1
|
Duan J, Yao Y, Xu J, Zhang A, Kong X, Lin Y, Xie J, Cheng J, Fu Y, Chen T, Li B, Yu X, Lyu X, Xiao X, Sharon A, Trushina NK, Kotta-Loizou I, Jiang D. The rules in co-infection of multiple viruses across diverse lineages in a fungal host. mBio 2025:e0026225. [PMID: 40391984 DOI: 10.1128/mbio.00262-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Viruses, ubiquitous non-cellular organisms, pose significant threats to human health and to the agricultural productivity of both livestock and crops. Emerging evidence indicates that multiple viruses can infect a single host, and viral co-infection can exert a profound influence on host physiology. However, our understanding of the prevalence of co-infection and the compatibility of phylogenetically distant viruses is still limited. In this study, we surveyed 406 field strains of the plant fungal pathogen Botrytis cinerea and identified 76 mycoviruses. Strikingly, 404 strains were co-infected with two or more viruses, with some harboring up to 25 viruses simultaneously. We discerned significant preference patterns among viruses in their host. Specifically, we identified "one-to-one" and "two-to-one" rules, wherein one or two viruses could be used to reliably predict the presence or absence of other viruses in the same host, and validated these predicted rules by using five B. cinerea strains. Furthermore, through the RNA-sequencing approach, we uncovered B. cinerea genes associated with the differences caused by different sets of co-infecting viruses. These are implicated in integral components of membrane, transmembrane transporter activity, autophagy pathways, mitophagy pathway, fatty acid biosynthetic process, sphingolipid metabolism, and glycosphingolipid biosynthesis. Our findings underscore the high prevalence of co-infection by multiple viruses in a fungal host within a population and highlight compatibility dynamics among phylogenetically diverse viruses. These insights contribute to our understanding of viral ecology and hold promise for informing strategies to manage viral diseases effectively. IMPORTANCE Viruses, pervasive threats to both humans and agriculture, often infect hosts concurrently, profoundly impacting physiology. Despite this, the prevalence and compatibility of co-infecting viruses remain poorly understood. In the study of 406 Botrytis cinerea strains, we discovered a striking phenomenon: 404 out of the 406 strains hosted multiple viruses, some with up to 25 at once. Through rigorous analysis, we unveiled distinct preference patterns among these viruses within hosts, identifying predictive co-infection rules validated by experimentation. Furthermore, we identified genes linked to these dynamics, shedding light on critical cellular processes involved in the regulation of the co-infection rules. These findings highlight the widespread nature of viral co-infection and offer insights crucial for effectively managing viral diseases.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yuduo Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jialing Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiaojing Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Kagan Trushina
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ye T, Li H, Hai D, Zhaxi Z, Duan J, Lin Y, Xie J, Cheng J, Li B, Chen T, Yu X, Lyu X, Xiao X, Fu Y, Jiang D. A Hypovirulence-Associated Partitivirus and Re-Examination of Horizontal Gene Transfer Between Partitiviruses and Cellular Organisms. Int J Mol Sci 2025; 26:3853. [PMID: 40332509 PMCID: PMC12027680 DOI: 10.3390/ijms26083853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Previous research has unearthed the integration of the coat protein (CP) gene from alphapartitivirus into plant genomes. Nevertheless, the prevalence of this horizontal gene transfer (HGT) between partitiviruses and cellular organisms remains an enigma. In our investigation, we discovered a novel partitivirus, designated Sclerotinia sclerotiorum alphapartitivirus 1 (SsAPV1), from a hypovirulent strain of Sclerotinia sclerotiorum. Intriguingly, we traced homologs of the SsAPV1 CP to plant genomes, including Helianthus annuus. To delve deeper, we employed the CP and RNA-dependent RNA polymerase (RdRP) sequences of partitiviruses as "bait" to search the NCBI database for similar sequences. Our search unveiled a widespread occurrence of HGT between viruses from all five genera within the family Partitiviridae and other cellular organisms. Notably, numerous CP-like and RdRP-like genes were identified in the genomes of plants, protozoa, animals, fungi, and even, for the first time, in an archaeon. The majority of CP and RdRP genes were integrated into plant and insect genomes, respectively. Furthermore, we detected DNA fragments originating from the SsAPV1 RNA genome in some subcultures of virus-infected strains. It suggested that SsAPV1 RdRP may possesses reverse transcriptase activity, facilitating the integration of viral genes into cellular organism genomes, and this function requires further confirmation. Our study not only offers a hypovirulence-associated partitivirus with implications for fungal disease control but also sheds light on the extensive integration events between partitiviruses and cellular organisms and enhances our comprehension of the origins, evolution, and ecology of partitiviruses, as well as the genome evolution of cellular organisms.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Han Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Zhima Zhaxi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| |
Collapse
|
3
|
Gao L, Li W, Jia J, Cheng J, Fu Y, Xiao X, Cai Q, Lin Y, Chen T, Li B, Yu X, Hsiang T, Jiang D, Xie J. Exploration of mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum potentially uncovers mycovirus cross-taxa transmission. Virus Res 2025; 354:199552. [PMID: 40021014 PMCID: PMC11925586 DOI: 10.1016/j.virusres.2025.199552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Sclerotinia sclerotiorum is a worldwide plant pathogenic fungus. Identifying novel mycoviruses in this fungus can aid in developing fungal disease control strategies and enhance our understanding of viral evolution. Here, we analyzed mycovirus composition in S. sclerotiorum strain XZ69, and identified six ssRNA mycoviruses, including five known mycoviruses and one unassigned mycovirus. The newly identified mycovirus, tentatively named Sclerotinia sclerotiorum narna-like virus 1 (SsNLV1/XZ69), possesses a full-length genome of 3534 nucleotides, containing a single ORF that encodes an RNA-dependent RNA polymerase (RdRp) of 1090 amino acids. The RdRp encoded by SsNLV1/XZ69 shares 60.4 % identity with that encoded by Monilinia narnavirus H. SsNLV1/XZ69 phylogenetically clusters with unclassified narna-like viruses potentially infecting fungi, plants, and animals, and they form an independent branch that is distant from established families, therefore supporting the establishment of a new family to accommodate these viruses. Sclerotinia sclerotiorum fusarivirus 3 (SsFV3/XZ69) share 97 % amino acid identities with preciously reported Botrytis cinerea fusarivirus 8 (BcFV8). This last mycovirus originated from Botrytis cinerea, and hence this reveals that cross-genus transmission of SsFV3 or BcFV8 between B. cinerea and S. sclerotiorum may have potentially occurred. Mycovirus elimination, horizontal transmission, and RNA transfection experiments revealed that Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1/XZ69), SsNSRV2/XZ69, and SsFV3/XZ69 may be associated with hypovirulence in S. sclerotiorum, and strain XZ69 exhibits potential disease biocontrol on rapeseed seedlings. Our study expands our understanding of viral evolution, and may provide new potential biocontrol agents for S. sclerotiorum.
