1
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024; 47:4849-4869. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zhang F, Liu YW, Qin J, Jansen S, Zhu SD, Cao KF. Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14567. [PMID: 39377145 DOI: 10.1111/ppl.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P50), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLCwinter) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P50 of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLCwinter, ranging from 0% to 76.41%. PLCwinter was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P50. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.
Collapse
Affiliation(s)
- Feng Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi-Wen Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Nanjing University, Nanjing, Jiangsu, China
| | - Jie Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Tianjin University, Tianjin, Tianjin, China
| | | | - Shi-Dan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Plavcová L, Jandová V, Altman J, Liancourt P, Korznikov K, Doležal J. Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma. ANNALS OF BOTANY 2024; 134:151-162. [PMID: 38525918 PMCID: PMC11161563 DOI: 10.1093/aob/mcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic
| | - Veronika Jandová
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Kirill Korznikov
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Zhang KY, Yang D, Zhang YB, Ai XR, Yao L, Deng ZJ, Zhang JL. Linkages among stem xylem transport, biomechanics, and storage in lianas and trees across three contrasting environments. AMERICAN JOURNAL OF BOTANY 2024; 111:e16290. [PMID: 38380953 DOI: 10.1002/ajb2.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
PREMISE Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xun-Ru Ai
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Lan Yao
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Zhi-Jun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
5
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
6
|
Zhang G, Mao Z, Maillard P, Brancheriau L, Gérard B, Engel J, Fortunel C, Heuret P, Maeght JL, Martínez-Vilalta J, Stokes A. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. THE NEW PHYTOLOGIST 2023; 240:1162-1176. [PMID: 37485789 DOI: 10.1111/nph.19132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Zhun Mao
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Loïc Brancheriau
- CIRAD, UPR BioWooEB, Montpellier, 34000, France
- BioWooEB, University of Montpellier, CIRAD, Montpellier, 34000, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Julien Engel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Claire Fortunel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Patrick Heuret
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jean-Luc Maeght
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
7
|
Dai Y, Wang L, Wan X. Maintenance of xylem hydraulic function during winter in the woody bamboo Phyllostachys propinqua McClure. PeerJ 2023; 11:e15979. [PMID: 37719123 PMCID: PMC10504893 DOI: 10.7717/peerj.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Frost is a common environmental stress for temperate plants. Xylem embolism occurs in many overwintering plants due to freeze-thaw cycles, so coping with freeze-thaw-induced embolisms is essential for the survival of temperate plants. Methods This study was conducted on Phyllostachys propinqua McClure, a woody bamboo species that was grown under natural frost conditions to explore its responses to winter embolisms. From autumn to the following spring, the following measurements were recorded: predawn branch and leaf embolism, branch and leaf relative water content (RWC), root pressure and soil temperature, xylem sap osmotic potential, branch and leaf electrolyte leakage (EL), branch nonstructural carbohydrate (NSC) content and leaf net photosynthetic rate. Results P. propinqua had a mean vessel diameter of 68.95 ±1.27 µm but did not suffer severe winter embolism, peaking around 60% in winter (January), with a distinct reduction in March when root pressure returned. Leaves had a more severe winter embolism, up to 90%. Leaf RWC was much lower in winter, and leaf EL was significantly higher than branch EL in all seasons. Root pressure remained until November when soil temperature reached 9 °C, then appeared again in March when soil temperatures increased from -6 °C (January) to 11 °C. Xylem sap osmotic potential decreased from autumn to winter, reaching a minimum in March, and then increasing again. Soluble sugar (SS) concentration increased throughout the winter, peaked in March, and then decreased. Conclusions These results suggest that (1) there is a hydraulic segmentation between the stem and leaf, which could prevent stem water loss and further embolization in winter; (2) maintenance of root pressure in early winter played an important role in reducing the effect of freeze-thaw cycles on the winter embolism; (3) the physiological process that resulted in a decrease in xylem sap osmotic potential and tissue water content, and an accumulation of SS associated with cold acclimation also aided in reducing the extent of freeze-thaw-induced embolism. All these strategies could be helpful for the maintenance of xylem hydraulic function of this bamboo species during winter.
