1
|
Li J, Cui C, Han F, Liu J. Genome-wide identification and analysis of the UBA2 gene family in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:180. [PMID: 39987033 PMCID: PMC11847341 DOI: 10.1186/s12864-025-11352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) participate in multiple aspects of RNA metabolism, which in turn regulates gene expression, thereby involving in organism growth and development. The UBA2 family, one of the subfamilies of RBPs, has been identified in several plant species. However, few researches have been performed to investigate the role of UBA2 in wheat (Triticum aestivum). RESULTS In this study, we identified eleven TaUBA2s and divided them into three groups according to their domain characteristics. Phylogenetic analysis was conducted to forecast functional similarities among Arabidopsis, rice, maize and wheat UBA2 genes. Members within the same subfamily of TaUBA2 are relatively conserved in terms of protein structure, motifs, and gene structure. Chromosomal location and synteny analysis suggested that the segmental duplication events played important roles during TaUBA2s evolution. The cis-acting element analysis showed that TaUBA2s were involved in hormone response, development, light response, metabolism, and response to environmental stress. Furthermore, TaUBA2C contains two RNA recognition motifs (RRMs), and the first RRM is responsible for the nuclear speckle formation of TaUBA2C, whereas the two RRMs are necessary for its biological function. CONCLUSIONS Taken together, our study provides a comprehensive analysis of the TaUBA2 family in wheat and lays the foundation for the future functional investigations of TaUBA2s in wheat growth, development and stress responses.
Collapse
Affiliation(s)
- Juan Li
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Chunge Cui
- Shanxi Medical University, Taiyuan, 030000, China
| | - Fengying Han
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| | - Jin Liu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| |
Collapse
|
2
|
Liu F, Cai S, Dai L, Ai N, Feng G, Wang N, Zhang W, Liu K, Zhou B. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:137-152. [PMID: 38569053 DOI: 10.1111/tpj.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Institue of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50#, Nanjing, 210014, China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nijiang Ai
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Li W, Liu Z, Huang Y, Zheng J, Yang Y, Cao Y, Ding L, Meng Y, Shan W. Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13416. [PMID: 38279850 PMCID: PMC10777756 DOI: 10.1111/mpp.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
Collapse
Affiliation(s)
- Wanyue Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuli Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
5
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
6
|
Xie Y, Nachappa P, Nalam VJ, Pearce S. Genomic and Molecular Characterization of Wheat Streak Mosaic Virus Resistance Locus 2 ( Wsm2) in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:928949. [PMID: 35845691 PMCID: PMC9285007 DOI: 10.3389/fpls.2022.928949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.
Collapse
Affiliation(s)
- Yucong Xie
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Vamsi J. Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
8
|
Li T, Zhang H, Xu L, Chen X, Feng J, Wu W, Du Y. StMPK7 phosphorylates and stabilizes a potato RNA-binding protein StUBA2a/b to enhance plant defence responses. HORTICULTURE RESEARCH 2022; 9:uhac177. [PMID: 36324643 PMCID: PMC9614683 DOI: 10.1093/hr/uhac177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in regulating plant immunity. MAPKs usually transduce signals and regulate plant immunity by phosphorylating the downstream defence-related components. Our previous study indicates that StMPK7 positively regulates plant defence to Phytophthora pathogens via SA signalling pathway. However, the downstream component of StMPK7 remains unknown. In this study, we employed GFP-StMPK7 transgenic potato and performed immunoprecipitation-mass spectrometry (IP-MS) to identify the downstream component of StMPK7. We found that an RNA binding protein StUBA2a/b interacted with StMPK7, as revealed by luciferase complementation imaging (LCI) and coimmunoprecipitation (co-IP) assays. Transient expression of StUBA2a/b in Nicociana benthamiana enhanced plant resistance to Phytophthora pathogens, while silencing of UBA2a/b decreased the resistance, suggesting a positive regulator role of UBA2a/b in plant immunity. Similar to StMPK7, StUBA2a/b was also involved in SA signalling pathway and induced SGT1-dependent cell death as constitutively activated (CA)-StMPK7 did. Immune blotting indicated that StMPK7 phosphorylates StUBA2a/b at thr248 and thr408 (T248/408) sites and stabilizes StUBA2a/b. Silencing of MPK7 in N. benthamiana suppressed StUBA2a/b-induced cell death, while co-expression with StMPK7 enhanced the cell death. Besides, StUBA2a/bT248/408A mutant showed decreased ability to trigger cell death and elevate the expression of PR genes, indicating the phosphorylation by StMPK7 enhances the functions of StUBA2a/b. Moreover, CA-StMPK7-induced cell death was largely suppressed by silencing of NbUBA2a/b, genetically implying UBA2a/b acts as the downstream component of StMPK7. Collectively, our results reveal that StMPK7 phosphorylates and stabilizes its downstream substrate StUBA2a/b to enhance plant immunity via the SA signalling pathway.