Collapse
Affiliation(s)
- Lixia Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weimeng Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jichun Jia
- College of Plant Protection, Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
5
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
6
|
Buivydaitė Ž, Winding A, Jørgensen LN, Zervas A, Sapkota R. New insights into RNA mycoviruses of fungal pathogens causing Fusarium head blight. Virus Res 2024; 349:199462. [PMID: 39260572 PMCID: PMC11417338 DOI: 10.1016/j.virusres.2024.199462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Fusarium head blight (FHB) continues to be a major problem in wheat production and is considered a disease complex caused by several fungal pathogens including Fusarium culmorum, F. graminearum and F. equiseti. With the objective of investigating diversity of mycoviruses in FHB-associated pathogens, we isolated Fusarium spp. from six wheat (Triticum aestivum) cultivars. In total, 56 Fusarium isolates (29 F. culmorum, 24 F. graminearum, one F. equiseti) were screened for mycoviruses by extracting and sequencing double-stranded RNA. We found that a large proportion of Fusarium isolates (46 %) were infected with mycoviruses. F. culmorum, previously described to harbor only one mycovirus, tended to host more viruses than F. graminearum, with a few isolates harboring seven mycoviruses simultaneously. Based on the RNA-dependent RNA polymerase domain analysis, ten were positive-sense single-stranded RNA viruses (related to viruses from families Mitoviridae, Botourmiaviridae, Narnaviridae, Tymoviridae, Gammaflexiviridae, as well as proposed Ambiguiviridae and ormycovirus viral group), one was double-stranded RNA virus (Partitiviridae), and five were negative-sense single-stranded RNA viruses (related to members in the families of Yueviridae, Phenuiviridae, Mymonaviridae, as well as proposed Mycoaspiviridae). Five mycoviruses were shared between F. graminearum and F. culmorum. These results increase our general understanding of mycovirology. To our knowledge, this is the first in-depth report of the mycovirome in F. culmorum and the first report on the diversity of mycoviruses from Danish isolates of FHB-causing fungi in general.
Collapse
Affiliation(s)
- Živilė Buivydaitė
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | | | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
7
|
Xie J, Jiang D. Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Annu Rev Microbiol 2024; 78:595-620. [PMID: 39348839 DOI: 10.1146/annurev-micro-041522-105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Mycoviruses are widely distributed among various kinds of fungi. Over the past 10 years, more novel mycoviruses have been discovered with the use of high-throughput sequencing techniques, and research on mycoviruses has made fantastic progress, promoting our understanding of the diversity, classification, evolution, and ecology of the entire virosphere. Mycoviruses affect the biological and ecological functions of their hosts, for example, by suppressing or improving hosts' virulence and reproduction ability, and subsequently affect the microbiological community where their hosts live; hence, we may develop mycoviruses to regulate the health of environments, plants, animals, and human beings. In this review, we introduce recently discovered mycoviruses from fungi of humans, animals, plants, and environments, and their diversity, evolution, and ecological characteristics. We also present the potential application of mycoviruses by describing the latest progress on using mycoviruses to control plant diseases. Finally, we discuss the main issues facing mycovirus research in the future.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Hubei Hongshan Laboratory, Wuhan, China; ,
| |
Collapse
|
8
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
9
|
Kuhn JH, Brown K, Adkins S, de la Torre JC, Digiaro M, Ergünay K, Firth AE, Hughes HR, Junglen S, Lambert AJ, Maes P, Marklewitz M, Palacios G, Sasaya (笹谷孝英) T, Shi (施莽) M, Zhang (张永振) YZ, Wolf YI, Turina M. Promotion of order Bunyavirales to class Bunyaviricetes to accommodate a rapidly increasing number of related polyploviricotine viruses. J Virol 2024; 98:e0106924. [PMID: 39303014 PMCID: PMC11494962 DOI: 10.1128/jvi.01069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Katherine Brown
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, Florida, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, California, USA
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Koray Ergünay
- Department of Medical Microbiology, Virology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Walter Reed Biosystematics Unit, Smithsonian Institution, Museum Support Center, Suitland, Maryland, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Holly R. Hughes
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amy J. Lambert
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases Unit, Leuven, Belgium
| | | | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Takahide Sasaya (笹谷孝英)
- Strategic Planning Headquarters, National Agriculture and Food Research Organization, Tsukuba, Japan
| | | | - Yong-Zhen Zhang (张永振)
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
10
|
Muñoz-Suárez H, Ruiz-Padilla A, Donaire L, Benito EP, Ayllón MA. Reexamining the Mycovirome of Botrytis spp. Viruses 2024; 16:1640. [PMID: 39459972 PMCID: PMC11512270 DOI: 10.3390/v16101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Botrytis species cause gray mold disease in more than 200 crops worldwide. To control this disease, chemical fungicides are usually applied. However, more sustainable control alternatives should be explored, such as the use of hypovirulent mycovirus-infected fungal strains. To determine the mycovirome of two Botrytis species, B. cinerea and B. prunorum, we reanalyzed RNA-Seq and small RNA-Seq data using different assembly programs and an updated viral database, aiming to identify new mycoviruses that were previously not described in the same dataset. New mycoviruses were identified, including those previously reported to infect or be associated with B. cinerea and Plasmopara viticola, such as Botrytis cinerea alpha-like virus 1 and Plasmopara viticola lesion-associated ourmia-like virus 80. Additionally, two novel narnaviruses, not previously identified infecting Botrytis species, have been characterized, tentatively named Botrytis cinerea narnavirus 1 and Botrytis narnavirus 1. The analysis of small RNAs suggested that all identified mycoviruses were targeted by the antiviral fungal mechanism, regardless of the viral genome type. In conclusion, the enlarged list of newly found viruses and the application of different bioinformatics approaches have enabled the identification of novel mycoviruses not previously described in Botrytis species, expanding the already extensive list.
Collapse
Affiliation(s)
- Hugo Muñoz-Suárez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Ana Ruiz-Padilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100 Murcia, Spain;
| | - Ernesto Pérez Benito
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero, 12, Villamayor, 37185 Salamanca, Spain;
| | - María A. Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain; (H.M.-S.); (A.R.-P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
11
|
Daghino S, Forgia M, Turina M. Completion of the genome sequence of Oidiodendron maius splipalmivirus 1. Arch Virol 2024; 169:199. [PMID: 39283496 PMCID: PMC11405419 DOI: 10.1007/s00705-024-06126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024]
Abstract
Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named "splipalmiviruses". One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus Oidiodendron maius, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1. This segment contains a single open reading frame that codes for a protein with unknown function and has a low level of sequence identity (47%) to the putative protein encoded by the third segment of another splipalmivirus from Magnaporthe oryzae: Magnaporthe oryzae narnavirus virus 1 (MoNV1). Based on these features, we propose the RNA segment to be the third segment of the OmSPV1 genome.
Collapse
Affiliation(s)
- Stefania Daghino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan.
| |
Collapse
|
12
|
Jia J, Liang H, Cheng L, Xia J, Chen X, Zhang B, Mu F. Complete genome sequence of a novel mitovirus isolated from the phytopathogenic fungus Alternaria alternata causing apple leaf blotch. Arch Virol 2024; 169:174. [PMID: 39107506 DOI: 10.1007/s00705-024-06106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
In this study, a novel mitovirus, tentatively designated as "Alternaria alternata mitovirus 2" (AaMV2), was isolated from the fungus Alternaria alternata f. sp. mali causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus Duamitovirus within the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus in A. alternata.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hanyang Liang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
13
|
Hai D, Li J, Jiang D, Cheng J, Fu Y, Xiao X, Yin H, Lin Y, Chen T, Li B, Yu X, Cai Q, Chen W, Kotta-Loizou I, Xie J. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat Commun 2024; 15:4748. [PMID: 38834585 DOI: 10.1038/s41467-024-49110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.