Collapse
Affiliation(s)
- Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
8
|
Castelar JVS, Da Cunha M, Simioni PF, Castilhori MF, Lira-Martins D, Giles AL, Costa WS, Alexandrino CR, Callado CH. Functional traits and water-transport strategies of woody species in an insular environment in a tropical forest. AMERICAN JOURNAL OF BOTANY 2023; 110:e16214. [PMID: 37475703 DOI: 10.1002/ajb2.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
PREMISE Plants survive in habitats with limited resource availability and contrasting environments by responding to variation in environmental factors through morphophysiological traits related to species performance in different ecosystems. However, how different plant strategies influence the megadiversity of tropical species has remained a knowledge gap. METHODS We analyzed variations in 27 morphophysiological traits of leaves and secondary xylem in Erythroxylum pulchrum and Tapirira guianensis, which have the highest absolute dominance in these physiognomies and occur together in areas of restinga and dense ombrophilous forest to infer water-transport strategies of Atlantic Forest woody plants. RESULTS The two species presented different sets of morphophysiological traits, strategies to avoid embolism and ensure water transport, in different phytophysiognomies. Tapirira guianensis showed possible adaptations influenced by phytophysiognomy, while E. pulchrum showed less variation in the set of characteristics between different phytophysiognomies. CONCLUSIONS Our results provide essential tools to understand how the environment can modulate morphofunctional traits and how each species adjusts differently to adapt to different phytophysiognomies. In this sense, the results for these species reveal new species-specific responses in the tropical forest. Such knowledge is a prerequisite to predict future development of the most vulnerable forests as climate changes.
Collapse
Affiliation(s)
- João Victor S Castelar
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Priscila F Simioni
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Marcelo F Castilhori
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - André L Giles
- INPA - Instituto Nacional de Pesquisas da Amazônia, AM, Brasil
- Departamento de Fitotecnia, Centro de Ciência Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC
| | - Warlen S Costa
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Cátia H Callado
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
9
|
Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecol Lett 2023; 26:1485-1496. [PMID: 37330625 DOI: 10.1111/ele.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
10
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
11
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
12
|
Trifilò P, Abate E, Petruzzellis F, Azzarà M, Nardini A. Critical water contents at leaf, stem and root level leading to irreversible drought-induced damage in two woody and one herbaceous species. PLANT, CELL & ENVIRONMENT 2023; 46:119-132. [PMID: 36266962 DOI: 10.1111/pce.14469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Plant water content is a simple and promising parameter for monitoring drought-driven plant mortality risk. However, critical water content thresholds leading to cell damage and plant failure are still unknown. Moreover, it is unclear whether whole-plant or a specific organ water content is the most reliable indicator of mortality risk. We assessed differences in dehydration thresholds in leaf, stem and root samples, hampering the organ-specific rehydration capacity and increasing the mortality risk. We also tested eventual differences between a fast experimental dehydration of uprooted plants, compared to long-term water stress induced by withholding irrigation in potted plants. We investigated three species with different growth forms and leaf habits i.e., Helianthus annuus (herbaceous), Populus nigra (deciduous tree) and Quercus ilex (evergreen tree). Results obtained by the two dehydration treatments largely overlapped, thus validating bench dehydration as a fast but reliable method to assess species-specific critical water content thresholds. Regardless of the organ considered, a relative water content value of 60% induced significant cell membrane damage and loss of rehydration capacity, thus leading to irreversible plant failure and death.
