1
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. PLoS Pathog 2025; 21:e1013134. [PMID: 40294030 PMCID: PMC12074595 DOI: 10.1371/journal.ppat.1013134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/13/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. Here we combine daily longitudinal sampling of individuals with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals in a household cohort during the BA.1/BA.2 variant period. Individuals exhibited extremely low viral diversity, and we estimated a low within-host evolutionary rate. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. This detectable immune-mediated selection is unusual in acute respiratory infections and may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William J. Fitzsimmons
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jessica E. Biddle
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | | | - Melissa A. Rolfes
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - Alexandra Mellis
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Costa RM, Acosta-Alvarez L, Curtis K, Zarbock K, Kelleher J, Lamichhane BS, Valesano AL, Fitzsimmons WJ, Lauring AS, Seger J, Adler FR, Potts WK. Influenza virus evolution and defective genome formation are shaped by host genotype and sex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.638946. [PMID: 40060519 PMCID: PMC11888471 DOI: 10.1101/2025.02.26.638946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Host-specific factors, including genetic background and sex, shape viral adaptation and influence virulence, yet their interactions and quantitative effects remain poorly understood. Additionally, multiple infections, where a host is infected with viruses from more than one source, are hypothesized to enhance viral diversity and increase virulence, but their impact in vertebrate hosts remains largely unexplored. We experimentally adapted influenza A virus (IAV) to male and female BALB/c and C57BL/6 mice under single and multiple infection conditions. Using a novel three-dimensional mapping approach, we identified genotype- and sex-specific selection hotspots that drive viral adaptation at multiple scales, from localized substitutions to broader structural changes. Our findings reveal that host genotype plays a dominant role in shaping viral evolution, with sex-dependent selection patterns observed in certain contexts. In BALB/c-adapted viruses, selection favored mutations at a specific site of a protein interface in females, whereas male-adapted lineages exhibited a more diffuse distribution of mutations across the same region. We further demonstrate that host genotype influences the formation of defective viral genomes (DVGs), with C57BL/6-adapted viruses accumulating significantly more and longer deletions, leading to reduced cytopathic effect and altered virulence trajectories. Multiple infections accelerated viral adaptation, increasing replication and mortality in a host-dependent manner. Adaptation to BALB/c hosts selected for high-virulence variants that maintained pathogenicity across diverse host backgrounds, whereas C57BL/6-adapted viruses exhibited attenuated virulence in novel hosts. These findings highlight the role of host genotype and sex in shaping viral evolution, reveal a previously unrecognized host-specific effect on DVG formation, and provide insights into how multiple infections drive the emergence of virulence-associated variants.
Collapse
Affiliation(s)
- Rodrigo M. Costa
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Kaili Curtis
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Kort Zarbock
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Justin Kelleher
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bhawika S. Lamichhane
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew L. Valesano
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - William J. Fitzsimmons
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Jon Seger
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Frederick R. Adler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Raglow Z, Lauring AS. Virus Evolution in Prolonged Infections of Immunocompromised Individuals. Clin Chem 2025; 71:109-118. [PMID: 39749520 DOI: 10.1093/clinchem/hvae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands. CONTENT In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts. SUMMARY There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Collapse
Affiliation(s)
- Zoe Raglow
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Naderi S, Sagan SM, Shapiro BJ. Within-host genetic diversity of SARS-CoV-2 across animal species. Virus Evol 2024; 11:veae117. [PMID: 39830312 PMCID: PMC11739616 DOI: 10.1093/ve/veae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Infectious disease transmission to different host species makes eradication very challenging and expands the diversity of evolutionary trajectories taken by the pathogen. Since the beginning of the ongoing COVID-19 pandemic, SARS-CoV-2 has been transmitted from humans to many different animal species, in which viral variants of concern could potentially evolve. Previously, using available whole genome consensus sequences of SARS-CoV-2 from four commonly sampled animals (mink, deer, cat, and dog), we inferred similar numbers of transmission events from humans to each animal species. Using a genome-wide association study, we identified 26 single nucleotide variants (SNVs) that tend to occur in deer-more than any other animal-suggesting a high rate of viral adaptation to deer. The reasons for this rapid adaptive evolution remain unclear, but within-host evolution-the ultimate source of the viral diversity that transmits globally-could provide clues. Here, we quantify intra-host SARS-CoV-2 genetic diversity across animal species and show that deer harbor more intra-host SNVs (iSNVs) than other animals, providing a larger pool of genetic diversity for natural selection to act upon. Mixed infections involving more than one viral lineage are unlikely to explain the higher diversity within deer. Rather, a combination of higher mutation rates, longer infections, and species-specific selective pressures are likely explanations. Combined with extensive deer-to-deer transmission, the high levels of within-deer viral diversity help explain the apparent rapid adaptation of SARS-CoV-2 to deer.
Collapse
Affiliation(s)
- Sana Naderi
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall #1365 Vancouver, BC V6T 1Z3, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
- McGill Genome Centre, 740 avenue Dr Penfield Montreal, QC H3A 0G1, Canada
| |
Collapse
|
5
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Quantifying the impact of vaccination on transmission and diversity of influenza A variants in pigs. J Virol 2024; 98:e0124524. [PMID: 39530665 DOI: 10.1128/jvi.01245-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model. We found that the seeder pigs harbored more diversified virus populations than the contact pigs. Among contact pigs, H3N2 and H1N1 viruses recovered from pigs vaccinated with a single dose of an unmatched modified live vaccine generally accumulated more extensive genetic mutations than non-vaccinated pigs. Furthermore, the non-sterilizing immunity elicited by the single-dose-modified live vaccine may have exerted positive selection on H1 antigenic regions as we detected significantly higher nonsynonymous but lower synonymous evolutionary rates in H1 antigenic regions than non-antigenic regions. In addition, we observed that the vaccinated pigs shared significantly less proportion of H3N2 variants with seeder pigs than unvaccinated pigs. These results indicated that vaccination might reduce the impact of transmitted influenza variants on the overall diversity of IAV populations harbored in recipient pigs and that within-host genetic selection of IAV is more likely to occur in pigs vaccinated with improperly matched vaccines.IMPORTANCEUnderstanding how vaccination shapes the diversity of influenza variants that transmit and propagate among pigs is essential for designing effective IAV surveillance and control programs. Current knowledge about the transmission of IAV variants has primarily been explored in humans during natural infection. However, how immunity elicited by improperly matched vaccines affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs at the whole-genome level is unknown. We analyzed IAV sequences from samples collected daily from experimentally infected pigs vaccinated with various protocols in a field-represented IAV co-infection model. We found that vaccine-induced non-sterilizing immunity might promote genetic variation on the IAV genome and drive positive selection at antigenic sites during infection. In addition, a smaller proportion of H3N2 viral variants were shared between seeder pigs and vaccinated pigs, suggesting the influence of vaccination on shaping the virus genomic diversity in recipient pigs during the transmission events.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
6
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624722. [PMID: 39605326 PMCID: PMC11601520 DOI: 10.1101/2024.11.21.624722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. The low diversity within-hosts and strong genetic linkage among genomic sites make accurately detecting positive selection difficult. Longitudinal sampling is a powerful method for detecting selection that has seldom been used for SARS-CoV-2. Here we combine longitudinal sampling with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals from a household cohort primarily during the BA.1/BA.2 variant period. There was extremely low diversity and a low rate of divergence. Specimens had 0-12 intrahost single nucleotide variants (iSNV) at >0.5% frequency, and the majority of the iSNV were at frequencies <2%. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. Two individuals with BA.1 infections had S:371F, a lineage defining substitution for BA.2. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. We also detected significant genetic hitchhiking between synonymous changes and nonsynonymous iSNV under selection. The detectable immune-mediated selection may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic. As both the virus and population immunity evolve, understanding the corresponding shifts in SARS-CoV-2 within-host dynamics will be important.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. Virus Evol 2024; 10:veae084. [PMID: 39444487 PMCID: PMC11498174 DOI: 10.1093/ve/veae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNVs) were identified at a 0.5% frequency threshold. Within-host populations exhibited low diversity, with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4 × 10-6 vs. 9.42 × 10-7 and 3.45 × 10-6, P < .001). Forty-five iSNVs had evidence of parallel evolution but were not over-represented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNVs across segments. A Wright-Fisher approximate Bayesian computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to genetic drift and purifying selection, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - William J Fitzsimmons