Collapse
Affiliation(s)
- Du Hai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jincang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ioly Kotta-Loizou
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Lu X, Dai Z, Xue J, Li W, Ni P, Xu J, Zhou C, Zhang W. Discovery of novel RNA viruses through analysis of fungi-associated next-generation sequencing data. BMC Genomics 2024; 25:517. [PMID: 38797853 PMCID: PMC11129472 DOI: 10.1186/s12864-024-10432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Like all other species, fungi are susceptible to infection by viruses. The diversity of fungal viruses has been rapidly expanding in recent years due to the availability of advanced sequencing technologies. However, compared to other virome studies, the research on fungi-associated viruses remains limited. RESULTS In this study, we downloaded and analyzed over 200 public datasets from approximately 40 different Bioprojects to explore potential fungal-associated viral dark matter. A total of 12 novel viral sequences were identified, all of which are RNA viruses, with lengths ranging from 1,769 to 9,516 nucleotides. The amino acid sequence identity of all these viruses with any known virus is below 70%. Through phylogenetic analysis, these RNA viruses were classified into different orders or families, such as Mitoviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Mymonaviridae, Bunyavirales, and Partitiviridae. It is possible that these sequences represent new taxa at the level of family, genus, or species. Furthermore, a co-evolution analysis indicated that the evolutionary history of these viruses within their groups is largely driven by cross-species transmission events. CONCLUSIONS These findings are of significant importance for understanding the diversity, evolution, and relationships between genome structure and function of fungal viruses. However, further investigation is needed to study their interactions.
Collapse
Affiliation(s)
- Xiang Lu
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ziyuan Dai
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Jiaxin Xue
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
15
|
Jia J, Nan L, Song Z, Chen X, Xia J, Cheng L, Zhang B, Mu F. Cross-species transmission of a novel bisegmented orfanplasmovirus in the phytopathogenic fungus Exserohilum rostratum. Front Microbiol 2024; 15:1409677. [PMID: 38846572 PMCID: PMC11153860 DOI: 10.3389/fmicb.2024.1409677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Linjie Nan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zehao Song
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
17
|
Zhou K, Zhang F, Deng Y. Comparative Analysis of Viromes Identified in Multiple Macrofungi. Viruses 2024; 16:597. [PMID: 38675938 PMCID: PMC11054281 DOI: 10.3390/v16040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.
Collapse
Affiliation(s)
- Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang 236037, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236037, China
| | - Fan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
18
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
19
|
Li S, Ma Z, Zhang X, Cai Y, Han C, Wu X. Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae. J Fungi (Basel) 2023; 10:30. [PMID: 38248940 PMCID: PMC10817634 DOI: 10.3390/jof10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
In the present study, sixteen novel RNA mycoviruses co-infecting a single strain of Rhizoctonia zeae (strain D40) were identified and molecularly characterized using metatranscriptome sequencing combined with a method for rapid amplification of cDNA ends. The fungal strain was isolated from diseased seedlings of sugar beet with damping-off symptoms. Based on genome analysis and phylogenetic analysis of amino acid sequences of RNA-dependent RNA polymerase, the sixteen mycoviruses associated with strain D40 contained three genome types with nine distinct lineages, including positive single-stranded RNA (Hypoviridae, Yadokariviridae, Botourmiaviridae, and Gammaflexiviridae), double-stranded RNA (Phlegiviridae, Megabirnaviridae, Megatotiviridae, and Yadonushiviridae), and negative single-stranded RNA (Tulasviridae), suggesting a complex composition of a mycoviral community in this single strain of R. zeae (strain D40). Full genome sequences of six novel mycoviruses and the nearly full-length sequences of the remaining ten novel mycoviruses were obtained. Furthermore, seven of these sixteen mycoviruses were confirmed to assemble virus particles present in the R. zeae strain D40. To the best of our knowledge, this is the first detailed study of mycoviruses infecting R. zeae.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (S.L.); (Z.M.); (X.Z.); (Y.C.); (C.H.)
| |
Collapse
|
20
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
21
|
Zhang Z, Guo W, Lu Y, Kang Q, Sui L, Liu H, Zhao Y, Zou X, Li Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol J 2023; 20:255. [PMID: 37924080 PMCID: PMC10623766 DOI: 10.1186/s12985-023-02217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Wenbo Guo
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, People's Republic of China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
- Jilin Agricultural Science and Technology University, Jilin, 132109, People's Republic of China.
| |
Collapse
|
22
|
Pedersen C, Marzano SYL. Mechanisms of Primed Defense: Plant Immunity Induced by Endophytic Colonization of a Mycovirus-Induced Hypovirulent Fungal Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:726-736. [PMID: 37459471 DOI: 10.1094/mpmi-06-23-0083-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
How mycovirus-induced hypovirulence in fungi activates plant defense is still poorly understood. The changes in plant fitness and gene expression caused by the inoculation of the fungus Sclerotinia sclerotiorum harboring and made hypovirulent by the mycovirus soybean leaf-associated gemygorvirus-1 (SlaGemV-1) of the species Gemycircularvirus soybe1 were examined in this study. As the hypovirulent fungus (DK3V) colonized soybean Glycine max, plant transcriptomic analysis indicated changes in defense responses and photosynthetic activity, supported by an upregulation of individual genes and overrepresentation of photosystem gene ontology groups. The upregulated genes include genes relating to both pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity as well as various genes relating to the induction of systemic acquired resistance and the biosynthesis of jasmonic acid. Plants colonized with DK3V showed a resistant phenotype to virulent S. sclerotiorum infection. Plant height and leaf area were also determined to be larger in plants grown with the virus-infected fungus. Here, we hypothesize that inoculation of soybean with DK3V can result in the triggering of a wide range of defense mechanisms to prime against later infection. The knowledge gained from this study about plant transcriptomics and phenotype will help prime plant immunity with mycovirus-infected hypovirulent fungal strains more effectively. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Connor Pedersen
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, U.S.A
| | - Shin-Yi Lee Marzano
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, U.S.A
| |
Collapse
|
23
|
Wen Y, Qu J, Zhang H, Yang Y, Huang R, Deng J, Zhang J, Xiao Y, Li J, Zhang M, Wang G, Zhai L. Identification and Characterization of a Novel Hypovirus from the Phytopathogenic Fungus Botryosphaeria dothidea. Viruses 2023; 15:2059. [PMID: 37896836 PMCID: PMC10611357 DOI: 10.3390/v15102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Many mycoviruses have been accurately and successfully identified in plant pathogenic fungus Botryosphaeria dothidea. This study discovered three mycoviruses from a B. dothidea strain SXD111 using high-throughput sequencing technology. A novel hypovirus was tentatively named Botryosphaeria dothidea hypovirus 1 (BdHV1/SXD111). The other two were known viruses, which we named Botryosphaeria dothidea polymycovirus 1 strain SXD111 (BdPmV1/SXD111) and Botryosphaeria dothidea partitivirus 1 strain SXD111 (BdPV1/SXD111). The genome of BdHV1/SXD111 is 11,128 nucleotides long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), a UDP-glucose/sterol glucosyltransferase (UGT), an RNA-dependent RNA polyprotein (RdRp), and a helicase (Hel) were detected in the polyprotein of BdHV1/SXD111. Phylogenetic analysis showed that BdHV1/SXD111 was clustered with betahypovirus and separated from members of the other genera in the family Hypoviridae. The BdPmV1/SXD111 genome comprised five dsRNA segments with 2396, 2232, 1967, 1131, and 1060 bp lengths. Additionally, BdPV1/SXD111 harbored three dsRNA segments with 1823, 1623, and 557 bp lengths. Furthermore, the smallest dsRNA was a novel satellite component of BdPV1/SXD111. BdHV1/SXD111 could be transmitted through conidia and hyphae contact, whereas it likely has no apparent impact on the morphologies and virulence of the host fungus. Thus, this study is the first report of a betahypovirus isolated from the fungus B. dothidea. Importantly, our results significantly enhance the diversity of the B. dothidea viruses.
