1
|
Papp DA, Kocsubé S, Farkas Z, Szekeres A, Vágvölgyi C, Hamari Z, Varga M. Aflatoxin B1 Control by Various Pseudomonas Isolates. Toxins (Basel) 2024; 16:367. [PMID: 39195777 PMCID: PMC11358996 DOI: 10.3390/toxins16080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The climate-change-coupled fungal burden in crop management and the need to reduce chemical pesticide usage highlight the importance of finding sustainable ways to control Aspergillus flavus. This study examines the effectiveness of 50 Pseudomonas isolates obtained from corn rhizospheres against A. flavus in both solid and liquid co-cultures. The presence and quantity of aflatoxin B1 (AFB1) and AFB1-related compounds were determined using high-performance liquid chromatography-high resolution mass spectrometry analysis. Various enzymatic- or non-enzymatic mechanisms are proposed to interpret the decrease in AFB1 production, accompanied by the accumulation of biosynthetic intermediates (11-hydroxy-O-methylsterigmatocystin, aspertoxin, 11-hydroxyaspertoxin) or degradation products (the compounds C16H10O6, C16H14O5, C18H16O7, and C19H16O8). Our finding implies the upregulation or enhanced activity of fungal oxidoreductases and laccases in response to bacterial bioactive compound(s). Furthermore, non-enzymatic reactions resulted in the formation of additional degradation products due to acid accumulation in the fermented broth. Three isolates completely inhibited AFB1 or any AFB1-related compounds without significantly affecting fungal growth. These bacterial isolates supposedly block the entire pathway for AFB1 production in the fungus during interaction. Apart from identifying effective Pseudomonas isolates as potential biocontrol agents, this work lays the foundation for exploring new bacterial bioactive compounds.
Collapse
Affiliation(s)
- Dóra Anna Papp
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - András Szekeres
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsuzsanna Hamari
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Mónika Varga
- Department of Biotechnology and Microbiology, Institute of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
2
|
Otero M, Pokhrel A, Seo S, Wendell L, Luangkhot AS, Lawrence KS, Coleman JJ. Evaluation of the Genetic Diversity, Haplotype, and Virulence of Fusarium oxysporum f. sp. vasinfectum Field Isolates from Alabama. PHYTOPATHOLOGY 2024; 114:1587-1595. [PMID: 38619819 DOI: 10.1094/phyto-11-23-0438-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The United States is the third largest producer of cotton and the largest exporter of cotton globally. Fusarium wilt, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov), was estimated to cause a $21 million cotton yield loss in 2022. Historically, Alabama was an important producer of cotton in the Southeastern United States and was the first state in which Fusarium wilt on cotton was described. To assess the genetic diversity of Fov field isolates in Alabama, 118 field isolates were collected from six counties across the state from 2014 to 2016. Phylogenetic analysis using TEF1 and RPB2 placed the Fov field isolates into 18 haplotypes. Upon profiling the Tfo1 transposon insertion in the NAT gene, it was determined that no race 4 isolates were recovered in Alabama. Representatives of all field isolate haplotypes caused disease on Upland cotton variety Rowden in a hydroponic test tube assay. Two haplotype A isolates were the most aggressive isolates recovered, and haplotype A isolate TF1 was more aggressive than the race 4 isolate 89-1A on Upland cotton and had similar symptom severity on Pima cotton. Karyotype profiling indicted an abundance of small chromosomes characteristic of karyotypes that include accessory chromosomes, with considerable variability between isolates. Collectively, our study indicates that Fov isolates from Alabama are genetically diverse, which may have been promoted by its persistence in cotton fields.
Collapse
Affiliation(s)
- Miranda Otero
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Seungyeon Seo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Laura Wendell
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Amber S Luangkhot
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
3
|
Bulasag AS, Ashida A, Miura A, Pring S, Kuroyanagi T, Camagna M, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D. Botrytis cinerea detoxifies the sesquiterpenoid phytoalexin rishitin through multiple metabolizing pathways. Fungal Genet Biol 2024; 172:103895. [PMID: 38679292 DOI: 10.1016/j.fgb.2024.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.