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Adam S Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
Acocal-Juárez E, Márquez-Domínguez L, Vallejo-Ruíz V, Cedillo L, Santos-López G. Baloxavir Resistance Markers in Influenza A and B Viruses in the Americas. Drug Healthc Patient Saf 2024; 16:105-113. [PMID: 39296541 PMCID: PMC11410037 DOI: 10.2147/dhps.s470868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024] Open
Abstract
Aim Influenza control demands multifaceted strategies, including antiviral drugs. Baloxavir, a recent addition to influenza treatment, acts as an inhibitor of the Polymerase acid (PA) component of the viral polymerase. However, mutations associated with resistance have been identified. Purpose This study analyzed PA gene sequences of influenza A and B viruses (IAV and IBV, respectively) reported in the Americas, retrieved from databases published until May 2023, to identify primary markers of resistance to baloxavir. Patients and Methods PA gene sequences were obtained from the GISAID and NCBI databases, focusing on countries in the Americas with 500 or more sequences for IAV, and 50 or more sequences for IBV. Results Of the 58,816 PA sequences analyzed for IAV, only 55 (0.1%) harbored resistance markers, representing approximately 1 in 1000 occurrence. The most frequent markers were I38V (21 cases) and I38M (7 cases) at position 38 of PA, followed by E199G (9 cases) at position 199. For IBV, 14,684 sequences were analyzed, of which only eight presented a resistance marker (0.05%). Five sequences had the M34I marker, while the remaining three had the I38V marker. While frequency of resistance markers in PA is comparable to other regions, these results highlight the need for enhanced sequencing efforts, particularly in Latin America. Such efforts would serve to intensify influenza surveillance and inform public health interventions. Conclusion While baloxavir demonstrates efficacy against influenza, resistance markers have been identified, including pre-existing ones. Our study adds eight (IAV: six and IBV: two) new spontaneously occurring substitutions to the existing literature, highlighting the need for continued surveillance. Among these, I38M stands out due to its significant tenfold reduction in drug susceptibility. Therefore, vigilant monitoring of these resistance markers in IAV and IBV remains crucial for maintaining baloxavir's effectiveness and informing future public health interventions.
Collapse
Affiliation(s)
- Erick Acocal-Juárez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla Pue, Mexico
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Luis Márquez-Domínguez
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Verónica Vallejo-Ruíz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
9
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608152. [PMID: 39229225 PMCID: PMC11370358 DOI: 10.1101/2024.08.15.608152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNV) were identified at a 0.5% frequency threshold. Within-host populations were subject to purifying selection with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4×10-6 vs. 9.42×10-7 and 3.45×10-6, p <0.001). Forty-five iSNV had evidence of parallel evolution, but were not overrepresented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNV across segments. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to purifying selection and genetic drift, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Tao L, Wang X, Yu Y, Ge T, Gong H, Yong W, Si J, He M, Ding J. Identifying SNP threshold from P2 sequences for investigating norovirus transmission. Virus Res 2024; 346:199408. [PMID: 38797342 PMCID: PMC11153907 DOI: 10.1016/j.virusres.2024.199408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Noroviruses are a group of non-enveloped single-stranded positive-sense RNA virus belonging to Caliciviridae family. They can be transmitted by the fecal-oral route from contaminated food and water and cause mainly acute gastroenteritis. Outbreaks of norovirus infections could be difficult to detect and investigate. In this study, we developed a simple threshold detection approach based on variations of the P2 domain of the capsid protein. We obtained sequences from the norovirus hypervariable P2 region using Sanger sequencing, including 582 pairs of epidemiologically-related strains from 35 norovirus outbreaks and 6402 pairs of epidemiologically-unrelated strains during the four epidemic seasons. Genetic distances were calculated and a threshold was performed by adopting ROC (Receiver Operating Characteristic) curve which identified transmission clusters in all tested outbreaks with 80 % sensitivity. In average, nucleotide diversity between outbreaks was 67.5 times greater than the diversity within outbreaks. Simple and accurate thresholds for detecting norovirus transmissions of three genotypes obtained here streamlines molecular investigation of norovirus outbreaks, thus enabling rapid and efficient responses for the control of norovirus.
Collapse
Affiliation(s)
- Luqiu Tao
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Teng Ge
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Hongjin Gong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Wei Yong
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jiali Si
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003 Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166 Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. G3 (BETHESDA, MD.) 2024; 14:jkae091. [PMID: 38696662 PMCID: PMC11228837 DOI: 10.1093/g3journal/jkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Aspergillus fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related nonpathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the noncoding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. In general, A. fumigatus noncoding regions showed higher levels of sequence variation compared with their corresponding protein-coding regions. Focusing on 2,482 genes whose protein-coding sequence identity scores ranged between 75 and 99%, we identified 478 total genes with signatures of positive selection only in their noncoding regions and 65 total genes with signatures only in their protein-coding regions. Twenty-eight of the 478 noncoding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Noncoding region variation between A. fumigatus strains included single-nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that noncoding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular and Cell Biology, Howards Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
13
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MSY, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. PLoS Pathog 2024; 20:e1012131. [PMID: 38626244 PMCID: PMC11051653 DOI: 10.1371/journal.ppat.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 03/16/2024] [Indexed: 04/18/2024] Open
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Max S. Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, Frosch AE, Mohamed A, Gilbert J, Bendall EE, Bahr A, Halasa N, Talbot HK, Grijalva CG, Baughman A, Womack KN, Johnson C, Swan SA, Koumans E, McMorrow ML, Harcourt JL, Atherton LJ, Burroughs A, Thornburg NJ, Self WH, Lauring AS. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. THE LANCET. MICROBE 2024; 5:e235-e246. [PMID: 38286131 PMCID: PMC11849777 DOI: 10.1016/s2666-5247(23)00336-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Diya Surie
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennie H Kwon
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Anne E Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Gilbert
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily E Bendall
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Auden Bahr
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H Keipp Talbot
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emilia Koumans
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meredith L McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer L Harcourt
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lydia J Atherton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ashley Burroughs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S Lauring
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
16
|
Tao L, Zhang X, Wang X, Ding J. Using molecular methods to delineate norovirus outbreaks: a systematic review. Arch Virol 2024; 169:16. [PMID: 38172375 DOI: 10.1007/s00705-023-05953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Noroviruses are among the major causative agents of human acute gastroenteritis, and the nature of norovirus outbreaks can differ considerably. The number of single-nucleotide polymorphisms (SNPs) between strains is used to assess their relationships. There is currently no universally accepted cutoff value for clustering strains that define an outbreak or linking the individuals involved. This study was conducted to estimate the threshold value of genomic variations among related strains within norovirus outbreaks. We carried out a literature search in the PubMed and Web of Science databases. SNP rates were defined as the number of SNPs/sequence length (bp) × 100%. The Mann-Whitney U-test was used in comparisons of the distribution of SNP rates for different sequence regions, genogroups (GI and GII), transmission routes, and sequencing methods. A total of 25 articles reporting on 108 norovirus outbreaks were included. In 99.1% of the outbreaks, the SNP rates were below 0.50%, and in 89.8%, the SNP rates were under 0.20%. Outbreak strains showed higher SNP rates when the P2 domain was used for sequence analysis (Z = -2.652, p = 0.008) and when an NGS method was used (Z = -3.686, p < 0.001). Outbreaks caused by different norovirus genotypes showed no significant difference in SNP rates. Compared with person-to-person outbreaks, SNP rates were lower in common-source outbreaks, but no significant difference was found when differences in sequencing methods were taken into consideraton. SNP rates under 0.20% and 0.50% could be considered as the rigorous and relaxed threshold, respectively, of strain similarity within a norovirus outbreak. More data are needed to evaluate differences within and between various norovirus outbreaks.
