1
|
Zhang Y, Wei Y, Meng J, Wang Y, Nie S, Zhang Z, Wang H, Yang Y, Gao Y, Wu J, Li T, Liu X, Zhang H, Gu L. Chromosome-scale de novo genome assembly and annotation of three representative Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1490-1505. [PMID: 36971060 DOI: 10.1111/tpj.16201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 06/17/2023]
Abstract
Australian pine (Casuarina spp.) is extensively planted in tropical and subtropical regions for wood production, shelterbelts, environmental protection, and ecological restoration due to their superior biological characteristics, such as rapid growth, wind and salt tolerance, and nitrogen fixation. To analyze the genomic diversity of Casuarina, we sequenced the genomes and constructed de novo genome assemblies of the three most widely planted Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. We generated chromosome-scale genome sequences using both Pacific Biosciences (PacBio) Sequel sequencing and chromosome conformation capture technology (Hi-C). The total genome sizes for C. equisetifolia, C. glauca, and C. cunninghamiana are 268 942 579 bp, 296 631 783 bp, and 293 483 606 bp, respectively, of which 25.91, 27.15, and 27.74% were annotated as repetitive sequences. We annotated 23 162, 24 673, and 24 674 protein-coding genes in C. equisetifolia, C. glauca, and C. cunninghamiana, respectively. We then collected branchlets from male and female individuals for whole-genome bisulfite sequencing (BS-seq) to explore the epigenetic regulation of sex determination in these three species. Transcriptome sequencing (RNA-seq) revealed differential expression of phytohormone-related genes between male and female plants. In summary, we generated three chromosome-level genome assemblies and comprehensive DNA methylation and transcriptome datasets from both male and female material for three Casuarina species, providing a basis for the comprehensive investigation of genomic diversity and functional gene discovery of Casuarina in the future.
Collapse
Affiliation(s)
- Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yongcheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jingxiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yujiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Sen Nie
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, 350012, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongkang Yang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuqing Liu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
4
|
Salgado MG, van Velzen R, Nguyen TV, Battenberg K, Berry AM, Lundin D, Pawlowski K. Comparative Analysis of the Nodule Transcriptomes of Ceanothus thyrsiflorus (Rhamnaceae, Rosales) and Datisca glomerata (Datiscaceae, Cucurbitales). FRONTIERS IN PLANT SCIENCE 2018; 9:1629. [PMID: 30487804 PMCID: PMC6246699 DOI: 10.3389/fpls.2018.01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Two types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of Datisca glomerata (Datiscaceae, Cucurbitales) and Ceanothus thyrsiflorus (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured Frankia clade, cluster II. The analysis focused on various features. In both species, the expression of orthologs of legume Nod factor receptor genes was elevated in nodules compared to roots. Since arginine has been postulated as export form of fixed nitrogen from symbiotic Frankia in nodules of D. glomerata, the question was whether the nitrogen metabolism was similar in nodules of C. thyrsiflorus. Analysis of the expression levels of key genes encoding enzymes involved in arginine metabolism revealed up-regulation of arginine catabolism, but no up-regulation of arginine biosynthesis, in nodules compared to roots of D. glomerata, while arginine degradation was not upregulated in nodules of C. thyrsiflorus. This new information corroborated an arginine-based metabolic exchange between host and microsymbiont for D. glomerata, but not for C. thyrsiflorus. Oxygen protection systems for nitrogenase differ dramatically between both species. Analysis of the antioxidant system suggested that the system in the nodules of D. glomerata leads to greater oxidative stress than the one in the nodules of C. thyrsiflorus, while no differences were found for the defense against nitrosative stress. However, induction of nitrite reductase in nodules of C. thyrsiflorus indicated that here, nitrite produced from nitric oxide had to be detoxified. Additional shared features were identified: genes encoding enzymes involved in thiamine biosynthesis were found to be upregulated in the nodules of both species. Orthologous nodule-specific subtilisin-like proteases that have been linked to the infection process in actinorhizal Fagales, were also upregulated in the nodules of D. glomerata and C. thyrsiflorus. Nodule-specific defensin genes known from actinorhizal Fagales and Cucurbitales, were also found in C. thyrsiflorus. In summary, the results underline the variability of nodule metabolism in different groups of symbiotic plants while pointing at conserved features involved in the infection process.