Collapse
Affiliation(s)
- Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Elisa Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | | | - Maria Azzarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| |
Collapse
|
13
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
14
|
Wang L, Dai Y, Zhang J, Meng P, Wan X. Xylem structure and hydraulic characteristics of deep roots, shallow roots and branches of walnut under seasonal drought. BMC PLANT BIOLOGY 2022; 22:440. [PMID: 36104814 PMCID: PMC9472371 DOI: 10.1186/s12870-022-03815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Despite the importance of root hydraulics, there is little research on the in situ dynamic responses of embolism formation and embolism repair of roots distributed in different soil depths in response to different water regimes. RESULTS The vessel diameter, hydraulic conductivity, and vulnerability to cavitation were in the order of deep root > shallow root > branch. The midday PLC of shallow root was the highest in the dry season, while the midday PLC of deep root slightly higher than that of branch with no significant difference in the two seasons. The capacity of embolism repair of roots was significantly greater than that of branch both in dry season and wet season. The xylem pressure was in the order of deep roots > shallow root > branch, and it was negative in most of the time for the latter two in the dry season, but positive for both of the roots during the observation period in the wet season. The NSC and starch content in roots were significantly higher than those in branches, especially in the dry season. In contrast, roots had lower content of soluble sugar. CONCLUSIONS The relatively stable water condition in soil, especially in the deep layers, is favorable for the development of larger-diameter vessels in root xylem, however it cannot prevent the root from forming embolism. The mechanism of embolism repair may be different in different parts of plants. Deep roots mainly depend on root pressure to refill the embolized vessels, while branches mainly depend on starch hydrolysis to soluble sugars to do the work, with shallow roots shifted between the two mechanisms in different moisture regimes. There is theoretically an obvious trade-off between conducting efficiency and safety over deep roots, shallow roots and branches. But in natural conditions, roots do not necessarily suffer more severe embolism than branches, maybe due to their root pressure-driven embolism repair and relatively good water conditions.
Collapse
Affiliation(s)
- Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Jinsong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Ping Meng
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
15
|
Miranda MT, Espinoza-Núñez E, Silva SF, Pereira L, Hayashi AH, Boscariol-Camargo RL, Carvalho SA, Machado EC, Ribeiro RV. Water stress signaling and hydraulic traits in three congeneric citrus species under water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111255. [PMID: 35487664 DOI: 10.1016/j.plantsci.2022.111255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Morpho-physiological strategies to deal with water deficit vary among citrus species and the chemical signaling through ABA and anatomical, hydraulic, and physiological traits were evaluated in saplings of Rangpur lime, Swingle citrumelo and Valencia sweet orange. Trunk and roots of Swingle citrumelo presented lower vessel diameter and higher vessel frequency as compared to the other species. However, relative water content at the turgor loss point (RWCTLP), the osmotic potential at full turgor (Ψ0), the osmotic potential at the turgor loss point (ΨTLP), bulk modulus of elasticity (ε) and the xylem water potential when hydraulic conductivity is reduced by 50% (Ψ50) and 88% (Ψ88) indicated similar hydraulic traits among citrus species, with Rangpur lime showing the highest hydraulic safety margin. Roots of Rangpur lime and Swingle citrumelo were more water conductive than ones of Valencia sweet orange, which was linked to higher stomatal conductance. Chemical signaling through ABA prevented shoot dehydration in Rangpur lime under water deficit, with this species showing a more conservative stomatal behavior, sensing, and responding rapidly to low soil moisture. Taken together, our results suggest that Rangpur lime - the drought tolerant species - has an improved control of leaf water status due to chemical signaling and effective stomatal regulation for reducing water loss as well as decreased root hydraulic conductivity for saving water resources under limiting conditions.
Collapse
Affiliation(s)
- Marcela T Miranda
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Erick Espinoza-Núñez
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; Universidad Nacional Agraria La Molina (UNALM), Department of Horticulture, La Molina, Lima, Peru
| | - Simone F Silva
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Luciano Pereira
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil; Ulm University, Institute of Systematic Botany and Ecology, Ulm, Germany
| | - Adriana H Hayashi
- Instituto de Botânica, Núcleo de Pesquisa em Anatomia, São Paulo, SP, Brazil
| | | | - Sérgio A Carvalho
- Agronomic Institute (IAC), Center of Citriculture Sylvio Moreira, Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil
| | - Rafael V Ribeiro
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil.