Collapse
Affiliation(s)
- Luqiu Tao
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China
| | - Xinyang Zhang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention affiliated to Nanjing Medical University, Zizhulin 2, 210003, Nanjing, Jiangsu, China.
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, 211166, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Holmes KE, VanInsberghe D, Ferreri LM, Elie B, Ganti K, Lee CY, Lowen AC. Viral expansion after transfer is a primary driver of influenza A virus transmission bottlenecks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567585. [PMID: 38014182 PMCID: PMC10680852 DOI: 10.1101/2023.11.19.567585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
For many viruses, narrow bottlenecks acting during transmission sharply reduce genetic diversity in a recipient host relative to the donor. Since genetic diversity represents adaptive potential, such losses of diversity are though to limit the opportunity for viral populations to undergo antigenic change and other adaptive processes. Thus, a detailed picture of evolutionary dynamics during transmission is critical to understanding the forces driving viral evolution at an epidemiologic scale. To advance this understanding, we used a novel barcoded virus library and a guinea pig model of transmission to decipher where in the transmission process diversity is lost for influenza A viruses. In inoculated guinea pigs, we show that a high level of viral genetic diversity is maintained across time. Continuity in the barcodes detected furthermore indicates that stochastic effects are not pronounced within inoculated hosts. Importantly, in both aerosol-exposed and direct contact-exposed animals, we observed many barcodes at the earliest time point(s) positive for infectious virus, indicating robust transfer of diversity through the environment. This high viral diversity is short-lived, however, with a sharp decline seen 1-2 days after initiation of infection. Although major losses of diversity at transmission are well described for influenza A virus, our data indicate that events that occur following viral transfer and during the earliest stages of natural infection have a predominant role in this process. This finding suggests that immune selection may have greater opportunity to operate during influenza A transmission than previously recognized.
Collapse
Affiliation(s)
- Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Baptiste Elie
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
18
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Mann-Manyombe ML, Mendy A, Seydi O, Djidjou-Demasse R. Linking within- and between-host scales for understanding the evolutionary dynamics of quantitative antimicrobial resistance. J Math Biol 2023; 87:78. [PMID: 37889337 PMCID: PMC10611892 DOI: 10.1007/s00285-023-02008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Understanding both the epidemiological and evolutionary dynamics of antimicrobial resistance is a major public health concern. In this paper, we propose a nested model, explicitly linking the within- and between-host scales, in which the level of resistance of the bacterial population is viewed as a continuous quantitative trait. The within-host dynamics is based on integro-differential equations structured by the resistance level, while the between-host scale is additionally structured by the time since infection. This model simultaneously captures the dynamics of the bacteria population, the evolutionary transient dynamics which lead to the emergence of resistance, and the epidemic dynamics of the host population. Moreover, we precisely analyze the model proposed by particularly performing the uniform persistence and global asymptotic results. Finally, we discuss the impact of the treatment rate of the host population in controlling both the epidemic outbreak and the average level of resistance, either if the within-host scale therapy is a success or failure. We also explore how transitions between infected populations (treated and untreated) can impact the average level of resistance, particularly in a scenario where the treatment is successful at the within-host scale.
Collapse
Affiliation(s)
- Martin L Mann-Manyombe
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Département Tronc Commun, École Polytechnique de Thiès, Thies, Senegal
| | - Abdoulaye Mendy
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Département Tronc Commun, École Polytechnique de Thiès, Thies, Senegal
| | - Ousmane Seydi
- Département Tronc Commun, École Polytechnique de Thiès, Thies, Senegal
| | - Ramsès Djidjou-Demasse
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.
- Département Tronc Commun, École Polytechnique de Thiès, Thies, Senegal.
| |
Collapse
|
20
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MS, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563581. [PMID: 37961583 PMCID: PMC10634741 DOI: 10.1101/2023.10.23.563581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intra-host single nucleotide variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Department of Biology, Emory University, Atlanta, GA, 30322
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Max S.Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| |
Collapse
|
21
|
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, Frosch AE, Mohamed A, Gilbert J, Bendall EE, Bahr A, Halasa N, Talbot HK, Grijalva CG, Baughman A, Womack KN, Johnson C, Swan SA, Koumans E, McMorrow ML, Harcourt JL, Atherton LJ, Burroughs A, Thornburg NJ, Self WH, Lauring AS. SARS-CoV-2 shedding and evolution in immunocompromised hosts during the Omicron period: a multicenter prospective analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294416. [PMID: 37662226 PMCID: PMC10473782 DOI: 10.1101/2023.08.22.23294416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Prolonged SARS-CoV-2 infections in immunocompromised hosts may predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection and associated intrahost viral evolution remain unclear. Methods Adults aged ≥18 years were enrolled at 5 hospitals and followed from 4/11/2022 - 2/1/2023. Eligible patients were SARS-CoV-2-positive in the previous 14 days and had a moderate or severely immunocompromising condition or treatment. Nasal specimens were tested by rRT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. Results We enrolled 150 patients with: B cell malignancy or anti-B cell therapy (n=18), solid organ or hematopoietic stem cell transplant (SOT/HSCT) (n=59), AIDS (n=5), non-B cell malignancy (n=23), and autoimmune/autoinflammatory conditions (n=45). Thirty-eight (25%) were rRT-PCR-positive and 12 (8%) were culture-positive ≥21 days after initial SARS-CoV-2 detection or illness onset. Patients with B cell dysfunction had longer duration of rRT-PCR-positivity compared to those with autoimmune/autoinflammatory conditions (aHR 0.32, 95% CI 0.15-0.64). Consensus (>50% frequency) spike mutations were identified in 5 individuals who were rRT-PCR-positive >56 days; 61% were in the receptor-binding domain (RBD). Mutations shared by multiple individuals were rare (<5%) in global circulation. Conclusions In this cohort, prolonged replication-competent Omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting >56 days accumulated spike mutations, which were distinct from those seen globally.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Diya Surie
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jennie H Kwon
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Anne E Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Julie Gilbert
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Emily E Bendall
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Auden Bahr
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Keipp Talbot
- Departments of Medicine and Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emilia Koumans
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Meredith L McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jennifer L Harcourt
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Lydia J Atherton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Ashley Burroughs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Wesley H Self
- Vanderbilt Institute for Clinical and Translational Research and Department of Emergency Medicine and, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam S Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
N’Guessan A, Kailasam S, Mostefai F, Poujol R, Grenier JC, Ismailova N, Contini P, De Palma R, Haber C, Stadler V, Bourque G, Hussin JG, Shapiro BJ, Fritz JH, Piccirillo CA. Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis. iScience 2023; 26:107394. [PMID: 37599818 PMCID: PMC10433132 DOI: 10.1016/j.isci.2023.107394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Here, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses. Applying a high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses allowed identification of B cell epitopes and relate them to their evolutionary and structural properties. We identify hotspots of pre-existing immunity and identify cross-reactive epitopes that contribute to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations in spike and nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.