Collapse
Affiliation(s)
- Marco G. Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Hocher V, Ngom M, Carré-Mlouka A, Tisseyre P, Gherbi H, Svistoonoff S. Signalling in actinorhizal root nodule symbioses. Antonie van Leeuwenhoek 2018; 112:23-29. [PMID: 30306463 DOI: 10.1007/s10482-018-1182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 11/29/2022]
Abstract
Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.
Collapse
Affiliation(s)
- Valérie Hocher
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Mariama Ngom
- LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal
| | - Alyssa Carré-Mlouka
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France.,MCAM, UMR 7245 CNRS/MNHN, Sorbonne Universités, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Pierre Tisseyre
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Hassen Gherbi
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Sergio Svistoonoff
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France. .,LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal. .,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.
| |
Collapse
|
6
|
Fournier J, Imanishi L, Chabaud M, Abdou-Pavy I, Genre A, Brichet L, Lascano HR, Muñoz N, Vayssières A, Pirolles E, Brottier L, Gherbi H, Hocher V, Svistoonoff S, Barker DG, Wall LG. Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization. THE NEW PHYTOLOGIST 2018; 219:1018-1030. [PMID: 29790172 DOI: 10.1111/nph.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 05/16/2023]
Abstract
Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.
Collapse
Affiliation(s)
- Joëlle Fournier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Leandro Imanishi
- LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, B1876BXD, Argentina
| | - Mireille Chabaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Iltaf Abdou-Pavy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| | - Lukas Brichet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Hernán Ramiro Lascano
- Instituto de Fitopatología y Fisiología Vegetal IFFIVE-INTA, Córdoba, X5020ICA, Argentina
| | - Nacira Muñoz
- Instituto de Fitopatología y Fisiología Vegetal IFFIVE-INTA, Córdoba, X5020ICA, Argentina
| | - Alice Vayssières
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Elodie Pirolles
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Laurent Brottier
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
| | - Sergio Svistoonoff
- Laboratoire des Symbioses Tropicales et Méditerranéennes (IRD/INRA/CIRAD/Université de Montpellier/Supagro), 34398, Montpellier Cedex 5, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Centre de Recherche de Bel Air, CP 18524, Dakar, Sénégal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop, BP 1386, Dakar, Sénégal
| | - David G Barker
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Luis G Wall
- LBMIBS, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, B1876BXD, Argentina
| |
Collapse
|
7
|
Taylor A, Qiu YL. Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:489-501. [PMID: 28353400 DOI: 10.1094/mpmi-10-16-0218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Alexander Taylor
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| | - Yin-Long Qiu
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| |
Collapse
|
8
|
López M, Gómez E, Faye C, Gerentes D, Paul W, Royo J, Hueros G, Muñiz LM. zmsbt1 and zmsbt2, two new subtilisin-like serine proteases genes expressed in early maize kernel development. PLANTA 2017; 245:409-424. [PMID: 27830397 DOI: 10.1007/s00425-016-2615-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Two subtilisin-like proteases show highly specific and complementary expression patterns in developing grains. These genes label the complete surface of the filial-maternal interface, suggesting a role in filial epithelial differentiation. The cereal endosperm is the most important source of nutrition and raw materials for mankind, as well as the storage compartment enabling initial growth of the germinating plantlets. The development of the different cell types in this tissue is regulated environmentally, genetically and epigenetically, resulting in the formation of top-bottom, adaxial-abaxial and surface-central axes. However, the mechanisms governing the interactions among the different inputs are mostly unknown. We have screened a kernel cDNA library for tissue-specific transcripts as initial step to identify genes relevant in cell differentiation. We report here on the isolation of two maize subtilisin-related genes that show grain-specific, surficial expression. zmsbt1 (Zea mays Subtilisin1) is expressed at the developing aleurone in a time-regulated manner, while zmsbt2 concentrates at the pedicel in front of the endosperm basal transfer layer. We have shown that their presence, early in the maize caryopsis development, is dependent on proper initial tissue determination, and have isolated their promoters to produce transgenic reporter lines that assist in the study of their regulation.