Collapse
Affiliation(s)
- Yongqi Wen
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jinyue Qu
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Honglin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yi Yang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Rui Huang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jili Deng
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiayu Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yanping Xiao
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiali Li
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Meixin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifeng Zhai
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| |
Collapse
|
24
|
Khan HA, Mukhtar M, Bhatti MF. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 2023; 54:1459-1478. [PMID: 37523037 PMCID: PMC10485235 DOI: 10.1007/s42770-023-01073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (-ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, "CCHH" motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.
| | - Mamuna Mukhtar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
25
|
Wu T, Mao H, Hai D, Cheng J, Fu Y, Lin Y, Jiang D, Xie J. Molecular characterization of a novel fungal alphaflexivirus reveals potential inter-species horizontal gene transfer. Virus Res 2023; 334:199151. [PMID: 37302657 PMCID: PMC10410596 DOI: 10.1016/j.virusres.2023.199151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Sclerotinia sclerotiorum is a notorious phytopathogenic fungus that harbors diverse mycoviruses. A novel positive-sense single-stranded RNA virus, Sclerotinia sclerotiorum alphaflexivirus 2 (SsAFV2), was isolated from the hypovirulent strain 32-9 of S. sclerotiorum, and its complete genome was determined. The SsAFV2 genome contains 7,162 nucleotides (nt), excluding the poly (A) structure, and is composed of four open reading frames (ORF1-4). ORF1 encodes a polyprotein that contains three conserved domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). The ORF3 putative encodes coat proteins (CP), with ORF2 and ORF4 encoding hypothetical proteins of unknown functions. Phylogenetic analysis revealed that SsAFV2 clustered with Botrytis virus X (BVX) based on multiple alignments of helicase, RdRp, and CP, but the methyltransferase of SsAFV2 was most closely related to Sclerotinia sclerotiorum alphaflexivirus 1, suggesting that SsAFV2 is a new member of the Botrexvirus genus within the Alphaflexiviridae family, and also revealed the occurrence of potential inter-species horizontal gene transfer events within the Botrexvirus genus during the evolutionary process. Our results contribute to the current knowledge regarding the evolution and divergence of Botrexviruses.
Collapse
Affiliation(s)
- Tun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huilun Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Liu H, Zhang Y, Liu Y, Xiao J, Huang Z, Li Y, Li H, Li P. Virome analysis of an ectomycorrhizal fungus Suillus luteus revealing potential evolutionary implications. Front Cell Infect Microbiol 2023; 13:1229859. [PMID: 37662006 PMCID: PMC10470027 DOI: 10.3389/fcimb.2023.1229859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Suillus luteus is a widespread edible ectomycorrhizal fungus that holds significant importance in both ecological and economic value. Mycoviruses are ubiquitous infectious agents hosted in different fungi, with some known to exert beneficial or detrimental effects on their hosts. However, mycoviruses hosted in ectomycorrhizal fungi remain poorly studied. To address this gap in knowledge, we employed next-generation sequencing (NGS) to investigate the virome of S. luteus. Using BLASTp analysis and phylogenetic tree construction, we identified 33 mycovirus species, with over half of them belonging to the phylum Lenarviricota, and 29 of these viruses were novel. These mycoviruses were further grouped into 11 lineages, with the discovery of a new negative-sense single-stranded RNA viral family in the order Bunyavirales. In addition, our findings suggest the occurrence of cross-species transmission (CST) between the fungus and ticks, shedding light on potential evolutionary events that have shaped the viral community in different hosts. This study is not only the first study to characterize mycoviruses in S. luteus but highlights the enormous diversity of mycoviruses and their implications for virus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaping Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pengfei Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Li W, Sun H, Cao S, Zhang A, Zhang H, Shu Y, Chen H. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot. Microbiol Spectr 2023; 11:e0052223. [PMID: 37436153 PMCID: PMC10433806 DOI: 10.1128/spectrum.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/18/2023] [Indexed: 07/13/2023] Open
Abstract
Rhizoctonia cerealis is the pathogen of wheat sharp eyespot, which occurs throughout temperate wheat-growing regions of the world. In this project, the genomes of viruses from four strains of R. cerealis were analyzed based on Illumina high-throughput transcriptome sequencing (RNA-Seq) data. After filtering out reads that mapped to the fungal genome, viral genomes were assembled. In total, 131 virus-like sequences containing complete open reading frames (ORFs), belonging to 117 viruses, were obtained. Based on phylogenetic analysis, some of them were identified as novel members of the families Curvulaviridae, Endornaviridae, Hypoviridae, Mitoviridae, Mymonaviridae, and Phenuiviridae, while others were unclassified viruses. Most of these viruses from R. cerealis were significantly different from the viruses already reported. We propose the establishment of a new family, Rhizoctobunyaviridae, and two new genera, Rhizoctobunyavirus and Iotahypovirus. We further clarified the distribution and coinfection of these viruses in the four strains. Surprisingly, 39 viral genomes of up to 12 genera were found in strain R1084. Strain R0942, containing the fewest viruses, also contained 21 viral genomes belonging to 10 genera. Based on the RNA-Seq data, we estimated the accumulation level of some viruses in host cells and found that the mitoviruses in R. cerealis generally have very high accumulation. In conclusion, in the culturable phytopathogenic fungus R. cerealis, we discovered a considerable diversity of mycoviruses and a series of novel viruses. This study expands our understanding of the mycoviral diversity in R. cerealis and provides a rich resource for the further use of mycoviruses to control wheat sharp eyespot. IMPORTANCE Rhizoctonia cerealis is a binucleate fungus that is widely distributed worldwide and can cause sharp eyespot disease in cereal crops. In this study, 131 virus-like sequences belonging to 117 viruses were obtained based on analysis of high-throughput RNA-Seq data from four strains of R. cerealis. Many of these viruses were novel members of various virus families, while others were unclassified viruses. As a result, a new family named Rhizoctobunyaviridae and two new genera, Rhizoctobunyavirus and Iotahypovirus, were proposed. Moreover, the discovery of multiple viruses coinfecting a single host and the high accumulation levels of mitoviruses have shed light on the complex interactions between different viruses in a single host. In conclusion, a significant diversity of mycoviruses was discovered in the culturable phytopathogenic fungus R. cerealis. This study expands our understanding of mycoviral diversity, and provides a valuable resource for the further utilization of mycoviruses to control wheat diseases.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Aixiang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Haotian Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yan Shu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
28
|
Jia J, Chen X, Wang X, Liu X, Zhang N, Zhang B, Chang Y, Mu F. Molecular characterization of a novel ambiguivirus isolated from the phytopathogenic fungus Setosphaeria turcica. Arch Virol 2023; 168:199. [PMID: 37400663 DOI: 10.1007/s00705-023-05829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".