Collapse
Affiliation(s)
- Arnaud N’Guessan
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Senthilkumar Kailasam
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Fatima Mostefai
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Raphaël Poujol
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Paola Contini
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | | | | | - Guillaume Bourque
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julie G. Hussin
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program of the Research Institute of McGill Health Center, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Hussain M, Ahmed F, Henzeler B, Husain M. Anti-microbial host factor HDAC6 is antagonised by the influenza A virus through host caspases and viral PA. FEBS J 2022; 290:2744-2759. [PMID: 36516338 DOI: 10.1111/febs.16703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 6 (HDAC6), through the repertoire of its substrate proteins, plays a critical role in human physiology, and an aberrant function of HDAC6 contributes to various pathophysiological conditions. HDAC6 is also known to be an anti-microbial host factor and has been implicated in restricting or clearing the infection of various human viral and bacterial pathogens. However, the state and the mechanisms of its antagonism in infected cells are not understood. Here, we demonstrate that influenza A virus (IAV) antagonises HDAC6 by recruiting both viral and host components. We found that HDAC6 mRNA expression, and consequently, the HDAC6 polypeptide expression is downregulated in human lung epithelial cells during early stage of IAV infection but can be rescued by depleting the expression of viral polymerase acidic (PA) protein, a subunit of IAV RNA polymerase. In addition, during later stage of the infection, the HDAC6 polypeptide undergoes caspase-mediated cleavage at two sites, generating two cleaved fragments. Both these fragments disappeared when the expression of caspase 3 was depleted in infected cells, whereas only second fragment disappeared when the expression of caspase 6 was depleted. But both fragments disappeared and the level of full-length HDAC6 polypeptide was rescued when the expression of PA was depleted in infected cells. Collectively, these data indicated that IAV antagonises the HDAC6 by decreasing its expression level in infected cells, both at mRNA and polypeptide level via PA gene, which has been implicated in auxiliary functions like degradation of host mRNA and induction of apoptosis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Farjana Ahmed
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bennett Henzeler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs. eLife 2022; 11:78618. [PMID: 36052992 PMCID: PMC9439680 DOI: 10.7554/elife.78618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential. Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | | | | | | |
Collapse
|
25
|
Van Poelvoorde LAE, Delcourt T, Vuylsteke M, De Keersmaecker SCJ, Thomas I, Van Gucht S, Saelens X, Roosens N, Vanneste K. A general approach to identify low-frequency variants within influenza samples collected during routine surveillance. Microb Genom 2022; 8. [PMID: 36169645 DOI: 10.1099/mgen.0.000867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain for reliable LFV detection because of experimental errors introduced during sample preparation and sequencing. High genomic copy numbers and extensive sequencing depths are required to differentiate false positive from real LFV, especially at low allelic frequencies (AFs). This study proposes a general approach for identifying LFV in patient-derived samples obtained during routine surveillance. Firstly, validated thresholds were determined for LFV detection, whilst balancing both the cost and feasibility of reliable LFV detection in clinical samples. Using a genetically well-defined population of influenza A viruses, thresholds of at least 104 genomes per microlitre and AF of ≥5 % were established as detection limits. Secondly, a subset of 59 retained influenza A (H3N2) samples from the 2016-2017 Belgian influenza season was composed. Thirdly, as a proof of concept for the added value of LFV for routine influenza monitoring, potential associations between patient data and whole genome sequencing data were investigated. A significant association was found between a high prevalence of LFV and disease severity. This study provides a general methodology for influenza LFV detection, which can also be adopted by other national influenza reference centres and for other viruses such as SARS-CoV-2. Additionally, this study suggests that the current relevance of LFV for routine influenza surveillance programmes might be undervalued.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Thomas Delcourt
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | | | - Isabelle Thomas
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Steven Van Gucht
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
26
|
Roder AE, Johnson KEE, Knoll M, Khalfan M, Wang B, Schultz-Cherry S, Banakis S, Kreitman A, Mederos C, Youn JH, Mercado R, Wang W, Ruchnewitz D, Samanovic MI, Mulligan MJ, Lassig M, Łuksza M, Das S, Gresham D, Ghedin E. Optimized Quantification of Intrahost Viral Diversity in SARS-CoV-2 and Influenza Virus Sequence Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.05.05.442873. [PMID: 36656775 PMCID: PMC9836620 DOI: 10.1101/2021.05.05.442873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller, and use of replicate sequencing have the most significant impact on single nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false negative rates. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intrahost viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intrahost variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant calling tools. We used simulated and synthetic data to test their performance against a true set of variants, and then used these studies to inform variant identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
Collapse
|
27
|
Kiseleva I. Current Opinion in LAIV: A Matter of Parent Virus Choice. Int J Mol Sci 2022; 23:6815. [PMID: 35743258 PMCID: PMC9224562 DOI: 10.3390/ijms23126815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/26/2023] Open
Abstract
Influenza is still a frequent seasonal infection of the upper respiratory tract, which may have deadly consequences, especially for the elderly. This is in spite of the availability of vaccines suggested for persons above 65 years of age. Two types of conventional influenza vaccines are currently licensed for use-live attenuated and inactivated vaccines. Depending on local regulatory requirements, live attenuated vaccines are produced by the reverse genetics technique or by classical reassortment in embryonated chicken eggs. Sometimes, the efficiency of classical reassortment is complicated by certain properties of the wild-type parent virus. Cases of low efficacy of vaccines have been noted, which, among other reasons, may be associated with suboptimal properties of the wild-type parent virus that are not considered when recommendations for influenza vaccine composition are made. Unfortunately, knowledge surrounding the roles of properties of the circulating influenza virus and its impact on the efficacy of the reassortment process, vaccination efficiency, the infectivity of the vaccine candidates, etc., is now scattered in different publications. This review summarizes the main features of the influenza virus that may dramatically affect different aspects of the preparation of egg-derived live attenuated vaccine candidates and their effectiveness. The author expresses her personal view, which may not coincide with the opinion of other experts in the field of influenza vaccines.
Collapse
Affiliation(s)
- Irina Kiseleva
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
28
|
Amato KA, Haddock LA, Braun KM, Meliopoulos V, Livingston B, Honce R, Schaack GA, Boehm E, Higgins CA, Barry GL, Koelle K, Schultz-Cherry S, Friedrich TC, Mehle A. Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks. Nat Commun 2022; 13:3416. [PMID: 35701424 PMCID: PMC9197827 DOI: 10.1038/s41467-022-31147-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.
Collapse
Affiliation(s)
- Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luis A Haddock
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emma Boehm
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Christina A Higgins
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gabrielle L Barry
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
29
|
Li J, Du P, Yang L, Zhang J, Song C, Chen D, Song Y, Ding N, Hua M, Han K, Song R, Xie W, Chen Z, Wang X, Liu J, Xu Y, Gao G, Wang Q, Pu L, Di L, Li J, Yue J, Han J, Zhao X, Yan Y, Yu F, Wu AR, Zhang F, Gao YQ, Huang Y, Wang J, Zeng H, Chen C. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep 2022; 38:110205. [PMID: 34982968 PMCID: PMC8674508 DOI: 10.1016/j.celrep.2021.110205] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.