Collapse
Affiliation(s)
- Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christian Faye
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Joaquín Royo
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Luis M Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
9
|
Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, Sy MO, Champion A. Symbiotic Performance of Diverse Frankia Strains on Salt-Stressed Casuarina glauca and Casuarina equisetifolia Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1331. [PMID: 27630656 PMCID: PMC5006599 DOI: 10.3389/fpls.2016.01331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/18/2016] [Indexed: 05/29/2023]
Abstract
Symbiotic nitrogen-fixing associations between Casuarina trees and the actinobacteria Frankia are widely used in agroforestry in particular for salinized land reclamation. The aim of this study was to analyze the effects of salinity on the establishment of the actinorhizal symbiosis between C. glauca and two contrasting Frankia strains (salt sensitive; CcI3 vs. salt tolerant; CeD) and the role of these isolates in the salt tolerance of C. glauca and C. equisetifolia plants. We show that the number of root nodules decreased with increasing salinity levels in both plants inoculated with CcI3 and CeD. Nodule formation did not occur in seedlings inoculated with CcI3 and CeD, at NaCl concentrations above 100 and 200 mM, respectively. Salinity also affected the early deformation of plant root hairs and reduced their number and size. In addition, expression of symbiotic marker Cg12 gene, which codes for a subtilase, was reduced at 50 mM NaCl. These data suggest that the reduction of nodulation in C. glauca under salt stress is in part due to inhibition of early mechanisms of infection. We also show that prior inoculation of C. glauca and C. equisetifolia with Frankia strains CcI3 and CeD significantly improved plant height, dry biomass, chlorophyll and proline contents at all levels of salinity tested, depending on the Casuarina-Frankia association. There was no correlation between in vitro salt tolerance of Frankia strains and efficiency in planta under salt-stressed conditions. Our results strongly indicate that increased N nutrition, photosynthesis potential and proline accumulation are important factors responsible for salt tolerance of nodulated C. glauca and C. equisetifolia.
Collapse
Affiliation(s)
- Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
| | - Krystelle Gray
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| | - Nathalie Diagne
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Centre National de Recherches Agronomiques, Institut Sénégalais de Recherches AgricolesBambey, Sénégal
| | - Rediet Oshone
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Sergio Svistoonoff
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/Sup agroMontpellier, France
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Mame O. Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-AirDakar, Sénégal
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
| |
Collapse
|
10
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis 2016. [DOI: 10.1007/s13199-016-0386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Champion A, Lucas M, Tromas A, Vaissayre V, Crabos A, Diédhiou I, Prodjinoto H, Moukouanga D, Pirolles E, Cissoko M, Bonneau J, Gherbi H, Franche C, Hocher V, Svistoonoff S, Laplaze L. Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. PLANT PHYSIOLOGY 2015; 167:1149-57. [PMID: 25627215 PMCID: PMC4348781 DOI: 10.1104/pp.114.255307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses.
Collapse
Affiliation(s)
- Antony Champion
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Mikael Lucas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Alexandre Tromas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Virginie Vaissayre
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Amandine Crabos
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Issa Diédhiou
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hermann Prodjinoto
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Daniel Moukouanga
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Elodie Pirolles
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Maïmouna Cissoko
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Jocelyne Bonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hassen Gherbi
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Claudine Franche
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Valérie Hocher
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Sergio Svistoonoff
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| |
Collapse
|
13
|
Svistoonoff S, Hocher V, Gherbi H. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? CURRENT OPINION IN PLANT BIOLOGY 2014; 20:11-8. [PMID: 24691197 DOI: 10.1016/j.pbi.2014.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 05/07/2023]
Abstract
Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | - Valérie Hocher
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Hassen Gherbi
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
14
|
|
15
|
KUSUMAWATI LUCIA, KURAN KATHRYN, IMIN NIJAT, MATHESIUS ULRIKE, DJORDJEVIC MICHAEL. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots. HAYATI JOURNAL OF BIOSCIENCES 2013. [DOI: 10.4308/hjb.20.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS One 2013; 8:e72442. [PMID: 24009681 PMCID: PMC3756986 DOI: 10.1371/journal.pone.0072442] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Tomas Persson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Patricia Santos
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | |
Collapse
|
17
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Tromas A, Diagne N, Diedhiou I, Prodjinoto H, Cissoko M, Crabos A, Diouf D, Sy MO, Champion A, Laplaze L. Establishment of Actinorhizal Symbioses. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 2012; 7:e44742. [PMID: 22970303 PMCID: PMC3435296 DOI: 10.1371/journal.pone.0044742] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants.