| |
Collapse
|
16
|
Malabad AM, Tatin-Froux F, Gallinet G, Colin JM, Chalot M, Parelle J. A combined approach utilizing UAV 3D imaging methods, in-situ measurements, and laboratory experiments to assess water evaporation and trace element uptake by tree species growing in a red gypsum landfill. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127977. [PMID: 34896718 DOI: 10.1016/j.jhazmat.2021.127977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The extractive industry is increasingly faced with problems of managing contaminated sites. The red gypsum landfill at the Ochsenfeld site is representative of the typology byproduct storage of the Ti-extraction activity. The management of the elemental content and the water body are the issues at this site. The aim of this study was to evaluate the canopy conductance (gcmax) of various tree species and the content of elements in the leaves, utilizing the opportunity of a demonstration plantation setup in 2014 with sixteen tree species, combined with a growth chamber experiment. We combined the gas exchange measurements with the data from two multispectral cameras with RGB and NIR bands embarked on an unmanned aerial vehicle (UAV). In the field, Ostrya carpinifolia, Maclura pomifera, and Rhus copallina had the highest gcmax of all planted tree species, and the high transpiration rate in O. carpinifolia was confirmed in a pot-based controlled experiment. Except R. copallina, the species with a high Mn content (O. carpinifolia, Betula pendula, and Salix aquatica grandis) had high stomatal conductance. O. carpinifolia could therefore be a species to exploit in the management of landfill leachates, especially in the context of climate change since this species is well adapted to dry environments.
Collapse
Affiliation(s)
| | - Fabienne Tatin-Froux
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | | | | | - Michel Chalot
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000 Nancy, France
| | - Julien Parelle
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
17
|
Kawai K, Minagi K, Nakamura T, Saiki ST, Yazaki K, Ishida A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. TREE PHYSIOLOGY 2022; 42:337-350. [PMID: 34328187 DOI: 10.1093/treephys/tpab100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Parenchyma is an important component of the secondary xylem. It has multiple functions and its fraction is known to vary substantially across angiosperm species. However, the physiological significance of this variation is not yet fully understood. Here, we examined how different types of parenchyma (ray parenchyma [RP], axial parenchyma [AP] and AP in direct contact with vessels [APV]) are coordinated with three essential xylem functions: water conduction, storage of non-structural carbohydrate (NSC) and mechanical support. Using branch sapwood of 15 co-occurring drought-adapted woody species from the subtropical Bonin Islands, Japan, we quantified 10 xylem anatomical traits and examined their linkages to hydraulic properties, storage of soluble sugars and starch and sapwood density. The fractions of APV and AP in the xylem transverse sections were positively correlated with the percentage loss of conductivity in the native condition, whereas that of RP was negatively correlated with the maximum conductivity across species. Axial and ray parenchyma fractions were positively associated with concentrations of starch and NSC. The fraction of parenchyma was independent of sapwood density, regardless of parenchyma type. We also identified a negative relationship between hydraulic conductivity and NSC storage and sapwood density, mirroring the negative relationship between the fractions of parenchyma and vessels. These results suggest that parenchyma fraction underlies species variation in xylem hydraulic and carbon use strategies, wherein xylem with a high fraction of AP may adopt an embolism repair strategy through an increased starch storage with low cavitation resistance.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1 Tsukuba, Ibaraki 305-8686, Japan
| | - Kanji Minagi
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Shin-Taro Saiki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
- Soil-Plant Ecosystem Group, Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, Hokkaido 062-8516, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| |
Collapse
|
18
|
Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proc Natl Acad Sci U S A 2021; 118:2104336118. [PMID: 34389676 PMCID: PMC8379947 DOI: 10.1073/pnas.2104336118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant vascular systems play a central role in global water and carbon cycles and drought resistance. These vascular systems perform multiple functions that affect the fitness of plants, and trade-offs are present among these functions. Some trade-offs are well established, but studies have not examined the full suite of functions of these complex systems. Here, we used a powerful multivariate method, structural equation modeling, to test hypotheses about the trade-offs that govern this vital and globally important tissue. We show that xylem traits are broadly governed by trade-offs related to transport, mechanical support, and storage, which are rooted in cellular structure, and that the level of dehydration experienced by plants in the field exerts a strong influence over these relationships. The xylem in plants is specialized to transport water, mechanically support the plant body, and store water and carbohydrates. Balancing these functions leads to trade-offs that are linked to xylem structure. We proposed a multivariate hypothesis regarding the main xylem functions and tested it using structural equation modeling. We sampled 29 native shrub species from field sites in semiarid Southern California. We quantified xylem water transport (embolism resistance and transport efficiency), mechanical strength, storage of water (capacitance) and starch, minimum hydrostatic pressures (Pmin), and proportions of fibers, vessels, and parenchyma, which were treated as a latent variable representing “cellular trade-offs.” We found that xylem functions (transport, mechanical support, water storage, and starch storage) were independent, a result driven by Pmin. Pmin was strongly and directly or indirectly associated with all xylem functions as a hub trait. More negative Pmin was associated with increased embolism resistance and tissue strength and reduced capacitance and starch storage. We found strong support for a trade-off between embolism resistance and transport efficiency. Tissue strength was not directly associated with embolism resistance or transport efficiency, and any associations were indirect involving Pmin. With Pmin removed from the model, cellular trade-offs were central and related to all other traits. We conclude that xylem traits are broadly governed by functional trade-offs and that the Pmin experienced by plants in the field exerts a strong influence over these relationships. Angiosperm xylem contains different cell types that contribute to different functions and that underpin trade-offs.