Collapse
Affiliation(s)
- Jiarui Li
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Pengcheng Du
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Ju Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Chuan Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Danying Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Yangzi Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Nan Ding
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Mingxi Hua
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Kai Han
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Wen Xie
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Zhihai Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Xianbo Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Jingyuan Liu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Guiju Gao
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Qi Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Lin Pu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Lin Di
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jie Li
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jinglin Yue
- Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Junyan Han
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Xuesen Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Yonghong Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Angela R Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, P.R. China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, P.R. China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518055, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
30
|
Boshier FAT, Pang J, Penner J, Parker M, Alders N, Bamford A, Grandjean L, Grunewald S, Hatcher J, Best T, Dalton C, Bynoe PD, Frauenfelder C, Köeglmeier J, Myerson P, Roy S, Williams R, de Silva TI, Goldstein RA, Breuer J. Evolution of viral variants in remdesivir-treated and untreated SARS-CoV-2-infected pediatrics patients. J Med Virol 2022; 94:161-172. [PMID: 34415583 PMCID: PMC8426849 DOI: 10.1002/jmv.27285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
Detailed information on intrahost viral evolution in SARS-CoV-2 with and without treatment is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 from the upper respiratory tract of nine hospitalized children, three of whom were treated with remdesivir, revealed that remdesivir treatment suppressed viral load in one patient but not in a second infected with an identical strain without any evidence of drug resistance found. Reduced levels of subgenomic RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. These likely arose from within-host evolution, although superinfection cannot be excluded in one case. Although our dataset is small, observed sample-to-sample heterogeneity in variant frequencies across four of nine patients suggests the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalization could compromise the penetration of remdesivir into the lung, limiting the drugs in vivo efficacy, as has been observed in other lung infections.
Collapse
Affiliation(s)
- Florencia A. T. Boshier
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Juanita Pang
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Justin Penner
- Department of Infectious DiseaseGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Matthew Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The Florey InstituteUniversity of SheffieldSheffieldUK
| | - Nele Alders
- Department of Infectious DiseaseGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Alasdair Bamford
- Department of Infectious DiseaseGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Louis Grandjean
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Stephanie Grunewald
- Department of Metabolic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | - James Hatcher
- Department of MicrobiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Timothy Best
- Department of MicrobiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Caroline Dalton
- Department of PharmacyGreat Ormond Street Hospital for Children NHS TrustLondonUK
| | - Patricia Dyal Bynoe
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Claire Frauenfelder
- Department of EarsNose and Throat, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Division of SurgeryUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jutta Köeglmeier
- Department of GastroenterologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Phoebe Myerson
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Sunando Roy
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Rachel Williams
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Thushan I. de Silva
- Department of Infection, Immunity and Cardiovascular Diseases, The Florey InstituteUniversity of SheffieldSheffieldUK
| | | | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of MicrobiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | | |
Collapse
|
31
|
The Genomic Physics of COVID-19 Pathogenesis and Spread. Cells 2021; 11:cells11010080. [PMID: 35011641 PMCID: PMC8750765 DOI: 10.3390/cells11010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease (COVID-19) spreads mainly through close contact of infected persons, but the molecular mechanisms underlying its pathogenesis and transmission remain unknown. Here, we propose a statistical physics model to coalesce all molecular entities into a cohesive network in which the roadmap of how each entity mediates the disease can be characterized. We argue that the process of how a transmitter transforms the virus into a recipient constitutes a triad unit that propagates COVID-19 along reticulate paths. Intrinsically, person-to-person transmissibility may be mediated by how genes interact transversely across transmitter, recipient, and viral genomes. We integrate quantitative genetic theory into hypergraph theory to code the main effects of the three genomes as nodes, pairwise cross-genome epistasis as edges, and high-order cross-genome epistasis as hyperedges in a series of mobile hypergraphs. Charting a genome-wide atlas of horizontally epistatic hypergraphs can facilitate the systematic characterization of the community genetic mechanisms underlying COVID-19 spread. This atlas can typically help design effective containment and mitigation strategies and screen and triage those more susceptible persons and those asymptomatic carriers who are incubation virus transmitters.
Collapse
|
32
|
Leigh DM, Peranić K, Prospero S, Cornejo C, Ćurković-Perica M, Kupper Q, Nuskern L, Rigling D, Ježić M. Long-read sequencing reveals the evolutionary drivers of intra-host diversity across natural RNA mycovirus infections. Virus Evol 2021; 7:veab101. [PMID: 35299787 PMCID: PMC8923234 DOI: 10.1093/ve/veab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Intra-host dynamics are a core component of virus evolution but most intra-host data come from a narrow range of hosts or experimental infections. Gaining broader information on the intra-host diversity and dynamics of naturally occurring virus infections is essential to our understanding of evolution across the virosphere. Here we used PacBio long-read HiFi sequencing to characterize the intra-host populations of natural infections of the RNA mycovirus Cryphonectria hypovirus 1 (CHV1). CHV1 is a biocontrol agent for the chestnut blight fungus (Cryphonectria parasitica), which co-invaded Europe alongside the fungus. We characterized the mutational and haplotypic intra-host virus diversity of thirty-eight natural CHV1 infections spread across four locations in Croatia and Switzerland. Intra-host CHV1 diversity values were shaped by purifying selection and accumulation of mutations over time as well as epistatic interactions within the host genome at defense loci. Geographical landscape features impacted CHV1 inter-host relationships through restricting dispersal and causing founder effects. Interestingly, a small number of intra-host viral haplotypes showed high sequence similarity across large geographical distances unlikely to be linked by dispersal.
Collapse
Affiliation(s)
- Deborah M Leigh
- Phytopathology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Karla Peranić
- Faculty of Science, University of Zagreb, Zagreb, Grad Zagreb 10000, Croatia
| | - Simone Prospero
- Phytopathology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Carolina Cornejo
- Phytopathology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | | | | | - Lucija Nuskern
- Faculty of Science, University of Zagreb, Zagreb, Grad Zagreb 10000, Croatia
| | - Daniel Rigling
- Phytopathology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Marin Ježić
- Faculty of Science, University of Zagreb, Zagreb, Grad Zagreb 10000, Croatia
| |
Collapse
|
33
|
Tohma K, Saito M, Pajuelo MJ, Mayta H, Zimic M, Lepore CJ, Ford-Siltz LA, Gilman RH, Parra GI. Viral intra-host evolution in immunocompetent children contributes to human norovirus diversification at the global scale. Emerg Microbes Infect 2021; 10:1717-1730. [PMID: 34376124 PMCID: PMC8425682 DOI: 10.1080/22221751.2021.1967706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/03/2022]
Abstract
Norovirus is a major cause of acute gastroenteritis. Human noroviruses present >30 different genotypes, with a single genotype (GII.4) predominating worldwide. Concurrent outbreaks of norovirus are often associated with the emergence of new viruses. While different hypotheses have been presented, the source of new mutations in noroviruses is still unknown. In this study, we applied high-resolution sequencing to determine the intra-host viral diversity presented by noroviruses during the acute and shedding phase of infection in children. Profiling viral intra-host diversification at nearly full genome level indicated that GII.4 viruses presented dynamic intra-host variation, while non-GII.4 viruses presented minimal variation throughout the infection. Notably, the intra-host genetic variation during the shedding phase recapitulates the genetic diversity observed at the global level, particularly those mapping at the VP1 antigenic sites. Thus the intra-host evolution in healthy children explains the source of norovirus mutations that results in diversification at the global scale.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, MD, USA
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Monica J. Pajuelo
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Holger Mayta
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cara J Lepore
- Division of Viral Products, CBER, FDA, Silver Spring, MD, USA
| | | | - Robert H. Gilman
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
35
|
Tsuneki-Tokunaga A, Kondo T, Kanai K, Itagaki A, Tsuchie H, Okada T, Kasagi M, Tanaka K, Hinay AJA, Kageyama S. Local spread of influenza A (H1N1) viruses without a mutation for the maximum duration of an epidemic season in Japan. Arch Virol 2021; 167:195-199. [PMID: 34761287 DOI: 10.1007/s00705-021-05301-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Close observation of the local transmission of influenza A(H1N1) viruses enabled an estimate of the length of time the virus was transmitted without a mutation. Of 4,448 isolates from 11 consecutive years, 237 isolates could be categorized into 57 strain groups with identical hemagglutinin genes, which were monitored for the entire duration of an epidemic season. In addition, 35 isolates with identical sequences were identified at the study site and in other countries within 147 days. Consequently, it can be postulated that once an influenza virus enters a temperate region, the strain rarely mutates before the end of the season.