Collapse
Affiliation(s)
- Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Atsushi Miura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Teruhiko Kuroyanagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
4
|
Gargouri Jbir T, Zitnick-Anderson K, Pasche JS, Kalil AK. Characterization of Fusarium oxysporum f. sp. pisi Associated with Root Rot of Field Pea in North Dakota and the Effects of Temperature on Aggressiveness. PLANT DISEASE 2024; 108:365-374. [PMID: 37578362 DOI: 10.1094/pdis-05-23-0908-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Fusarium root rot is an important disease of field pea (Pisum sativum var. sativum L.) that occurs everywhere pea is grown, causing yield loss of up to 75%. Fusarium root rot is caused by a complex of Fusarium species, most notably Fusarium solani in the Pacific Northwest of the United States and F. avenaceum in the northern Great Plains of the United States and Canada. F. oxysporum f. sp. pisi (Fop) was frequently isolated from peas exhibiting root rot symptoms in North Dakota during recent surveys. Fop causes wilt (races 1, 5, and 6) and near wilt (race 2) on pea. However, its contribution to pea root rot remains unclear. Fop race was determined for isolates from North Dakota pea root rot surveys. ND Fop isolates were evaluated for root rot pathogenicity and aggressiveness at standard and elevated temperatures. Results from greenhouse wilt assays indicated that all Fop races exist in North Dakota, with race 2 most prevalent among the 25 North Dakota isolates evaluated. Root rot evaluations conducted at 21/18°C and 25/19°C day/night temperatures demonstrated that most Fop isolates were as aggressive or more aggressive than F. solani and F. avenaceum under both temperature regimes. Aggressiveness of Fop isolates tended to increase at elevated assay temperatures. Results from these experiments indicate that Fop may be an important contributor to the root rot complex of field pea in North Dakota and should be considered in integrated pest management strategies, including pea breeding efforts to improve resistance to Fusarium root rot.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Taheni Gargouri Jbir
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | | | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Audrey K Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| |
Collapse
|
5
|
Bhadauria V, Zhang M, Ma W, Yang J, Zhao W, Peng YL. The Hidden Truths of Fungal Virulence and Adaptation on Hosts: Unraveling the Conditional Dispensability of Minichromosomes in the Hemibiotrophic Colletotrichum Pathogens. Int J Mol Sci 2023; 25:198. [PMID: 38203369 PMCID: PMC10779208 DOI: 10.3390/ijms25010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colletotrichum spp. are ascomycete fungi and cause anthracnose disease in numerous crops of economic significance. The genomes of these fungi are distributed among ten core chromosomes and two to three minichromosomes. While the core chromosomes regulate fungal growth, development and virulence, the extent to which the minichromosomes are involved in these processes is still uncertain. Here, we discuss the minichromosomes of three hemibiotrophic Colletotrichum pathogens, i.e., C. graminicola, C. higginsianum and C. lentis. These minichromosomes are typically less than one megabase in length, characterized by containing higher repetitive DNA elements, lower GC content, higher frequency of repeat-induced point mutations (RIPMs) and sparse gene distribution. Molecular genetics and functional analyses have revealed that these pathogens harbor one conditionally dispensable minichromosome, which is dispensable for fungal growth and development but indispensable for fungal virulence on hosts. They appear to be strain-specific innovations and are highly compartmentalized into AT-rich and GC-rich blocks, resulting from RIPMs, which may help protect the conditionally dispensable minichromosomes from erosion of already scarce genes, thereby helping the Colletotrichum pathogens maintain adaptability on hosts. Overall, understanding the mechanisms underlying the conditional dispensability of these minichromosomes could lead to new strategies for controlling anthracnose disease in crops.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manyu Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
| | - Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.Z.); (W.M.); (J.Y.); (W.Z.); (Y.-L.P.)
- The Ministry of Agriculture and Rural Affairs for Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Poudel RS, Belay K, Nelson B, Brueggeman R, Underwood W. Population and genome-wide association studies of Sclerotinia sclerotiorum isolates collected from diverse host plants throughout the United States. Front Microbiol 2023; 14:1251003. [PMID: 37829452 PMCID: PMC10566370 DOI: 10.3389/fmicb.2023.1251003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing disease and economic loss on numerous crop plants. This fungus has a broad host range and can infect over 400 plant species, including important oilseed crops such as soybean, canola, and sunflower. S. sclerotiorum isolates vary in aggressiveness of lesion formation on plant tissues. However, the genetic basis for this variation remains to be determined. The aims of this study were to evaluate a diverse collection of S. sclerotiorum isolates collected from numerous hosts and U.S. states for aggressiveness of stem lesion formation on sunflower, to evaluate the population characteristics, and to identify loci associated with isolate aggressiveness using genome-wide association mapping. Methods A total of 219 S. sclerotiorum isolates were evaluated for stem lesion formation on two sunflower inbred lines and genotyped using genotyping-by-sequencing. DNA markers were used to assess population differentiation across hosts, regions, and climatic conditions and to perform a genome-wide association study of isolate aggressiveness. Results and discussion We observed a broad range of aggressiveness for lesion formation on sunflower stems, and only a moderate correlation between aggressiveness on the two lines. Population genetic evaluations revealed differentiation between populations from warmer climate regions compared to cooler regions. Finally, a genome-wide association study of isolate aggressiveness identified three loci significantly associated with aggressiveness on sunflower. Functional characterization of candidate genes at these loci will likely improve our understanding of the virulence strategies used by this pathogen to cause disease on a wide array of agriculturally important host plants.