Collapse
|
20
|
Schaller A, Stintzi A, Graff L. Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. PHYSIOLOGIA PLANTARUM 2012; 145:52-66. [PMID: 21988125 DOI: 10.1111/j.1399-3054.2011.01529.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Subtilases (SBTs) constitute a large family of serine peptidases. They are commonly found in Archaea, Bacteria and Eukarya, with many more SBTs in plants as compared to other organisms. The expansion of the SBT family in plants was accompanied by functional diversification, and novel, plant-specific physiological roles were acquired in the course of evolution. In addition to their contribution to general protein turnover, plant SBTs are involved in the development of seeds and fruits, the manipulation of the cell wall, the processing of peptide growth factors, epidermal development and pattern formation, plant responses to their biotic and abiotic environment, and in programmed cell death. Plant SBTs share many properties with their bacterial and mammalian homologs, but the adoption of specific roles in plant physiology is also reflected in the acquisition of unique biochemical and structural features that distinguish SBTs in plants from those in other organisms. In this article we provide an overview of the earlier literature on the discovery of the first SBTs in plants, and highlight recent findings with respect to their physiological relevance, structure and function.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany.
| | | | | |
Collapse
|
21
|
Ribeiro A, Gra A IS, Pawlowski K, Santos PC. Actinorhizal plant defence-related genes in response to symbiotic Frankia. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:639-644. [PMID: 32480918 DOI: 10.1071/fp11012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/10/2011] [Indexed: 05/15/2023]
Abstract
Actinorhizal plants have become increasingly important as climate changes threaten to remake the global landscape over the next decades. These plants are able to grow in nutrient-poor and disturbed soils, and are important elements in plant communities worldwide. Besides that, most actinorhizal plants are capable of high rates of nitrogen fixation due to their capacity to establish root nodule symbiosis with N2-fixing Frankia strains. Nodulation is a developmental process that requires a sequence of highly coordinated events. One of these mechanisms is the induction of defence-related events, whose precise role in a symbiotic interaction remains to be elucidated. This review summarises what is known about the induction of actinorhizal defence-related genes in response to symbiotic Frankia and their putative function during symbiosis.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - In S Gra A
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
22
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
23
|
Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. PLANT PHYSIOLOGY 2011; 156:700-11. [PMID: 21464474 PMCID: PMC3177269 DOI: 10.1104/pp.111.174151] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/30/2011] [Indexed: 05/19/2023]
Abstract
Comparative transcriptomics of two actinorhizal symbiotic plants, Casuarina glauca and Alnus glutinosa, was used to gain insight into their symbiotic programs triggered following contact with the nitrogen-fixing actinobacterium Frankia. Approximately 14,000 unigenes were recovered in roots and 3-week-old nodules of each of the two species. A transcriptomic array was designed to monitor changes in expression levels between roots and nodules, enabling the identification of up- and down-regulated genes as well as root- and nodule-specific genes. The expression levels of several genes emblematic of symbiosis were confirmed by quantitative polymerase chain reaction. As expected, several genes related to carbon and nitrogen exchange, defense against pathogens, or stress resistance were strongly regulated. Furthermore, homolog genes of the common and nodule-specific signaling pathways known in legumes were identified in the two actinorhizal symbiotic plants. The conservation of the host plant signaling pathway is all the more surprising in light of the lack of canonical nod genes in the genomes of its bacterial symbiont, Frankia. The evolutionary pattern emerging from these studies reinforces the hypothesis of a common genetic ancestor of the Fabid (Eurosid I) nodulating clade with a genetic predisposition for nodulation.
Collapse
|
24
|
Svistoonoff S, Gherbi H, Nambiar-Veetil M, Zhong C, Michalak Z, Laplaze L, Vaissayre V, Auguy F, Hocher V, Doumas P, Bonneau J, Bogusz D, Franche C. Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 2009. [DOI: 10.1007/s13199-009-0036-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Kusumawati L, Imin N, Djordjevic MA. Characterization of the Secretome of Suspension Cultures of Medicago Species Reveals Proteins Important for Defense and Development. J Proteome Res 2008; 7:4508-20. [DOI: 10.1021/pr800291z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucia Kusumawati
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Nijat Imin
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Michael A. Djordjevic
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
26
|
Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B, Lee MP, Libault M, Vodkin LO, Xu D, Lee SH, Clough SJ, Stacey G. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:631-45. [PMID: 18393623 DOI: 10.1094/mpmi-21-5-0631] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation, timepoints that coincide with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by quantitative reverse transcriptase-polymerase chain reaction, and their expression patterns mimicked the microarray results, confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status.