Collapse
Affiliation(s)
- Akeno Tsuneki-Tokunaga
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan
- Tottori Infectious Diseases Forum, Yonago, Japan
| | - Takanori Kondo
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kyosuke Kanai
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan
- Tottori Infectious Diseases Forum, Yonago, Japan
| | - Asao Itagaki
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan
- Tottori Infectious Diseases Forum, Yonago, Japan
| | - Hideaki Tsuchie
- Tottori Infectious Diseases Forum, Yonago, Japan
- Tsuchie Internal Medicine and Pediatric Clinic, Sakaiminato, Japan
| | - Takayoshi Okada
- Tottori Infectious Diseases Forum, Yonago, Japan
- Department of Pediatrics, Tottori Prefectural Kousei Hospital, Kurayoshi, Japan
| | - Masaaki Kasagi
- Tottori Infectious Diseases Forum, Yonago, Japan
- Kasagi Children's Clinic for Health Service, Yonago, Japan
| | - Kiyoshi Tanaka
- Tottori Infectious Diseases Forum, Yonago, Japan
- Tanaka Pediatric Clinic, Tottori, Japan
| | - Alfredo Jr A Hinay
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Seiji Kageyama
- Division of Virology, Department of Microbiology and Immunology, Tottori University Faculty of Medicine, Yonago, Japan.
- Tottori Infectious Diseases Forum, Yonago, Japan.
| |
Collapse
|
36
|
McLeod DV, Wahl LM, Mideo N. Mosaic vaccination: How distributing different vaccines across a population could improve epidemic control. Evol Lett 2021; 5:458-471. [PMID: 34621533 PMCID: PMC8484727 DOI: 10.1002/evl3.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023] Open
Abstract
Although vaccination has been remarkably effective against some pathogens, for others, rapid antigenic evolution results in vaccination conferring only weak and/or short‐lived protection. Consequently, considerable effort has been invested in developing more evolutionarily robust vaccines, either by targeting highly conserved components of the pathogen (universal vaccines) or by including multiple immunological targets within a single vaccine (multi‐epitope vaccines). An unexplored third possibility is to vaccinate individuals with one of a number of qualitatively different vaccines, creating a “mosaic” of individual immunity in the population. Here we explore whether a mosaic vaccination strategy can deliver superior epidemiological outcomes to “conventional” vaccination, in which all individuals receive the same vaccine. We suppose vaccine doses can be distributed between distinct vaccine “targets” (e.g., different surface proteins against which an immune response can be generated) and/or immunologically distinct variants at these targets (e.g., strains); the pathogen can undergo antigenic evolution at both targets. Using simple mathematical models, here we provide a proof‐of‐concept that mosaic vaccination often outperforms conventional vaccination, leading to fewer infected individuals, improved vaccine efficacy, and lower individual risks over the course of the epidemic.
Collapse
Affiliation(s)
- David V McLeod
- Centre D'Ecologie Fonctionnelle & Evolutive CNRS Montpellier 34090 France
| | - Lindi M Wahl
- Mathematics Western University London ON N6A 5B7 Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| |
Collapse
|
37
|
Kepler L, Hamins-Puertolas M, Rasmussen DA. Decomposing the sources of SARS-CoV-2 fitness variation in the United States. Virus Evol 2021; 7:veab073. [PMID: 34642604 PMCID: PMC8499931 DOI: 10.1093/ve/veab073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
The fitness of a pathogen is a composite phenotype determined by many different factors influencing growth rates both within and between hosts. Determining what factors shape fitness at the host population-level is especially challenging because both intrinsic factors like pathogen genetics and extrinsic factors such as host behavior influence between-host transmission potential. This challenge has been highlighted by controversy surrounding the population-level fitness effects of mutations in the SARS-CoV-2 genome and their relative importance when compared against non-genetic factors shaping transmission dynamics. Building upon phylodynamic birth-death models, we develop a new framework to learn how hundreds of genetic and non-genetic factors have shaped the fitness of SARS-CoV-2. We estimate the fitness effects of all amino acid variants and several structural variants that have circulated in the United States between February 2020 and March 2021 from viral phylogenies. We also estimate how much fitness variation among pathogen lineages is attributable to genetic versus non-genetic factors such as spatial heterogeneity in transmission rates. Before September 2020, most fitness variation between lineages can be explained by background spatial heterogeneity in transmission rates across geographic regions. Starting in late 2020, genetic variation in fitness increased dramatically with the emergence of several new lineages including B.1.1.7, B.1.427, B.1.429 and B.1.526. Our analysis also indicates that genetic variants in less well-explored genomic regions outside of Spike may be contributing significantly to overall fitness variation in the viral population.