Collapse
Affiliation(s)
- Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Kassaye Belay
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Berlin Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - William Underwood
- Edward T. Schafer Agricultural Research Center, Sunflower and Plant Biology Research Unit, USDA Agricultural Research Service, Fargo, ND, United States
| |
Collapse
|
7
|
Ma W, Yang J, Ding J, Duan C, Zhao W, Peng YL, Bhadauria V. CRISPR/Cas9-mediated deletion of large chromosomal segments identifies a minichromosome modulating the Colletotrichum graminicola virulence on maize. Int J Biol Macromol 2023; 245:125462. [PMID: 37336378 DOI: 10.1016/j.ijbiomac.2023.125462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Colletotrichum graminicola causes anthracnose on maize, an economically significant disease worldwide. To decipher how the pathogen controls its virulence/pathogenicity on maize at the minichromosomal level, we sequenced the genome and transcriptome of the C. graminicola strain T1-3-3. The 61.91 Mb genome contains three transcriptionally repressed, full-length strain-specific minichromosomes (<1 Mb; Chr11 through Chr13). A CRISPR/Cas9-based system was developed to knock out large chromosomal segments; it involved the generation of multiple simultaneous DNA double-strand breaks across a targeted genomic region, followed by homology-directed replacement thereof with a donor DNA template carrying the selectable marker hygromycin phosphotransferase gene flanked by homologous sequence arms of the targeted region. Using this system, we obtained distinct mutants functionally nullisomic for individual minichromosomes. Only the ΔChr12 mutant lacking the 498.44 Kb genomic region carrying all of the 31 genes of Chr12 exhibited attenuated virulence on maize and was indistinguishable from T1-3-3 in fungal growth and conidiation, indicating that Chr12 is a conditionally dispensable minichromosome and imparts full virulence to C. graminicola on maize. The CRISPR/Cas9-mediated genome editing system developed in this study will enable the determination of the biological functions of minichromosomes or large chromosomal segments in fungal plant pathogens.
Collapse
Affiliation(s)
- Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Ministry of Agriculture and Rural Affairs-Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Jenner BN, Henry PM. Pathotypes of Fusarium oxysporum f. sp. fragariae express discrete repertoires of accessory genes and induce distinct host transcriptional responses during root infection. Environ Microbiol 2022; 24:4570-4586. [PMID: 35706142 PMCID: PMC9796522 DOI: 10.1111/1462-2920.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 06/11/2022] [Indexed: 01/01/2023]
Abstract
Convergent evolution of phytopathogenicity is poorly described, especially among multiple strains of a single microbial species. We investigated this phenomenon with genetically diverse isolates of Fusarium oxysporum f. sp. fragariae (Fof) that cause one of two syndromes: chlorosis and wilting (the 'yellows-fragariae' pathotype), or only wilting (the 'wilt-fragariae' pathotype). We challenged strawberry (Fragaria × ananassa) plants to root infection by five fungal isolates: three yellows-fragariae, one wilt-fragariae and one that is not pathogenic to strawberry. All Fof isolates had chromosome-level assemblies; three were newly generated. The two pathotypes triggered distinct host responses, especially among phytohormone-associated genes; yellows-fragariae isolates strongly induced jasmonic acid-associated genes, whereas the wilt-fragariae isolate primarily induced ethylene biosynthesis and signalling. The differentially expressed genes on fungal accessory chromosomes were almost entirely distinct between pathotypes. We identified an ~150 kbp 'pathogenicity island' that was horizontally transferred between wilt-fragariae strains. This predicted pathogenicity island was enriched with differentially expressed genes whose predicted functions were related to plant infection, and only one of these genes was also upregulated in planta by yellows-fragariae isolates. These results support the conclusion that wilt- and yellows-fragariae cause physiologically distinct syndromes by the expression of discrete repertoires of genes on accessory chromosomes.
Collapse
Affiliation(s)
- Bradley N. Jenner
- Department of Plant PathologyUniversity of California at DavisDavisCaliforniaUSA
| | - Peter M. Henry
- United States Department of Agriculture, Agricultural Research ServiceSalinasCaliforniaUSA
| |
Collapse
|
9
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
10
|
Mena E, Garaycochea S, Stewart S, Montesano M, Ponce De León I. Comparative genomics of plant pathogenic Diaporthe species and transcriptomics of Diaporthe caulivora during host infection reveal insights into pathogenic strategies of the genus. BMC Genomics 2022; 23:175. [PMID: 35240994 PMCID: PMC8896106 DOI: 10.1186/s12864-022-08413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species. Results In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe. Conclusions Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08413-y.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Las Brujas, Ruta 48 Km 10, Canelones, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano, Estación Experimental La Estanzuela, Ruta 50 km 11, 70000, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.,Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
11
|
Kotera S, Hishiike M, Saito H, Komatsu K, Arie T. Differentiation of the Pea Wilt Pathogen Fusarium oxysporum f. sp. pisi from Other Isolates of Fusarium Species by PCR. Microbes Environ 2022; 37:ME21061. [PMID: 34980803 PMCID: PMC8958301 DOI: 10.1264/jsme2.me21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Pea wilt disease, caused by the soilborne and seedborne fungal pathogen Fusarium oxysporum f. sp. pisi (Fop), first appeared in Japan in 2002. We herein investigated the molecular characteristics of 16 Fop isolates sampled from multiple locations and at different times in Japan. The 16 isolates were divided into three clades in molecular phylogenic ana-lyses based on both the TEF1α gene and the rDNA-IGS region. All of the Fop isolates harbored a PDA1 gene, which encodes the cytochrome P450 pisatin demethylase (Pda1), and also carried one or both of the SIX6 and SIX13 genes, which encode secreted in xylem (Six) proteins. Other forms of F. oxysporum and other species of Fusarium did not carry these sets of genes. Based on these results, a PCR method was developed to identify Fop and differentiate it from other forms and non-pathogenic isolates of Fusarium spp. We also demonstrated that the PCR method effectively detected Fop in infected pea plants and infested soils.