Collapse
Affiliation(s)
- Jichun Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Chen
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xue Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Nuo Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yindong Chang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Fan Mu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
29
|
Liu C, Jiang X, Tan Z, Wang R, Shang Q, Li H, Xu S, Aranda MA, Wu B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol Spectr 2023; 11:e0522822. [PMID: 37022156 PMCID: PMC10269472 DOI: 10.1128/spectrum.05228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 04/07/2023] Open
Abstract
In fungi, viral infections frequently remain cryptic causing little or no phenotypic changes. It can indicate either a long history of coevolution or a strong immune system of the host. Some fungi are outstandingly ubiquitous and can be recovered from a great diversity of habitats. However, the role of viral infection in the emergence of environmental opportunistic species is not known. The genus of filamentous and mycoparasitic fungi Trichoderma (Hypocreales, Ascomycota) consists of more than 400 species, which mainly occur on dead wood, other fungi, or as endo- and epiphytes. However, some species are environmental opportunists because they are cosmopolitan, can establish in a diversity of habitats, and can also become pests on mushroom farms and infect immunocompromised humans. In this study, we investigated the library of 163 Trichoderma strains isolated from grassland soils in Inner Mongolia, China, and found only four strains with signs of the mycoviral nucleic acids, including a strain of T. barbatum infected with a novel strain of the Polymycoviridae and named and characterized here as Trichoderma barbatum polymycovirus 1 (TbPMV1). Phylogenetic analysis suggested that TbPMV1 was evolutionarily distinct from the Polymycoviridae isolated either from Eurotialean fungi or from the order Magnaportales. Although the Polymycoviridae viruses were also known from Hypocrealean Beauveria bassiana, the phylogeny of TbPMV1 did not reflect the phylogeny of the host. Our analysis lays the groundwork for further in-depth characterization of TbPMV1 and the role of mycoviruses in the emergence of environmental opportunism in Trichoderma. IMPORTANCE Although viruses infect all organisms, our knowledge of some groups of eukaryotes remains limited. For instance, the diversity of viruses infecting fungi-mycoviruses-is largely unknown. However, the knowledge of viruses associated with industrially relevant and plant-beneficial fungi, such as Trichoderma spp. (Hypocreales, Ascomycota), may shed light on the stability of their phenotypes and the expression of beneficial traits. In this study, we screened the library of soilborne Trichoderma strains because these isolates may be developed into bioeffectors for plant protection and sustainable agriculture. Notably, the diversity of endophytic viruses in soil Trichoderma was outstandingly low. Only 2% of 163 strains contained traces of dsRNA viruses, including the new Trichoderma barbatum polymycovirus 1 (TbPMV1) characterized in this study. TbPMV1 is the first mycovirus found in Trichoderma. Our results indicate that the limited data prevent the in-depth study of the evolutionary relationship between soilborne fungi and is worth further investigation.
Collapse
Affiliation(s)
- Chenchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Hongrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Shujin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Villan Larios DC, Diaz Reyes BM, Pirovani CP, Loguercio LL, Santos VC, Góes-Neto A, Fonseca PLC, Aguiar ERGR. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J Fungi (Basel) 2023; 9:jof9030361. [PMID: 36983529 PMCID: PMC10052124 DOI: 10.3390/jof9030361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus–fungi interactions, providing an important source of information for future studies.
Collapse
Affiliation(s)
- Diana Carolina Villan Larios
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Brayan Maudiel Diaz Reyes
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Aristóteles Góes-Neto
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Paula Luize Camargos Fonseca
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center for Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil; (D.C.V.L.); (B.M.D.R.); (C.P.P.); (L.L.L.)
- Correspondence: (P.L.C.F.); (E.R.G.R.A.)
| |
Collapse
|
31
|
Zhao YJ, Shirouzu T, Chiba Y, Hosaka K, Moriyama H, Urayama SI, Hagiwara D. Identification of novel RNA mycoviruses from wild mushroom isolates in Japan. Virus Res 2023; 325:199045. [PMID: 36681193 DOI: 10.1016/j.virusres.2023.199045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The characterization of viruses from environmental samples could aid in our understanding of their ecological significance and potential for biotechnological exploitation. While there has been much focus on pathogenic fungi or commercially cultivated mushrooms, attention to viruses from wild Basidiomycota mushrooms is lacking. Therefore, in this study, we conducted viral screening of fungal mycelia isolated from wild basidiocarps using agarose gel electrophoresis (AGE) and fragmented and primer-ligated dsRNA sequencing (FLDS). Among the 51 isolates, seven isolates were detected with virus-like bands during the initial screening with AGE, but only five isolates were detected with viruses after long-term storage. Using the FLDS method, we obtained seven viral genome sequences, including five double-stranded RNA (dsRNA) viruses belonging to Partitiviridae and Curvulaviridae, one positive-sense single-stranded RNA (ssRNA) virus belonging to Endornaviridae and one negative-sense ssRNA virus belonging to Tulasviridae (Bunyavirales). All viruses characterized in this study are novel species. These findings greatly expanded our knowledge of the diversity of RNA viruses from environmental samples.
Collapse
Affiliation(s)
- Yan-Jie Zhao
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Shirouzu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
32
|
Huang H, Hua X, Pang X, Zhang Z, Ren J, Cheng J, Fu Y, Xiao X, Lin Y, Chen T, Li B, Liu H, Jiang D, Xie J. Discovery and Characterization of Putative Glycoprotein-Encoding Mycoviruses in the Bunyavirales. J Virol 2023; 97:e0138122. [PMID: 36625579 PMCID: PMC9888262 DOI: 10.1128/jvi.01381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.