Collapse
Affiliation(s)
| | | | - Liwen Xu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Xiaokang Chen
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Jiashu Feng
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Weijun Wu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | | |
Collapse
|
9
|
Marondedze C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc Biol Sci 2020; 287:20201397. [PMID: 32962543 PMCID: PMC7542812 DOI: 10.1098/rspb.2020.1397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional regulation has far-reaching implications on the fate of RNAs. It is gaining increasing momentum as a critical component in adjusting global cellular transcript levels during development and in response to environmental stresses. In this process, RNA-binding proteins (RBPs) are indispensable chaperones that naturally bind RNA via one or multiple globular RNA-binding domains (RBDs) changing the function or fate of the bound RNAs. Despite the technical challenges faced in plants in large-scale studies, several hundreds of these RBPs have been discovered and elucidated globally over the past few years. Recent discoveries have more than doubled the number of proteins implicated in RNA interaction, including identification of RBPs lacking classical RBDs. This review will discuss these new emerging classes of RBPs, focusing on the current state of the RBP repertoire in Arabidopsis thaliana, including the diverse functional roles derived from quantitative studies implicating RBPs in abiotic stress responses. Notably, this review highlights that 836 RBPs are enriched as Arabidopsis RBPs while 1865 can be classified as candidate RBPs. The review will also outline outstanding areas within this field that require addressing to advance our understanding and potential biotechnological applications of RBPs.
Collapse
Affiliation(s)
- C. Marondedze
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
10
|
Mahalingam R, Walling JG. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare). Genomics 2019; 112:1829-1839. [PMID: 31669702 DOI: 10.1016/j.ygeno.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023]
Abstract
One of the major mechanisms of post-transcriptional gene regulation is achieved by proteins bearing well-defined sequence motifs involved in 'RNA binding'. In eukaryotes, RNA binding proteins (RBPs) are key players of RNA metabolism that includes synthesis, processing, editing, modifying, transport, storage and stability of RNA. In plants, the family of RBPs is vastly expanded compared to other eukaryotes including humans. In this study we identified 363 RBPs in the barley genome. Gene ontology enrichment analysis of barley RBPs indicated these proteins were in all the major cellular compartments and associated with key biological processes including translation, splicing, seed development and stress signaling. Members with the classical RNA binding motifs such as the RNA recognition motif (RRM), KH domain, Helicase, CRM, dsRNA and Pumilio were identified in the repertoire of barley RBPs. Similar to Arabidopsis, the RRM containing RBPs were the most abundant in barley genome. In-depth analysis of the RRM containing proteins - polyA binding proteins, Ser/Arg rich proteins and Glycine-rich RBPs were undertaken. Reanalysis of the proteome dataset of various stages during barley malting identified 38 RBPs suggesting an important role for these proteins during the malting process. This survey provides a systematic analysis of barley RBPs and serves as the basis for the further functional characterization of this important family of proteins.