Collapse
Affiliation(s)
- Shunsuke Kotera
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Masashi Hishiike
- Wakayama Agricultural Experiment Station, Takao, Kishigawacho, Kinokawa, Wakayama, 640–0423, Japan
| | - Hiroki Saito
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3–5–8 Saiwaicho, Fuchu, Tokyo, 183–8509, Japan
| |
Collapse
|
12
|
Li W, Li P, Zhou X, Situ J, Lin Y, Qiu J, Yuan Y, Xi P, Jiang Z, Kong G. A Cytochrome B 5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. FRONTIERS IN PLANT SCIENCE 2021; 12:783438. [PMID: 34899811 PMCID: PMC8655872 DOI: 10.3389/fpls.2021.783438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and β-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yiming Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Jiahui Qiu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yuling Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Screening and Assessment of Pisatin Demethylase Activity (PDA ). Methods Mol Biol 2021. [PMID: 34686986 DOI: 10.1007/978-1-0716-1795-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plants produce low molecular weight compounds with antimicrobial activity in response to microbial attack termed phytoalexins. The first phytoalexin identified was (+) pisatin from pea, and several fungi are able to detoxify pisatin to a less inhibitory compound, including F. oxysporum f. sp. pisi. This detoxification is catalyzed by demethylation of the compound (termed pisatin demethylase activity, or PDA) by the cytochrome P450, Pda. Here we detail two procedures to assess PDA using radiolabeled [14C]pisatin as a substrate and monitoring activity using a scintillation counter.
Collapse
|
14
|
Peck LD, Nowell RW, Flood J, Ryan MJ, Barraclough TG. Historical genomics reveals the evolutionary mechanisms behind multiple outbreaks of the host-specific coffee wilt pathogen Fusarium xylarioides. BMC Genomics 2021; 22:404. [PMID: 34082717 PMCID: PMC8176585 DOI: 10.1186/s12864-021-07700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. RESULTS Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. CONCLUSION Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.
Collapse
Affiliation(s)
- Lily D Peck
- Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK. .,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Julie Flood
- CABI, Bakeham Lane, Egham, Surrey, TW20 9TY, UK
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
15
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Westrick NM, Smith DL, Kabbage M. Disarming the Host: Detoxification of Plant Defense Compounds During Fungal Necrotrophy. FRONTIERS IN PLANT SCIENCE 2021; 12:651716. [PMID: 33995447 PMCID: PMC8120277 DOI: 10.3389/fpls.2021.651716] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
While fungal biotrophs are dependent on successfully suppressing/subverting host defenses during their interaction with live cells, necrotrophs, due to their lifestyle are often confronted with a suite of toxic metabolites. These include an assortment of plant defense compounds (PDCs) which can demonstrate broad antifungal activity. These PDCs can be either constitutively present in plant tissue or induced in response to infection, but are nevertheless an important obstacle which needs to be overcome for successful pathogenesis. Fungal necrotrophs have developed a number of strategies to achieve this goal, from the direct detoxification of these compounds through enzymatic catalysis and modification, to the active transport of various PDCs to achieve toxin sequestration and efflux. Studies have shown across multiple pathogens that the efficient detoxification of host PDCs is both critical for successful infection and often a determinant factor in pathogen host range. Here, we provide a broad and comparative overview of the various mechanisms for PDC detoxification which have been identified in both fungal necrotrophs and fungal pathogens which depend on detoxification during a necrotrophic phase of infection. Furthermore, the effect that these mechanisms have on fungal host range, metabolism, and disease control will be discussed.
Collapse
|
17
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|
18
|
Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. ACTA ACUST UNITED AC 2020; 1:332-342. [PMID: 37128085 DOI: 10.1038/s43016-020-0075-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
Emerging fungal and oomycete pathogens infect staple calorie crops and economically important commodity crops, thereby posing a significant risk to global food security. Our current agricultural systems - with emphasis on intensive monoculture practices - and globalized markets drive the emergence and spread of new pathogens and problematic traits, such as fungicide resistance. Climate change further promotes the emergence of pathogens on new crops and in new places. Here we review the factors affecting the introduction and spread of pathogens and current disease control strategies, illustrating these with the historic example of the Irish potato famine and contemporary examples of soybean rust, wheat blast and blotch, banana wilt and cassava root rot. Our Review looks to the future, summarizing what we see as the main challenges and knowledge gaps, and highlighting the direction that research must take to face the challenge of emerging crop pathogens.
Collapse
|
19
|
Seo S, Pokhrel A, Coleman JJ. The Genome Sequence of Five Genotypes of Fusarium oxysporum f. sp. vasinfectum: A Resource for Studies on Fusarium Wilt of Cotton. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:138-140. [PMID: 31593526 DOI: 10.1094/mpmi-07-19-0197-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium oxysporum f. sp. vasinfectum is an important plant pathogen responsible for vascular wilt disease on cotton. Members of this group are known to carry supernumerary chromosomes that encode virulence factors. We sequenced the genomes of five F. oxysporum f. sp. vasinfectum isolates, including the genome of a representative of the highly virulent genotype race 4, at a high coverage to assemble reference-quality genomes. These genomes provide a necessary resource for comparative genomic analyses to identify genes or genome features that are involved in pathogenicity on cotton and may ultimately be used to identify improved management strategies.