Collapse
Affiliation(s)
- Huang Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangmin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xidan Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhongmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
33
|
Ye T, Lu Z, Li H, Duan J, Hai D, Lin Y, Xie J, Cheng J, Li B, Chen T, Fu Y, Jiang D. Characterization of a Fungal Virus Representing a Novel Genus in the Family Alphaflexiviridae. Viruses 2023; 15:339. [PMID: 36851552 PMCID: PMC9967154 DOI: 10.3390/v15020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum is an ascomycetous fungus and hosts various mycoviruses. In this study, a novel fungal alphaflexivirus with a special genomic structure, named Sclerotinia sclerotiorum alphaflexivirus 1 (SsAFV1), was cloned from a hypovirulent strain, AHS31. Strain AHS31 was also co-infected with two botourmiaviruses and two mitoviruses. The complete genome of SsAFV1 comprised 6939 bases with four open reading frames (ORFs), a conserved 5'-untranslated region (UTR), and a poly(A) tail in the 3' terminal; the ORF1 and ORF3 encoded a replicase and a coat protein (CP), respectively, while the function of the proteins encoded by ORF2 and ORF4 was unknown. The virion of SsAFV1 was flexuous filamentous 480-510 nm in length and 9-10 nm in diameter. The results of the alignment and the phylogenetic analysis showed that SsAFV1 is related to allexivirus and botrexvirus, such as Garlic virus X of the genus Allexivirus and Botrytis virus X of the genus Botrevirus, both with 44% amino-acid (aa) identity of replicase. Thus, SsAFV1 is a novel virus and a new genus, Sclerotexvirus, is proposed to accommodate this novel alphaflexivirus.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongbo Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Chiba Y, Yabuki A, Takaki Y, Nunoura T, Urayama SI, Hagiwara D. The First Identification of a Narnavirus in Bigyra, a Marine Protist. Microbes Environ 2023; 38:ME22077. [PMID: 36858534 PMCID: PMC10037099 DOI: 10.1264/jsme2.me22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/18/2022] [Indexed: 03/03/2023] Open
Abstract
Current information on the diversity and evolution of eukaryotic RNA viruses is biased towards host lineages, such as animals, plants, and fungi. Although protists represent the majority of eukaryotic diversity, our understanding of the protist RNA virosphere is still limited. To reveal untapped RNA viral diversity, we screened RNA viruses from 30 marine protist isolates and identified a novel RNA virus named Haloplacidia narnavirus 1 (HpNV1). A phylogenetic ana-lysis revealed that HpNV1 is a new member of the family Narnaviridae. The present study filled a gap in the distribution of narnaviruses and implies their wide distribution in Stramenopiles.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Akinori Yabuki
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| |
Collapse
|
35
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
36
|
Kuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M, Bejerman N, Bergeron É, Biedenkopf N, Bigarré L, Blair CD, Blasdell KR, Bradfute SB, Briese T, Brown PA, Bruggmann R, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Candresse T, Carson J, Casas I, Chandran K, Charrel RN, Chiaki Y, Crane A, Crane M, Dacheux L, Bó ED, de la Torre JC, de Lamballerie X, de Souza WM, de Swart RL, Dheilly NM, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Drexler JF, Duprex WP, Dürrwald R, Easton AJ, Elbeaino T, Ergünay K, Feng G, Feuvrier C, Firth AE, Fooks AR, Formenty PBH, Freitas-Astúa J, Gago-Zachert S, García ML, García-Sastre A, Garrison AR, Godwin SE, Gonzalez JPJ, de Bellocq JG, Griffiths A, Groschup MH, Günther S, Hammond J, Hepojoki J, Hierweger MM, Hongō S, Horie M, Horikawa H, Hughes HR, Hume AJ, Hyndman TH, Jiāng D, Jonson GB, Junglen S, Kadono F, Karlin DG, Klempa B, Klingström J, Koch MC, Kondō H, Koonin EV, Krásová J, Krupovic M, Kubota K, Kuzmin IV, Laenen L, Lambert AJ, Lǐ J, Li JM, Lieffrig F, Lukashevich IS, Luo D, Maes P, Marklewitz M, Marshall SH, et alKuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M, Bejerman N, Bergeron É, Biedenkopf N, Bigarré L, Blair CD, Blasdell KR, Bradfute SB, Briese T, Brown PA, Bruggmann R, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Candresse T, Carson J, Casas I, Chandran K, Charrel RN, Chiaki Y, Crane A, Crane M, Dacheux L, Bó ED, de la Torre JC, de Lamballerie X, de Souza WM, de Swart RL, Dheilly NM, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Drexler JF, Duprex WP, Dürrwald R, Easton AJ, Elbeaino T, Ergünay K, Feng G, Feuvrier C, Firth AE, Fooks AR, Formenty PBH, Freitas-Astúa J, Gago-Zachert S, García ML, García-Sastre A, Garrison AR, Godwin SE, Gonzalez JPJ, de Bellocq JG, Griffiths A, Groschup MH, Günther S, Hammond J, Hepojoki J, Hierweger MM, Hongō S, Horie M, Horikawa H, Hughes HR, Hume AJ, Hyndman TH, Jiāng D, Jonson GB, Junglen S, Kadono F, Karlin DG, Klempa B, Klingström J, Koch MC, Kondō H, Koonin EV, Krásová J, Krupovic M, Kubota K, Kuzmin IV, Laenen L, Lambert AJ, Lǐ J, Li JM, Lieffrig F, Lukashevich IS, Luo D, Maes P, Marklewitz M, Marshall SH, Marzano SYL, McCauley JW, Mirazimi A, Mohr PG, Moody NJG, Morita Y, Morrison RN, Mühlberger E, Naidu R, Natsuaki T, Navarro JA, Neriya Y, Netesov SV, Neumann G, Nowotny N, Ochoa-Corona FM, Palacios G, Pallandre L, Pallás V, Papa A, Paraskevopoulou S, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Pérez DR, Pfaff F, Plemper RK, Postler TS, Pozet F, Radoshitzky SR, Ramos-González PL, Rehanek M, Resende RO, Reyes CA, Romanowski V, Rubbenstroth D, Rubino L, Rumbou A, Runstadler JA, Rupp M, Sabanadzovic S, Sasaya T, Schmidt-Posthaus H, Schwemmle M, Seuberlich T, Sharpe SR, Shi M, Sironi M, Smither S, Song JW, Spann KM, Spengler JR, Stenglein MD, Takada A, Tesh RB, Těšíková J, Thornburg NJ, Tischler ND, Tomitaka Y, Tomonaga K, Tordo N, Tsunekawa K, Turina M, Tzanetakis IE, Vaira AM, van den Hoogen B, Vanmechelen B, Vasilakis N, Verbeek M, von Bargen S, Wada J, Wahl V, Walker PJ, Whitfield AE, Williams JV, Wolf YI, Yamasaki J, Yanagisawa H, Ye G, Zhang YZ, Økland AL. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2022; 167:2857-2906. [PMID: 36437428 PMCID: PMC9847503 DOI: 10.1007/s00705-022-05546-z] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Greifswald, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, Starkville, MS, USA
| | - Martina Bandte
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Éric Bergeron
- Division of High-Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laurent Bigarré
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Carol D Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul A Brown
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Jeremy Carson
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Yuya Chiaki
- Division of Fruit Tree and Tea Pest Control Research, Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Mark Crane
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - William M de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rik L de Swart
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Nolwenn M Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - J Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Toufic Elbeaino
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Koray Ergünay
- Department of Medical Microbiology, Virology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History (NMNH), Washington, DC, USA
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou, China
| | | | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Scott E Godwin
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, USA
| | | | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Melanie M Hierweger
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Seiji Hongō
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | | | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gilda B Jonson
- International Rice Research Institute, College, Los Baños, 4032, Laguna, Philippines
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fujio Kadono
- Clinical Plant Science Center, Hosei University, Tokyo, Japan
| | - David G Karlin
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michel C Koch
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jarmila Krásová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Kenji Kubota
- Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Ivan V Kuzmin
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jun-Min Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Dongsheng Luo
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, Paris, France
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | | | - Sergio H Marshall
- Instituto de Biología-Laboratorio de Genética Molecular-Campus Curauma, Valparaíso, Chile
| | - Shin-Yi L Marzano
- United States Department of Agriculture, Agricultural Research Service, Toledo, OH, USA
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Peter G Mohr
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Nick J G Moody
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | | | - Richard N Morrison
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Yutaro Neriya
- School of Agriculture, Utsunomiya University, Utsunomiya, Japan
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Francisco M Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics. Stillwater, Oklahoma State University, Oklahoma, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurane Pallandre
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidat Politècnica de Valencia, Valencia, Spain
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Paraskevopoulou
- Methods Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, Berlin, Germany
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Richard K Plemper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | - Marius Rehanek
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Artemis Rumbou
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease & Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Melanie Rupp
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Takahide Sasaya
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, China
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Nicole D Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Yasuhiro Tomitaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Keizō Tomonaga
- Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur de Guinée, BP 4416, Conakry, Guinea
| | | | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nikos Vasilakis
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junki Yamasaki
- Environmental Agriculture Promotion Division, Department of Agricultural Development, Kochi Prefectural Government, Kochi, Kochi, Japan
| | | | - Gongyin Ye
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
37
|
Discovery, Genomic Sequence Characterization and Phylogenetic Analysis of Novel RNA Viruses in the Turfgrass Pathogenic Colletotrichum spp. in Japan. Viruses 2022; 14:v14112572. [PMID: 36423181 PMCID: PMC9698584 DOI: 10.3390/v14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.