Collapse
Affiliation(s)
| | - Jason G Walling
- 502 Walnut Street, Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA.
| |
Collapse
|
11
|
Huang X, Yu R, Li W, Geng L, Jing X, Zhu C, Liu H. Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa. PLANTA 2019; 249:1811-1822. [PMID: 30840177 DOI: 10.1007/s00425-019-03122-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function. To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ru Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wenjing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liwei Geng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiuli Jing
- Institute of Immunology, Taishan Medical University, Tai'an, Shandong, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
12
|
Hatsugai N, Katagiri F. Quantification of Plant Cell Death by Electrolyte Leakage Assay. Bio Protoc 2018; 8:e2758. [PMID: 34179282 PMCID: PMC8203867 DOI: 10.21769/bioprotoc.2758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 11/02/2022] Open
Abstract
We describe a protocol to measure the electrolyte leakage from plant tissues, resulting from loss of cell membrane integrity, which is a common definition of cell death. This simple protocol is designed to measure the electrolyte leakage from a tissue sample over a time course, so that the extent of cell death in the tissue can be monitored dynamically. In addition, it is easy to handle many tissue samples in parallel, which allows a high level of biological replication. Although the protocol is exemplified by cell death in Arabidopsis in response to pathogen challenge, it is easily applicable to other types of plant cell death.
Collapse
Affiliation(s)
- Noriyuki Hatsugai
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Minnesota, USA
| | - Fumiaki Katagiri
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Minnesota, USA
| |
Collapse
|
13
|
Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. MOLECULAR PLANT 2018; 11:245-256. [PMID: 29197638 DOI: 10.1016/j.molp.2017.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 05/22/2023]
Abstract
User-friendly tools for robust transcriptional activation of endogenous genes are highly demanded in plants. We previously showed that a dCas9-VP64 system consisting of the deactivated CRISPR-associated protein 9 (dCas9) fused with four tandem repeats of the transcriptional activator VP16 (VP64) could be used for transcriptional activation of endogenous genes in plants. In this study, we developed a second generation of vector systems for enhanced transcriptional activation in plants. We tested multiple strategies for dCas9-based transcriptional activation, and found that simultaneous recruitment of VP64 by dCas9 and a modified guide RNA scaffold gRNA2.0 (designated CRISPR-Act2.0) yielded stronger transcriptional activation than the dCas9-VP64 system. Moreover, we developed a multiplex transcription activator-like effector activation (mTALE-Act) system for simultaneous activation of up to four genes in plants. Our results suggest that mTALE-Act is even more effective than CRISPR-Act2.0 in most cases tested. In addition, we explored tissue-specific gene activation using positive feedback loops. Interestingly, our study revealed that certain endogenous genes are more amenable than others to transcriptional activation, and tightly regulated genes may cause target gene silencing when perturbed by activation probes. Hence, these new tools could be used to investigate gene regulatory networks and their control mechanisms. Assembly of multiplex CRISPR-Act2.0 and mTALE-Act systems are both based on streamlined and PCR-independent Golden Gate and Gateway cloning strategies, which will facilitate transcriptional activation applications in both dicots and monocots.
Collapse
Affiliation(s)
- Levi G Lowder
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jianping Zhou
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Aimee Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology and Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yiping Qi
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| |
Collapse
|
14
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
15
|
Tock AJ, Fourie D, Walley PG, Holub EB, Soler A, Cichy KA, Pastor-Corrales MA, Song Q, Porch TG, Hart JP, Vasconcellos RCC, Vicente JG, Barker GC, Miklas PN. Genome-Wide Linkage and Association Mapping of Halo Blight Resistance in Common Bean to Race 6 of the Globally Important Bacterial Pathogen. FRONTIERS IN PLANT SCIENCE 2017; 8:1170. [PMID: 28736566 PMCID: PMC5500643 DOI: 10.3389/fpls.2017.01170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 05/11/2023]
Abstract
Pseudomonas syringae pv. phaseolicola (Psph) Race 6 is a globally prevalent and broadly virulent bacterial pathogen with devastating impact causing halo blight of common bean (Phaseolus vulgaris L.). Common bean lines PI 150414 and CAL 143 are known sources of resistance against this pathogen. We constructed high-resolution linkage maps for three recombinant inbred populations to map resistance to Psph Race 6 derived from the two common bean lines. This was complemented with a genome-wide association study (GWAS) of Race 6 resistance in an Andean Diversity Panel of common bean. Race 6 resistance from PI 150414 maps to a single major-effect quantitative trait locus (QTL; HB4.2) on chromosome Pv04 and confers broad-spectrum resistance to eight other races of the pathogen. Resistance segregating in a Rojo × CAL 143 population maps to five chromosome arms and includes HB4.2. GWAS detected one QTL (HB5.1) on chromosome Pv05 for resistance to Race 6 with significant influence on seed yield. The same HB5.1 QTL, found in both Canadian Wonder × PI 150414 and Rojo × CAL 143 populations, was effective against Race 6 but lacks broad resistance. This study provides evidence for marker-assisted breeding for more durable halo blight control in common bean by combining alleles of race-nonspecific resistance (HB4.2 from PI 150414) and race-specific resistance (HB5.1 from cv. Rojo).