Collapse
Affiliation(s)
- Seungyeon Seo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
20
|
Šlosarčíková P, Plachá D, Malachová K, Rybková Z, Novotný Č. Biodegradation of Reactive Orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides. Folia Microbiol (Praha) 2020; 65:629-638. [PMID: 31970597 DOI: 10.1007/s12223-019-00767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The purpose was to investigate a simultaneous biodegradation of the recalcitrant monoazo dye Reactive Orange 16 (RO16) in a mixed culture consisting of a biofilm of Pleurotus ostreatus-colonizing polyamide carrier and a suspension of the yeast Candida zeylanoides to see their biological interactions and possible synergistic action during degradation. Decolorization in the mixed culture was more effective than in the fungal monoculture, the respective decolorizations reaching 87.5% and 70% on day 11. The proliferation of yeast was reduced compared with the C. zeylanoides monoculture but enabled the yeast to participate in decolorization. The interaction of P. ostreatus with the yeast resulted in a gradual decrease of fungal manganese-dependent peroxidase (MnP) and laccase activities. Gas chromatography-mass spectrometry (GC-MS) analysis of the degradation products brought evidence that P. ostreatus split the dye molecule asymmetrically to provide 4-(ethenylsulfonyl) benzene whose concentration was much decreased in the mixed culture suggesting its increased metabolization in the presence of the yeast. In contrast, C. zeylanoides split the azo bond symmetrically producing the metabolites 4-(ethenylsulfonyl) aniline and α-hydroxybenzenepropanoic acid. Those metabolites were rapidly degraded in the mixed culture. A novel aspect is represented by the evidence of a mutual cooperative action of the fungal and yeast microorganisms in the mixed culture resulting in rapid decolorization and degradation of the dye.
Collapse
Affiliation(s)
- Pavlína Šlosarčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Slezská Ostrava, Czech Republic.
| | - Daniela Plachá
- Nanotechnology Centre VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Slezská Ostrava, Czech Republic
| | - Zuzana Rybková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Slezská Ostrava, Czech Republic
| | - Čeněk Novotný
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Slezská Ostrava, Czech Republic.,Laboratory of Environmental Biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
21
|
Wagner G, Laperche A, Lariagon C, Marnet N, Renault D, Guitton Y, Bouchereau A, Delourme R, Manzanares-Dauleux MJ, Gravot A. Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5375-5390. [PMID: 31145785 PMCID: PMC6793449 DOI: 10.1093/jxb/erz265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
Plant disease resistance is often under quantitative genetic control. Thus, in a given interaction, plant cellular responses to infection are influenced by resistance or susceptibility alleles at different loci. In this study, a genetic linkage analysis was used to address the complexity of the metabolic responses of Brassica napus roots to infection by Plasmodiophora brassicae. Metabolome profiling and pathogen quantification in a segregating progeny allowed a comparative mapping of quantitative trait loci (QTLs) involved in resistance and in metabolic adjustments. Distinct metabolic modules were associated with each resistance QTL, suggesting the involvement of different underlying cellular mechanisms. This approach highlighted the possible role of gluconasturtiin and two unknown metabolites in the resistance conferred by two QTLs on chromosomes C03 and C09, respectively. Only two susceptibility biomarkers (glycine and glutathione) were simultaneously linked to the three main resistance QTLs, suggesting the central role of these compounds in the interaction. By contrast, several genotype-specific metabolic responses to infection were genetically unconnected to resistance or susceptibility. Likewise, variations of root sugar profiles, which might have influenced pathogen nutrition, were not found to be related to resistance QTLs. This work illustrates how genetic metabolomics can help to understand plant stress responses and their possible links with disease.