Collapse
Affiliation(s)
- Lenora Kepler
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27607, USA
| | - Marco Hamins-Puertolas
- Biomathematics Graduate Program, North Carolina State University, Campus Box 8213, Raleigh, NC 27695, USA
| | - David A Rasmussen
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27607, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695, USA
| |
Collapse
|
38
|
Tonkin-Hill G, Martincorena I, Amato R, Lawson ARJ, Gerstung M, Johnston I, Jackson DK, Park N, Lensing SV, Quail MA, Gonçalves S, Ariani C, Spencer Chapman M, Hamilton WL, Meredith LW, Hall G, Jahun AS, Chaudhry Y, Hosmillo M, Pinckert ML, Georgana I, Yakovleva A, Caller LG, Caddy SL, Feltwell T, Khokhar FA, Houldcroft CJ, Curran MD, Parmar S, Alderton A, Nelson R, Harrison EM, Sillitoe J, Bentley SD, Barrett JC, Torok ME, Goodfellow IG, Langford C, Kwiatkowski D. Patterns of within-host genetic diversity in SARS-CoV-2. eLife 2021; 10:e66857. [PMID: 34387545 PMCID: PMC8363274 DOI: 10.7554/elife.66857] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Naomi Park
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | | | | | | | | | | | - Luke W Meredith
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Grant Hall
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Aminu S Jahun
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Yasmin Chaudhry
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Myra Hosmillo
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Malte L Pinckert
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Iliana Georgana
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Anna Yakovleva
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Laura G Caller
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Sarah L Caddy
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Theresa Feltwell
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Fahad A Khokhar
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of CambridgeCambridgeUnited Kingdom
| | | | | | | | | | | | | | - Ewan M Harrison
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | | | | | - M Estee Torok
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Ian G Goodfellow
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | - Dominic Kwiatkowski
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
39
|
Han AX, Felix Garza ZC, Welkers MRA, Vigeveno RM, Tran ND, Le TQM, Pham Quang T, Dang DT, Tran TNA, Ha MT, Nguyen TH, Le QT, Le TH, Hoang TBN, Chokephaibulkit K, Puthavathana P, Nguyen VVC, Nghiem MN, Nguyen VK, Dao TT, Tran TH, Wertheim HFL, Horby PW, Fox A, van Doorn HR, Eggink D, de Jong MD, Russell CA. Within-host evolutionary dynamics of seasonal and pandemic human influenza A viruses in young children. eLife 2021; 10:e68917. [PMID: 34342576 PMCID: PMC8382297 DOI: 10.7554/elife.68917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analyzed the within-host evolution of 82 longitudinally sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titers decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Zandra C Felix Garza
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Matthijs RA Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - René M Vigeveno
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Nhu Duong Tran
- National Institute of Hygiene and EpidemiologyHanoiViet Nam
| | | | | | | | | | | | | | | | - Thanh Hai Le
- Vietnam National Children's HospitalHanoiViet Nam
| | | | | | | | | | | | | | | | - Tinh Hien Tran
- Siriraj Hospital, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
| | - Heiman FL Wertheim
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
- Radboud Medical Centre, Radboud UniversityNijmegenNetherlands
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Peter W Horby
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Annette Fox
- Oxford University Clinical Research UnitHanoiViet Nam
- Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaMelbourneAustralia
| | - H Rogier van Doorn
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Dirk Eggink
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| |
Collapse
|
40
|
Virus Adaptation Following Experimental Infection of Chickens with a Domestic Duck Low Pathogenic Avian Influenza Isolate from the 2017 USA H7N9 Outbreak Identifies Polymorphic Mutations in Multiple Gene Segments. Viruses 2021; 13:v13061166. [PMID: 34207098 PMCID: PMC8234733 DOI: 10.3390/v13061166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.
Collapse
|
41
|
White HN. B-Cell Memory Responses to Variant Viral Antigens. Viruses 2021; 13:565. [PMID: 33810456 PMCID: PMC8066974 DOI: 10.3390/v13040565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
A central feature of vertebrate immune systems is the ability to form antigen-specific immune memory in response to microbial challenge and so provide protection against future infection. In conflict with this process is the ability that many viruses have to mutate their antigens to escape infection- or vaccine-induced antibody memory responses. Mutable viruses such as dengue virus, influenza virus and of course coronavirus have a major global health impact, exacerbated by this ability to evade immune responses through mutation. There have been several outstanding recent studies on B-cell memory that also shed light on the potential and limitations of antibody memory to protect against viral antigen variation, and so promise to inform new strategies for vaccine design. For the purposes of this review, the current understanding of the different memory B-cell (MBC) populations, and their potential to recognize mutant antigens, will be described prior to some examples from antibody responses against the highly mutable RNA based flaviviruses, influenza virus and SARS-CoV-2.
Collapse
Affiliation(s)
- Harry N White
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
42
|
Tisthammer KH, Dong W, Joy JB, Pennings PS. Comparative Analysis of Within-Host Mutation Patterns and Diversity of Hepatitis C Virus Subtypes 1a, 1b, and 3a. Viruses 2021; 13:511. [PMID: 33808782 PMCID: PMC8003410 DOI: 10.3390/v13030511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding within-host evolution is critical for predicting viral evolutionary outcomes, yet such studies are currently lacking due to difficulty involving human subjects. Hepatitis C virus (HCV) is an RNA virus with high mutation rates. Its complex evolutionary dynamics and extensive genetic diversity are demonstrated in over 67 known subtypes. In this study, we analyzed within-host mutation frequency patterns of three HCV subtypes, using a large number of samples obtained from treatment-naïve participants by next-generation sequencing. We report that overall mutation frequency patterns are similar among subtypes, yet subtype 3a consistently had lower mutation frequencies and nucleotide diversity, while subtype 1a had the highest. We found that about 50% of genomic sites are highly conserved across subtypes, which are likely under strong purifying selection. We also compared within-host and between-host selective pressures, which revealed that Hyper Variable Region 1 within hosts was under positive selection, but was under slightly negative selection between hosts, which indicates that many mutations created within hosts are removed during the transmission bottleneck. Examining the natural prevalence of known resistance-associated variants showed their consistent existence in the treatment-naïve participants. These results provide insights into the differences and similarities among HCV subtypes that may be used to develop and improve HCV therapies.
Collapse
Affiliation(s)
- Kaho H. Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Weiyan Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (W.D.); (J.B.J.)
| | - Jeffrey B. Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (W.D.); (J.B.J.)
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 3J5, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| |
Collapse
|
43
|
Guo E, Guo H. CD8 T cell epitope generation toward the continually mutating SARS-CoV-2 spike protein in genetically diverse human population: Implications for disease control and prevention. PLoS One 2020; 15:e0239566. [PMID: 33301503 PMCID: PMC7728258 DOI: 10.1371/journal.pone.0239566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
The ongoing pandemic of SARS-CoV-2 has brought tremendous crisis on global health care systems and industrial operations that dramatically affect the economic and social life of numerous individuals worldwide. Understanding anti-SARS-CoV-2 immune responses in population with different genetic backgrounds and tracking the viral evolution are crucial for successful vaccine design. In this study, we reported the generation of CD8 T cell epitopes by a total of 80 alleles of three major class I HLAs using NetMHC 4.0 algorithm for the SARS-CoV-2 spike protein, which can be targeted by both B cells and T cells. We found diverse capacities of S protein specific epitope presentation by different HLA alleles with very limited number of predicted epitopes for HLA-B*2705, HLA-B*4402 and HLA-B*4403 and as high as 132 epitopes for HLA-A*6601. Our analysis of 1000 S protein sequences from field isolates collected globally over the past few months identified three recurrent point mutations including L5F, D614G and G1124V. Differential effects of these mutations on CD8 T cell epitope generation by corresponding HLA alleles were observed. Finally, our multiple alignment analysis indicated the absence of seasonal CoV induced cross-reactive CD8 T cells to drive these mutations. Our findings suggested that individuals with certain HLA alleles, such as B*44 are more prone to SARS-CoV-2 infection. Studying anti-S protein specific CD8 T cell immunity in diverse genetic background is critical for better control and prevention of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Elisa Guo
- Mounds View High School, Arden Hills, Minnesota, United States of America
| | - Hailong Guo
- Independent Scientist, St Paul, Minnesota, United States of America
| |
Collapse
|
44
|
Koel BF, Vigeveno RM, Pater M, Koekkoek SM, Han AX, Tuan HM, Anh TTN, Hung NT, Thinh LQ, Hai LT, Ngoc HTB, Chau NVV, Ngoc NM, Chokephaibulkit K, Puthavathana P, Kinh NV, Trinh T, Lee RTC, Maurer-Stroh S, Eggink D, Thanh TT, Tan LV, van Doorn HR, de Jong MD. Longitudinal sampling is required to maximize detection of intrahost A/H3N2 virus variants. Virus Evol 2020; 6:veaa088. [PMID: 33343927 PMCID: PMC7733607 DOI: 10.1093/ve/veaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seasonal human influenza viruses continually change antigenically to escape from neutralizing antibodies. It remains unclear how genetic variation in the intrahost virus population and selection at the level of individual hosts translates to the fast-paced evolution observed at the global level because emerging intrahost antigenic variants are rarely detected. We tracked intrahost variants in the hemagglutinin and neuraminidase surface proteins using longitudinally collected samples from 52 patients infected by A/H3N2 influenza virus, mostly young children, who received oseltamivir treatment. We identified emerging putative antigenic variants and oseltamivir-resistant variants, most of which remained detectable in samples collected at subsequent days, and identified variants that emerged intrahost immediately prior to increases in global rates. In contrast to most putative antigenic variants, oseltamivir-resistant variants rapidly increased to high frequencies in the virus population. Importantly, the majority of putative antigenic variants and oseltamivir-resistant variants were first detectable four or more days after onset of symptoms or start of treatment, respectively. Our observations demonstrate that de novo variants emerge, and may be positively selected, during the course of infection. Additionally, based on the 4–7 days post-treatment delay in emergence of oseltamivir-resistant variants in six out of the eight individuals with such variants, we find that limiting sample collection for routine surveillance and diagnostic testing to early timepoints after onset of symptoms can potentially preclude detection of emerging, positively selected variants.