Collapse
Affiliation(s)
- Andrew J. Tock
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
- Department of Plant Sciences, Faculty of Biology, University of CambridgeCambridge, United Kingdom
| | - Deidré Fourie
- ARC-Grain Crops InstitutePotchefstroom, South Africa
| | - Peter G. Walley
- Functional and Comparative Genomics, Institute of Integrative Biology, University of LiverpoolLiverpool, United Kingdom
| | - Eric B. Holub
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Alvaro Soler
- Grain Legume Genetics and Physiology Research Unit, Agricultural Research Service, US Department of AgricultureProsser, WA, United States
| | - Karen A. Cichy
- Sugarbeet and Bean Research Unit, Agricultural Research Service, US Department of AgricultureEast Lansing, MI, United States
| | - Marcial A. Pastor-Corrales
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, US Department of AgricultureBeltsville, MD, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, US Department of AgricultureBeltsville, MD, United States
| | - Timothy G. Porch
- Tropical Agriculture Research Station, Agricultural Research Service, US Department of AgricultureMayagüez, Puerto Rico
| | - John P. Hart
- Tropical Agriculture Research Station, Agricultural Research Service, US Department of AgricultureMayagüez, Puerto Rico
| | | | - Joana G. Vicente
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Guy C. Barker
- School of Life Sciences, Faculty of Science, University of WarwickWellesbourne, United Kingdom
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, Agricultural Research Service, US Department of AgricultureProsser, WA, United States
| |
Collapse
|
16
|
Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome. TRENDS IN PLANT SCIENCE 2017; 22:512-526. [PMID: 28412036 DOI: 10.1016/j.tplants.2017.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katja Meyer
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
17
|
Aghamirzaie D, Collakova E, Li S, Grene R. CoSpliceNet: a framework for co-splicing network inference from transcriptomics data. BMC Genomics 2016; 17:845. [PMID: 27793091 PMCID: PMC5086072 DOI: 10.1186/s12864-016-3172-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been proposed to increase transcript diversity and protein plasticity in eukaryotic organisms, but the extent to which this is the case is currently unclear, especially with regard to the diversification of molecular function. Eukaryotic splicing involves complex interactions of splicing factors and their targets. Inference of co-splicing networks capturing these types of interactions is important for understanding this crucial, highly regulated post-transcriptional process at the systems level. Results First, several transcript and protein attributes, including coding potential of transcripts and differences in functional domains of proteins, were compared between splice variants and protein isoforms to assess transcript and protein diversity in a biological system. Alternative splicing was shown to increase transcript and function-related protein diversity in developing Arabidopsis embryos. Second, CoSpliceNet, which integrates co-expression and motif discovery at splicing regulatory regions to infer co-splicing networks, was developed. CoSpliceNet was applied to temporal RNA sequencing data to identify candidate regulators of splicing events and predict RNA-binding motifs, some of which are supported by prior experimental evidence. Analysis of inferred splicing factor targets revealed an unexpected role for the unfolded protein response in embryo development. Conclusions The methods presented here can be used in any biological system to assess transcript diversity and protein plasticity and to predict candidate regulators, their targets, and RNA-binding motifs for splicing factors. CoSpliceNet is freely available at http://delasa.github.io/co-spliceNet/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Song Li
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
18
|
Mahadevan C, Krishnan A, Saraswathy GG, Surendran A, Jaleel A, Sakuntala M. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:785. [PMID: 27379110 PMCID: PMC4913111 DOI: 10.3389/fpls.2016.00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/22/2016] [Indexed: 05/22/2023]
Abstract
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.