Collapse
Affiliation(s)
- Geoffrey Wagner
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Anne Laperche
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2), Centre de Recherche Angers Nantes BIA, INRA, Le Rheu, France
| | - David Renault
- UMR EcoBio, Université de Rennes, CNRS, Rennes, France
| | - Yann Guitton
- LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Alain Bouchereau
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | - Régine Delourme
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes, Le Rheu, France
| |
Collapse
|
22
|
Bhadauria V, MacLachlan R, Pozniak C, Cohen‐Skalie A, Li L, Halliday J, Banniza S. Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis. THE NEW PHYTOLOGIST 2019; 221:431-445. [PMID: 30076781 PMCID: PMC6668012 DOI: 10.1111/nph.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/02/2018] [Indexed: 05/07/2023]
Abstract
Colletotrichum lentis causes anthracnose, which is a serious disease on lentil and can account for up to 70% crop loss. Two pathogenic races, 0 and 1, have been described in the C. lentis population from lentil. To unravel the genetic control of virulence, an isolate of the virulent race 0 was sequenced at 1481-fold genomic coverage. The 56.10-Mb genome assembly consists of 50 scaffolds with N50 scaffold length of 4.89 Mb. A total of 11 436 protein-coding gene models was predicted in the genome with 237 coding candidate effectors, 43 secondary metabolite biosynthetic enzymes and 229 carbohydrate-active enzymes (CAZymes), suggesting a contraction of the virulence gene repertoire in C. lentis. Scaffolds were assigned to 10 core and two minichromosomes using a population (race 0 × race 1, n = 94 progeny isolates) sequencing-based, high-density (14 312 single nucleotide polymorphisms) genetic map. Composite interval mapping revealed a single quantitative trait locus (QTL), qClVIR-11, located on minichromosome 11, explaining 85% of the variability in virulence of the C. lentis population. The QTL covers a physical distance of 0.84 Mb with 98 genes, including seven candidate effector and two secondary metabolite genes. Taken together, the study provides genetic and physical evidence for the existence of a minichromosome controlling the C. lentis virulence on lentil.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
- Swift Current Research and Development CenterAgriculture and Agri‐Food CanadaSwift CurrentSKS9H 3X2Canada
| | - Ron MacLachlan
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| | - Curtis Pozniak
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| | - Aurelie Cohen‐Skalie
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| | - Li Li
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| | - Jerlene Halliday
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| | - Sabine Banniza
- Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKS7N 5A8Canada
| |
Collapse
|
23
|
Sharma L, Marques G. Fusarium, an Entomopathogen-A Myth or Reality? Pathogens 2018; 7:E93. [PMID: 30487454 PMCID: PMC6314043 DOI: 10.3390/pathogens7040093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
The Fusarium species has diverse ecological functions ranging from saprophytes, endophytes, and animal and plant pathogens. Occasionally, they are isolated from dead and alive insects. However, research on fusaria-insect associations is very limited as fusaria are generalized as opportunistic insect-pathogens. Additionally, their phytopathogenicity raises concerns in their use as commercial biopesticides. Insect biocontrol potential of Fusarium is favored by their excellent soil survivability as saprophytes, and sometimes, insect-pathogenic strains do not exhibit phytopathogenicity. In addition, a small group of fusaria, those belonging to the Fusarium solani species complex, act as insect mutualists assisting in host growth and fecundity. In this review, we summarize mutualism and pathogenicity among fusaria and insects. Furthermore, we assert on Fusarium entomopathogenicity by analyzing previous studies clearly demonstrating their natural insect-pathogenicity in fields, and their presence in soils. We also review the presence and/or production of a well-known insecticidal metabolite beauvericin by different Fusarium species. Lastly, some proof-of-concept studies are also summarized, which demonstrate the histological as well as immunological changes that a larva undergoes during Fusarium oxysporum pathogenesis. These reports highlight the insecticidal properties of some Fusarium spp., and emphasize the need of robust techniques, which can distinguish phytopathogenic, mutualistic and entomopathogenic fusaria.
Collapse
Affiliation(s)
- Lav Sharma
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000⁻801 Vila Real, Portugal.
| | - Guilhermina Marques
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000⁻801 Vila Real, Portugal.
| |
Collapse
|
24
|
Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol 2018; 117:21-29. [PMID: 29763675 DOI: 10.1016/j.fgb.2018.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/25/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) is an economically important group of pathogenic filamentous fungi that are able to infect both animals and plants. Reverse genetic techniques, including gene disruption/deletion methods, to study these fungi are available although limitations exist resulting in decreased efficiency. Herein we describe a gene editing system developed using a F. oxysporum-optimized Cas9 ribonucleoprotein (RNP) and protoplast transformation method. The Cas9 protein and sgRNA were assembled to form a stable RNP in vitro and this complex was transferred into fungal protoplasts for gene editing with PEG-mediated transformation. In order to determine if the Cas9 RNP system is functional in the FOSC protoplasts and assess the efficacy of the system, two genes, URA5 and URA3, were selected for targeted disruption generating uracil auxotroph mutants that are resistant to 5-fluoroorotic acid, 5-FOA. In addition, a gene in a secondary metabolite biosynthetic cluster, the ortholog of BIK1, was mutated using this system and the maximum efficiency of this gene disruption was about 50%. Further analysis of the bik1 mutant confirmed that this polyketide synthase was involved in the synthesis of the red pigment, bikaverin. The mutants generated in this study displayed the strong expected phenotypes, demonstrating this F. oxysporum-optimized CRISPR/Cas9 system is stable and can efficiently disrupt the genes of interest.