Collapse
|
19
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
20
|
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. THE NEW PHYTOLOGIST 2021; 229:1467-1480. [PMID: 32981106 DOI: 10.1111/nph.16969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Vonjisoa M Razakandraibe
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Tahiana Ramananantoandro
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| |
Collapse
|
21
|
Nardini A, Petruzzellis F, Marusig D, Tomasella M, Natale S, Altobelli A, Calligaris C, Floriddia G, Cucchi F, Forte E, Zini L. Water 'on the rocks': a summer drink for thirsty trees? THE NEW PHYTOLOGIST 2021; 229:199-212. [PMID: 32772381 DOI: 10.1111/nph.16859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Daniel Marusig
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italia
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Alfredo Altobelli
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Chiara Calligaris
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Gabriele Floriddia
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Franco Cucchi
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Emanuele Forte
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Luca Zini
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| |
Collapse
|
22
|
Jupa R, Mészáros M, Plavcová L. Linking wood anatomy with growth vigour and susceptibility to alternate bearing in composite apple and pear trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:172-183. [PMID: 32939929 DOI: 10.1111/plb.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Excess vegetative growth and irregular fruit-bearing are often undesirable in horticultural practice. However, the biological mechanisms underlying these traits in fruit trees are not fully understood. Here, we tested if growth vigour and susceptibility of apple and pear trees to alternate fruit-bearing are associated with vascular anatomy. We examined anatomical traits related to water transport and nutrient storage in young woody shoots and roots of 15 different scion/rootstock cultivars of apple and pear trees. In addition, soil and leaf water potentials were measured across a drought period. We found a positive correlation between the mean vessel diameter of roots and the annual shoot length. Vigorously growing trees also maintained less negative midday leaf water potential during drought. Furthermore, we observed a close negative correlation between the proportions of total parenchyma in the shoots and the alternate bearing index. Based on anatomical proxies, our results suggest that xylem transport efficiency of rootstocks is linked to growth vigour of both apple and pear trees, while limited carbohydrate storage capacity of scions may be associated with increased susceptibility to alternate bearing. These findings can be useful for the breeding of new cultivars of commercially important fruit trees.
Collapse
Affiliation(s)
- R Jupa
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - M Mészáros
- Research and Breeding Institute of Pomology, Hořice, Czech Republic
| | - L Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Chen Z, Zhu S, Zhang Y, Luan J, Li S, Sun P, Wan X, Liu S. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. TREE PHYSIOLOGY 2020; 40:1029-1042. [PMID: 32310276 DOI: 10.1093/treephys/tpaa046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Xylem traits are critical plant functional traits associated with water transport, mechanical support, and carbohydrate and water storage. Studies on the xylem hydraulic efficiency-safety tradeoff are numerous; however, the storage function of xylem parenchyma is rarely considered. The effects of a substantial number of xylem traits on water transport, embolism resistance, mechanical support, storage capacity and nonstructural carbohydrate (NSC) content were investigated in 19 temperate broadleaf species planted in an arid limestone habitat in northern China. There was no xylem hydraulic efficiency-safety tradeoff in the 19 broadleaf species. The total parenchyma fraction was negatively correlated with the fiber fraction. Embolism resistance was positively correlated with indicators of xylem mechanical strength such as vessel wall reinforcement, vessel wall thickness and fiber wall thickness, and was negatively related to the axial parenchyma fraction, especially the paratracheal parenchyma fraction. The paratracheal parenchyma fraction was positively correlated with the ratio of the paratracheal parenchyma fraction to the vessel fraction. In addition, the xylem NSC concentration was positively related to the total parenchyma fraction and axial parenchyma fraction. There was a storage capacity-embolism resistance tradeoff in the xylem of 19 broadleaf species in arid limestone habitats. We speculate that the temperate broadleaf species may show a spectrum of xylem hydraulic strategies, from the embolism resistance strategy related to a more negative P50 (the water potential corresponding to 50% loss of xylem conductivity) to the embolization repair strategy based on more paratracheal parenchyma.