Collapse
Affiliation(s)
| | - Anu Krishnan
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Gayathri G. Saraswathy
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Arun Surendran
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Abdul Jaleel
- Proteomics Core Facility, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| | - Manjula Sakuntala
- Division of Plant Molecular Biology, Rajiv Gandhi Center for BiotechnologyThiruvananthapuram, India
| |
Collapse
|
19
|
Wang X, Boevink P, McLellan H, Armstrong M, Bukharova T, Qin Z, Birch PRJ. A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease. MOLECULAR PLANT 2015; 8:1385-95. [PMID: 25936676 PMCID: PMC4560694 DOI: 10.1016/j.molp.2015.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 05/18/2023]
Abstract
Plant pathogens deliver effector proteins that alter host processes to create an environment conducive to colonization. Attention has focused on identifying the targets of effectors and how their manipulation facilitates disease. RXLR effector Pi04089 from the potato blight pathogen Phytophthora infestans accumulates in the host nucleus and enhances colonization when transiently expressed in planta. Its nuclear localization is required for enhanced P. infestans colonization. Pi04089 interacts in yeast and in planta with a putative potato K-homology (KH) RNA-binding protein, StKRBP1. Co-localization of Pi04089 and StKRBP1, and bimolecular fluorescence complementation between them, indicate they associate at nuclear speckles. StKRBP1 protein levels increased when it was co-expressed with Pi04089. Indeed, such accumulation of StKRBP1 was observed also on the first day of leaf colonization by the pathogen. Remarkably, overexpression of StKRBP1 significantly enhances P. infestans infection. Mutation of the nucleotide-binding motif GxxG to GDDG in all three KH domains of StKRBP1 abolishes its interaction with Pi04089, its localization to nuclear speckles, and its increased accumulation when co-expressed with the effector. Moreover, the mutant StKRBP1 protein no longer enhances leaf colonization by P. infestans, implying that nucleotide binding is likely required for this activity. We thus argue that StKRBP1 can be regarded as a susceptibility factor, as its activity is beneficial to the pathogen.
Collapse
Affiliation(s)
- Xiaodan Wang
- Horticultural College, Northeast Agricultural University, No. 59 Mucai Road, Harbin 150030, China; Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK; Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Petra Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Miles Armstrong
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Tatyana Bukharova
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Zhiwei Qin
- Horticultural College, Northeast Agricultural University, No. 59 Mucai Road, Harbin 150030, China.
| | - Paul R J Birch
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Division of Plant Sciences, College of Life Sciences, University of Dundee (at JHI), Errol Road, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
20
|
Shida T, Fukuda A, Saito T, Ito H, Kato A. AtRBP1, which encodes an RNA-binding protein containing RNA-recognition motifs, regulates root growth in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:62-70. [PMID: 25913162 DOI: 10.1016/j.plaphy.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
AtRBP1 is an RNA-binding protein containing RNA-recognition motifs in Arabidopsis thaliana, homologues of which are not observed in metazoa. Transgenic plants expressing artificial microRNAs for repressing AtRBP1 expression displayed a stunted primary root phenotype during germination. Transgenic plants overexpressing AtRBP1 also displayed the same phenotype. Tight regulation of the AtRBP1 transcript may be required for normal root growth. An in vitro binding assay showed that AtRBP1 preferentially binds to sequences containing UUAGG, GUAGG and/or UUAGU. In vivo selection of RNAs bound to AtRBP1 suggests that transcripts of At3g06780, At4g15910, At5g11760 and At5g07350 are target RNAs of AtRBP1.
Collapse
Affiliation(s)
- Takuhiro Shida
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ai Fukuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 120-8554, Japan
| | - Hidetaka Ito
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Kato
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan.
| |
Collapse
|
21
|
Na JK, Kim JK, Kim DY, Assmann SM. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4023-33. [PMID: 25944928 PMCID: PMC4473998 DOI: 10.1093/jxb/erv207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest.
