield, 93311, California, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
26
|
Poovaiah C, Coleman HD. Development of secondary cell walls in cells adjacent to vessel elements may be controlled by signals from the vessel element. TREE PHYSIOLOGY 2019; 39:511-513. [PMID: 30931474 DOI: 10.1093/treephys/tpz037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Charleson Poovaiah
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| | - Heather D Coleman
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, USA
| |
Collapse
|
27
|
Jacobsen AL, Pratt RB. Going with the flow: Structural determinants of vascular tissue transport efficiency and safety. PLANT, CELL & ENVIRONMENT 2018; 41:2715-2717. [PMID: 30216473 DOI: 10.1111/pce.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, California
| |
Collapse
|
28
|
Mrad A, Domec JC, Huang CW, Lens F, Katul G. A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. PLANT, CELL & ENVIRONMENT 2018; 41:2718-2730. [PMID: 30071137 DOI: 10.1111/pce.13415] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Cheng-Wei Huang
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Gabriel Katul
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
29
|
Petruzzellis F, Pagliarani C, Savi T, Losso A, Cavalletto S, Tromba G, Dullin C, Bär A, Ganthaler A, Miotto A, Mayr S, Zwieniecki MA, Nardini A, Secchi F. The pitfalls of in vivo imaging techniques: evidence for cellular damage caused by synchrotron X-ray computed micro-tomography. THE NEW PHYTOLOGIST 2018; 220:104-110. [PMID: 30040128 DOI: 10.1111/nph.15368] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Synchrotron X-ray computed micro-tomography (microCT) has emerged as a promising noninvasive technique for in vivo monitoring of xylem function, including embolism build-up under drought and hydraulic recovery following re-irrigation. Yet, the possible harmful effects of ionizing radiation on plant tissues have never been quantified. We specifically investigated the eventual damage suffered by stem living cells of three different species exposed to repeated microCT scans. Stem samples exposed to one, two or three scans were used to measure cell membrane and RNA integrity, and compared to controls never exposed to X-rays. Samples exposed to microCT scans suffered serious alterations to cell membranes, as revealed by marked increase in relative electrolyte leakage, and also underwent severe damage to RNA integrity. The negative effects of X-rays were apparent in all species tested, but the magnitude of damage and the minimum number of scans inducing negative effects were species-specific. Our data show that multiple microCT scans lead to disruption of fundamental cellular functions and processes. Hence, microCT investigation of phenomena that depend on physiological activity of living cells may produce erroneous results and lead to incorrect conclusions.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135, Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, A-3430, Tulln, Vienna, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Silvia Cavalletto
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giuliana Tromba
- Elettra Sincrotrone Trieste, Area Science Park, 34149, Basovizza, Trieste, Italy
| | - Christian Dullin
- Elettra Sincrotrone Trieste, Area Science Park, 34149, Basovizza, Trieste, Italy
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Max-Plank-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andrea Miotto
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
30
|
Gleason SM. A blooming interest in the hydraulic traits of flowers. PLANT, CELL & ENVIRONMENT 2018; 41:2247-2249. [PMID: 29785768 DOI: 10.1111/pce.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
This article comments on: Water relations of Calycanthus flowers: Hydraulic conductance, capacitance, and embolism resistance.
Collapse
Affiliation(s)
- Sean M Gleason
- United States Department of Agriculture, Agricultural Research Service, Water Management and Systems Research Unit, Fort Collins, Colorado
| |
Collapse
|
31
|
Munitz S, Netzer Y, Shtein I, Schwartz A. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. AMERICAN JOURNAL OF BOTANY 2018; 105:1443-1452. [PMID: 30168862 DOI: 10.1002/ajb2.1148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The stem of Vitis vinifera, a climbing vine of global economic importance, is characterized by both wide and narrow vessels and high specific hydraulic conductivity. While the effect of drought stress has been studied in 1- and 2-yr-old stems, there are few data documenting effects of drought stress on the anatomical structure of the mature, woody stem near the base of the vine. Here we describe mature wood anatomical responses to two irrigation regimes on wood anatomy and specific hydraulic conductivity in Vitis vinifera Merlot vines. METHODS For 4 years, irrigation was applied constantly at low, medium, or high levels, or at alternating levels at two different periods during the growing season, either early spring or late summer, resulting in late season or early spring deficits, respectively. The following variables were measured: trunk diameter, annual ring width and area, vessel diameter, specific hydraulic conductivity and stem water potential. KEY RESULTS High water availability early in the season (late deficit) resulted in vigorous vegetative growth (greater trunk diameter, ring width and area), wider vessels and increased specific hydraulic conductivity. High water availability early in the season caused a shift of the vessel population towards the wider frequency classes. These late deficit vines showed more negative water potential values late in the season than vines that received low but relatively constant irrigation. CONCLUSIONS We concluded that high water availability during vegetative growth period of Vitis increases vessels diameter and hydraulic conductivity and causes the vines to be more vulnerable to drought stress late in the season.
Collapse
Affiliation(s)
- Sarel Munitz
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
| | - Yishai Netzer
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
- Biotech engineering department, Ariel University, Ariel, 40700, Israel
| | - Ilana Shtein
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- The Eastern Regional Research and Development Center, Ariel, 40700, Israel
| | - Amnon Schwartz
- R.H. Smith Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|