Collapse
Affiliation(s)
- Laurent Brechenmacher
- National Center for Soybean Biotechnology, Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hocher V, Auguy F, Argout X, Laplaze L, Franche C, Bogusz D. Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. THE NEW PHYTOLOGIST 2006; 169:681-8. [PMID: 16441749 DOI: 10.1111/j.1469-8137.2006.01644.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The present study aimed to identify and assess the frequency and tissue specificity of plant genes in the actinorhizal Casuarina glauca-Frankia symbiosis through expressed sequence tag (EST) analysis. Using a custom analysis pipeline for raw sequences of C. glauca uninfected roots and nodules, we obtained an EST databank web interface. Gene expression was studied in nodules vs roots using comparative quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). From roots and nodules, 2028 ESTs were created and clustered in 242 contigs and 1429 singletons, giving a total of 1616 unique genes. Half the nodule transcripts showed no similarity to previously identified genes. Genes of primary metabolism, protein synthesis, cell division and defence were highly represented in the nodule library. Differential expression was observed between roots and nodules for several genes linked to primary metabolism and flavonoid biosynthesis. This comparative EST-based study provides the first picture of the set of genes expressed during actinorhizal symbiosis. We consider our database to be a flexible tool that can be used for the management of EST data from other actinorhizal symbioses.
Collapse
Affiliation(s)
- Valérie Hocher
- UMR 1098, Institut de Recherche pour le Développement (IRD), BP 64501, 911 avenue Agropolis, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | |
Collapse
|
28
|
Antão CM, Malcata FX. Plant serine proteases: biochemical, physiological and molecular features. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:637-50. [PMID: 16006138 DOI: 10.1016/j.plaphy.2005.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/11/2005] [Indexed: 05/03/2023]
Abstract
In the latest two decades, the interest received by plant proteases has been on the rise. Serine proteases (EC 3.4.21)-in particular those from cucurbits, cereals and trees-share indeed a number of biochemical and physiological features, that may prove useful toward understanding of several mechanisms at the subcellular level. This critical review focuses on the characterization of most plant serine proteases, and comprehensively lists information produced by more and more sophisticated research tools that have led to the current state of the art in knowledge of these unique enzymes.
Collapse
Affiliation(s)
- Cecília M Antão
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | | |
Collapse
|
29
|
Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Fevereiro P, Franche C, Bogusz D. Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. PLANT PHYSIOLOGY 2004; 136:3191-7. [PMID: 15466224 PMCID: PMC523378 DOI: 10.1104/pp.104.048967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 07/30/2004] [Accepted: 08/07/2004] [Indexed: 05/23/2023]
Abstract
Two nitrogen-fixing root nodule symbioses between soil bacteria and higher plants have been described: the symbiosis between legume and rhizobia and actinorhizal symbioses between plants belonging to eight angiosperm families and the actinomycete Frankia. We have recently shown that the subtilisin-like Ser protease gene cg12 (isolated from the actinorhizal plant Casuarina glauca) is specifically expressed during plant cell infection by Frankia. Here we report on the study of C. glauca cg12 promoter activity in the transgenic legume Medicago truncatula. We found that cg12 promoter activation is associated with plant cell infection by Sinorhizobium meliloti. Furthermore, applications of purified Nod factors and mycorrhizal inoculation failed to trigger expression of the cg12-reporter gene construct. This indicates that at least part of the transcriptional environment in plant cells infected by endosymbiotic nitrogen-fixing bacteria is conserved between legume and actinorhizal plants. These results are discussed in view of recent data concerning molecular phylogeny that suggest a common evolutionary origin of all plants entering nitrogen-fixing root nodule symbioses.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Unité Mixte de Recherche 1098, Institut de Recherche pour le Développement, BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pawlowski K, Swensen S, Guan C, Hadri AE, Berry AM, Bisseling T. Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:796-807. [PMID: 12971603 DOI: 10.1094/mpmi.2003.16.9.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phylogenetic analyses suggest that, among the members of the Eurosid I clade, nitrogen-fixing root nodule symbioses developed multiple times independently, four times with rhizobia and four times with the genus Frankia. In order to understand the degree of similarity between symbiotic systems of different phylogenetic subgroups, gene expression patterns were analyzed in root nodules of Datisca glomerata and compared with those in nodules of another actinorhizal plant, Alnus glutinosa, and with the expression patterns of homologous genes in legumes. In parallel, the phylogeny of actinorhizal plants was examined more closely. The results suggest that, although relationships between major groups are difficult to resolve using molecular phylogenetic analysis, the comparison of gene expression patterns can be used to inform evolutionary relationships. In this case, stronger similarities were found between legumes and intracellularly infected actinorhizal plants (Alnus) than between actinorhizal plants of two different phylogenetic subgroups (Alnus/Datisca).