Collapse
Affiliation(s)
- Zhicheng Chen
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Shidan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yongtao Zhang
- Mountain Tai Forest Ecosystem Research Station of National Forestry and Grassland Administration, Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Junwei Luan
- Key Laboratory of Bamboo and Rattan Science and Technology, Institute for Resources and Environment, International Centre for Bamboo and Rattan, National Forestry and Grassland Administration, Beijing 100102, China
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Pengsen Sun
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Xianchong Wan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
24
|
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA. Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. THE NEW PHYTOLOGIST 2020; 225:2314-2330. [PMID: 31808954 DOI: 10.1111/nph.16361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Parenchyma cells in the xylem store nonstructural carbohydrates (NSC), providing reserves of energy that fuel woody perennials through periods of stress and/or limitations to photosynthesis. If the capacity for storage is subject to selection, then the fraction of wood occupied by living parenchyma should increase towards stressful environments. Ray parenchyma fraction (RPF) and seasonal NSC dynamics were quantified for 12 conifers and three oaks along a transect spanning warm dry foothills (500 m above sea level) to cold wet treeline (3250 m asl) in California's central Sierra Nevada. Mean RPF was lower for both conifer and oak species with warmer dryer ranges. RPF variability increased with elevation or in relation to associated climatic variables in conifers - treeline-dominant Pinus albicaulis had the lowest mean RPF measured (c. 3.7%), but the highest environmentally standardized variability index. Conifer RPF variability was explained by environment, increasing predominantly towards cooler wetter range edges. In oaks, NSC was explained by environment - values increasing for evergreen and decreasing for deciduous oaks with elevation. Lastly, all species surveyed appear to prioritize filling available RPF with sugar to achieve molarities that balance reasonable tensions over starch to maximize stored carbon. RPF responds to environment but is unlikely to spatially constrain NSC storage.
Collapse
Affiliation(s)
- Jessie M Godfrey
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Jason Riggio
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Jessica Orozco
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | | - Alana R O Chin
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | | |
Collapse
|
25
|
Petruzzellis F, Tomasella M, Miotto A, Natale S, Trifilò P, Nardini A. A Leaf Selfie: Using a Smartphone to Quantify Leaf Vulnerability to Hydraulic Dysfunction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E234. [PMID: 32054113 PMCID: PMC7076359 DOI: 10.3390/plants9020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 05/28/2023]
Abstract
Accurate predictions of species distribution under current and future climate conditions require modeling efforts based on clear mechanistic relationships between climate variables and plant physiological functions. Vulnerability of leaves to xylem embolism is a key mechanistic trait that might be included in these modeling efforts. Here, we propose a simple set-up to measure leaf vulnerability to embolism on the basis of the optical method using a smartphone, a light source, and a notebook. Our data show that this proposed set-up can adequately quantify the vulnerability to xylem embolism of leaf major veins in Populus nigra and Ostrya carpinifolia, producing values consistent with those obtained in temperate tree species with other methods, allowing virtually any laboratory to quantify species-specific drought tolerance on the basis of a sound mechanistic trait.
Collapse
Affiliation(s)
- Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Andrea Miotto
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| | - Patrizia Trifilò
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (F.P.); (M.T.); (A.M.); (S.N.)
| |
Collapse
|