Collapse
|
25
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
26
|
Abdelsamad NA, Baumbach J, Bhattacharyya MK, Leandro LF. Soybean Sudden Death Syndrome Caused by Fusarium virguliforme is Impaired by Prolonged Flooding and Anaerobic Conditions. PLANT DISEASE 2017; 101:712-719. [PMID: 30678564 DOI: 10.1094/pdis-04-16-0534-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High soil moisture usually favors soybean sudden death syndrome (SDS), caused by Fusarium virguliforme (Fv), but the effects of the duration of the flooding period and accompanying anaerobic conditions on the soybean-Fv interaction are not clear. Greenhouse studies were conducted using susceptible and resistant cultivars exposed to the following treatments: 3, 5, or 7 days of continuous flooding, repeated short-term flooding of 8 h/week for 3 weeks, and a no-flood check treatment. At 7, 14, and 21 days after flooding (DAF), seedlings in the no-flood, 3-day, and repeated short-term treatments showed the highest root rot and foliar symptom severity, whereas seedlings in the 7-day treatment showed the lowest severity. Fv inoculum density in soil was lowest in the 7-day flooding treatment. In a hydroponic system, the steady transcript levels of soybean defense genes and Fv candidate virulence genes were measured in response to different oxygen levels using qPCR. Fv-infected roots exposed to 12 h of anaerobic conditions showed down-regulation of the defense-related soybean genes Laccase, PR3, PR10, PAL, and CHS, and the Fv virulence genes pectate lyase (PL), and Fv homolog of the pisatin demethylase (PDA). Our study suggests that short-term flooding tends to increase SDS, while prolonged flooding negatively impacts SDS due to reduction of Fv density in soil. Moreover, anaerobic conditions down-regulate both soybean defense genes and Fv candidate virulence genes.
Collapse
Affiliation(s)
| | | | | | - L F Leandro
- Department of Plant Pathology and Microbiology, Iowa State University, Ames 50010
| |
Collapse
|
27
|
Shin JY, Bui DC, Lee Y, Nam H, Jung S, Fang M, Kim JC, Lee T, Kim H, Choi GJ, Son H, Lee YW. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum. Environ Microbiol 2017; 19:2053-2067. [PMID: 28296081 DOI: 10.1111/1462-2920.13730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Ji Young Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duc-Cuong Bui
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Nam
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miao Fang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Theresa Lee
- Microbial Safety Team, National Academy of Agricultural Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hokyoung Son
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
28
|
Sahu BB, Baumbach JL, Singh P, Srivastava SK, Yi X, Bhattacharyya MK. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis. PLoS One 2017; 12:e0169963. [PMID: 28095498 PMCID: PMC5241000 DOI: 10.1371/journal.pone.0169963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.
Collapse
Affiliation(s)
- Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jordan L. Baumbach
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Interdepartmental Genetic Program, Iowa State University, Ames, Iowa, United States of America
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Xiaoping Yi
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Interdepartmental Genetic Program, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
29
|
Dai Y, Cao Z, Huang L, Liu S, Shen Z, Wang Y, Wang H, Zhang H, Li D, Song F. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum. Front Microbiol 2016; 7:1449. [PMID: 27695445 PMCID: PMC5025516 DOI: 10.3389/fmicb.2016.01449] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.
Collapse
Affiliation(s)
- Yi Dai
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhongye Cao
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lihong Huang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhihui Shen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yuyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Hui Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
30
|
Górna K, Pawłowicz I, Waśkiewicz A, Stępień Ł. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts. Fungal Biol 2016; 120:884-93. [PMID: 27268248 DOI: 10.1016/j.funbio.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
Abstract
Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media.
Collapse
Affiliation(s)
- Karolina Górna
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
31
|
Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, Kidd BN, Anderson JP, Ghosh R, Garg G, Lichtenzveig J, Kistler HC, Shea T, Young S, Buck SAG, Kamphuis LG, Saxena R, Pande S, Ma LJ, Varshney RK, Singh KB. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 2016; 17:191. [PMID: 26945779 PMCID: PMC4779268 DOI: 10.1186/s12864-016-2486-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.
Collapse
Affiliation(s)
- Angela H Williams
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Sarwar Azam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - James K Hane
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
- Department of Environment and Agriculture, Curtin Institute for Computation, and CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Perth, WA, 6102, Australia.
| | - Jana Sperschneider
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Brendan N Kidd
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Jonathan P Anderson
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Raju Ghosh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Gagan Garg
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Judith Lichtenzveig
- Department of Environment and Agriculture, Pulse Pathology and Genetics, Centre for Crop and Disease Management and Curtin Institute for Computation, Curtin University, Perth, WA, 6102, Australia.
| | - H Corby Kistler
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St Paul, MN, 55108, USA.
| | | | - Sarah Young
- The Broad Institute, Cambridge, MA, 02141, USA.
| | - Sally-Anne G Buck
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Lars G Kamphuis
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| | - Rachit Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Suresh Pande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rajeev K Varshney
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad, 502324, Telangana, India.
| | - Karam B Singh
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, WA, 6913, Australia.
| |
Collapse
|
32
|
Derbyshire MC, Michaelson L, Parker J, Kelly S, Thacker U, Powers SJ, Bailey A, Hammond-Kosack K, Courbot M, Rudd J. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genet Biol 2015; 82:69-84. [PMID: 26074495 PMCID: PMC4557397 DOI: 10.1016/j.fgb.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Louise Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Josie Parker
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Steven Kelly
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | | | - Stephen J Powers
- Department of Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Andy Bailey
- Bristol University, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Mikael Courbot
- Syngenta, Syngenta AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
33
|
Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane. PLoS One 2015; 10:e0129318. [PMID: 26065709 PMCID: PMC4466345 DOI: 10.1371/journal.pone.0129318] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions.