Collapse
Affiliation(s)
- Katharina Pawlowski
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D. cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:600-607. [PMID: 12848425 DOI: 10.1094/mpmi.2003.16.7.600] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cg12 is an early actinorhizal nodulin gene from Casuarina glauca encoding a subtilisin-like serine protease. Using transgenic Casuarinaceae plants carrying cg12-gus and cg12-gfp fusions, we have studied the expression pattern conferred by the cg12 promoter region after inoculation with Frankia. cg12 was found to be expressed in root hairs and in root and nodule cortical cells containing Frankia infection threads. cg12 expression was also monitored after inoculation with ineffective Frankia strains, during mycorrhizae formation, and after diverse hormonal treatments. None of these treatments was able to induce its expression, therefore suggesting that cg12 expression is linked to plant cell infection by Frankia strains. Possible roles of cg12 in actinorhizal symbiosis are discussed.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Equipe Rhizogenèse, UMR 1098, Institut de Recherche pour le Développement, BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hamilton JMU, Simpson DJ, Hyman SC, Ndimba BK, Slabas AR. Ara12 subtilisin-like protease from Arabidopsis thaliana: purification, substrate specificity and tissue localization. Biochem J 2003; 370:57-67. [PMID: 12413398 PMCID: PMC1223143 DOI: 10.1042/bj20021125] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Revised: 10/15/2002] [Accepted: 11/01/2002] [Indexed: 11/17/2022]
Abstract
A C-terminal portion of Ara12 subtilisin-like protease (residues 542-757) was expressed in Escherichia coli cells as a fusion protein bound to maltose binding protein. Polyclonal antisera raised against the expressed protein were used to examine the tissue specificity and subcellular localization of Ara12. The protease was found predominantly in the silique and stem of plants, but was hardly detectable in leaf and not seen in root tissue. The distribution observed using immunological techniques is different from that seen by an RNA analysis study, which demonstrated similar mRNA abundance in the stem and leaves. Using immunogold labelling, Ara12 was shown to have an extracellular localization and was found in the intercellular spaces in stem tissue. Ara12 protease was purified to homogeneity from Arabidopsis thaliana cell suspension cultures by anion exchange and hydrophobic interaction chromatography. Proteolytic activity of Ara12 was inhibited by a number of serine protease inhibitors, but was almost unaffected by inhibitors of other catalytic classes of proteases. Optimal proteolytic activity was displayed under acidic conditions (pH 5.0). Ara12 activity was relatively thermostable and was stimulated in the presence of Ca2+ ions. Substrate specificity studies were conducted using a series of internally quenched fluorogenic peptide substrates. At the P1 position of substrates, hydrophobic residues, such as Phe and Ala, were preferred to Arg, whilst at the P1' position, Asp, Leu and Ala were most favoured. Possible functions of Ara12 are discussed in the light of the involvement of a number of plant subtilisin-like proteases in morphogenesis.
Collapse
Affiliation(s)
- John M U Hamilton
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
We describe the isolation of a protease from common bean leaves grown in the field. On the basis of its biochemical properties it was classified as serine proteinase belonging to the subtilisin clan. Isoelectric focusing resulted in a single band at pH 4.6, and SDS-PAGE in a single band corresponding to M(r) 72 kDa. The proteinase activity is maximal at pH 9.9 and shows high stability in the alkaline region. The relative activities of the proteinase for eight different synthetic substrates were determined. The requirement for Arg in the P1 position appeared obligatory. k(cat)/K(m) values indicate that, for highest catalytic efficiency, a basic amino acid is also required in the P2 position, presenting a motif typical of the cleavage site for the kexin family of subtilases. The sequence of the 17 N-terminal amino acids of this proteinase shows similarity to those of other plant subtilases, sharing the highest number of identical amino acids with proteinase C1 from soybean seedling cotyledons and a cucumisin-like proteinase from white gourd (Benincasa hispida).