Collapse
Affiliation(s)
- Jong-Kuk Na
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Jae-Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| |
Collapse
|
22
|
Thatcher LF, Kamphuis LG, Hane JK, Oñate-Sánchez L, Singh KB. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS One 2015; 10:e0126978. [PMID: 25985302 PMCID: PMC4436139 DOI: 10.1371/journal.pone.0126978] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022] Open
Abstract
Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.
Collapse
Affiliation(s)
- Louise F. Thatcher
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Lars G. Kamphuis
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - James K. Hane
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Luis Oñate-Sánchez
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Karam B. Singh
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
23
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
|
25
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 PMCID: PMC4051675 DOI: 10.1371/journal.pone.0099343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
26
|
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. PLANT, CELL & ENVIRONMENT 2014; 37:696-706. [PMID: 23961939 DOI: 10.1111/pce.12188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 05/08/2023]
Abstract
Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity.
Collapse
Affiliation(s)
- Christian Hackmann
- Department of Molecular Cell Physiology, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany; Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Huh SU, Paek KH. Plant RNA binding proteins for control of RNA virus infection. Front Physiol 2013; 4:397. [PMID: 24427141 PMCID: PMC3875872 DOI: 10.3389/fphys.2013.00397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Abstract
Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppress RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.
Collapse
Affiliation(s)
- Sung Un Huh
- College of Life Sciences and Biotechnology, Korea University Seoul, South Korea
| | - Kyung-Hee Paek
- College of Life Sciences and Biotechnology, Korea University Seoul, South Korea
| |
Collapse
|
28
|
Lyons R, Iwase A, Gänsewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep 2013; 3:2866. [PMID: 24104185 PMCID: PMC3793224 DOI: 10.1038/srep02866] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) play an important role in plant host-microbe interactions. In this study, we show that the plant RBP known as FPA, which regulates 3′-end mRNA polyadenylation, negatively regulates basal resistance to bacterial pathogen Pseudomonas syringae in Arabidopsis. A custom microarray analysis reveals that flg22, a peptide derived from bacterial flagellins, induces expression of alternatively polyadenylated isoforms of mRNA encoding the defence-related transcriptional repressor ETHYLENE RESPONSE FACTOR 4 (ERF4), which is regulated by FPA. Flg22 induces expression of a novel isoform of ERF4 that lacks the ERF-associated amphiphilic repression (EAR) motif, while FPA inhibits this induction. The EAR-lacking isoform of ERF4 acts as a transcriptional activator in vivo and suppresses the flg22-dependent reactive oxygen species burst. We propose that FPA controls use of proximal polyadenylation sites of ERF4, which quantitatively limit the defence response output.
Collapse
Affiliation(s)
- Rebecca Lyons
- 1] RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045, Japan [2] Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. THE NEW PHYTOLOGIST 2013; 197:394-404. [PMID: 23163405 DOI: 10.1111/nph.12022] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/02/2012] [Indexed: 05/20/2023]
Abstract
Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Martina Lummer
- Molecular Cell Physiology, Bielefeld University, D-33615, Bielefeld, Germany
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Lionel Navarro
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), 46 Rue d'Ulm, 75230, Paris Cedex 05, France
| |
Collapse
|
30
|
Lee HJ, Kim JS, Yoo SJ, Kang EY, Han SH, Yang KY, Kim YC, McSpadden Gardener B, Kang H. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:46-52. [PMID: 22902796 DOI: 10.1016/j.plaphy.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
Glycine-rich RNA-binding protein7 (AtGRP7) has previously been demonstrated to confer plant defense against Pseudomonas syringae DC3000. Here, we show that AtGRP7 can play different roles in plant defense against diverse pathogens. AtGRP7 enhances resistance against a necrotrophic bacterium Pectobacterium carotovorum SCC1 or a biotrophic virus tobacco mosaic virus. By contrast, AtGRP7 plays a negative role in defense against a necrotrophic fungus Botrytis cinerea. These results provide evidence that AtGRP7 is a potent regulator in plant defense response to diverse pathogens, and suggest that the regulation of RNA metabolism by RNA-binding proteins is important for plant innate immunity.