Collapse
|
38
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
39
|
Hai D, Li J, Lan S, Wu T, Li Y, Cheng J, Fu Y, Lin Y, Jiang D, Wang M, Xie J. Discovery and Evolution of Six Positive-Sense RNA Viruses Co-infecting the Hypovirulent Strain SCH733 of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:2449-2461. [PMID: 35793152 DOI: 10.1094/phyto-05-22-0148-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shangsong Lan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Minghong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
40
|
Rodriguez Coy L, Plummer KM, Khalifa ME, MacDiarmid RM. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:965781. [PMID: 37746227 PMCID: PMC10512228 DOI: 10.3389/ffunb.2022.965781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023]
Abstract
Plants, fungi, and many other eukaryotes have evolved an RNA interference (RNAi) mechanism that is key for regulating gene expression and the control of pathogens. RNAi inhibits gene expression, in a sequence-specific manner, by recognizing and deploying cognate double-stranded RNA (dsRNA) either from endogenous sources (e.g. pre-micro RNAs) or exogenous origin (e.g. viruses, dsRNA, or small interfering RNAs, siRNAs). Recent studies have demonstrated that fungal pathogens can transfer siRNAs into plant cells to suppress host immunity and aid infection, in a mechanism termed cross-kingdom RNAi. New technologies, based on RNAi are being developed for crop protection against insect pests, viruses, and more recently against fungal pathogens. One example, is host-induced gene silencing (HIGS), which is a mechanism whereby transgenic plants are modified to produce siRNAs or dsRNAs targeting key transcripts of plants, or their pathogens or pests. An alternative gene regulation strategy that also co-opts the silencing machinery is spray-induced gene silencing (SIGS), in which dsRNAs or single-stranded RNAs (ssRNAs) are applied to target genes within a pathogen or pest. Fungi also use their RNA silencing machinery against mycoviruses (fungal viruses) and mycoviruses can deploy virus-encoded suppressors of RNAi (myco-VSRs) as a counter-defence. We propose that myco-VSRs may impact new dsRNA-based management methods, resulting in unintended outcomes, including suppression of management by HIGS or SIGS. Despite a large diversity of mycoviruses being discovered using high throughput sequencing, their biology is poorly understood. In particular, the prevalence of mycoviruses and the cellular effect of their encoded VSRs are under-appreciated when considering the deployment of HIGS and SIGS strategies. This review focuses on mycoviruses, their VSR activities in fungi, and the implications for control of pathogenic fungi using RNAi.
Collapse
Affiliation(s)
- Lorena Rodriguez Coy
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Kim M. Plummer
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Mahmoud E. Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Robin M. MacDiarmid
- BioProtection, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Three-Layered Complex Interactions among Capsidless (+)ssRNA Yadokariviruses, dsRNA Viruses, and a Fungus. mBio 2022; 13:e0168522. [PMID: 36040032 PMCID: PMC9600902 DOI: 10.1128/mbio.01685-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family Yadokariviridae) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, Rosellinia necatrix. YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi. However, it remains obscure whether such viruses generally show the YkV1-like lifestyle. Here, we identified partner viruses for three distinct yadokariviruses, YkV3, YkV4a, and YkV4b, isolated from R. necatrix that were coinfected with multiple dsRNA viruses phylogenetically distantly related to YnV1. We first established transformants of R. necatrix carrying single yadokarivirus cDNAs and fused them with infectants by single partner candidate dsRNA viruses. Consequently, YkV3 and YkV4s replicated only in the presence of RnMBV3 (family Megabirnaviridae) and RnMTV1 (proposed family "Megatotiviridae"), respectively. The partners were mutually interchangeable between the two YkV4 strains and three RnMTV1 strains but not between other combinations involving YkV1 or YkV3. In contrast to YkV1 enhancing YnV1 accumulation, YkV4s reduced RnMTV1 accumulation to different degrees according to strains. Interestingly, YkV4 rescued the host R. necatrix from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3) or host fungus. Overall, we revealed that while yadokariviruses generally require partner dsRNA viruses for replication, each yadokarivirus partners with a different dsRNA virus species in the three diverse families and shows a distinct symbiotic relation in a fungus. IMPORTANCE A capsidless (+)ssRNA virus YkV1 (family Yadokariviridae) highjacks the capsid of an unrelated dsRNA virus YnV1 (proposed family "Yadonushiviridae") in a phytopathogenic ascomycete, while YkV1 trans-enhances YnV1 replication. Herein, we identified the dsRNA virus partners of three yadokariviruses (YkV3, YkV4a, and YkV4b) with genome organization different from YkV1 as being different from YnV1 at the suborder level. Their partners were mutually interchangeable between the two YkV4 strains and three strains of the partner virus RnMTV1 (proposed family "Megatotiviridae") but not between other combinations involving YkV1 or YkV3. Unlike YkV1, YkV4s reduced RnMTV1 accumulation and rescued the host fungus from impaired growth induced by RnMTV1. YkV3 exerted no apparent effect on its partner (RnMBV3, family Megabirnaviridae) or host fungus. These revealed that while each yadokarivirus has a species-specific partnership with a dsRNA virus, yadokariviruses collectively partner extremely diverse dsRNA viruses and show three-layered complex mutualistic/antagonistic interactions in a fungus.