Collapse
Affiliation(s)
- B F Koel
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R M Vigeveno
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Pater
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Koekkoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A X Han
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - N T Hung
- Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - L Q Thinh
- Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - L T Hai
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - H T B Ngoc
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - N V V Chau
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - N M Ngoc
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | - N V Kinh
- National Hospital of Tropical Diseases, Hanoi, Vietnam
| | - T Trinh
- National Hospital of Tropical Diseases, Hanoi, Vietnam
| | - R T C Lee
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671 Singapore
| | - S Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671 Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,National Public Health Laboratory, National Centre for Infectious Diseases, Ministry of Health, Singapore 308442, Singapore
| | - D Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - T T Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - L V Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - H R van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - M D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Munir K, Ashraf S, Munir I, Khalid H, Muneer MA, Mukhtar N, Amin S, Ashraf S, Imran MA, Chaudhry U, Zaheer MU, Arshad M, Munir R, Ahmad A, Zhao X. Zoonotic and reverse zoonotic events of SARS-CoV-2 and their impact on global health. Emerg Microbes Infect 2020; 9:2222-2235. [PMID: 32967592 PMCID: PMC7594747 DOI: 10.1080/22221751.2020.1827984] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/25/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Coronaviruses (CoVs) are enveloped, positive sense, single-stranded RNA viruses. The viruses have adapted to infect a large number of animal species, ranging from bats to camels. At present, seven CoVs infect humans, of which Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus Disease 2019 (COVID-19) in humans. Since its emergence in late 2019, SARS-CoV-2 has spread rapidly across the globe. Healthcare systems around the globe have been stretched beyond their limits posing new challenges to emergency healthcare services and critical care. The outbreak continues to jeopardize human health, social life and economy. All known human CoVs have zoonotic origins. Recent detection of SARS-CoV-2 in pet, zoo and certain farm animals has highlighted its potential for reverse zoonosis. This scenario is particularly alarming, since these animals could be potential reservoirs for secondary zoonotic infections. In this article, we highlight interspecies SARS-CoV-2 infections and focus on the reverse zoonotic potential of this virus. We also emphasize the importance of potential secondary zoonotic events and the One-Health and One-World approach to tackle such future pandemics.
Collapse
Affiliation(s)
- Khalid Munir
- PetLife Veterinary Professional Corporation, NJ, USA
- Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah University, Lahore, Pakistan
| | - Shoaib Ashraf
- Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah University, Lahore, Pakistan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isra Munir
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamna Khalid
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, USA
| | - Mohammad Akram Muneer
- Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah University, Lahore, Pakistan
| | | | - Shahid Amin
- Animal Hospital of Loves Park, Loves Park, IL, USA
| | - Sohaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Shaikh Zayed Hospital Lahore, Lahore, Pakistan
| | | | - Umer Chaudhry
- ; Royal (Dick) School of Veterinary Studies and Roslin Institute, Edinburgh, UK
| | - Muhammad Usman Zaheer
- Food and Agriculture Organization of the United Nations, Country Office, Islamabad, Pakistan
| | | | - Rukhsana Munir
- Consultant Emergency Medicine, Russells Hall Hospital, Dudley Group of Hospitals NHS Trust, Dudley, UK
| | - Ali Ahmad
- CHU Sainte-Justine Research Center, Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
| | - Xin Zhao
- Department of Animal Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|
46
|
Morris DH, Petrova VN, Rossine FW, Parker E, Grenfell BT, Neher RA, Levin SA, Russell CA. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. eLife 2020; 9:e62105. [PMID: 33174838 PMCID: PMC7748417 DOI: 10.7554/elife.62105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously-infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within-host. They also suggest new avenues for improving influenza control.
Collapse
MESH Headings
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Biological Evolution
- Genetic Variation/genetics
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Influenza, Human/transmission
- Influenza, Human/virology
- Models, Statistical
- Selection, Genetic/genetics
- Selection, Genetic/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Velislava N Petrova
- Department of Human Genetics, Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Fernando W Rossine
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Edyth Parker
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Bryan T Grenfell
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
- Fogarty International Center, National Institutes of HealthBethesdaUnited States
| | | | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
47
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|
48
|
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020; 182:1295-1310.e20. [PMID: 32841599 PMCID: PMC7418704 DOI: 10.1016/j.cell.2020.08.012] [Citation(s) in RCA: 1459] [Impact Index Per Article: 291.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor and is a major determinant of host range and a dominant target of neutralizing antibodies. Here, we experimentally measure how all amino acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity-enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Histone Deacetylase 6 Knockout Mice Exhibit Higher Susceptibility to Influenza A Virus Infection. Viruses 2020; 12:v12070728. [PMID: 32640546 PMCID: PMC7411611 DOI: 10.3390/v12070728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
The host innate defence against influenza virus infection is an intricate system with a plethora of antiviral factors involved. We have identified host histone deacetylase 6 (HDAC6) as an anti-influenza virus factor in cultured cells. Consistent with this, we report herein that HDAC6 knockout (KO) mice are more susceptible to influenza virus A/PR/8/1934 (H1N1) infection than their wild type (WT) counterparts. The KO mice lost weight faster than the WT mice and, unlike WT mice, could not recover their original body weight. Consequently, more KO mice succumbed to infection, which corresponded with higher lung viral loads. Conversely, the expression of the critical innate antiviral response genes interferon alpha/beta, CD80, CXCL10 and IL15 was significantly downregulated in KO mouse lungs compared to WT mouse lungs. These data are consistent with the known function of HDAC6 of de-acetylating the retinoic acid inducible gene-I (RIG-I) and activating the host innate antiviral response cascade. Loss of HDAC6 thus leads to a blunted innate response and increased susceptibility of mice to influenza A virus infection.
Collapse
|
50
|
Starr TN, Greaney AJ, Hilton SK, Crawford KH, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, Veesler D, Bloom JD. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.157982. [PMID: 32587970 PMCID: PMC7310626 DOI: 10.1101/2020.06.17.157982] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor, and is a major determinant of host range and a dominant target of neutralizing antibodies. Here we experimentally measure how all amino-acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Co-first authors
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
- Co-first authors
| | - Sarah K. Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead Contact
| |
Collapse
|