Collapse
Affiliation(s)
- Tatjana Popovic
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
34
|
Kim HB, An CS. Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:209-215. [PMID: 11952123 DOI: 10.1094/mpmi.2002.15.3.209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two cDNA clones encoding chitinase were isolated from a root nodule cDNA library of Elaeagnus umbellata by the hybridization-competition method. The two clones, EuNOD-CHT1 and EuNOD-CHT2, encode for 335 and 317 amino acid residues with the molecular mass of mature proteins being 33.3 and 31.1 kDa, respectively. The two chitinases showed similar protein structures consisting of four domains: hydrophobic signal peptide domain, cysteine-rich chitin-binding domain, hinge domain, and catalytic domain. The EuNOD-CHT1 gene showed similar expression levels in root nodules and leaves, with no detection of transcripts in the roots. The EuNOD-CHT2 gene was expressed at similarly high levels in the roots and root nodules, but at a very low level in the leaves. In situ hybridization showed that EuNOD-CHT1 transcripts were strongly detected in the meristem zone, but weakly detected in the outer cortex layer of the root nodule and in the uninfected cells of the fixation zone. On the other hand, EuNOD-CHT2 transcripts were strongly detected in the infected cells of the fixation zone and central vascular system, but weakly detected in the senescence zone. Our results suggest that the two chitinases may play different biological roles in the root nodule. EuNOD-CHT2 may be involved in a defense response against internal symbionts, external pathogens, or both, while EuNOD-CHT1 may be involved in normal plant development as well as in a defensive role against external pathogens.
Collapse
Affiliation(s)
- Ho Bang Kim
- School of Biological Sciences, Seoul National University, Korea
| | | |
Collapse
|
35
|
Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y. A subtilisin-like serine protease is required for epidermal surface formation inArabidopsisembryos and juvenile plants. Development 2001; 128:4681-9. [PMID: 11731449 DOI: 10.1242/dev.128.23.4681] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The surfaces of land plants are covered with a cuticle that is essential for retention of water. Epidermal surfaces of Arabidopsis thaliana embryos and juvenile plants that were homozygous for abnormal leaf shape1 (ale1) mutations were defective, resulting in excessive water loss and organ fusion in young plants. In ale1 embryos, the cuticle was rudimentary and remnants of the endosperm remained attached to developing embryos. Juvenile plants had a similar abnormal cuticle. The ALE1 gene was isolated using a transposon-tagged allele ale1-1. The predicted ALE1 amino acid sequence was homologous to those of subtilisin-like serine proteases. The ALE1 gene was found to be expressed within certain endosperm cells adjacent to the embryo and within the young embryo. Expression was not detected after germination. Our results suggest that the putative protease ALE1 affects the formation of cuticle on embryos and juvenile plants and that an appropriate cuticle is required for separation of the endosperm from the embryo and for prevention of organ fusion.
Collapse
Affiliation(s)
- H Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bisseling T, Bogusz D, Pawlowski K. Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:107-112. [PMID: 10656591 DOI: 10.1094/mpmi.2000.13.1.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent phylogenetic studies have implied that all plants able to enter root nodule symbioses with nitrogen-fixing bacteria go back to a common ancestor (D.E. Soltis, P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd, and P.G. Martin, Proc. Natl. Acad. Sci. USA, 92:2647-2651, 1995). However, nodules formed by plants from different groups are distinct in nodule organogenesis and structure. In most groups, nodule organogenesis involves the induction of cortical cell divisions. In legumes these divisions lead to the formation of a nodule primordium, while in non-legumes they lead to the formation of a so-called prenodule consisting of infected and uninfected cells. Nodule primordium formation does not involve prenodule cells, and the function of prenodules is not known. Here, we examine the differentiation of actinorhizal prenodule cells in comparison to nodule cells with regard to both symbionts. Our findings indicate that prenodules represent primitive symbiotic organs whose cell types display the same characteristics as their nodule counterparts. The results are discussed in the context of the evolution of root nodule symbioses.
Collapse
Affiliation(s)
- L Laplaze
- Physiologie Cellulaire et Moléculaire des Arbres, Laboratoire GeneTrop, IRD, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|