Collapse
|
42
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
43
|
Galán-Cubero R, Córdoba L, Rodríguez-Romero J, Chiapello M, Turina M, Ayllón MA. Molecular Data of a Novel Penoulivirus Associated with the Plant-Pathogenic Fungus Erysiphe necator. PHYTOPATHOLOGY 2022; 112:1587-1591. [PMID: 35509205 DOI: 10.1094/phyto-12-21-0536-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Rocío Galán-Cubero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Laura Córdoba
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Julio Rodríguez-Romero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28040, Spain
| |
Collapse
|
44
|
Mycoviromic Analysis Unveils Complex Virus Composition in a Hypovirulent Strain of Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8070649. [PMID: 35887405 PMCID: PMC9317179 DOI: 10.3390/jof8070649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoviruses are ubiquitous in pathogenic fungi including Sclerotinia sclerotiorum. Using RNA sequencing, more mycoviruses have been identified in individual strains, which were previously reported to be infected by a single mycovirus. A hypovirulent strain of S. sclerotiorum, HC025, was previously thought to harbor a single mitovirus, Sclerotinia sclerotiorum mitovirus 1 (SsMV1), based on the analysis of the conventional dsRNA extraction method. We found HC025 to be co-infected by five mycoviruses. In addition to SsMV1, four mycoviruses were identified: Sclerotinia sclerotiorum narnavirus 4 (SsNV4), Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1), Sclerotinia sclerotiorum ourmia-like virus 14 (SsOLV14), and SsOLV22. Three mycoviruses including SsNV4, SsNSRV1, and SsOLV14 share high replicase identities (more than 95%) with the previously reported corresponding mycoviruses, and SsOLV22 shows lower identity to the known viruses. The complete genome of SsOLV22 is 3987 nt long and contains a single ORF-encoded RdRp, which shares 24.84% identity with the RNA-dependent RNA polymerase (RdRp) of Hubei narna-like virus 10 (query coverage: 26%; e-value: 8 × 10−19). The phylogenetic tree of RdRp suggests that SsOLV22 is a new member within the family Botourmiaviridae. All of the mycoviruses except for SsNSRV1 could horizontally co-transfer from HC025 to the virulent strain Ep-1PNA367 with hypovirulent phenotypes, and converted a later strain into a hypovirulent strain. In summary, we molecularly characterized the hypovirulent strain HC025 and identified five RNA mycoviruses including a new member within Botourmiaviridae.
Collapse
|
45
|
Raco M, Vainio EJ, Sutela S, Eichmeier A, Hakalová E, Jung T, Botella L. High Diversity of Novel Viruses in the Tree Pathogen Phytophthora castaneae Revealed by High-Throughput Sequencing of Total and Small RNA. Front Microbiol 2022; 13:911474. [PMID: 35783401 PMCID: PMC9244493 DOI: 10.3389/fmicb.2022.911474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.
Collapse
Affiliation(s)
- Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Eliška Hakalová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
46
|
Zhang Y, Gao J, Li Y. Diversity of mycoviruses in edible fungi. Virus Genes 2022; 58:377-391. [PMID: 35668282 DOI: 10.1007/s11262-022-01908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Mycoviruses (fungal viruses) are widespread in all major taxonomic groups of fungi. Although most mycovirus infections are latent, some mycoviruses, such as La France isometric virus, mushroom virus X, and oyster mushroom spherical virus, can cause severe diseases in edible fungi and lead to significant production losses. Recently, deep sequencing has been employed as a powerful research tool to identify new mycoviruses and to enhance our understanding of virus diversity and evolution. An increasing number of novel mycoviruses that can infect edible fungi have been reported, including double-stranded (ds) RNA, positive-sense ( +)ssRNA, and negative-sense (-)ssRNA viruses. To date, approximately 60 mycoviruses have been reported in edible fungi. In this review, we summarize the recent advances in the diversity and evolution of mycoviruses that can infect edible fungi. We also discuss mycovirus transmission, co-infections, and genetic variations, as well as the methods used to detect and control of mycoviruses in edible fungi, and provide insights for future research on mushroom viral diseases.
Collapse
Affiliation(s)
- Yanjing Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jie Gao
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
47
|
Jiang Y, Yang B, Liu X, Tian X, Wang Q, Wang B, Zhang Q, Yu W, Qi X, Jiang Y, Hsiang T. A Satellite dsRNA Attenuates the Induction of Helper Virus-Mediated Symptoms in Aspergillus flavus. Front Microbiol 2022; 13:895844. [PMID: 35711767 PMCID: PMC9195127 DOI: 10.3389/fmicb.2022.895844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an important fungal pathogen of animals and plants. Previously, we reported a novel partitivirus, Aspergillus flavus partitivirus 1 (AfPV1), infecting A. flavus. In this study, we obtained a small double-stranded (ds) RNA segment (734 bp), which is a satellite RNA of the helper virus, AfPV1. The presence of AfPV1 altered the colony morphology, decreased the number of conidiophores, created significantly larger vacuoles, and caused more sensitivity to osmotic, oxidative, and UV stresses in A. flavus, but the small RNA segment could attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus. Moreover, AfPV1 infection reduced the pathogenicity of A. flavus in corn (Zea mays), honeycomb moth (Galleria mellonella), mice (Mus musculus), and the adhesion of conidia to host epithelial cells, and increased conidial death by macrophages. However, the small RNA segment could also attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus, perhaps by reducing the genomic accumulation of the helper virus AfPV1 in A. flavus. We used this model to investigate transcriptional genes regulated by AfPV1 and the small RNA segment in A. flavus, and their role in generating different phenotypes. We found that the pathways of the genes regulated by AfPV1 in its host were similar to those of retroviral viruses. Therefore, some pathways may be of benefit to non-retroviral viral integration or endogenization into the genomes of its host. Moreover, some potential antiviral substances were also found in A. flavus using this system.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
48
|
De Miccolis Angelini RM, Raguseo C, Rotolo C, Gerin D, Faretra F, Pollastro S. The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola. J Fungi (Basel) 2022; 8:jof8050481. [PMID: 35628739 PMCID: PMC9147972 DOI: 10.3390/jof8050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a comprehensive characterization of the mycovirome in a worldwide collection of 58 M. fructicola strains. Deep sequencing of double-stranded (ds)RNA extracts revealed a great abundance and variety of mycoviruses. A total of 32 phylogenetically distinct positive-sense (+) single-stranded (ss)RNA viruses were identified. They included twelve mitoviruses, one in the proposed family Splipalmiviridae, and twelve botourmiaviruses (phylum Lenarviricota), eleven of which were novel viral species; two hypoviruses, three in the proposed family Fusariviridae, and one barnavirus (phylum Pisuviricota); as well as one novel beny-like virus (phylum Kitrinoviricota), the first one identified in Ascomycetes. A partial sequence of a new putative ssDNA mycovirus related to viruses within the Parvoviridae family was detected in a M. fructicola isolate from Serbia. The availability of genomic sequences of mycoviruses will serve as a solid basis for further research aimed at deepening the knowledge on virus–host and virus–virus interactions and to explore their potential as biocontrol agents against brown rot disease.
Collapse
|
49
|
Abstract
RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.
Collapse
|
50
|
Konstantinidis K, Dovrolis N, Kouvela A, Kassela K, Rosa Freitas MG, Nearchou A, de Courcy Williams M, Veletza S, Karakasiliotis I. Defining Virus-Carrier Networks that Shape the Composition of the Mosquito Core Virome of a Local Ecosystem. Virus Evol 2022; 8:veac036. [PMID: 35505691 PMCID: PMC9055857 DOI: 10.1093/ve/veac036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses’ relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.
Collapse
Affiliation(s)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adamantia Kouvela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katerina Kassela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Goreti Rosa Freitas
- Laboratório de Mosquitoes Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andreas Nearchou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Stavroula Veletza
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|