Collapse
|
34
|
Stępień Ł, Waśkiewicz A, Wilman K. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food Microbiol 2015; 193:74-81. [PMID: 25462926 DOI: 10.1016/j.ijfoodmicro.2014.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
Fusarium proliferatum is a common pathogen able to infect a broad range of agriculturally important crops. Recently, some evidence for genetic variance among the species genotypes in relation to their plant origin has been reported. Mycotoxin contamination of plant tissues is the most important threat caused by F. proliferatum and fumonisins B (FBs) are the principal mycotoxins synthesized. The toxigenic potential of the pathogen genotypes is variable and also the reaction of different host plant species on the infection by pathogen is different. The objective of present study was to evaluate the impact of the extracts on the growth and fumonisin biosynthesis by 32 F. proliferatum strains originating from different host species (A-asparagus, M-maize, G-garlic, PS-pea and P-pineapple), and how it changes the secondary metabolism measured by fumonisin biosynthesis. The average strain dry weight was 65.2 mg for control conditions and it reached 180.7 mg, 100.5 mg, 76.6 mg, 126.2 mg and 51.1 mg when pineapple, asparagus, maize, garlic and pea extracts were added, respectively. In the second experiment the extracts were added after 5 days of culturing of the representative group of strains, displaying diverse reaction to the extract presence. Also, the influence of stationary vs. shaken culture was examined. Mean biomass amounts for shaken cultures of 15 chosen strains were as follows: 37.4 mg of dry weight for control culture (C), 219.6 mg (P), 113 mg (A), 93.6 mg (M), 62 mg (G) and 48 mg (PS), respectively. For stationary cultures, the means were as follows: C-57.4 mg, P-355.6 mg, A-291.6 mg, M-191.1 mg, G-171.1 mg and PS-58.9 mg. Few strains showed differential growth when stationary/shaken culture conditions were applied. Almost all strains synthesized moderate amounts of fumonisins in control conditions-less than 10 ng/μL, regardless of the origin and host species. Few strains were able to produce over 100 ng/μL of FBs when pineapple extract was added, twelve strains synthesized more than 10 ng/μL under asparagus extract induction and the pea extract was the most efficient inhibitor of fumonisin biosynthesis. The general impact of the extracts on the fungal biomass amounts was similar, regardless of the host plant origin of the fungal genotypes studied. The evaluation of FBs content has shown differential reaction of some strains, which may contribute to their aggressiveness and pathogenicity.
Collapse
Affiliation(s)
- Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Karolina Wilman
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
35
|
Covey PA, Kuwitzky B, Hanson M, Webb KM. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet. PHYTOPATHOLOGY 2014; 104:886-896. [PMID: 24502207 DOI: 10.1094/phyto-09-13-0248-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.
Collapse
|
36
|
Transcriptional responses of the Bdtf1-deletion mutant to the phytoalexin brassinin in the necrotrophic fungus Alternaria brassicicola. Molecules 2014; 19:10717-32. [PMID: 25061722 PMCID: PMC6270968 DOI: 10.3390/molecules190810717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/28/2022] Open
Abstract
Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.
Collapse
|
37
|
Srivastava A, Cho IK, Cho Y. The Bdtf1 gene in Alternaria brassicicola is important in detoxifying brassinin and maintaining virulence on Brassica species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1429-1440. [PMID: 23945003 DOI: 10.1094/mpmi-07-13-0186-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Brassinin is an antifungal compound induced in Brassica plants after microbial infection. Molecular evidence is incomplete, however, in supporting the importance of brassinin in plant resistance to pathogens. To test the importance of brassinin in plant defense, we studied the functions of the gene Bdtf1 in the necrotrophic fungus Alternaria brassicicola. Several strains of mutants of this gene were weakly virulent on Brassica species, causing lesions 70% smaller in diameter than the wild type on three Brassica species. These mutants, however, were as virulent as the wild type on Arabidopsis thaliana. They were similar to the wild type in spore germination, colony morphology, and mycelial growth in nutrient-rich media, both with and without stress-inducing chemicals. Unlike wild-type A. brassicicola, however, the mutants failed to germinate and their hyphal growth was arrested in the presence of 200 μM brassinin. When grown in a medium containing 100 μM brassinin, wild-type mycelium entirely converted the brassinin into a nontoxic derivative, of which the precise chemical nature was not established. Mutants of the Bdtf1 gene were unable to perform this conversion. Our results support the hypothesis that the ability of A. brassicicola to detoxify brassinin is necessary for successful infection of Brassica species.
Collapse
|
38
|
Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. THE NEW PHYTOLOGIST 2013; 197:1236-1249. [PMID: 23252678 DOI: 10.1111/nph.12085] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/05/2012] [Indexed: 05/04/2023]
Abstract
Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.
Collapse
Affiliation(s)
- Pamela Gan
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Kyoko Ikeda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroki Irieda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | | | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, Japan
| | | | - Yasuyuki Kubo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ken Shirasu
- Plant Science Center, RIKEN, Yokohama, Japan
| |
Collapse
|
39
|
Milani NA, Lawrence DP, Arnold AE, VanEtten HD. Origin of pisatin demethylase (PDA) in the genus Fusarium. Fungal Genet Biol 2012; 49:933-42. [PMID: 22985693 DOI: 10.1016/j.fgb.2012.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/25/2022]
Abstract
Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G+C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Nicholas A Milani
- School of Plant Sciences, College of Agriculture, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|