Collapse
Affiliation(s)
- Hwa Jung Lee
- Department of Plant Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee DH, Kim DS, Hwang BK. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:235-248. [PMID: 22640562 DOI: 10.1111/j.1365-313x.2012.05063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regulation of gene expression via post-transcriptional modification by RNA-binding proteins is crucial for plant disease and innate immunity. Here, we report the identification of the pepper (Capsicum annuum) RNA-binding protein1 gene (CaRBP1) as essential for hypersensitive cell death and defense signaling in the cytoplasm. CaRBP1 contains an RNA recognition motif and is rapidly and strongly induced in pepper by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaRBP1 displays in vitro RNA- and DNA-binding activity and in planta nucleocytoplasmic localization. Transient expression of CaRBP1 in pepper leaves triggers cell-death and defense responses. Notably, cytoplasmic localization of CaRBP1, mediated by the N-terminal region of CaRBP1, is essential for the hypersensitive cell-death response. Silencing of CaRBP1 in pepper plants significantly enhances susceptibility to avirulent Xcv infection. This is accompanied by compromised hypersensitive cell death, production of reactive oxygen species in oxidative bursts, expression of defense marker genes and accumulation of endogenous salicylic acid and jasmonic acid. Over-expression of CaRBP1 in Arabidopsis confers reduced susceptibility to infection by the biotrophic oomycete Hyaloperonospora arabidopsidis. Together, these results suggest that cytoplasmic localization of CaRBP1 is required for plant signaling of hypersensitive cell-death and defense responses.
Collapse
Affiliation(s)
- Dong Hyuk Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
32
|
Qi Y, Tsuda K, Nguyen LV, Wang X, Lin J, Murphy AS, Glazebrook J, Thordal-Christensen H, Katagiri F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J Biol Chem 2011; 286:31297-307. [PMID: 21757708 PMCID: PMC3173095 DOI: 10.1074/jbc.m110.211615] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 07/07/2011] [Indexed: 12/25/2022] Open
Abstract
Arabidopsis RPS2 is a typical nucleotide-binding leucine-rich repeat resistance protein, which indirectly recognizes the bacterial effector protein AvrRpt2 and thereby activates effector-triggered immunity (ETI). Previously, we identified two hypersensitive induced reaction (AtHIR) proteins, AtHIR1 (At1g09840) and AtHIR2 (At3g01290), as potential RPS2 complex components. AtHIR proteins contain the stomatin/prohibitin/flotillin/HflK/C domain (also known as the prohibitin domain or band 7 domain). In this study, we confirmed that AtHIR1 and AtHIR2 form complexes with RPS2 in Arabidopsis and Nicotiana benthamiana using a pulldown assay and fluorescence resonance energy transfer (FRET) analysis. Arabidopsis has four HIR family genes (AtHIR1-4). All AtHIR proteins could form homo- and hetero-oligomers in vivo and were enriched in membrane microdomains of the plasma membrane. The mRNA levels of all except AtHIR4 were significantly induced by microbe-associated molecular patterns, such as the bacterial flagellin fragment flg22. Athir2-1 and Athir3-1 mutants allowed more growth of Pto DC3000 AvrRpt2, but not Pto DC3000, indicating that these mutations reduce RPS2-mediated ETI but do not affect basal resistance to the virulent strain. Overexpression of AtHIR1 and AtHIR2 reduced growth of Pto DC3000. Taken together, the results show that the AtHIR proteins are physically associated with RPS2, are localized in membrane microdomains, and quantitatively contribute to RPS2-mediated ETI.
Collapse
Affiliation(s)
- Yiping Qi
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Kenichi Tsuda
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Le V. Nguyen
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Xia Wang
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Jinshan Lin
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Angus S. Murphy
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Jane Glazebrook
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Hans Thordal-Christensen
- Plant and Soil Science, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Fumiaki Katagiri
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
33
|
Woloshen V, Huang S, Li X. RNA-Binding Proteins in Plant Immunity. J Pathog 2011; 2011:278697. [PMID: 22567326 PMCID: PMC3335643 DOI: 10.4061/2011/278697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022] Open
Abstract
Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs) have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.
Collapse
Affiliation(s)
- Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|